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Abstract

The paper is concerned with methods for blowing power of singular cardinals using
short extenders. Thus, for example, starting with κ of cofinality ω with {α < κ |
o(α) ≥ α+n} cofinal in κ for every n < ω we construct a cardinal preserving extension
having the same bounded subsets of κ and satisfying 2κ = κ+δ+1 for any δ < ℵ1.

0. Introduction

In Gitik-Mitchell [Git-Mit] the following was proved:

Theorem. Suppose that there is no sharp for an inner model with a strong cardinal. Let

κ be a strong limit cardinal of cofinality ω and 2κ ≥ λ > κ+, where λ is not the successor of

a cardinal of cofinality less than κ. Then in the core model either

(a) o(κ) ≥ λ

or

(b) {α < κ | o(α) ≥ α+n} is cofinal in κ for each n < ω.

The forcing of Gitik-Magidor [Git-Mag1] provides the equiconsistency result if λ < κ+ω.

Once λ > κ+ω or κ is a singular cardinal in the core model the possibility (b) of the theorem

comes into consideration.

In the present paper, we continue to develop methods for adding ω-sequences to cardinals

κ satisfying the condition (b) of the theorem or conditions of similar flavor. The research in
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this direction was started in [Git1], then in [Git2] the power of κ satisfying (b) was blown

up to κ++.

The paper is based on forcing techniques of [Git-Mag1,2] and [Git2], but we do not assume

the detailed knowledge of these articles. Rather, we present here the necessary apparatus in

a simplified form. It is assumed only that the reader is familiar with the Prikry forcing and

extenders. The book of A. Kanamori [Ka] is a good reference for both of them.

The paper is organized as follows: in Sections 1,2 we present simplified versions of forcings

for blowing power of singular cardinals introduced in [Git-Mag2] and [Git2]. The next two

sections are the main technical parts of the paper. In Section 3 it is shown how to make

2κ = κ+3 starting with κ satisfying the condition (b). In Section 4, based on the ideas

developed in Section 3, the method for obtaining 2κ ≥ κ+δ for any δ < κ is presented.

Section 5 deals with generalizations based on the idea of Shelah [Sh1].
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1. A Simple Extender Based Forcing

In this section, we present a simplified version of extender-based forcing of Gitik-Magidor

[Git-Mag1,2]. Such forcing will serve only as a motivation for one defined in the next section.

Thus, the reader familiar with extender-based forcings may jump directly to Section 2.

Assume GCH. Let κ be a singular cardinal of cofinality ω and λ ≥ κ+ be a successor

cardinal. Assume that κ =
⋃

n<ω κn, where 〈κn | n < ω〉 is increasing and each κn is λ + 1-

strong. This means that for every n < ω there is a (κn, λ+)-extender En over κn which

ultrapower contains Vλ+1. We fix such En and let jn : V → M ' Ult(V, En). For every

α < λ we define a κn – complete ultrafilter Unα over κn by setting X ∈ Unα iff α ∈ jn(X).

Notice that a lot of Unα’s will be comparable in the Rudin-Keisler order (further RK order).

Recall that U ≤RK W iff there is f : ∪W → ∪U such that X ∈ U iff f−1′′ (X) ∈ W .

Thus, for example, if α ≥ β, then Un,α+β ≥RK Un,α and Un,α+β ≥RK Un,β. We will need a

strengthening of the Rudin-Kiesler order. Thus, for α, β < λ let α ≤En β iff α ≤ β and for
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some f ∈ κnκn jn(f)(β) = α. Clearly then, α ≤En β implies Unα ≤RK Unβ as witnessed by

any f ∈κnκn with jn(f)(β) = α. The partial order 〈λ,≤En〉 is

κn-directed in the RK-order. Actually it is κ++
n -directed (see [Git-Mag1]), but for our

purposes κn-directedness will be enough. Thus, using GCH, for some enumeration 〈aα |
α < κn〉 of [κn]<κn so that for every successor cardinal δ < κn〈aα|α < δ〉 enumerates [δ]<δ

and every element of [δ]<δ appears stationary many times in each cofinality < δ in the

enumeration. Let jn (〈aα | α < κn〉) = 〈aα | α < jn(κn)〉. Then, 〈aα | α < λ〉 will enumerate

[λ]<λ ⊇ [λ]<κn . Let 〈αi | i < τ < κn〉 be an increasing sequence of ordinals below λ. Find

α < λ\(⋃i<τ αi + 1) such that aα = {αi | i < τ}. Then, it is easy to show that α >En αi for

every i < τ . Vλ+1 ⊆ Mn, so Mn-stationary subset of λ is really stationary. Hence we obtain

the following:

Lemma 1.0 For every set a ⊆ λ of cardinality less than κn there are stationary many

α’s < λ in every cofinality < λ so that α >En β for every β ∈ a.

For every α, β < λ such that α ≥En β we fix the projection παβ : κn → κn from the

extender witnessing this. Let παα = id. The following lemma is routine:

Lemma 1.1 Let α, αi < λ i < τ < κn. Assume that α ≥En αi for every i < τ . Then there

is a set A ∈ Unα so that for every i, j < τ , ν ∈ A

(1) if αi ≥En αj then πααj
(ν) = παiαj

(πααi
(ν));

and

(2) if αi > αj then πααj
(ν) < πααi

(ν)

Now we are ready to define our first forcing notion. We are aiming to blow up the power

of κ to λ by adding λ Prikry sequences without adding new bounded subsets to κ. But now

we will be much more modest. Fix some n < ω.

Definition 1.2

Let Qn1 = {f | f is a partial function from λ to κn of cardinality at most κ}. We order Qn1

by inclusion. Denote this order by ≤1.

Thus, Qn1 is basically the usual Cohen forcing for blowing the power of κ+ to λ. The

only minor change is that the functions are taking values inside κn rather than 2 or κ+.
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Definition 1.3

Let Qn0 be the set of triples 〈a, A, f〉 so that

(1) f ∈ Qn1

(2) a ⊆ λ such that

(2)(i) |a| < κn

(2)(ii) a ∩ dom f = ∅

(2)(iii) a has a ≤En maximal element.

(3) A ∈ Unmax(a)

(4) for every α, β, γ ∈ a, if α ≥En β ≥En γ, then παγ(ρ) = πβγ(παβ(ρ)) for every ρ ∈
π′′max(a),αA.

(5) for every α > β in a and every ν ∈ A

πmax(a),α(ν) > πmax(a),β(ν) .

The last two conditions require the full commutativity on A which is possible by Lemma

1.1.

Definition 1.4

Let 〈a,A, f〉, 〈b, B, g〉 ∈ Qn0. Then

〈a,A, f〉 ≥0 〈b, B, g〉

(〈a,A, f〉 is stronger than 〈b, B, g〉) iff

(1) f ⊇ g

(2) a ⊇ b

(3) π′′max(a),max(b)A ⊆ B

We now define a forcing notion Qn which is an extender analog of the one element Prikry

forcing.
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Definition 1.5

Qn = Qn0 ∪Qn1.

Definition 1.6

The direct extension ordering ≤∗ on Qn is defined to be ≤0 ∪ ≤1.

Definition 1.7

Let p, q ∈ Qn.

Then p ≤ q iff either

(1) p ≤∗ q

or

(2) p = 〈a,A, f〉 ∈ Qn0, q ∈ Qn1 and the following holds:

(2)(a) q ⊇ f

(2)(b) dom q ⊇ a

(2)(c) q(max(a)) ∈ A

(2)(d) for every β ∈ a q(β) = πmax(a),β(q(max(a))).

Clearly, the forcing 〈Qn,≤〉 is equivalent to 〈Qn1,≤1〉, i.e. the Cohen forcing. However,

the following basic facts relate it to the Prikry type forcing notion.

Lemma 1.8 〈Qn,≤∗〉 is κn-closed.

Lemma 1.9 〈Qn,≤,≤∗〉 satisfies the Prikry condition, i.e. for every p ∈ Qn and every

statement σ of the forcing language there is q ≥∗ p deciding σ. Moreover, p and q have the

same first coordinate.

Proof. Let p = 〈a,A, f〉. Suppose otherwise. By induction on ν ∈ A define an increasing

sequence 〈pν | ν ∈ A〉 of elements of Qn1 with dom pν ∩a = ∅ as follows. Let 〈pρ | ρ ∈ A∩ ν〉
be defined and ν ∈ A. Define pν . Let g =

⋃
ρ<ν pρ. Then g ∈ Qn1. Consider q = 〈a,A, g〉.

Let qa〈ν〉 = g ∪ {〈β, πmaxa,β(ν)〉 | β ∈ a}. If there is p ≥1 qa〈ν〉 deciding σ, then let pν be

some such p restricted to λ\a. Otherwise, set pν = g. Notice that here there will always be

a condition deciding σ.
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Finally, let g =
⋃

ν∈A pν .

Shrink A to a set B ∈ Unmax(a) so that paν 〈ν〉 decides the same way or does not decide σ

at all, for every ν ∈ B. By our assumption 〈a,B, g〉 ∦ σ. However, pick some h ≥ 〈a,B, g〉,
h ∈ Qn1 deciding on σ. Let h(maxa) = ν. Then, paν 〈ν〉 decides σ. But this holds then for

every ν ∈ B. Hence, already 〈a, B, g〉 decides σ. Contradiction. ¤
Let us now define the main forcing of this section by putting the blocks Qn together.

Definition 1.10

The set P consists of sequences p = 〈pn | n < ω〉 so that

(1) for every n < ω pn ∈ Qn

(2) there is `(p) < ω so that for every n < `(p) pn ∈ Qn1, for every n ≥ `(p) pn =

〈an, An, fn〉 ∈ Qn0 and an ⊆ an+1.

Definition 1.11

Let p = 〈pn | n < ω〉, q = 〈qn | n < ω〉 ∈ P . We set p ≥ q (p ≥∗ q) iff for every n < ω

pn ≥Qn qn (pn ≥∗Qn
qn).

The proof of the next lemma is based on the argument 1.9.

Lemma 1.12 〈P ,≤〉 satisfies κ++-c.c.

It follows by the usual ∆-system argument.

For p = 〈pn | n < ω〉 ∈ P we denote p ¹ n = 〈pm | m < n〉 and p\n = 〈pm | m ≥ n〉. Let

P ¹ n = {p ¹ n | p ∈ P} and P\n = {p\n | p ∈ P}. Then the following lemmas are obvious:

Lemma 1.13 P ' P ¹ n×P\n for every n < ω.

Lemma 1.14 〈P\n,≤∗〉 is κn-closed, moreover, if 〈pα | α < δ < κ〉 is a ≤∗-increasing

sequence with κ`(p0) > δ then there is p ≥∗ pα for every α < δ.

The proof of the next lemma is base on the argument 1.9.

Lemma 1.15 〈P ,≤,≤∗〉 satisfies the Prikry condition.

Proof. Let p = 〈pn | n < ω〉 ∈ P and σ be a statement of the forcing language. Sup-

pose that there is no q ≥∗ p deciding σ. Assume for simplicity that `(p) = 0. Let

pn = 〈an, An, fn〉(n < ω). Assume also each An consists of limit ordinals. We define by
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induction on ν ∈ A0 a ≤∗-increasing sequence 〈rν | ν ∈ A0 ∪ {0} or ν = ν ′ + 1 for some

ν ′ ∈ A0〉 and a sequence 〈qν+1 | ν ∈ A0〉. Set r0 = p.

Let ν ∈ A0 and assume that 〈rµ | µ ∈ A0 ∩ ν or µ = µ′ for some µ′ ∈ A0 ∩ ν, µ′ < ν〉,
〈qµ+1 | µ ∈ A0∩ν〉 are defined. Assume, as an inductive assumption, that for each µ ∈ A0∩ν

a0(r
µ) = a0 and A0(r

µ) = A0, where for t ∈ P , t = 〈tn | n < ω〉 we denote by an(t) the first

coordinate of tn, by An(t) the second and by fn(t) the third coordinate of t. Define rν using

1.14 to be a ≤∗-extension of 〈rµ | µ ∈ A0 ∩ ν〉 with a0(r
ν) = a0. Consider

rν∩ < ν >= 〈rν
0
∩< ν >, rν

1 , . . . , r
ν
n, . . . | n < ω〉

where rν
0
∩< ν >= f0(r

ν)∩{〈β, πmaxa0,β(ν)〉 | β ∈ a0}. If there is no q ≥∗ rν∩< ν > deciding

σ then set qν+1 = rν∩ < ν > and rν+1 = rν . Otherwise, let qν+1 be such a condition.

Define rν+1 = 〈rν+1
n | n < ω〉 as follows. For every n, 1 ≤ n < ω, set rν+1

n = qν+1
n and let

rν+1
0 = 〈a0, A0, q

ν+1
0 ¹ (λ\a0)〉.

This completes the construction of 〈rν | ν ∈ A0∪{0} or ν = ν ′+1 for some ν ′ ∈ A0〉 and

〈qν+1 | ν ∈ A0〉. Using 1.14 and the inductive assumption it is easy to find a ≤∗-extension

r∗ of rν ’s so that a0(r
∗) = a0 and A0(r

∗) = A0. Shrink the set A0 to a set A∗
0 so that for

every ν ∈ A∗
0 r∗∩ < ν > 6 ‖σ. Since r∗ ≥∗ p and we assumed that no ∗-extension of p decides

σ, A∗
0 ∈ U0,max(a0). Let p(0) be the condition obtained from r∗ by replacing A0 in it by A∗

0.

Now we should repeat the argument above with p(0) replacing p and pairs 〈ν0, ν1〉 from

A∗
0×A1(p(0)) replacing ν’s from A0. This will define p(1). Continue in the same fashion for

each n < ω. Finally any extension deciding σ of a ∗-extension of 〈p(n) | n < ω〉 will easily

provide a contradiction. ¤
Combining these lemmas we obtain the following:

Proposition 1.16 The forcing 〈P ,≤〉 does not add new bounded subsets to κ and preserves

all the cardinals above κ+.

Actually, it is not hard to show that κ+ is preserved as well.

Finally, let us show that this forcing adds λ ω-sequences to κ. Thus, let G ⊆ P be

generic. For every n < ω define a function Fn : λ → κn as follows:

Fn(α) = ν if for some p = 〈pm | m < ω〉 ∈ G `(p) > n and pn(α) = ν.

Now for every α < λ set tα = 〈Fn(α)|n < ω〉. Let us show that the set {tα | α < λ} has

cardinality λ.

Lemma 1.17 For every β < λ there is α, β < α < λ such that tα is different from every tγ

with γ ≤ β.
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Proof. Suppose otherwise. Then there is p = 〈pn | n < ω〉 ∈ G and β < λ such that

p ° ∀α(β < α < λ → ∃γ ≤ β t
∼α

= t
∼γ

) .

For every n ≥ `(p) let pn = 〈an, An, fn〉. Pick some α ∈ λ\
( ⋃

n<ω an ∪∪ dom fn ∪ (β + 1)
)
.

We extend p to a condition q so that q ≥∗ p and for every n ≥ `(q) = `(p) α ∈ bn, where

qn = 〈bn, Bn, gn〉. Then q will force that tα dominates every tγ with γ < α. This leads to

the contradiction. Thus, let γ < α and assume that q belongs to the generic subset of P .

Then either tγ ∈ V or it is a new ω-sequence. If tγ ∈ V then it is dominated by tα by the

usual density arguments. If tγ is new, then for some r ≥ q in the generic set γ ∈ cn for every

n ≥ `(r), where rn = 〈cn, Cn, hn〉. Here we use the second part of 1.10(2). But also α ∈ cn

since cn ⊇ bn. This implies Fn(α) > Fn(γ) (see 1.3(5)) and we are done. ¤

2. Short Extenders Replacing Long Ones

In this section, we define basic tools which will be used in further forcing constructions. The

material is simplified and adapted for further purposes from the version of [Git2].

We assume GCH. Let κ =
⋃

n<ω κn, κ0 < κ1 < · · · < κn < · · · and for every n < ω κn is

λn + 1-strong, where λn is a regular and not the successor of a singular cardinal satisfying

κ+n+2
n ≤ λn < κn+1. Thus, instead of one λ above κ+ in Section 1, we have different λn below

κ. In this section, we will sketch the main result of [Git2] that even λn = κ+n+2
n (n < ω)

will be enough for blowing the power of κ to κ++. For each n < ω we fix an extender En

witnessing λn + 1-strongness of κn. We define ultrafilters Unα(α < λn) as in Section 1 by

setting X ∈ Unα iff α ∈ jn(X), where jn : V → M ' Ult(V,En). Also the order ≤En over

λn is defined as in Section 1. Let λ be a regular cardinal above κ. The first idea for blowing

power of κ to λ is to simulate the forcing P of Section 1. It was built from blocks Qn’s. The

essential part of Qn is Qn0 which typical element has a form 〈a,A, f〉, where f is a Cohen

condition, A is a set of measure one, but the main and problematic part a ⊆ λ is actually a

set of indexes of the extender En. En had length λ in Section 1 but now it is very short. Its

length is λn < κn+1 < κ. Here we take a to be an order preserving function from λ into the

set of indexes of En, i.e. into λn. Formally:

Definition 2.1

Let Qn0 be the set of triples 〈a, A, f〉 so that

(1) f ∈ Qn1, where Qn1 is defined in 1.2.
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(2) a is a partial order preserving function from λ to λn such that

(2)(i) |a| < κn

(2)(ii) dom a ∩ dom f = ∅

(2)(iii) rnga has a ≤En – maximal element

(3) A ∈ Unmax(rnga)

(4) for every α, β, γ ∈ rnga, if α ≥En β ≥En γ then

παγ(ρ) = πβγ(παβ(ρ))

for every ρ ∈ π′′max(rnga),αA

(5) for every α > β in rnga and ν ∈ A

πmax(rnga),α(ν) > πmax(rnga),β(ν) .

The ordering ≤0 of Qn0 is defined as in 1.4 only (b), (c) and (d) of 1.7(2) should by now

formulated as follows:

(b) dom q ⊇ dom a

(c) q(max(dom a)) ∈ A

(d) for every β ∈ dom a q(β) = πmax(rnga),a(β)(q(max(a))).

Lemmas 1.8, 1.9 are valid here with proofs requiring minor changes. The forcing P of

1.10 is defined here similarly:

Definition 2.2

The set P consists of sequences p = 〈pn | n < ω〉 so that

(1) for every n < ω pn ∈ Qn

(2) there is `(p) < ω so that for every n < ω pn ∈ Qn1, for every n ≥ `(p) pn = 〈an, An, fn〉
and dom an ⊆ dom an+1.
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Definition 2.3

Let p = 〈pn | n < ω〉, q = 〈qn | n < ω〉 ∈ P . We define p ≥ q (p ≥∗ q) iff for every n < ω

pn ≥Qn qn (pn ≥∗Qn
qn).

For p = 〈pn | n < ω〉 ∈ P let p ¹ n = 〈pm | m < n〉 and p\n = 〈pm | m ≥ n〉. Set

P ¹ n = {p ¹ n | p ∈ P} and P\n = {p\n | p ∈ P}.
The following lemmas are obvious:

Lemma 2.4 P ' P ¹ n× P\n for every n < ω.

Lemma 2.5 〈P\n,≤∗〉 is κn-closed.

The proof of the Prikry condition is the same as 1.15.

Lemma 2.6 〈P ,≤,≤∗〉 satisfies the Prikry condition.

The ω-sequences tα = 〈Fα(n) | n < ω〉 defined as in Section 1 will witness that λ new

ω-sequences are added by 〈P ,≤〉. Thus we obtain the following:

Proposition 2.7 The forcing 〈P ,≤〉 does not add new bounded subsets to κ and it adds

λ new ω-sequences to κ.

The problem is that κ++-c.c. fails badly. Thus, any two conditions p and q such that

for infinitely many n’s rngan(p) = rngan(q) but dom an(p) 6= dom an(q) are incompatible.

Using this it is possible to show that 〈P ,≤〉 collapses λ to κ+. The rest of the section and

actually of the paper will be devoted to the task of repairing the chain condition. Thus we

shall identify various conditions in P . The basic idea goes back to the problem raised in

[Git-Mit,Q.1] on independence of the assignment function of precovering sets and its solution

in [Git1]. Roughly speaking it is possible to arrange a situation where a Prikry sequence

may correspond to various measures of extenders En’s.

Fix n < ω. For every k ≤ n we consider a language Ln,k containing two relation symbols,

a function symbol, a constant cα for every α < κ+k
n and constants cλn , c. Consider a structure

an,k = 〈H(χ+k),∈, En, the enumeration of [λn]<λn (as in 1.0), λn, χ, 0, 1, . . . , α . . . | α < κ+k
n 〉

in this language, where χ is a regular cardinal large enough. For an ordinal ξ < χ (usually

ξ will be below λn) we denote by tpn,k(ξ) the Ln,k-type realized by ξ in an,k.

Let L′n,k be the language obtained from Ln,k by adding a new constant c′. For δ < χ let

an,k,δ be the L′n,k-structure obtained from an,k by interpreting c′ as δ. The type tpn,k(δ, ξ)

is the L′n,k–type realized by ξ in an,k,δ. Further, we shall identify types with ordinals corre-

sponding to them in some fixed well-ordering of the power sets of κ+k
n ’s.
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Definition 2.8

Let k ≤ n and β < λn. β is called k-good iff

(1) for every γ < β tpn,k(γ, β) is realized unboundedly many times below λn;

(2) for every a ⊆ β if |a| < κn then there is α < β corresponding to a in the enumeration

of [λn]<λn.

β is called good if it is k-good for some k ≤ n.

Further we will be interested mainly in k-good ordinals for k > 2. If α, β < λn realize the

same k-type for k > 2, then Unα = Unβ, since the number of different Unα’s is κ++
n . Recall

that we assume that each λn is a regular cardinal and is not the successor of a singular.

Lemma 2.9 The set {β < λn | β is n− good} ∪{β < λn | cfβ < κn} contains a club.

Proof. Let us show first that the set {β < λn | ∀γ < β tpn,n(γ, β) is realized unboundedly

often } contains a club. Suppose otherwise. Let S be a stationary set of β’s such that there is

γβ < β with tp(γβ, β) realized only boundedly many times below λn. Shrink S to a stationary

S∗ on which all γβ’s are the same. Let γβ = γ for every β ∈ S∗. The total number of n-types

over γ, i.e. tpn,n(γ,−) is κ+n+1
n < λn. Hence, there is a stationary S∗∗ ⊆ S∗ such that

for every α, β ∈ S∗∗ tpn,n(γ, α) = tpn,n(γ, β). In particular the type tpn,n(γ, β) is realized

unboundedly often below λn.

Contradiction.

Now, in order to finish the proof, notice that whenever N ≺ an,n, β = N ∩ λn < λn and
κn>N ⊆ N then β satisfies (2) of 2.8. ¤

Lemma 2.10 Suppose that n ≥ k > 0 and β is k-good. Then there are arbitrarily large

k − 1-good ordinals below β.

Proof. Let γ < β. Pick some α > β realizing tpn,k(γ, β). The facts that γ < β < α and β

is k − 1-good can be expressed in the language L′n,k. So the statement “∃y(γ < y < x) ∧ (y

is (k − 1-good)” belongs to tpn,k(γ, α) = tpn,k(γ, β). Hence, there is δ, γ < δ < β which is

k − 1-good. ¤
Let us now define a refinement of the forcing P of 2.2.
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Definition 2.11

The set P∗ is the subset of P consisting of sequences p = 〈pn | n < ω〉 so that for every

n, `(p) ≤ n < ω and β ∈ dom an there is a nondecreasing converging to infinity sequence

of natural numbers 〈km | n ≤ m < ω〉 so that for every m ≥ n am(β) is km-good, where

pm = 〈am, Am, fm〉.
The orders on P∗ are just the restrictions of ≤ and ≤∗ of P . The following lemma is

crucial for showing the Prikry property of 〈P∗,≤,≤∗〉.

Lemma 2.12. 〈P∗,≤∗〉 is κ0-closed.

Proof. Let 〈pα | α < µ < κ0〉 be a ≤∗-increasing sequence of elements of P∗. Suppose for

simplicity that `(p0) = 0 and hence for every α < µ `(pα) = 0. Let pα
n = 〈aα

n, Aα
n, fα

n 〉 for

every n < ω and α < µ. For each n < ω set fn =
⋃

α<µ fα
n and an =

⋃
α<µ aα

n. Let β be

a sup dom
⋃

n<ω an. We like to extend an by corresponding to β an ordinal δn < λn which

is above ∪(rngan), RK-above every element of rngan and also is n-good. Such δn exists by

Lemmas 1.0 and 2.9. Set bn = an

⋃{〈β, δn〉} and Bn =
⋂

α<µ π−1′′
δnmax(rngaα)(A

α
n). We define

qn = 〈bn, Bn, fn〉 and q = 〈qn | n < ω〉. Then q ≥∗ pα, for every α < µ and q ∈ P∗. Since the

only new element added is β and for every n < ω bn(β) = δn is n-good. ¤
Now it is routine to show analogue of 2.4.7 for 〈P∗,≤,≤∗〉.

Lemma 2.13. 〈P∗,≤,≤∗〉 satisfies the Prikry condition.

Lemma 2.14. For every n < ω P∗ ' P∗ ¹ n× P∗\n.

Lemma 2.15. 〈P∗,≤〉 does not add new bounded subsets to κ and it adds λ new ω-

sequences to κ.

Unfortunately, P∗ still collapses λ to κ+.

Let us now define an equivalence relation on P∗.

Definition 2.16

Let p = 〈pn | n < ω〉, q = 〈qn | n < ω〉 ∈ P∗. We call p and q equivalent and denote this by

p ↔ q iff

(1) `(p) = `(q)

(2) for every n < `(p) pn = qn

12



(3) there is a nondecreasing sequence 〈kn | `(p) ≤ n < ω〉 with limn→∞ kn = ∞ and

k`(p) > 2 such that for every n, `(p) ≤ n < ω the following holds:

(a) fn = gn

(b) dom an = dom bn

(c) rngan and rngbn are realizing the same kn-type, (i.e. the least ordinals coding

rngan and rngbn are such)

(d) An = Bn,

where pn = 〈an, An, fn〉 and qn = 〈bn, Bn, gn〉.

Notice that, in particular the following is also true:

(e) for every δ ∈ dom an = dom bn an(δ) and bn(δ) are realizing the same kn-type

(f) for every δ ∈ dom an = dom bn and ` ≤ kn an(δ) is `-good if bn(δ) is `-good

(g) for every δ ∈ dom an = dom bn max(rngan) projects to an(δ) the same way

as max(rngbn) projects to bn(δ), i.e. the projection functions πmax(ngan),an(δ) and

πmax(rngbn),bn(δ) are the same.

Let us also define a preordering → on P∗.

Definition 2.17.

Let p, q ∈ P∗.
Set p → q iff there is a sequence of conditions 〈rk | k < m < ω〉 so that

(1) r0 = p

(2) rm−1 = q

(3) for every k < m− 1

rk ≤ rk+1 or rk ↔ rk+1 .

The next two lemmas show that 〈P∗,→〉 is a nice subforcing of 〈P∗,≤〉.

Lemma 2.18. Let p, q, s ∈ P∗. Suppose that p ↔ q and s ≥ p. Then there are s′ ≥ s and

t ≥ q such that s′ ↔ t.

13



Proof. Let 〈kn | `(p) = `(q) ≤ n < ω〉 be as in 2.16(3) witnessing p ↔ q. We need to

define s′ = 〈s′n | n < ω〉 and t = 〈tn | n < ω〉. Set s′n = tn = sn for every n < `(p) = `(q).

Set also s′n = sn for every n < `(s). Now let `(p) ≤ n < `(s). We show that qn = 〈bn, Bn, gn〉
extends to sn in the ordering of Qn and then we’ll set tn = sn. Let pn = 〈an, An, fn〉. By

2.16(3), fn = gn and An = Bn.

We know that sn ≥ 〈an, An, fn〉 (in the ordering of Qn), hence sn(max(dom an)) ∈ An

and for every β ∈ dom an sn(β) = πmax(rng an),an(β)(sn(max(dom an))). But by 2.16(3)

πmax(rng (an)),an(β) = πmax(rng bn),bn(β)

and dom an = dom bn. Thus, sn ≥ 〈bn, An, fn〉 = qn.

Suppose now that n ≥ `(s). Let pn = 〈an, An, fn〉, qn = 〈bn, An, fn〉 and sn = 〈cn, Cn, hn〉.

Case 1.

kn = 3.

Then we first extend sn to a condition s′n ∈ Qn1 and proceed as above.

Case 2.

kn > 3.

Set s′n = sn. Then rngan and rngbn are realizing the same kn-type.

Thus it is possible to find d̃n realizing the same kn − 1-type over rngbn as rngcn over

rngan. Let dn be the order preserving function from dom an onto d̃n. Set tn = 〈dn, Cn, hn〉.
This completes the construction. s′ = 〈s′n | n < ω〉 and t = 〈tn | n < ω〉 are as desired.¤

Lemma 2.19 For every p, q ∈ P∗ such that p → q there is s ≥ p so that q → s.

The proof is an inductive application of the previous lemma. Thus, suppose for example

that

q ←→ c

∨ |
a ←→ b

∨|
p

14



i.e. a, b, c are witnessing p → q. We apply Lemma 2.18 to a, b and c. It provides equivalent

c′ ≥ c and a′ ≥ a. But then a′ ≥ p and q → a′, since

a′ ←→ c′

∨ |
q ←→ c

Lemma 2.20 〈P∗,→〉 satisfies λ-c.c.

Proof. Let 〈pα | α < λ〉 be a sequence of elements of P∗. Using the ∆-system argument it

is easy to find a stationary S ⊆ λ, δ < minS, ` < ω so that for every α, β ∈ S, α < β the

following holds

(a) `(pα) = `

(b) for every n < ` pα
n and pβ

n are compatible

(c) for every n ≥ ` let pα
n = 〈aα

n, Aα
n, fα

n 〉, then

(c)(i) Aα
n = Aβ

n

(c)(ii) fα
n , fβ

n are compatible and min(dom fβ
n \δ) ≥ β > sup(dom fα

n ) + sup(dom aα
n)

(c)(iii) aα
n ¹ δ = aβ

n ¹ δ

(c)(iv) min(dom aβ
n\δ) ≥ β > sup(dom fα

n ) + sup(dom aα
n)

(c)(v) rng aα
n = rng aβ

n.

Let α < β be in S. We claim that pα and pβ are compatible in 〈P∗,→〉. Define equivalent

conditions p ≥ pα and q ≥ pβ. First we set pn = qn = pα
n ∪ pβ

n for n < `. Let τα =

min
( ⋃

n≥` dom aα
n\δ

)
and τβ = min

( ⋃
n≥` dom aα

n\δ
)
. Assume for simplicity that τα ∈

dom aα
` and τβ ∈ dom aβ

` . By 2.11 there is a nondecreasing converging to infinity sequences

of natural numbers 〈km | ` ≤ m < ω〉 so that for every m ≥ ` aα
m(τα) = aβ

m(τβ) is km-good.

Let n ≥ `.

15



Case 1.

kn ≤ 4.

Pick some ν ∈ Aα
n = Aβ

n. Set pn = qn = fα
n ∪ fβ

n ∪ {〈γ, πmax(rngaα
n),aα

n(γ)(ν)〉 | γ ∈ dom aα
n} ∪

{〈γ, πmax(rng aβ
n),aβ

n(γ)(ν) | γ ∈ dom aβ
n}. The condition (c) above insures that this is a

function in Qn1.

Case 2.

kn > 4.

Using Lemmas 2.9, 2.10 for aα
n(τα) = aβ

n(τβ), we find tα realizing the same kn − 1-type over

rngaα
n ¹ δ = rngaβ

n ¹ δ as rng(aα
n\δ) = rng(aβ

n\δ) does so that mintα > max(rngaα
n). Set

a′n = rngaα
n ∪ tα. rng(aβ

n\δ) realizes over rngaα
n ¹ δ the same type as tα. Hence there is tβ so

that

min(rngaβ
n\δ) = aβ

n(τβ) > maxtβ

and if b′n = rngaβ
n ∪ tβ, then a′n and b′n are realizing the same kn − 1-type. Now pick n-good

ordinal ξ coding a′n. Using the kn− 1 equivalence of a′n, b′n find kn− 2-good ordinal ρ coding

b′n and so that ξ and ρ (and hence also a′n∪{ξ} and b′n∪{ρ} realize the same kn−2-type. Pick

some γ >
⋃

k<ω

(
dom fβ

k ∪ dom aβ
k

)
. Let an be the order isomorphism between dom aα

n ∪
dom aβ

n∪{γ} and a′n∪{ξ}. Let bn be the order isomorphism between dom aα
n∪ dom aβ

n∪{γ}
and b′n ∪ {ρ}. We define pn = 〈an, A

α
n, fα

n ∪ fβ
n 〉 and qn = 〈bn, A

α
n, fα

n ∪ fβ
n 〉.

By the construction such defined p and q are equivalent. So we are done. ¤.

Thus the forcing with 〈P∗,→〉 preserves λ. However, it is not hard to see that all the

cardinals (if any) in the interval (κ+, λ) are collapsed to κ+. In any case, starting with

λ = κ++ and λn = κ+n+2
n (n < ω) we obtain the main result of [Git2]:

The forcing with 〈P∗,→〉 preserves the cardinals, does not add new bounded subsets to

κ and makes 2κ = κ++.

3 The Gap Three Case

The goal of this section will be to get 2κ = κ+++ preserving κ++ and κ+++.

The problem with the straightforward generalization of the forcing 〈P∗,→〉 of the pre-

vious section is that the ∆-system argument of Lemma 2.20 breaks down, once replacing

κ++ by κ+++. The point is as follows. Suppose that at some level n < ω we have an

α ∈ (κ++, κ+++) corresponding to some α∗. Let cfα = cfα∗ = ℵ0. Then there is a cofinal

in α∗ sequence 〈α∗m | m < ω〉 simply definable from α∗ (say, for example, the least cofinal
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sequence in the canonical well ordering). But now there are κ++ (and not κ+ as in Section

2) different cofinal ω-sequences in α that may correspond to 〈α∗m | m < ω〉. Clearly, different

choices will provide incompatible conditions.

In order to overcome this difficulty, we will pick an elementary submodel A of cardinality

κ+ with α inside and correspond it to an elementary submodel A∗ on the level n with α∗

inside. We allow only elements of A to correspond to elements of A∗. This will restrict the

number of choices to κ+. The problem now will be how to choose and put together such

models for different α’s. This matter is handled generically using a preparation forcing P
which will be κ++-strategically closed. It is desired on one hand to shrink generically P∗ in

order to get κ++-c.c. and on the the other hand to keep a large enough part of P∗ in order

to insure the Prikry condition.

The main issue will be the definition of such forcing P . We start with a definition of a

poset P ′ which will serve as a part of P over κ.

Definition 3.1

The set P ′ consists of elements of the form 〈〈A00, A10〉, 〈A01, A11〉〉 so that the following holds

(1) A0i(i ∈ 2) is an elementary submodel of 〈H(κ+3),∈, κ, κ+, κ++〉 such that

(a) |A0i| = κ+i+1, A0i ⊇ κ+i+1

(b) κ+i
A0i ⊆ A0i

(c) A01 ∩ κ+3 is an ordinal

(2) A00 ≺ A01

(3) for every i < 2

A1i is a set of at most κ+i+1 elementary submodels of A0i so that

(a) A0i ∈ A1i

(b) for every B ∈ A11 B ∩ κ+3 is an ordinal

(c) if B, C ∈ A1i and B $ C then B ∈ C

(d) if B, C ∈ A11 then either B = C, B ∈ C or C ∈ B

(e) if B, C ∈ A10, B 6= C, B 6⊂ C and C 6⊂ B then

(i) otp(B ∩ κ+3) = otp(C ∩ κ+3) implies that B ∩ κ++ = C ∩ κ++ and there are

DB ∈ A11 ∩ A00 and DC ∈ A11 ∩ A00 so that

B ∩ C = DB ∩B = DC ∩ C

17



(ii) otp(B ∩ κ+3) < otp(C ∩ κ+3) implies that there are B′, C ′ ∈ A10 such that

B ∈ B′, C ′ ∈ C otp(B′ ∩ κ+3) = otp(C ∩ κ+3), otp(B ∩ κ+3) = otp(C ′ ∩ κ+3), both

pairs (B, C ′) and (B′, C) satisfy (i), B ∩ C = B ∩ C ′ = B′ ∩ C ′, 〈B′, B,<〉 and

〈C, C ′, <〉 are isomorphic over B′ ∩ C.

(f) if B ∈ A10 is a successor point of A10 then B has at most two immediate prede-

cessors (under the inclusion) and is closed under κ-sequences

(g) if B ∈ A10 then either B is a successor point of A10 or B is a limit element and

there is a closed chain of B ∩ A10 unbounded in B ∩ A10

(h) A11 is a closed chain of models with successor points closed under κ+-sequences,

in particular {B ∩ κ+++ | B ∈ A11} is a closed set of κ++ ordinals

(4) for every B ∈ A11 there is B′ ∈ (A00 ∩ A11) ∪ {H(κ+3)} so that B ∩ A00 = B′ ∩ A00.

Let A10
in be the set {B∩B′ | B ∈ A10 and B′ ∈ A11}. By (4), then A10

in = {B∩B′|B ∈ A10

and B′ ∈ (A00 ∩ A11) ∪ {H(κ+3)}}.

Definition 3.2

Let x = 〈〈A00, A10〉, 〈A01, A11〉〉, y = 〈〈B00, B10〉, 〈B01, B11〉〉 be elements of P ′. Then x ≥ y

iff for every i < 2

(1) A1i ⊇ B1i

(2) for every A ∈ A11 A ∩B01 ∈ B11.

(3) for every A ∈ A10 A ∩B00 ∈ B10 ∪B10
in .

Definition 3.3

We define P ′≥1 = {〈A01, A11〉| for some 〈A00, A10〉 〈〈A00, A10〉, 〈A01, A11〉〉 ∈ P ′}.
For a generic G(P ′≥1) ⊆ P ′≥1 we define P ′<1 = {〈A00, A10〉| there is 〈A01, A11〉 ∈ G(P ′≥1)

〈A00, A10〉, 〈A01, A11〉〉 ∈ P ′}.
The following two lemmas are obvious.

Lemma 3.4 P ′ ' P ′≥1 ∗ P ′<1.

Lemma 3.5 P ′≥1 is κ+3-closed forcing.

It is actually isomorphic to the Cohen forcing for adding a new subset to κ+3.
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Lemma 3.6 P ′ is κ++-closed.

Proof. Let xα = 〈〈A00
α , A10

α 〉, 〈A01
α , A11

α 〉〉 ∈ P ′, α < α∗ < κ++. Suppose that xα < xα+1

for every α < α∗. We define xα∗ > xα for all α < α∗ as follows. Let A00
α∗ be the closure of⋃

α<α∗ A00
α ∪{〈A11

α | α < α∗〉} under κ-sequences and Skolem functions. Set A01
α∗ to be an

elementary submodel of H(κ+3) including 〈A01
α | α < α∗〉, A00

α∗ , closed under κ+-sequences

and having the intersection with κ+3 an ordinal.

Let A1i
α∗ =

⋃
α<α∗ A1i

α ∪{A0i
α∗} ∪ {

⋃
α<α∗ A0i

α } for i < 2. We need to check that xα∗ =

〈〈A00
α∗ , A

10
α∗〉, 〈A01

α∗ , A
11
α∗〉〉 is in P ′ and is stronger than each xα for α < α∗. Most of the

conditions are trivial. Let us check only 3.1(4). Thus let B ∈ A11
α∗\A00

α∗ . We need to find

B′ ∈ (A00
α∗ ∩ A11

α∗) ∪ {H(κ+3)} so that B ∩ A00
α∗ = B′ ∩ A00

α∗ . If B = A01
α∗ then we take

B′ = H(κ+3). Now suppose that B ∈ ⋃
α<α∗ A1i

α . If B ∩ κ+3 ≥ sup(A00
α∗ ∩ κ+3) then we can

take again B′ = H(κ+3). Suppose that B ∩ κ+3 < sup(A00
α∗ ∩ κ+3). Let δ ∈ A00

α∗ ∩ κ+3 be the

minimal above B ∩ κ+3. Recall that E = {D ∩ κ+3 | D ∈ A11
α∗} is a closed set of ordinals

by 3.1(h). Also, E1 = E\{max(E)} ∈ A00
α∗ . But then A00

α∗ ² (E1 is unbounded in δ). Hence

δ ∈ E1. So there is B′ ∈ ⋃
α<α∗ A11

α ∩A00
α∗ B′∩κ+3 = δ. Then B′∩A00

α∗ = A00
α∗∩δ = A00

α∗∩B.

¤
The following observation will be crucial for proving κ++-c.c. of the final forcing.

Lemma 3.7 Suppose that 〈〈A00
α , A10

α 〉, 〈A01
α , A11

α 〉〉 | α ≤ α∗〉 is an increasing sequence

of elements of P ′. Assume that
⋃

β<α A00
β ∈ A10

α for every α ≤ α∗. Let B ∈ A10
α∗ and

otp(B ∩ κ+3) < otp(A00
0 ∩ κ+3). Then the set {B ∩ A00

α | α < α∗} is finite.

Proof. Suppose otherwise. We pick the least ρ ≤ α∗ so that for some B′ ∈ A10
ρ with

otp(B′∩κ+3) < otp(A0
0∩κ+3) the set {B′∩A00

α | α < ρ} is infinite. Notice that B′ 6∈ ⋃
α<ρ A00

α .

Since otherwise B′ ∈ A00
ρ′ for some ρ′ < ρ and then B′ ⊆ A00

α for all α, ρ′ ≤ α < ρ. So,

|{B′ ∩ A00
α | α < ρ′}| ≥ ℵ0 which contradicts the minimality of ρ. Let C =

⋃
α<ρ A00

α .

Then C ∈ A10
ρ . Now, both sets C\B′ and B′\C are nonempty. The first one since otp(C ∩

κ+3) > otp(B′ ∩ κ+3). The second one since B′ & C implies B′ ∈ C by 3.1(3(c)) but

we just showed that B′ 6∈ C. Then 3.1(e(ii)) applies. So there is C ′ ∈ C ∩ A10
ρ with

otp(C ′ ∩ κ+3) = otp(B′ ∩ κ+3) such that B′ ∩ C = B′ ∩ C ′ and the pair (B′, C ′) satisfies

3.1(e(i)). Hence B′ ∩ C ∩ κ+3 = B′ ∩ C ′ ∩ κ+3 = C ′ ∩ DC′ ∩ κ+3 = B′ ∩ DB′ ∩ κ+3 where

DB′ , DC′ witness 3.1(e(i)). Now, for every α < ρ B′ ∩ A00
α ∩ κ+3 = (B′ ∩ C) ∩ A00

α ∩ κ+3 =

B′ ∩C ′ ∩A00
α ∩ κ+3 = C ′ ∩DC′ ∩A00

α ∩ κ+3 = (C ′ ∩A00
α ) ∩DC′ ∩ κ+3. This implies that the

set {C ′ ∩ A00
α | α < ρ} is infinite. But C ′ ∈ C =

⋃
α<ρ A00

α . So, as above we can now reduce

ρ. Contradiction.
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¤

Lemma 3.8 Suppose that 〈〈A00
α , A10

α 〉, 〈A01
α , A11

α 〉〉 | α ≤ α∗〉 is an increasing sequence of

elements of P ′ with α∗ a limit ordinal. Let B ∈ A10
α∗ . Then there is α < α∗ satisfying the

following:

(1) if otp(B∩κ+3) < otp(A00
α ∩κ+3) for some α < α∗ and

⋃
β<α A00

β ∈ A10
α for every α ≤ α∗

then otp(B ∩ κ+3) < otp(A00
α ∩ κ+3) and there are B ∈ A00

α ∩ A10
α , DB ∈ A00

α ∩ A11
α so

that for every α, α∗ > α ≥ α

B ∩ A00
α = B ∩DB

(2) if for every α < α∗ otp(B ∩ κ+3) > otp(A00
α ∩ κ+3) then there is D ∈ (A00

α ∩ A11
α ) ∪

{H(κ+3)} so that for every α, α∗ > α ≥ α

B ∩ A00
α = D ∩ A00

α

Remark 3.8.1 Notice that for B, C ∈ A10
α∗ if B ∩ κ++ < C ∩ κ++ then otp(B ∩ κ+3) <

otp(C ∩ κ+3) by 3.1(e).

Proof.

(1) By Lemma 3.7, there is α < α∗ so that for every α, α ≤ α < α∗ B ∩ A00
α = B ∩ A00

α .

Using 3.2(3) for α∗ and α we find B ∈ A00
α ∩A10

α and DB ∈ A00
α ∩A11

α so that B∩A00
α =

B ∩DB.

(2) If B ⊇ ⋃
α<α∗ A00

α , then use D = H(κ+3). Suppose that B +
⋃

α<α∗ A00
α . Pick then the

least δ ∈
( ⋃

α<α∗ A00
α \B

)
∩ κ+3. Let α < α∗ be the least such that δ ∈ A00

α . Clearly,

B ⊇ ⋃
α<α∗ A00

α ∩ δ. Also, by 3.1(3e(ii)) δ > κ++.

Claim For every α, α ≤ α < α∗ B ∩ A00
α ∩ κ+3 = A00

α ∩ δ.

Proof. Suppose otherwise. Then there are α̃, α ≤ α̃ < α∗ and ξ ∈ B ∩ A00
eα \δ. Consider

the least fξ : κ++ ↔ ξ. It belongs to B ∩ A00
eα . Now, δ ∈ A00

eα ∩ ξ, so there is ν ∈ A00
eα ∩ κ++

such that fτ (ν) = δ. But B ⊇ A00
eα ∩ κ++, so ν ∈ B and hence also δ ∈ B. Contradiction.

¤ of the claim.

Now, we apply 3.2(3) to B ∈ A10
α∗ and A00

α . It implies that B ∩ A00
α ∈ A10

α ∪ A10
in. Notice

that B ∩ κ++ > A00
α ∩ κ++. Hence B ∩ A00

α /∈ A10
α . So B ∩ A00

α ∈ A10
in. It implies that for

some D ∈ A00
α ∩ A11

α B ∩ A00
α = A00

α ∩D.
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But D ∩ κ+++ is an ordinal. Hence, it should be exactly δ and we are done. ¤

Lemma 3.8.1. Suppose that 〈〈A00
α , A10

α 〉, 〈A01
α , A11

α 〉〉 | α ≤ α∗〉 be an increasing sequence

of elements of P ′ with α∗ a limit ordinal of uncountable cofinality. Let B ∈ A10
α∗ be closed

under ω-sequence of its elements and otp(B ∩ κ+3) > otp(A00
α ∩ κ+3) then there are α < α∗

and D ∈ (A00
α ∩ A11

α ) ∪ {H(κ+3} so that

(a) for every α, α∗ > α ≥ α

B ∩ A00
α = D ∩ A00

α

(b) for every β ∈ B ∩ κ+3\ sup(B ∩ A00
α ∩ κ+3) if there is γ ∈

( ⋃
α<α∗ A00

α ∩ κ+3
)
\β then

the least such γ is in A00
α .

The proof is an easy application of 3.8 and fact that above sup(B∩A00
α ∩κ+3) only finitely

many overlaps between B ∩ κ+3 and
⋃

α<α∗ A00
α ∩ κ+3 are possible since ωB ⊆ B.

We are not going to force with 〈P ′,≤〉, so the next lemma is not needed for the main

results but we think that it contributes to the understanding of the main forcing and it will

be used also in the proof for the main forcing.

Lemma 3.9 P ′<1 satisfies κ+3-c.c. in V P ′≥1 .

Proof. Suppose otherwise. Let us assume that

∅ °P′≥1
〈〈A
∼

00

α
, A
∼

10

α
〉 | α < κ+3〉 is an antichain in P ′<1 .

Define by induction an increasing sequence of conditions of P ′≥1 〈〈A01
α , A11

α 〉 | α < κ+3〉 and

a sequence 〈〈A00
α , A10

α 〉 | α < κ+3〉 so that for every α < κ+3 〈A01
α , A11

α 〉 °P ′≥1

′′〈A
∼

00

α
, A
∼

10

α
〉 =

〈Ǎ00
α , Ǎ10

α 〉′′. P ′≥1 does not add new sets of size κ++, so there is no problem with the induction.

Let A10
α = {Xαi | i < κ+} for all α < κ+3.

We now form a ∆-system from 〈〈A00
α , A10

α 〉 | α < κ+3〉. Thus we can insure that the

following holds for some δ < κ+3, for every β < α < κ+3:

(a) A00
α ∩ δ = A00

β ∩ δ,min(A00
α \δ) ≥ α > A01

β ∩ κ+3 + sup(A00
β ∩ κ+3).

(b) the function taking Xαi to Xβi (i < κ+) is an isomorphism between the structures

〈A01
α ,⊃〉 and 〈A01

β ,⊃〉

(c) 〈A00
α , <〉 ' 〈A00

β , <〉 by isomorphism π so that π ¹ A00
α ∩ δ = id and π′′Xαi = Xβi for

every i < κ+.
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Let us now show that 〈A00
α , A10

α 〉 and 〈A00
β , A10

β 〉 are compatible in P ′<1 for α < β < κ+3. It

is enough to prove compatibility of 〈〈A00
α , A10

α 〉, 〈A01
α , A11

α 〉〉 and 〈〈A00
β , A10

β 〉, 〈A01
β , A11

β 〉〉 in P ′.
We define a condition 〈〈A00, A10〉, 〈A01, A11〉〉 stronger than both of the conditions above.

Take A01 = A01
α and A11 = A11

α . Let A00 be an elementary submodel of cardinality κ+

including {A00
α , A00

β , A10
α , A10

β , A01
α , A11

α } and closed under κ-sequences. Set A10 = A10
α ∪A10

β ∪
{A00}. Let να = min(A00

α \δ) and νβ = min(A00
β \δ).

Claim 3.9.1. There are Dα ∈ A11
α ∩ A00

α and Dβ ∈ A11
β ∩ A00

β so that Dα ∩ κ+3 = να and

Dβ ∩ κ+3 = νβ.

Proof. Let us show this for α. The same argument will work also for β. We use 3.1(4) for

〈〈A00
α , A10

α 〉, 〈A01
α , A11

α 〉〉. Thus A01
0 ∈ A11

α , so A01
0 ∩A00

α = Dα ∩A00
α for some Dα ∈ A11

α ∩A00
α .

But then Dα∩κ+3 should be να since δ < A01
0 ∩κ+3 < α ≤ να ∈ A00

α and (A00
α ∩κ+3)∩(δ, να) =

∅. ¤ of the claim

Let us check that 〈〈A00, A01〉, 〈A01, A11〉〉 is a condition. The only problematic cases are

3.1(3e), (4). Thus let B,C be as in 3.1(3e)(i). Then B ∈ A00
α ∪ {A00

α } and C ∈ A00
β ∪ {A00

β }.
If B = A00

α (or C = A00
β ) then C = A00

β (or B = A00
α ). So, B ∩ C = B ∩ Dα = C ∩ Dβ by

the claim. Suppose otherwise. Find i < κ+3 such that B = Xαi. Consider B′ = Xβi. Then

B′ ∈ A10
β . We apply 3.1(3(e)(i)) to B′ and C inside A10

β . There are DB′ ∈ A11
β ∩ A00

β and

DC ∈ A11
β ∩ A00

β ∩ A00
β so that B′ ∩ C = DB′ ∩ B′ = DC ∩ C. Also B′ ∩ κ++ = C ∩ κ++.

But δ > κ+ and the isomorphism π of (c) is the identity on δ. So, B ∩ κ++ = B′ ∩ κ++ =

C ∩κ++B∩C ∩κ+3 = B∩C ∩ δ = (B′∩ δ)∩C = (B′∩ δ)∩C ∩ δ = B′∩C ∩ δ = C ∩DC ∩ δ.

Now, if DC ∩ κ+3 ≥ δ, then DC ∩ δ = δ and hence C ∩DC ∩ δ = C ∩Dβ. If DC ∩ κ+3 < δ,

then C ∩ DC ∩ δ = C ∩ DC ∩ κ+3. Hence B ∩ C = C ∩ Dβ or B ∩ C = C ∩ DC . In order

to find D ∈ A11
α ∩ A00

α so that B ∩ C = B ∩ D we just repeat the argument first picking

C ′ = Xαj and working inside A10
α , where C = Xβj.

Let us now check 3.1(e)(ii). Assume that B, C are as above but otp(B ∩ κ+3) < otp(C ∩
κ+3). We find i, j < κ+ so that B = Xαi and C = Xβj. Let B̃ = Xαj. Then B̃ ∈ A10

α

and otp(B̃ ∩ κ+3) = otp(C ∩ κ+3) > otp(B ∩ κ+3). Apply 3.1(e(ii)) to B, B̃. There will be

B′, B̃′ ∈ A10
α , B ∈ B′, B̃′ ∈ B̃ witnessing 3.1(e(ii)) for 〈〈A00

α , A10
α 〉, 〈A01

α , A11
α 〉〉. Find i′, j′

such that B
′
= Xαi′ and B̃′ = Xαj′ . Set C ′ = Xβj′ . Let us show that such B′, C ′ are as

desired. First notice that otp(B′∩κ+3) = otp(B̃∩κ+3) = otp(Xαj ∩κ+3) = otp(Xβj ∩κ+3) =

otp(C ∩ κ+3) by condition (b) on ∆-system. Similar, otp(B ∩ κ+3) = otp(C ′ ∩ κ+3). Now,

B ∩ C = B ∩ C ∩ δ = B ∩ B̃ ∩ δ. By (a) and since the isomorphism π of (c) is identity on

δ. We continue, B ∩ B̃ ∩ δ = B ∩ B̃′ ∩ δ = B̃′ ∩ B′ ∩ δ by the choice of B̃′, B′. Again by
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the choice of π we obtain B ∩ B̃′ ∩ δ = B ∩ C ′ ∩ δ and B̃′ ∩ B′ ∩ δ = B′ ∩ C ′ ∩ δ. By (a)

we have B ∩ C ′ ∩ δ = B ∩ C ′ and B′ ∩ C ′ ∩ δ = B′ ∩ C ′. Hence B ∩ C = B ∩ C ′ = B′ ∩ C ′.

Also 〈B′, B, <〉 and 〈C, C ′, <〉 are order isomorphic over B′ ∩C. Since 〈B′, B, <〉, 〈B̃, B̃′, <〉
are order isomorphic overB′ ∩ B̃, 〈B̃, B̃′, <〉, 〈C, C ′ <〉 are order isomorphic over δ and

B′ ∩ C ∩ κ+3 = B′ ∩ C ∩ δ.

Let us now check 3.1(4). Suppose that B ∈ A11 = A11
α . Let ν = B ∩ κ+3. If ν ≥ sup A00

then it is trivial. Suppose otherwise. Let ρ = minA00\ν. We picked A00 so that A11
α ∈ A00.

Hence, {D ∩ κ+3 | D ∈ A11
α } is unbounded in ρ and so for some Dρ ∈ A11

α Dρ ∩ κ+3 = ρ.

Then Dρ ∈ A00 (it is uniquely determined by its ordinal part). Hence B ∩ A00 = Dρ ∩ A00

and we are done.

Finally let us show that 〈〈A00, A10〉, 〈A00, A11〉〉 is stronger than 〈〈A00
α , A10

α 〉, 〈A01
α , A11

α 〉〉
and 〈〈A00

β , A10
β 〉, 〈A01

β , A11
β 〉〉. Let us show this for α. We need only to check 3.2(3). Thus

let A ∈ A10 = A10
α ∪ A10

β ∪ {A00}. If A ∈ Aα then A ∩ A00
α = A ∈ A10

α . If A = A00 then

A ∩ A00
α = A00

α ∈ A10
α . Suppose now that A ∈ A10

β . Then A ∩ A00
α = A ∩ δ. Let A = Xβi for

some i < κ+. Consider A∗ = Xαi. Then A∩δ = A∗∩δ. Let Dα be as in the claim. It follows

that A∩A00
α = A∩ δ = A∗ ∩ δ = A∗ ∩Dα. But Dα ∈ A11

α and A∗ ∈ A10, so A∗ ∩Dα ∈ A10
αin.

Hence we are done. ¤
Let us now define our main preparation forcing.

Definition 3.10

The set P consists of pairs of triples 〈〈A0τ , A1τ , F τ 〉 | τ < 2〉 so that the following holds:

(0) 〈〈A00, A10〉, 〈A01, A11〉〉 ∈ P ′

(1) F 0 ⊆ F 1 ⊆ P∗, where 〈P∗,≤,≤∗〉 is as defined in Section 2

(2) for every τ < 2 F τ is as follows:

(a) |F τ | = κ+τ+1

(b) for every p = 〈pn | n < ω〉 ∈ F τ if n < `(p) then every α appearing in pn is in

A0τ ∩ κ+3; if n ≥ `(p), and pn = 〈an, An, fn〉, then every α appearing in fn is in

A0τ ∩ κ+3 and dom an ⊆ (A01 ∩ κ+3) ∪ A11 ∪ {B ≺ A01 | |B| = κ+} if τ = 1,

dom an ⊆ (A00 ∩ κ+3)∪A10 ∪A10
in if τ = 0. We also require that every nonordinal

member B of dom an is closed under κ sequences if |B| = κ+ and κ+-sequences if

|B| = κ++.

Let `(p) ≤ n < ω and pn = 〈an, An, fn〉.
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(c) there is an element of dom an, maximal under inclusion, it belongs to A1τ or to

A1τ
in ∪ A1τ if τ = 0 and every other element of dom an maximal under inclusion

belongs to it. Let us further denote this element as max1(an) or max1(pn).

(d) if B ∈ dom an\On, then an(B) is an elementary submodel of an,kn of Section 2

with 3 ≤ kn ≤ n. We require that |an(B)| = κ+n+τ ′+1
n and κ+n+τ ′

n (an(B)) ⊆ an(B)

whenever |B| = κ+τ ′+1 (τ ′ < 2).

(e) for every B ∈ dom an\κ+3 and α ∈ dom an ∩ κ+3 α ∈ B iff an(α) ∈ an(B)

(f) for every B, C ∈ dom an\κ+3

(f1) B ∈ C iff an(B) ∈ an(C)

(f2) B\C 6= ∅ and C\B 6= ∅ iff an(B)\an(C) 6= ∅ and an(C)\an(B) 6= ∅. If this hap-

pens then the positions of B, C and an(B), an(C) are the same, i.e. 3.1(e(i),(ii))

holds simultaneously for both of the pairs.

The next two conditions deal with cofinalities of correspondence:

(g)(i) if α ∈ dom an ∩ κ+3 and cfα ≤ κ+ then an(α) < κ+n+3
n and cf an(α) ≤ κ+n+1

n

(g)(ii) if α ∈ dom an ∩ κ+3 and cfα = κ++ then an(α) < κ+n+3
n . and cfan(α) = κ+n+2

n .

(h) if p ∈ F τ and q ∈ P∗ is equivalent to p (i.e. p ↔ q as in Section 2) with witnessing

sequence 〈kn | n < ω〉 starting with k0 ≥ 4, then q ∈ F τ .

(i) if p = 〈pn | n < ω〉 ∈ F τ and q = 〈qn | n < ω〉 ∈ P∗ are such that

(i) `(p) = `(q)

(ii) for every n < `(p) pn = qn

(iii) for every n ≥ `(p) an = bn and dom gn ⊆ A0τ ∩ κ+3, where pn = 〈an, An, fn〉,
qn = 〈bn, Bn, gn〉

then q ∈ F τ .

The meaning of the last two conditions is that we are free to change (remaining inside

A0τ ) all the components of p except an’s.

(k) for every q ∈ F τ and α ∈ A0τ ∩κ+3 there is p ∈ F τ p = 〈pn | n < ω〉, pn = 〈an, An, fn〉
(n ≥ `(p)) such that p ≥∗ q and α ∈ dom an starting with some n0 < ω.
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(l) for every q ∈ F τ and B ∈ A11, κ+
B ⊆ B if τ = 1 or B ∈ A10 ∪ A10

in and κB ⊆ B if

τ = 0, there is p ∈ F τ p = 〈pn | n < ω〉, pn = 〈an, An, fn〉 (n ≥ `(p)) such that p ≥∗ q

B ∈ dom an starting with some n0 < ω and p is obtained from q by adding only B

and the ordinals needed to be added after adding B.

(m) if p ∈ F 0, B, C ∈ dom an\κ+3, (n ≥ `(p)) and C is an initial segment of B then an(C)

is an initial segment of an(B).

The next condition provides a degree of closedness needed for the proof of the Prikry

condition of the main forcing.

(n) there is F τ∗ ⊆ F τ dense in F τ under ≤∗ such that every ≤∗-increasing sequence of

elements of F τ∗ having upperbound in P∗ has it also in F τ∗.

Our last conditions will be essential for proving κ++-c.c. of the main forcing.

(o) let p, q ∈ F τ be so that

(i) `(p) = `(q)

(ii) max1(pn) = max1(pm), max1(qn) = max1(qm) and max1(qn) ∈ dom an, where

n,m ≥ `(p), pn = 〈an, An, fn〉, qn = 〈bn, Bn, gn〉
(iii) pn = qn for all n < `(p)

(iv) fn, gn are compatible for every n ≥ `(p)

(v) an ¹ max1(qn) ⊆ bn for every n ≥ `(p), where an ¹ B = {〈t ∩ B, s ∩ an(B)〉 |
〈t, s〉 ∈ an}

then the union of p and q is in F τ , where the union is defined in obvious fashion taking

pn ∪ qn for n < `(p), an ∪ bn, fn ∪ gn etc. for n ≥ `(p).

(p) let p = 〈pn | n < ω〉 ∈ F τ and for every n, ω > n ≥ `(p) let B ∈ dom an\κ+3

where pn = 〈an, An, fn〉 then p ¹ B ∈ F τ , where p ¹ B = 〈pn ¹ B | n < ω〉 and for

every n < `(p) pn ¹ B is the usual restriction of the function pn to B; if n ≥ `(p)

then pn ¹ B = 〈an ¹ B,Bn, fn ¹ B〉, with an ¹ B defined in (o)(v), fn ¹ B the usual

restriction and Bn is the projection of An by πmax(pn),B.

(q) let p = 〈pn | n < ω〉 ∈ F τ , pn = 〈an, An, fn〉 and A0τ 6∈ dom an (ω > n ≥ `(p)). Let

〈σn | ω > n ≥ `(p)〉 be so that

(i) σn ≺ an,kn for every n ≥ `(p)
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(ii) 〈kn | n ≥ `(p)〉 is increasing

(iii) k0 ≥ 5

(iv) κnσn ⊆ σn for every n ≥ `(p)

(v) rngan ∈ σn for every n ≥ `(p).

Then the condition obtained from p by adding 〈A00, σn〉 to each pn with n ≥ `(p) belongs

to F τ .

Definition 3.11

Let 〈A0τ , A1τ , F τ | τ ≤ 1〉 and 〈〈B0τ , B1τ , Gτ 〉 | τ ≤ 1〉 be in P . We define 〈〈A0τ , A1τ , F τ 〉 |
τ ≤ 1〉〉 > 〈〈B0τ , B1τ , Gτ | τ ≤ 1〉 iff

(1) 〈〈A0τ , A1τ 〉 | τ ≤ 1〉〉 > 〈〈B0τ , B1τ | τ ≤ 1〉 in P ′

(2) for every τ ≤ 1

(a) F τ ⊇ Gτ

(b) for every p ∈ F τ and B ∈ B11 (if τ = 1) or B ∈ B10 ∪ B10
in (if τ = 0), if for every

n ≥ `(p) B ∈ dom an then p ¹ B ∈ Gτ , where the restriction is defined as in

3.10(p), p = 〈pn | n < ω〉 pn = 〈an, An, fn〉 for n ≥ `(p).

Definition 3.12

Set P≥1 = {〈A01, A10, F 1〉 | ∃ < A00, A10, F 0〉 〈〈A00, A10, F 0〉, 〈A01, A11, F 1〉〉 ∈ P}.
Let G(P≥1) ⊆ P≥1 be generic. Define P<1 = {〈A00, A10, F 0〉 | ∃〈A01, A11, F 1〉 ∈ G(P≥1)〈〈A00, A10, F 0〉,

〈A01, A11, F 1〉〉 ∈ P}.
The following lemma is obvious.

Lemma 3.13 P ' P≥1 ∗ P∼<1.

Let µ be a cardinal. Consider the following game Gµ

I p0 p2 · · · p2α · · ·

|∧ ∨| ∧|

II p1 · · · p2α+1 · · ·
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where α < µ and the players are picking an increasing sequence of elements of P . The first

plays at even stages (including the limit ones) and the second at odd stages. The second

player wins if at some stage α < µ there is no legal move for I. Otherwise I wins.

If there is a winning strategy for I in the game Gµ, then we say that P is µ-strategically

closed.

Lemma 3.14 P is κ++-strategically closed.

Proof. Let us describe a winning strategy for Player I, i.e. those who plays at even stages.

Our main concern will be with limit stages. For successor one a similar and simpler argument

will work.

Thus, let α < κ++ be a limit ordinal and 〈xβ | β < α〉 be a play in which Player I uses the

desired strategy. We are supposed to define his next move xα = 〈〈A00
α , A10

α , F 0
α〉, 〈A01

α , A11
α , F 1

α〉〉.
Set A00

α to be the closure of
⋃

β<α A00
β ∪{〈A11

β | β < α〉}∪{〈A10
β | β < α〉} under κ-sequences

and Skolem functions, where xβ = 〈〈A00
β , A10

β , F 0
β 〉, 〈A01

β , A11
β , F 1

β 〉〉. Set A01
α to be an elemen-

tary submodel of H(κ+3) including 〈A01
β | β < α〉, 〈A00

β | β ≤ α〉 closed under κ+-sequences

and having the intersection with κ+3 an ordinal. Let A1i
α =

⋃
β<α A1i

β ∪{A0i
α } ∪ {

⋃
β<α A0i

β }
for i < 2. By Lemma 3.6 (actually its proof) 〈〈A00

α , A10
α 〉, 〈A10

α , A11
α 〉〉 ∈ P ′. Let us turn to

definitions of F 0
α and F 1

α. First we put
⋃

β<α F 0
β inside F 0

α and
⋃

β<α F 1
β inside F 1

α. Then we

jump to definitions of dense closed subsets F 0∗
α and F 1∗

α of F 0
α and F 1

α. Final sets F 0
α and F 1

α

will be defined from F 0∗
α and F 1∗

α in a direct fashion satisfying 3.10.

We assume by induction that for every even β < α, i < 2 there is a dense closed F i∗
β ⊆ F β

such that for every p = 〈pn | n < ω〉 ∈ F i∗
β the following holds:

(1) A0i
β ∈ dom an for all n ≥ `(p) (where as usual pn = 〈an, An, fn〉)

(2) if γ < β is even and A0i
γ ∈ dom an for every n ≥ `(p) then p ¹ A0i

γ ∈ F i∗
γ .

Also we assume that for every p ∈ F 0∗
β there is q ∈ F 1∗

β such that A00
β ∈ dom bn for all

n ≥ `(q) = `(p) and q ¹ A00
β = p, where qn = 〈bn, Bn, gn〉.

A typical element of F i∗
α (i < 2) is obtained as follows: let 〈pν | ν < ρ〉 be a ≤∗-increasing

sequence with union in P∗, pν ∈ F i∗
βν for every ν < ρ and 〈βν | ν < ρ〉 is an increasing

sequence of even ordinals below α. Let pρ be the union of 〈pν | ν < ρ〉. Extend pρ to p by

adding to it A0i
α (i.e. we add it to dom an for each n ≥ `(pρ)) and if i = 1 then also A00

α

provided that dom aρ
n ⊆ A00

α . Put this p into F i∗
α .

Let us show that such defined F i∗
α is really closed. First notice that 〈pν | ν < ρ〉 as

above can always be reorganized as follows. Set p̃ν =
⋃

ρ>ν′≥ν pν′ ¹ A0i
βν

for every ν < ρ.
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Then pν ≤∗ pν′ (ν ′ ≥ ν), by (1) above A0i
βν
∈ dom aν′

n for every n ≥ `(pν) = `(pν′), and

by (2) pν′ ¹ Ai0
βν
∈ F i∗

βν
. Hence also p̃ν ∈ F i∗

βν
. So we obtain a new sequence 〈p̃ν | ν < ρ〉

with the same limit but in addition p̃ν′ ¹ Ai0
βν

= p̃ν for every ν ≤ ν ′ < ρ. Now suppose that

we have such an additional sequence 〈qξ | ξ < µ〉 corresponding to the increasing sequence

〈γξ | ξ < µ〉 of ordinals below α. Assume that
⋃

ν<ρ p̃ν ≤∗ ⋃
ξ<µ qξ. Consider A0i

β . There is

ξ0 < µ and n0 ≥ `(qξ0) = `(q0) such that A0i
β0

belongs to the domain of the first coordinate of

qξ0
n0

. Then the same is true for every n ≥ n0. So, it remains only finitely many places between

`(q0) and n0. Thus, there is ξ̃0, µ > ξ̃0 ≥ ξ0 such that A0i
β0

appears in q
eξ0 for every n ≥ `(q0).

But then qξ0 ¹ Ai0
β0
∈ F i∗

β0
and, since qξ ¹ Ai0

eξ0 = q
eξ0 by our assumption, q

eξ0 ¹ Ai0
β0
≥∗ p̃0.

Continuing in the same fashion, we find a nondecreasing sequence 〈ξ̃ν | ν < ρ〉 such that Ai0
βν

is in the domain of the first coordinate of q
eξν
n for every n ≥ `(q0) and q

eξν ¹ Ai0
βν
≥∗ p̃ν(ν < ρ).

Also, q
eξν ¹ Ai0

βν
∈ F i∗

βν
. We deal with infinite increasing sequences from F i∗

α exactly in the

same way. Thus we put together everything below Ai0
β0

first, then below Ai0
β1

and so on going

over all Ai0
β ’s with even β appearing in the elements of the sequences.

The point that prevents us from obtaining κ++-closureness instead of only strategic κ++-

closureness is 3.10(2(l)). Thus let B ∈ A10
α ∪ A10

αin and q ∈ F 0
α. We like to add B to q. If

B = A00
α or it is an initial segment of A00

α then this is clear since there is no problem to add

the largest set. It remains the case when B ∈ ⋃
β<α A00

β . Thus let B ∈ A00
β with β < α. If

q ∈ ⋃
γ<α F 0

γ , then q ∈ F 0
γ for some γ, β ≤ γ < α and 3.10(2)(l) is satisfied by 〈A00

γ , A10
γ , F 0

γ 〉.
Then in this case B is addable to q. But now suppose that q is really new. Then by the

construction of F 0
α (or actually F 0∗

α ) it is a union or is ≤∗ below a union of some sequence

〈qν | ν < ρ〉 such that A00
γ appears in it, for some γ ≥ β and qν ¹ A00

γ = qν′ ¹ A00 starting

with some ν0 < ρ. Then B is addable to qν0 ¹ A00
γ and hence to all the rest of the above. ¤

The proof of 3.14 actually provides more. Thus the following holds:

Lemma 3.15 Let 〈Dα | α < κ++〉 be a list of dense open subsets of 〈P ,≤〉. Then there is

an increasing sequence 〈〈A0i
α , A1i

α , F iα
α 〉 | i < 2 α < κ++〉 of elements of P and an increasing

under inclusion sequence 〈F i∗
α | α < κ++〉 i < 2 so that for every α < κ++(i < 2) the

following hold

(1) 〈〈A00
α+1, A

10
α+1, F

0
α+1〉, 〈A01

α+1A
11
α+1, F

1
α+1〉〉 ∈ Dα

(2) F i∗
α ⊆ F i

α is dense and closed

(3) if α is limit then
⋃

β<α A0i
β ∈ A1i

α .

If we restrict ourselves to P≥1 then the proof of 3.14 gives more closure:
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Lemma 3.16 P≥1 is κ+3-strategically closed.

Let G ⊆ P be generic. We define our main forcing P∗∗ to be ∪{F 0 | ∃A00, A01, A10, A11, F 1

〈〈A00, A10, F 0〉, 〈A01, A11, F 1〉〉 ∈ G}. The orderings ≤ and ≤∗ on P∗∗ are just the restric-

tions of those of P∗. Notice that 〈P∗∗,≤∗〉 is not κ0-closed anymore. But 3.15 provides a

replacement which is sufficient for showing that 〈P∗∗,≤〉 does not add new bounded subsets

to κ and 〈P∗∗,≤,≤∗〉 satisfies the Prikry condition.

Lemma 3.17 Let N be an elementary submodel of H(χ) (in V ) for χ big enough having

cardinality κ+ and closed under κ-sequences of its elements. Then there are an increasing

sequence 〈〈A00
α , A10

α , F 0
α〉, 〈A01

α , A11
α , F 1

α〉〉 | α ≤ κ+〉 of elements of P and an increasing under

inclusion sequence 〈F 0∗
α | α ≤ κ+〉 so that

(1) {〈〈A00
α , A10

α , Fα〉, 〈A01
α , A11

α , F 1
α〉〉, | α < κ+} is N -generic

(2) F 0∗
α ⊆ Fα is dense and closed for every α ≤ κ+.

Our next subject will be chain conditions. First we need to show that κ+3 is preserved

in V P . By 3.16, P≥1 is κ+3-strategically closed. Thus the following analogue of 3.9 will be

enough.

Lemma 3.18 P<1 satisfies κ+3-c.c. in V P≥1 .

Proof. Suppose otherwise. Let us assume that

∅ °P ′≥1

′′〈〈A
∼

00

α
, A
∼

10

α
, F 0

α〉 | α < κ+3〉 is an antichain in P<1
′′ .

Using 3.16, we define by induction an increasing sequence of conditions in P≥1 〈〈A01
α , A11

α , F 1
α〉 |

α < κ+3〉 and a sequence 〈〈A00
α , A10

α , F 0
α〉 | α < κ+3〉 so that for every α < κ+3

〈A01
α , A11

α , F 1
α〉 °P≥1

′′〈A
∼

00

α
, A
∼

10

α
, F 0

α〉 = 〈Ǎ00
α , Ǎ10

α , F̌ 0
α〉′′

and
⋃

β<α A01
β ∈ A11

α . Let A10
α = {Xαi

| i < κ+}, F 0
α = {pαi | i < κ+}, pαi = 〈pαi

n | n < ω〉
(i < κ+) and for every i < κ+, n ≥ `(pαi) pαi

n = 〈aαi
n , Aαi

n , fαi
n 〉 for all α < κ+3. As in the

proof of 3.9, we now form ∆-system also including F 0
α’s. Thus we can assume that for some

δ < κ+3, for every β < α < κ+3 (a), (b), (c) of 3.9 and in addition:

(d) for every i, j < κ+, n < ω the following holds:

(i) `(pαi) = `(pβi)
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(ii) if n < `(pαi) then pαi
n and pβi

n are compatible in Qn1, i.e. pαi
n ∪ pβi

n is a function.

(iii) if n ≥ `(pαi) then Aαi
n = Aβi

n , fαi
n ∪ fβi

n is a function, dom aαi
n and dom aβi

n are

isomorphic over δ, aαi
n ¹ δ = aβi

n ¹ δ, Xαj ∈ dom aαi
n iff Xβj ∈ dom aβi

n and

aαi
n (Xαj) = aβi

n (Xβj).

(e) (A00
α ∩⋃

γ<α A01
γ ) ∩ κ+3 = (A00

β ∩⋃
γ<β A01

γ ) ∩ κ+3 = A00
α ∩ A00

β ∩ κ+3

Let us show that 〈A00
α , A10

α , F 0
α〉 and 〈A00

β , A10
β , F 0

β 〉 are compatible in P<1 for α > β > 0,

cfα = cfβ = κ++. It is enough to prove compatibility of 〈〈A00
α , A10

α , F 0
α〉, 〈A01

α , A11
α , F 1

α〉〉 and

〈〈A00
β , A10

β , F 0
β 〉, 〈A01

β , A11
β , F 1

β 〉〉 in P . We define a condition 〈〈A00, A10, F 0〉, 〈A01, A11, F 1〉〉
stronger than both of these conditions. Let 〈A00, A10〉, 〈A01, A11〉 be as in the proof of Lemma

3.9. Set F 1 = F 1
α. We left with definition of F 0. First we include both F 0

α and F 0
β into F 0.

Now let p0 = 〈p0
n | n < ω〉 ∈ F 0

α and p1 = 〈p1
n | n < ω〉 ∈ F 0

β be so that

(1) `(p0) = `(p1)

(2) p0
n, p1

n are compatible for every n < `(p0)

(3) for every n ≥ `(p0) Dα, A00
α ∈ dom a0

n, Dβ, A00
β ∈ dom a1

n, where Di = A00
i ∩⋃

γ<i A
01
γ (i = α, β), p0

n = 〈a0
n, An(0), f 0

n〉 and p1
n = 〈a1

n, An(1), f 1
n〉

(4) a0
n ¹ Dα = a1

n ¹ Dβ

(5) p0 and p1 are compatible in P∗, i.e., basically rng(a0
n\Dα) sits above everything in rng

a1
n

Notice that 3.10(1) and 3.10(2(l)) used with Dα and Dβ insure that above every condition

in F 0
α will be one including Dα and above every condition in F 0

β will be one including Dβ.

In order to guarantee (5) above, we will need to find n big enough such that a0
n(A00

α ∩Dα) ≺
an,5 see 3.10(2(d)). Now the argument of 2.20 (Case 2) can be used to generate rnga1

n.

Finally, by 3.10(2(h)) Fβ is closed under “↔”, so one obtains a1
n as desired.

Extend p0 to a condition p ∈ F 1
α by adding A00 and A00

β to dom a0
n. It is possible by

3.10 (2(l). Then, we use 3.10(2(0)) for p and p1. Let r ∈ F 1
α be the resulting condition. We

include such r into F 0.

We need to check that 〈〈A00, A10, F 0〉, 〈A01, A11, F 1〉〉 is as desired. Lemma 3.9 provides

the argument for A-part, i.e. 〈〈A00, A10〉, 〈A01A11〉〉. So we concentrate on F -part. Most

of the checking is straightforward. Let us check 3.10(2(n)). Thus, we need to find a dense

closed subset F 0∗ of F 0. Let F 0∗
α and F 0∗

β be such subsets of F 0
α and F 0

β . Let F
0∗
i =
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{p ∈ F 0∗
i | for every n, ω > n ≥ `(p)A00

i ∈ dom an}, where i ∈ {α, β}. Then F
0∗
α and F

0∗
β

are again dense closed subsets of F 0
α and F 0

β , since it is always possible to add the maximal

set. We include F
0∗
α and F

0∗
β into F 0∗. Suppose now that p ∈ F . If p ∈ F 0

α ∪F 0
β then we use

F
∗
α ∪ F

0∗
β . Assume that p /∈ F 0

α ∪ F 0
β . Then it is obtained as a union of conditions satisfying

(1)-(5) above. In particular, A00
α , A00

β and A00
α ∩ A00

β belong to dom an for every n ≥ `(p).

Notice that Dα ∩ A00
α = Dβ ∩ A00

β = A00
α ∩ A00

β . Consider p ¹ A00
α . Pick some p(0) ∈ F 0∗

α

above it. Then p(0) ¹ (A00
α ∩ A00

β ) is addable to p ¹ A00
β in F 0

β by 3.10(2)(0)). Let q ∈ F 0
β

be the result of combining p ¹ A00
β and p(0) ¹ (A00

α ∩ A00
β ) together. Pick p(1) ∈ F 0∗

β above

it. Consider p(1) ¹ (A00
α ∩ A00

β ). It belongs to F 0
α and is addable to p(0). Put them together

and pick p(2) ∈ F 0∗
α to be a stronger condition. Continue in the same fashion. Finally,

p0 =
⋃

n<ω p(2n) ∈ F 0∗
α and p1 =

⋃
n<ω p(2n + 1) ∈ F 1∗

α will have the same restriction to

A00
α ∩A00

β . Thus, the combination of p0 and p1 will be in F 0. Hence we can define F 0∗ to be

F
0∗
α ∪ F

0∗
β together with the set of combinations of all p0 ∈ F 0∗ and p1 ∈ F 1∗ satisfying the

conditions (1)-(5) above and the result will be dense and closed. ¤
Hence the forcing 〈P ,≤〉 preserves the cardinals. We now turn to our main forcing

〈P∗∗,→〉 where → is the restriction of → on P∗ to P∗∗.

Lemma 3.19 In V P , 〈P∗∗,→〉 satisfies κ++-c.c.

Proof. Suppose otherwise. Let us work in V and let 〈p
∼α
| α < κ++〉 be a name of an an-

tichain of the length κ++. Using 3.15 we find an increasing sequence 〈〈〈A00
α , A10

α , F 0
α〉, 〈A01

α , A11
α , F 1

α〉〉 |
α < κ++〉 of elements of P and a sequence 〈pα | α < κ++〉 so that for every α < κ++ the

following holds:

(a) 〈〈A00
α+1, A

10
α+1, F

0
α+1〉, 〈A01

α+1, A
11
α+1, F

1
α+1〉〉 ° p

∼α
= p̌α

(b)
⋃

β<α A00
β ∈ A10

α

(c) κA00
α ⊆ A00

α

(d) pα ∈ F 0
α+1 and for every n ≥ `(pα) A00

α+1 ∈ dom anα where pnα = 〈anα, Anα, fnα〉

(e) 〈A11
β | β < α〉 ∈ A00

α .

Let pαn = 〈aαn, Aαn, fαn〉 for every α < κ++ and n ≥ `(pα). Extending if necessary, let us

assume that A00
α ∈ dom aαn for every n ≥ `(pα). Shrinking if necessary, we assume that for

all α, β < κ+ the following holds:
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(1) ` = `(pα) = `(pβ)

(2) for every n < ` pαn and pβn are compatible in Qn1

(3) for every n, ` ≤ n < ω 〈dom aαn, dom fαn | α < κ++〉 form a ∆-system with the

kernel contained in A00
0

(4) for every n, ω > n ≥ ` rngaαn = rngaβn.

Without loss of generality we can assume that A00
α ∩ κ++ ≥ α and if cfα = κ+ then

A00
β ∩ κ++ < α for every β < α. Let us split elements of dom aαn\κ+3 into two

groups. The first will consist of B’s such that B∩κ++ ≥ α and the second, of B’s with

B ∩ κ++ < α. Again, shrinking if necessary, we can assume that for every α < κ++

and B from the second group of dom aαn B ∩ κ++ < A00
0 ∩ κ++. Now we can use

3.8(1) and shrink again to obtain that for every β < α B ∩ A00
β = B ∩ DB for some

B ∈ A00
0 ∩ A10

0 and DB ∈ A00
0 ∩ A11

0 . Hence we can assume one more condition:

(5) for every limit α < κ++, n ≥ ` and B ∈ (dom aαn)\κ+3 if B ∩ κ++ < α then

B ∩
( ⋃

β<α A00
β

)
= B ∩ A00

0 ∈ A00
0 .

Also we can assume the following since |dom aαn |< κn

(6) for every α < κ++, n ≥ `
(
dom aαn ∩

⋃
β<α A00

β

)
∩ κ+3 ⊆ A00

0 ∩ κ+3.

Now let us assume also that

(7) for every α < κ++, n ≥ `

(i) if γ ∈ dom aαn ∩ κ+3 and there is γ′ ∈ ⋃
β<α(A00

β ∩ κ+3) above it, then the least

such γ′ is in A00
0 .

(ii) if B ∈ dom aαn\κ+3 and there is γ′ ∈ ⋃
β<α A00

β above ∪(B ∩ κ+++) then the

least such γ′ is in A00
0 .

For B’s in the first group we can use 3.8(2) and insure the following:

(8) for every α < κ++ of cofinality κ+, n ≥ ` if B ∈ dom aαn\κ+3 and B ∩ κ++ ≥ α then

there is DB ∈ (A00
0 ∩A10

0 )∪{H(κ+3)} so that for every β, 0 ≤ β < α B∩A00
β = DB∩A00

β .

Notice, that 3.8(2) together with 3.1(2(e)) imply that for α < κ++ of cofinality κ+ and

B ∈ dom aαn\κ+3 with B ∩ κ++ ≥ α if there is no γ′ as in (7)(ii) then B ⊇ ⋃
β<α A0β.
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Now we add A00
0 to each pα (α < κ++) and

⋃
β<α A00

β but only for cfα = κ+. Shrinking

again if necessary we assume that the conditions (1)-(8) are valid.

Now let β < α < κ++ be ordinals of cofinality κ+. We claim that pβ and pα are compatible

in 〈P∗∗,→〉. First extend pα by adding A00
β+2. Let p be the resulting condition. Denote pβ

by q. Assume that `(q) = `(p). Otherwise just extend q in an appropriate manner to

achieve this. Let n ≥ `(p) and pn = 〈an, An, fn〉. Let qn = 〈bn, Bn, gn〉. W.l. of g we may

assume that an(A00
β+2) is an elementary submodel of an,kn with kn ≥ 5. Just increase n if

necessary. Now, we can realize the kn − 1-type of rngbn inside an(A00
β+2) over the common

parts dom bn and dom an. This will produce q′n = 〈b′n, Bn, gn〉 kn − 1-equivalent to qn and

with rngb′n ⊆ an(A00
β+2). Doing the above for all n ≥ `(p) we will obtain q′ = 〈q′n | n < ω〉

equivalent to q (i.e. q′ ←→ q). Extend q′ to q′′ by adding to it 〈A00
β+2, an(A00

β+2)〉 as the

maximal set for every n ≥ `(p). By 3.10(2(q)), q′′ ∈ F 00
β+2. Then max1(q′′n) = A00

β+2 ∈ dom an.

But q′′ is addable to p. Now, by 3.10(2(o)) there is a condition r ∈ F 0
α+1 r ≥ p, q′′. Hence,

p → r and q → r. Contradiction.

¤

4 Wider Gaps

In this section we present a generalization of the forcing P of the previous section which

allows to make 2κ ≥ κ+δ+2 for every δ, 1 < δ < κ0. The length of the extender over κn will

be here κ+n+δ+1
n . Such an assumption is optimal when δ < ω and κ is a singular cardinal in

the core model see [Git-Mit].

The difference here from the gap 3 case is that we cannot at once restrict the choices

to sets of cardinality κ+, as it was done in the previous section. The total number of

possible choices is now κ+δ and not κ++ as in the previous case. As a result of this the

straightforward generalization of P will fail to satisfy κ++-c.c. and actually will collapse κ+δ

to κ++. In order to overcome this difficulty we define the preparation forcing restricting the

number of possibilities gradually to κ+.

As in Section 3, define first the part of the preparation forcing over κ.

Definition 4.1

The set P ′ consists of sequences of pairs 〈〈A0τ , A1τ 〉 | τ ≤ δ〉 so that the following holds

(1) for every τ ≤ δ A0τ is an elementary submodel of 〈H(κ+δ+2),∈, 〈κ+i | i ≤ δ + 2〉 such

that
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(a) |A0τ | = κ+τ+1 and A0τ ⊇ κ+τ+1

(b) κ+τ
A0τ ⊆ A0τ

(2) for every τ < τ ′ ≤ δ A0τ ⊆ A0τ ′

(3) for every τ ≤ δ A1τ is a set of at most κ+τ+1 elementary submodels of A0τ so that

(a) A0τ ∈ A1τ

(b) if B, C ∈ A1τ and B & C then B ∈ C

(c) if B, C ∈ A1τ , B 6= C, B 6⊂ C and C 66⊂ B then

(i) otp(C ∩ On) = otp(B ∩ On) implies that there are DB, DC ∈ A0τ ∩ A1ρ B ∩ C =

B ∩DB = C ∩DC , for some ρ, τ < ρ ≤ δ

(ii) if otp(C ∩ On) > otp(B ∩ On), then there is C ′ ∈ C ∩ A1τ such that otp(C ′ ∩ On) =

otp(B ∩On), B ∩ C = B ∩ C ′ and B,C ′ are isomorphic over B ∩ C ′.

(d) if B ∈ A1τ is a successor point of A1τ then B has at most two immediate predecessors

under the inclusion and is closed under κ+τ -sequences.

(e) let B ∈ A1τ then either B is a successor point of A1τ or B is a limit element and then

there is a closed chain of elements of B ∩A1τ unbounded in B ∩A1τ and with limit B.

Let for τ ≤ δ A1τ
in be the set {B ∩B1 ∩ · · · ∩Bn | B ∈ A1τ , n < ω and Bi ∈ A1ρi for some

ρi, τ < ρi ≤ δ for every i, 1 ≤ i ≤ n}.

Definition 4.2

Let 〈〈A0τ , A1τ 〉 | τ ≤ δ〉 and 〈〈B0τ , B1τ 〉 | τ ≤ δ〉 be elements of P ′. Then 〈〈A0τ , A1τ 〉 | τ ≤
δ〉 ≥ 〈〈B0τ , B1τ 〉 | τ ≤ δ〉 iff for every τ ≤ δ

(1) A1τ ⊇ B1τ

(2) for every A ∈ A1τ A ∩B0τ ∈ B1τ ∪B1τ
in .
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Definition 4.3

Let τ ≤ δ. Set P ′≥τ = {〈〈A0ρ, A1ρ〉 | τ ≤ ρ ≤ δ〉 | ∃〈〈A0ν , A1ν〉 | ν < τ〉 〈〈A0ν , A1ν〉 | ν <

τ〉_〈〈A0ρ, A1ρ〉 | τ ≤ ρ ≤ δ〉 ∈ P ′}.
Let G(P ′≥τ ) ⊆ P ′≥τ be generic. Define P ′<τ = {〈〈A0ν , A1ν〉 | ν < τ〉 | ∃〈〈A0ρ, A1ρ〉 | τ ≤

ρ ≤ δ〉 ∈ G(P ′≥τ ) 〈〈A0ν , A1ν〉 | ν < τ〉 _ 〈〈A0ρ, A1ρ〉 | τ ≤ ρ ≤ δ〉 ∈ P ′}.
The following lemma is obvious

Lemma 4.4 P ′ ' P ′≥τ ∗ P ′∼ <τ (τ ≤ δ).

At this point we assume the existence of box sequences. They either can be added

generically in advance or V can be taken of the form L[ ~E].

Lemma 4.5 Suppose that A,B are two elementary submodels, ωA ⊆ A, ωB ⊆ B, κ, δ, τ ∈
A ∩ B, κ+τ+1 = |A| ≤ |B|(τ ≤ δ). Let µ ∈ (κ+τ+1, κ+δ+1], cfµ > ℵ0 be a limit of elements

of A ∩ B. Then otp
(
C
�|µ|
µ

)
is a limit of elements of A ∩ B, where C

�|µ|
µ is the µ-th element

of the canonical box sequence for µ+.

Proof. Denote C
�|µ|
µ by Cµ and otpCµ by ρ. Let ξ < ρ be a limit ordinal. We find ξ′ ∈ A∩B

ξ < ξ′ < ρ. Let ξ̃ be ξ-th point of Cµ. Consider A ∩ B ∩ µ. It is an ω-closed unbounded in

the µ set. Hence, also Cµ ∩ A ∩ B is such a set. Pick some limit ρ′ ∈ Cµ ∩ A ∩ B above ξ̃.

Then otpCρ′ > otpCeξ = ξ. Clearly, by elementarity, otpCρ′ ∈ A ∩B ∩ ρ. So ξ′ = otpCρ′ is as

desired.

¤

Lemma 4.6 Let A,B, µ be as in 4.5. Assume that µ 6∈ A and ν = min(A\µ) < µ+. Then

(a) µ ∈ C
�|µ|
ν . Moreover, for every club C ∈ A of ν µ ∈ C.

(b) otpC
�|µ|
ν = min(A\otpC�|µ|µ )

(c) otpC
�|µ|
µ 6∈ A

Proof. (a) is easy since A is an elementary submodel closed under ω-sequences with

sup(A ∩ ν) = µ.

(b) Let us denote otpC
�|µ|
µ by µ∗ and otpC

�|µ|
ν by ν∗. Also, we drop the upper index

¤|µ|. Clearly, by (a), ν∗ > µ∗. If there is γ ∈ A, ν∗ > γ > µ∗, then there is such a limit γ.

But then the γ-th element of Cν is in A and is above µ. Since µ is µ∗-th element of Cν . But

this contradicts the minimality of ν.
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(c) If µ∗ = otpC
�|µ|
µ ∈ A, then µ ∈ A. Since µ is µ∗-th element of Cν .

¤

Lemma 4.7. Let A,B, µ and ν be as in 4.6. Assume that for some τ ∗, τ ≤ τ ∗ ≤ δ the

following holds:

(*) for every τ ′, τ ∗ ≤ τ ′ ≤ δ

min(A\ sup(A ∩B ∩ κ+τ ′+1)) < κ+τ ′+1

Then cfν ≤ κ+τ∗.

Proof. By 4.6(b) otpC
�|µ|
ν = min(A\otpC�|µ|µ ). If |µ| ≤ κ+τ∗ , then otpC

�|µ|
ν ≤ |µ| ≤ κ+τ∗.

Also cfν = cf(otpC
�|µ|
ν ). Hence cfν ≤ κ+τ∗ . If |µ| ≥ κ+τ∗+1, then by 4.4.1 and (*) we can

replace µ and ν by otpC
�|µ|
µ and otpC

�|µ|
ν which are smaller ordinals of the same cofinalities.

After finitely many steps κ+τ∗ will be reached.

¤
In particular, 4.7 implies the following:

Lemma 4.8. Let A,B be as in 4.5. For every ν, τ ≤ ν ≤ δ let δν = min (A\ sup(A ∩
B ∩ κ+ν+1)). Suppose that starting with some τ ∗, τ ≤ τ ∗ ≤ δ each δν < κ+ν+1. Then

cfδν ≤ κ+τ∗ .

Lemma 4.9. Suppose that A,B are elementary submodels, ωA ⊆ A, ωB ⊆ B, κ, δ, τ ∈
A ∩ B, δ ⊆ A, κ+τ+1 = |A| ≤ κ+ρ+1 = |B| and κ+ρ+1 ⊆ B. Assume that for some E ∈ A of

cardinality κ+ρ+1, E ⊇ B. For every ν, ν ≤ δ let δν = min(A\ sup(A ∩ B ∩ κ+ν+1)). Then

for every ν ≤ δ the following holds:

(a) if ν ≤ ρ then δν = κ+ν+1 and if ν > ρ then δν < κ+ν+1

(b) cfδν ≤ κ+ρ+1

(c) if ν ≥ ρ + 1, then there is C ∈ A, so that C is a club in δν and C ∩ A ⊆ B.

Proof. (a) is obvious. Let us show (b). Let ν ≥ ρ + 1. Then, ∪(B ∩ κ+ν+1) < κ+ν+1. Let

E ∈ A be of cardinality κ+ρ+1 and E ⊇ B. Then, κ+ν+1 > ∪(E ∩ κ+ν+1) ≥ ∪(B ∩ κ+ν+1).

So, δν < κ+ν+1. Since ∪(E ∩ κ+ν+1) ∈ A. Then by 4.8. cfδν ≤ κ+ρ+1. This proves (b).

In order to show (c) we use the canonical box sequences for ordinals of cofinality ≤ κ+ρ+1.

Let Cδν be such a sequence for δν . Then Cδν ∈ A, since δν ∈ A. otpCδν ≤ κ+ρ+1. Set

µ = sup(B ∩ A ∩ κ+ν+1). Then, either µ = δν or by 4.6(a) µ ∈ Cδν and it is a limit point

there and hence Cµ = Cδν ∩ µ. So, |Cµ| ≤ κ+ρ+1, if µ = δν and |Cµ| = κ+ρ if µ < δν .
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Claim 4.9.1.

Cµ ⊆ B.

Proof. For every γ < µ there is γ′, γ < γ′ < µ which is a limit point of Cµ ∩ B, since

Cµ ∩ B is ω-closed unbounded subset of µ. Then Cγ′ = Cµ ∩ γ′. But also Cγ′ ⊆ B since

B ⊇ κ+ρ, Cγ′ ∈ B and otpCγ′ < otpCµ ≤ κ+ρ+1. Hence for every γ < µ B ⊇ Cµ ∩ γ. Clearly

then B ⊇ Cµ.

¤ of the claim.

Now (c) follows, since Cδν ∩ A = Cδν ∩ µ ∩ A = Cµ ∩ A ⊆ Cµ ⊆ B.

¤

Lemma 4.10. Suppose that A,B are as 4.5. Let |B| = κ+ρ+1, B ⊇ κ+ρ+1 and for every

ν ≤ δ let δν = min(A\ sup(A ∩ B ∩ κ+ν+1)). Assume that A ⊇ δ and for some E ∈ A of

cardinality κ+ρ+1, E ⊇ B. Then for every ν ≤ δ the following holds:

(a) for every ν ≤ ρ δν = κ+ν+1

(b) for every ν > ρ δν < κ+ν+1

(c) if ν ≤ ρ then B ∩ A ∩ κ+ν+1 = A ∩ κ+ν+1

(d) if ν > ρ then B∩A∩ (κ+ν , κ+ν+1) = {α ∈ (κ+ν , κ+ν+1) | for some β ∈ A∩C(ν), β > α

there is α′ ∈ B ∩ A ∩ κ+ν fβ(α′) = α} where fβ : |β| ↔ β is fixed canonical mapping

and C(ν) ∈ A is unbounded subset of δν so that B ⊇ A ∩ C(ν). In particular C(ν)

can be taken Cδν as in 4.9 and then it is definable from δν .

Proof. (a),(b),(c) are immediate since B ⊇ κ+ρ+1. For every ν > ρ, sup B ∩ κ+ν+1 <

sup E ∩ κ+ν+1 < κ+ν+1 and E ∩ κ+ν+1 ∈ A. Let us show (d).

If α ∈ B ∩ A ∩ (κ+ν , κ+ν+1) then pick some β ∈ A ∩ C(ν) above α. Let α′ = f−1
β (α).

A ∩ C(ν) ⊆ B, so β ∈ A ∩ B. Hence also fβ and α′ are in A ∩ B. If α = fβ(α′) for some

α′ ∈ A ∩B ∩ κ+ν and β ∈ A ∩ C(ν), β > α, then α ∈ A ∩B ∩ (κ+ν , κ+ν+1), since β ∈ B.

¤

Lemma 4.11. Let A be a model closed under ω-sequences of cardinality κ+τ+1 and with

δ ⊆ A. Then the set {A ∩ B | B is model closed under ω-sequences, of cardinality κ+ρ+1

for some ρ ≤ δ, B ⊇ κ+ρ+1, there is E ∈ A E ⊇ B and |E| = |B|} has cardinality at most

κ+τ+1.
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Proof. (κ+τ+1)κ+τ
= κ+τ+1 (we are assuming GCH), so it is enough to deal with B’s

of cardinality ≥ κ+τ+1. By 4.9,4.10, B ∩ A can be uniquely defined from the sequences

〈δν | ν ≤ δ〉. The total number of such sequences is (κ+τ+1)δ = κ+τ+1. So we are done.

¤

Lemma 4.12. Suppose that Ai =
⋃

j<i Aj is an increasing union of elementary submodels

of cardinality κ+τ+1, closed under κ+τ sequence and cfi = κ+τ+1. Let B be an elementary

submodel of cardinality κ+ρ+1, B ⊇ κ+ρ+1 and closed under ω sequences for some τ ≤ ρ ≤ δ.

Assume that there is E ∈ Ai of cardinality κ+ρ+1, E ⊇ B. Then there are ĩ < i and a

sequence of ordinals 〈δν | ν ≤ δ〉 ∈ Aei so that

(1) for every ν ≤ δ, κ+ν < δν ≤ κ+ν+1

(2) for every ν ≤ δ, if δν = κ+ν+1, then for every ν ′ < ν δν′ = κ+ν′+1

(3) for every ν ≤ δ and j, ĩ ≤ j ≤ i δν = min(Aj\ sup(B ∩ Aj ∩ κ+ν+1)).

Proof. Set δν = min(Ai\ sup(B ∩ Ai ∩ κ+ν+1)), for every ν ≤ δ. Find ĩ < i so that

〈δν | ν ≤ δ〉 ∈ Aτ and for every ν ≥ ρ + 1 a set C ∈ Ai as in 4.9(c) is in Aei. Lemma 4.9(a),

(b) implies (1), (2). Let us show (3). Let j ∈ [̃i, i] and ν ≤ δ. If ν ≤ ρ, then B ⊇ κ+ν+1 = δν .

Hence, min(Aj\ sup(B ∩ Aj ∩ κν+1)) = κ+ν+1 = δν .

Now let ν > ρ. By 4.9(c) and the choice of ĩ there is a club C ⊂ δν , C ∈ Aei and

C ∩Ai ⊆ B. Now, C ∩Aj ⊆ C ∩Ai ⊆ B and C ∩Aj is unbounded in Aj ∩ δν , since C ∈ Aj.

Hence sup(Aj∩δν) = sup(C∩Aj) = sup(B∩C∩Aj). So δν = min(Aj\ sup(B∩Aj∩κ+ν+1)).

¤

Lemma 4.13. Let τ ≤ δ. Suppose that 〈〈A0ρ
i , A1ρ

i 〉 | τ ≤ ρ ≤ δ, i < κ+τ+2〉 is an increasing

sequence of elements of P ′≥τ satisfying the following:

for every i < κ+τ+2 of cofinality κ+τ+1

(a) A0τ
i =

⋃
j<i A

0τ
j

(b)
⋃

j<i A
0ρ
j ∈ A0ρ

i for every ρ, τ < ρ ≤ δ

(c) if B ∈ A1ρ
i then either B ∈ ⋃

j<i A
1ρ
j or B ⊇ A0τ

i ,

(d) {A1ρ
j | j < i, τ ≤ ρ ≤ δ} ⊆ A0τ

i .
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Then for every i < κ+τ+2 of cofinality κ+τ+1 and B ∈ ∪{A1ρ
j | j ≥ i, τ ≤ ρ ≤ δ} |B|>B ⊆ B

there are ĩ < i and a sequence of ordinals 〈δν | ν ≤ δ〉 ∈ A0τ
ei so that

(1) for every ν ≤ δ κ+ν < δν ≤ κ+ν+1

(2) for every ν ≤ δ, if δν = κ+ν+1, then for every ν ′ < ν δν′ = κ+ν′+1

(3) for every ν ≤ δ and j, ĩ ≤ j ≤ i δν = min(A0τ
j \(B ∩ A0τ

j ∩ κ+ν+1)).

Proof. First let us deal with B ∈ ∪{A1ρ
i | τ ≤ ρ ≤ δ}. Let B ∈ A1ρ

i for some ρ, τ ≤ ρ ≤ δ.

If B 6∈ ⋃
j<i A

1ρ
j , then B ⊇ A0τ

i , by (c). So we can take ĩ = 0 and 〈δν | ν ≤ δ〉 = 〈κ+ν+1 |
ν ≤ δ〉. If B ∈ ⋃

j<i A
1ρ
j , then we can use the previous lemma. Notice that by (d) we can

use A0ρ
j as E there.

Now suppose that B ∈ A1ρ
j for some j, i < j < κ+τ+2 and ρ, τ ≤ ρ ≤ δ. Then B ∩A0ρ

i ∈
A1ρ

i ∪ A1ρ
iin, since 〈〈A0ρ′

j , A1ρ′
j 〉 | τ ≤ ρ′ ≤ δ〉 ≥ 〈〈A0ρ′

i , A1ρ′
i 〉 | τ ≤ ρ′ ≤ δ〉. If B ∩ A0ρ

i ∈ A1ρ
i ,

then we are in the situation considered above. Otherwise B∩A0ρ
i = B0∩B1∩· · ·∩Bn for some

Bk ∈ A1ρk
i and ρ ≤ ρ0 < ρ1 < · · · < ρn ≤ δ, n < ω. If for some k ≤ n Bk 6∈

⋃
j<i A

1ρk
j , then it

will contain A0τ
i and hence its influence on B∩A0τ

i will be trivial. Thus, removing such Bk’s

if necessary, we assume that for every k ≤ n Bk ∈
⋃

j<i A
1ρk
j . Pick j0 < i so that Bk ∈ A1ρk

j0

for all k ≤ n. Let B̃ = B0 ∩ B1 ∩ · · · ∩ Bn. Then |B̃| = |B0| = κ+ρ0+1 and κ+ρ0 B̃ ⊆ B̃,

since each model in the intersection is closed under sequences of the length least κ+ρ0 . Also

B̃ ⊆ A0ρ0

j0
∈ A0τ

i and hence for every ν, ρ0 < ν ≤ δ, sup(B̃∩κ+ν+1) < sup(A0ρ0

j0
∩κ+ν+1) ∈ A0τ

i .

Now the argument above applies to B̃.

¤
Let us define now the main preparation forcing P .

Definition 4.14

The set P consists of sequences of triples 〈〈A0τ , A1τ , F τ 〉 | τ ≤ δ〉 so that the following holds:

(0) 〈〈A0τ , A1τ 〉 | τ ≤ δ〉 ∈ P ′

(1) for every τ1 ≤ τ2 ≤ δ F τ1 ⊆ F τ2 ⊆ P∗

(2) for every τ ≤ δ F τ is as follows:

(a) |F τ | = κ+τ+1

(b) for every p = 〈pn | n < ω〉 ∈ F τ if n < `(p) then every α appearing in pn is in

A0τ ; if n ≥ `(p) and pn = 〈an, An, fn〉 then every α appearing in fn is in A0τ and
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(i) dom an ∩On ⊆ A0τ ∩ κ+δ+2

(ii) dom an\On consists of elements of the following sets: {B ⊆ A0τ | κ+ ≤ |B| ≤ κ+τ},
A1τ and A1τ

in such that the elements of the last two sets are closed under κ+τ sequences

of its elements. If τ = 0, then the first set is empty.

(c) there is the largest element of dom an, it belongs to A1τ an every other element of

dom an belongs to it.

Let us further denote this element as max1(pn) or max1(an)

(d) if B ∈ dom an\On, then an(B) is an elementary submodel of an,kn of Section 2 with

3 ≤ kn ≤ n, including also δ as a constant. We also require that |an(B)| = κ+n+τ ′+1
n

and κ+n+τ ′
n (an(B)) ⊆ an(B), whenever |B| = κ+τ ′+1

n

(e) if B ∈ dom an\On and α ∈ dom an ∩ A0τ then an(α) ∈ an(B) iff α ∈ B

(f) If B,C ∈ dom an\On then

(f1) B ∈ C iff an(B) ∈ an(C)

(f2) B ⊂ C iff an(B) ⊂ an(C).

(g) The next two conditions deal with the cofinalities correspondence

(g)(i) if α ∈ dom an and cfα ≤ κ+ then cfan(α) ≤ κ+n+1
n

(g)(ii) if α ∈ dom an and cfα = κ+ρ then cfan(α) = κ+n+ρ
n for every 1 ≤ ρ ≤ δ + 1.

(h) if p ∈ F τ and q ∈ P∗ is equivalent to p (q ↔ p) with witnessing sequence 〈kn | n < ω〉
starting with k0 ≥ 4 then q ∈ F τ .

(i) if p = 〈pn | n < ω〉 ∈ F τ and q = 〈qn | n < ω〉 ∈ P∗ are such that

(i) `(p) = `(q)

(ii) for every n < `(p) pn = qn

(iii) for every n ≥ `(p) an = bn and dom gn ⊆ A0τ where pn = 〈an, An, fn〉, qn =

〈bn, Bn, gn〉

then q ∈ F τ .
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(k) if p = 〈pn | n < ω〉 ∈ F τ q = 〈qn | n < ω〉 ∈ P∗ are such that

(i) `(q) ≥ `(p)

(ii) for every n ≥ `(q) pn = qn

(iii) every α appearing in qn for n < `(q) is in A0τ

then q ∈ F τ .

The meaning of the last two conditions is that we are free to change inside A0τ all the

components of p except an’s.

(l) for every q ∈ F τ and α ∈ A0τ there is p ∈ F τ p = 〈pn | n < ω〉, pn = 〈an, An, fn〉
(n ≥ `(p)) such that p ≥∗ q and α ∈ dom an starting with some n0 < ω.

(m) for every q ∈ F τ and B ∈ A1τ ∪ A1τ
in as in (b)(ii), there is p ∈ F τ p = 〈pn | n < ω〉,

pn = 〈an, An, fn〉 (n ≥ `(p)) such that p ≥∗ q and B ∈ dom an starting with some

n0 < ω. Also, this p is obtained from q by adding only B and the ordinals needed to

be added after adding B.

(n) Let p, q ∈ F τ be so that

(i) `(p) = `(q)

(ii) max1(pn) = max1(pn), max1(qn) = max1(qm) and max1(qn) ∈ dom an, where

n,m ≥ `(p), pn = 〈an, An, fn〉, qn = 〈bn, Bn, gn〉
(iii) pn = qn for every n < `(p)

(iv) fn, gn are compatible for every n ≥ `(p)

(v) an ¹ max1(qn) ⊆ bn for every n ≥ `(p), where

an ¹ B = {〈t ∩B, s ∩ an(B)〉 | 〈t, s〉 ∈ an}

then the union of p and q is in F τ where the union is defined in obvious fashion

taking pn ∪ qn for n < `(p), we take at each n ≥ `(p) an ∪ bn, fn ∪ gn etc.

(o) there is F τ∗ ⊆ F τ dense in F τ under ≤∗ such that every ≤∗-increasing sequence of

elements of F τ∗ having the union in P∗ has it also in F τ . We require that F τ∗ will be

closed under the equivalence relation ↔.
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(p) let p = 〈pn | n < ω〉 ∈ F τ and pn = 〈an, An, fn〉 (`(p) ≤ n < ω). If for every n,

ω > n ≥ `(p) B ∈ dom an\On, |B| = κ+τ+1 or B ∈ A1τ ′ for some τ ′ ≤ τ , then

p ¹ B ∈ F τ ′ , where p ¹ B = 〈pn ¹ B | n < ω〉 and for every n < `(p) pn ¹ B is the usual

restriction of the function pn to B; if n ≥ `(p) then pn ¹ B = 〈an ¹ B, Bn, fn ¹ B〉 with

an ¹ B defined in (n)(v), fn ¹ B is the usual restriction and Bn is the projection of An

by πmaxpn,B.

(q) let p = 〈pn | n < ω〉 ∈ F τ , pn = 〈an, An, fn〉 and A0τ 6∈ dom an (ω > n ≥ `(p)). Let

〈σn | ω > n ≥ `(p)〉 be so that

(i) σn ≺ an,kn for every n ≥ `(p)

(ii) 〈kn | n ≥ `(p)〉 is increasing

(iii) k0 ≥ 5

(iv) κ+n+τ
n σn ⊆ σn and |σn| = κ+n+τ+1

n for every n ≥ `(p)

(v) rngan ∈ σn for every n ≥ `(p).

Then the condition obtained from p by adding 〈A0τ , σn〉 to each pn with n ≥ `(p)

belongs to F τ .

(r) if A is an elementary submodel of H(κ+δ+2) of cardinality κ+ρ+1, closed under κ+ρ-

sequences and including 〈〈A0τ ′ , A1τ ′〉 | τ ′ ≤ δ〉 for some ρ < τ , then A is addable to

any p ∈ F τ ∩A, with the maximal element of dom an’s A0τ . I.e. A∩A0τ can be added

to p remaining in F τ .

Definition 4.15

Let 〈〈A0τ , A1τ , F τ 〉 | τ ≤ δ〉 and 〈〈B0τ , B1τ , Gτ 〉 | τ ≤ δ〉 be in P . We define

〈〈A0τ , A1τ , F τ 〉 | τ ≤ δ〉 > 〈〈B0τ , B1τ , Gτ 〉 | τ ≤ δ〉
iff

(1) 〈〈A0τ , A1τ 〉 | τ ≤ δ〉 > 〈〈B0τ , B1τ 〉 | τ ≤ δ〉 in P ′

(2) for every τ ≤ δ

(a) F τ ⊇ Gτ

(b) for every p ∈ F τ and B ∈ B1τ ∪B1τ
in if for every n ≥ `(p) B ∈ dom an then p ¹ B ∈ Gτ ,

where the restriction is as defined in 4.14 (p), p = 〈pn | n < ω〉, pn = 〈an, An, fn〉 for

n ≥ `(p).

42



Definition 4.16

Let τ ≤ δ. Set P≥τ = {〈A0ρ, A1ρ, F ρ〉 | τ ≤ ρ ≤ δ〉 | ∃〈〈A0ν , A1ν , F ν〉 | ν < τ〉
〈〈A0ν , A1ν , F ν〉 | ν < τ〉 _ 〈〈A0ρ, A1ρ, F ρ〉 | τ ≤ ρ ≤ δ〉 ∈ P}.

Let G(P≥τ ) ⊆ P≥τ be generic. Define P<τ = {〈〈A0ν , A1ν , F ν〉 | ν < τ〉, | ∃〈〈A0ρ,

A1ρ, F ρ〉 | τ ≤ ρ ≤ δ〉 ∈ G(P≥τ ) 〈〈A0ν , A1ν , F ν〉 | ν < τ〉 _ 〈〈A0ρ, A1ρ, F ρ〉 | τ ≤ ρ ≤
δ〉 ∈ P}.

The following lemma is obvious

Lemma 4.17 P ' P≥τ ∗ P∼<τ for every τ ≤ δ.

Lemma 4.18 For every τ ≤ δ P≥τ is κ+τ+2-strategically closed.

Proof. Fix τ ≤ δ. Let 〈〈A0ρ
i , A1ρ

i , F ρ
i 〉 | τ ≤ ρ ≤ δ〉 | i < i∗ < κ+τ+2〉 be an increasing

sequence of conditions in P≥τ already generated by playing the game. We need to proceed

and define the move 〈〈A0ρ
i∗ , A

1ρ
i∗ , F

ρ
i∗〉 | τ ≤ ρ ≤ δ〉 of Player I at stage i∗.

Suppose first that i∗ is a successor ordinal. Then i∗ − 1 exists. We proceed by induction

on ρ.

Set Ã0ρ
i∗ to be the closure under the Skolem functions and κ+ρ-sequences of 〈〈Ajρ′

i |i <

i∗〉|τ ≤ ρ′ ≤ δ〉 (j ∈ 2) and 〈A1ρ′
i∗ | τ ≤ ρ′ < ρ〉. In the previous section we took A0ρ

i∗ = Ã0ρ
i∗ ,

but here there is a complication. Thus, we need to take care of intersections of the form

B ∩ Ã0ρ
i∗ for B in A1ρ′

i∗−1 with ρ′ > ρ. Such elements are supposed to be in A1ρ
i∗in. So, a dense

closed set F ρ∗
i∗ ⊆ F ρ

i∗ should deal with them also. Thus we need to insure that in particular,

restrictions to A0ρ′
i∗−1 of unions from F ρ∗

i∗ are in F ρ′
i∗−1. In order to achieve this, let us define

A0ρ
i∗ to be an increasing union of length κ+ρ+1. For each ρ′, ρ ≤ ρ′ ≤ δ we fix in advance

a dense closed F ρ′∗
i∗−1 ⊆ F ρ′

i∗−1. Let A0ρ
i∗0 be the closure under the Skolem functions and κ+ρ-

sequences of Ã0ρ
i∗ , 〈F ρ′

i∗−1 | ρ ≤ ρ′ ≤ δ〉 and 〈F ρ′∗
i∗−1 | ρ ≤ ρ′ ≤ δ〉. For a limit α, 0 < α <

κ+ρ+1 let A0ρ
i∗α =

⋃
α′<α A0ρ

i∗α′ . Let A0ρ
i∗α+1 be the closure of A0ρ

i∗α ∪ {A0ρ
i∗α} under the Skolem

functions and κ+ρ-sequences, for every α < κ+ρ+1. Finally we set A0ρ
i∗ =

⋃
α<κ+ρ+1 A0ρ

i∗α. Let

A1ρ
i∗ =

⋃
i<i∗ A1ρ

i ∪ {A0ρ
i∗α | α < κ+ρ+1} ∪ {A0ρ

i∗ }. Now we turn to definitions of F ρ
i∗ and its

dense closed subset F ρ∗
i∗ . First we should to obey the inclusions F ρ

i∗−1 ⊆ F ρ
i∗ and F ρ′

i∗ ⊆ F ρ
i∗

for every ρ′ < ρ. Then let us generate new elements in the following fashion.

Let q ∈ F ρ
i∗−1 ∪ ∪{F ρ′

i∗ | ρ′ < ρ}. We extend it first to a condition q′ by adding A0δ
i∗−1. If

q ∈ F ρ′
i∗ for some ρ′ < ρ then we assume that this is possible as an inductive assumption.

Now, we extend q′ to q0 by adding A0ρ
i∗0. This is possible by 4.14(2(r)). Let r ∈ F δ

i∗−1 be

an extension of q0 ¹ A0δ
i∗−1. Consider r ¹ A0ρ

i∗0 and its combination with q′. By Lemma 4.11
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both of them are in A0ρ
i∗1, since F δ

i∗−1, A
0ρ
i∗0, q ∈ A0ρ

i∗1 and A0ρ
i∗1 ⊇ κ+ρ+1. Let us assume for

notational simplicity that q′ does not contain parts from F ρ′
i∗ for ρ′ < ρ. Otherwise we will

need only to add them all the time. Pick q̃01 ≥∗ r ¹ A0ρ
i∗0 in A0ρ

i∗1 ∩ F δ∗
i∗−1. It is possible since

both F δ∗
i∗−1 and r ¹ A0ρ

i∗0 are in A0ρ
i∗1. Extend it to q1 by adding A0ρ

i∗1. Define F ρ
i∗1 to be the set

of all such q1’s.

Now consider some q1 ∈ F ρ
i∗1. q1 ¹ A0δ

i∗−1 is in F δ
i∗−1 by 4.14(2(r)). Let q11 ≥∗ q1 ¹ A0δ

i∗−1

be in A0ρ
i∗2 ∩ F δ∗

i∗−1. Extend it to q2 by adding q1 and A0ρ
i∗2. Let F ρ

i∗2 be the set of all such

q2’s. We continue in the same fashion and define qα’s for every α < κ+ρ+1. There is no

problem at limit stages since always qα ¹ A0δ
i∗−1 ∈ F δ∗

i∗−1. Thus, let α be a limit ordinal and

〈qγ | γ < β〉 ∈ ⋃
α′<α F ρ

i∗α′ be ≤∗-increasing and the union q ∈ P∗. Then, 〈qγ ¹ A0δ
i∗−1 | γ < β〉

is ≤∗-increasing sequence inside F δ∗
i∗−1. So, q ¹ A0δ

i∗−1 ∈ F δ∗
i∗−1. Hence we can define F ρ

i∗α to be

the set of all such q’s.

Finally, we define F ρ∗
i∗ to be the set obtained by adding A0ρ

i∗ as the maximal element to

members of ∪{F ρ
i∗α | α < κ+ρ+1}.

Claim 4.18.1

F ρ∗
i∗ is ≤∗-closed and for every q ∈ F ρ∗

i∗ q ¹ A0δ
i∗−1 ∈ F δ

i∗−1.

Proof. The addition of A0ρ
i∗ on the top does not effect the closure. If q ∈ F ρ∗

i∗ , then q ¹ A0δ
i∗−1

with A0ρ
i∗ removed is in F δ∗

i∗−1. By 4.14(2(o)), it is possible to add A0ρ
i∗ remaining in F δ

i∗−1

(but probably no more in F δ∗
i∗−1).

¤ of the claim.

F ρ
i∗ is obtained in obvious fashion including in addition to F ρ∗

i∗ all the necessary stuff in

order to satisfy 4.14. We need to check that F ρ∗
i∗ is still dense. Actually the only problem

is with conditions p containing A0ρ
i∗ . Thus, p ¹ A0δ

i∗−1 was not probably taken into account

during the construction of F ρ∗
i∗ because of the set A0ρ

i∗ ∩ A0δ
i∗−1 in it or because of A0ρ

i∗ ∩ B’s

for B ∈ A1ρ′
i∗−1 and B is the domain of p.

Let us rule out this possibility using Lemma 4.13. Thus its conclusion (3) applied κ many

times implies that there will be α̃ < α for every B as mentioned above

min(A0ρ
i∗eα\ sup(B ∩ A0ρ

i∗eα ∩ κ+ν+1)) = min(A0ρ
i∗ \ sup(B ∩ A0ρ

i∗ ∩ κ+ν+1))

for every ν ≤ δ. Now we extend p to q by adding A0ρ
i∗eα and A0ρ

i∗eα+1 to it. Let r be obtained

from q by removing A0ρ
i∗ . Then q ¹ A0ρ

i∗eα+1 = r. Let r′ be obtained from r by removing A0ρ
i∗eα+1.

r′ was taken into account in the definition of F ρ
i∗eα+1. So there is some r∗ ≥∗ r′ in F ρ

i∗eα+1.
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The maximal set of r∗, A0ρ
i∗eα+1 is added back. Then r∗ ≥∗ r = q ¹ A0ρ

i∗eα+1. Let s be obtained

from r∗ by adding A0ρ
i∗ . By the definition of F ρ∗

i∗ , s ∈ F ρ∗
i∗ . Clearly then s ≥∗ p.

Now let i∗ be a limit ordinal. If cfi∗ = κ+τ+1, then the treatment of τ -th coordinate

will be a bit simpler than the treatment of the rest due to the fact that A0τ
i∗ should be of

cardinality κτ+1 and closed under κ+τ -sequences. Thus, in this case we take A0τ
i∗ to be the

union of A0τ
i with i < i∗. Set A1τ

i∗ =
⋃

i<i∗ A1τ
i ∪ {A0τ

i∗ }. F τ∗
i∗ is defined as the set of all

elements of ∪{F τ∗
i | i < i∗, i is even } with A0τ

i∗ added as the maximal element.

Suppose now that (cfi∗ = κ+τ+1 and τ < ρ ≤ δ) or (cfi∗ < κ+τ+1 and τ ≤ ρ ≤ δ).

Assume that for all ρ′, τ ≤ ρ′ < ρ 〈A0ρ′
i∗ , A1ρ′

i∗ , F ρ′
i∗ 〉 is defined. Let us define 〈A0ρ

i∗ , A
1ρ
i∗ , F ρ

i∗〉.
The treatment of this case is very similar to the case of the successor ordinal. We define

Ã0ρ
i∗ , A

0ρ
i∗α(α < κ+ρ+1), A0ρ

i∗ and A1ρ
i∗ as they were defined at a successor stage. Now suppose

that q ∈ F ρ
i∗∗ for some even i∗∗ < i∗. We first extend q to condition q′ by adding A0δ

i∗∗ to

it. Now we proceed as at a successor stage replacing i∗ − 1 by i∗∗. This will define F ρ∗
i∗ (i∗∗)

the part of F ρ∗
i∗ depending on i∗∗. In order to obtain F ρ∗

i∗ let us take the union of F ρ∗
i∗ (i∗∗)

over all even i∗∗ < i∗. Using the appropriate inductive assumption, it is easy to insure that

for every q ∈ F ρ∗
i∗ if for some even i∗∗ < i∗ A0ρ

i∗∗ appears in q, then A0δ
i∗∗ appears as well and

q ¹ A0δ
i∗∗ ∈ F δ∗

i∗∗ .

The rest of the proof is routine.

¤

Lemma 4.19 For every τ ≤ δ P<τ satisfies κ+τ+2-c.c. in V P≥τ .

Proof. Suppose otherwise. Let us assume that

∅ ‖
P≥τ

(〈〈〈A
∼

0ν
α , A

∼
1ν
α , F

∼
0
α〉 | ν < τ〉 | α < κ+τ+2〉 is an antichain in P

∼<τ ) .

We use the winning strategy of the player II defined in 4.18 in order to decide the names

of the elements of the antichain. Thus let 〈〈A0ρ
α , A1ρ

α , F ρ
α〉 | ρ ≤ δ, α < κ+τ+2〉 be so that for

every α < κ+τ+2 〈〈A0ρ
α+1, A

1ρ
α+1, F

ρ
α+1〉 | τ ≤ ρ ≤ δ〉 ‖ ′′

P≥τ
∀α′≤α+1〈A∼

0ν
α′ , A∼

1ν
α′ , F∼

ν
α′〉 | ν < τ〉

= 〈〈Ǎ0ν
α′ , Ǎ

1ν
α′ , F̌

ν
α′ | ν < τ〉′′ and for every α < κ+τ+2 of cofinality κ+τ+1 A0τ

α =
⋃

β<α A0τ
β .

Using 4.11 we form a ∆-system satisfying the same conditions as in 3.18 with 1 replaced by

τ and 0 by any ν < τ . Thus the condition (e) of 3.18 in the present situation is as follows:

for every ν < τ ,

(A0ν
α+1 ∩

⋃
γ<α

A0τ
γ ) ∩ κ+δ+1 = (A0ν

β+1 ∩
⋃

γ<β

A0τ
γ ) ∩ κ+δ+1 = A0ν

α+1 ∩ A0ν
β+1 ∩ κ+δ+1 .
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Now suppose that α < β < κ+τ+2, cfα = cfβ = κ+τ+1. We like to show that

〈〈A0ρ
α+1, A

1ρ
α+1, F

ρ
α+1〉 | ρ ≤ δ〉 and 〈〈A0ρ

β+1, A
1ρ
β+1, F

ρ
β+1〉 | ρ ≤ δ〉 are compatible. Clearly,

there is no problem with ρ’s above τ . Define a stronger condition 〈〈A0ρ, A1ρ, F ρ〉 | ρ ≤ δ〉.
For ρ ≥ τ let 〈A0ρ, A1ρ, F ρ〉 = 〈A0ρ

β+1, A
1ρ
β+1, F

ρ
β+1〉. If ρ < τ , then we proceed by induction

on ρ. So suppose that for every ρ′ < ρ < τ A0ρ′ , A1ρ′ and F ρ′ are already defined. De-

fined A0ρ, A1ρ, F ρ. First set Ã0ρ = A0τ
β+1∩ the closure under the Skolem functions and κ+ρ-

sequences of 〈〈A0ρ′
γ , A1ρ′

γ , F ρ′
γ 〉 | γ ≤ β + 1, ρ′ ≤ δ〉, 〈F ρ′∗

γ | γ ≤ β + 1, ρ′ ≤ δ〉, {α + 1}, 〈A1ρ′ |
ρ′ < ρ〉. Define A0ρ to be the union of the increasing continuous chain 〈A0ρ(γ) | γ < κ+ρ+1〉
where A0ρ(0) = Ã0ρ and A0ρ(γ+1) is the closure of A0ρ(γ)∪{A0ρ(γ)} under the Skolem func-

tions and κ+ρ-sequences. Let A1ρ = A1ρ
α+1∪A1ρ

β+1∪{A0ρ(γ) | γ < κ+ρ+1}∪{A0ρ}. Let us turn

to definitions of F ρ and F ρ∗. Let p0 = 〈p0
n | n < ω〉 ∈ F ρ

α+1 and p1 = 〈p1
n | n < ω〉 ∈ F ρ

β+1 be

so that

(1) `(p0) = `(p1)

(2) p0
n, p1

n are compatible for every n < `(p0)

(3) for every n ≥ `(p0) A0τ
α , A0ρ

α+1 ∈ dom a0
n and A0τ

β , A0ρ
β+1 ∈ dom a1

n, where, as usual

pi
n = 〈ai

n, An(i), f i
n〉 (i = 0, 1).

(4) a0
n ¹ A0τ

α = a1
n ¹ A0τ

β

(5) p0 and p1 are compatible in P∗, i.e. they can be combined together without destroying

the preservation of order (both “∈” and “⊆”).

Notice that by 4.14(2)(r) each A0ρ(γ) is addable to p0 and p1.

Now, F ν
α+1 ⊆ F τ

α+1 ⊆ F τ
β ⊆ F τ

β+1 and F ν
β+1 ⊆ F τ

β+1. Hence, p0, p1 ∈ F τ
β+1 ⊆ F δ

β+1. Using

4.14(2(n) and 2(q)), as in the proof of 3.18, they can be combined together into a condition

q ∈ F δ
β+1 with A0δ

β+1 as the maximal set. Thus, we add to p0 ∈ F τ
β as the maximal element

A0τ
β . Let p̃0 be the resulting condition. Let p̃1 be obtained from p1 by adding A0τ

β+1 as the

maximal element. By (4) above and 4.14((2(n)) the combination q of p̃0 and p̃1 is in F τ
β+1.

Let F ρ∗
α+1 and F ρ∗

β+1 be the fixed dense closed subsets of F ρ
α+1 and F ρ

β+1 respectively. As

in 3.18 for each q as above we can find q∗ ∈ F τ
β+1 such that q ≤∗ q∗, q∗ ¹ A0ρ

α+1 ∈ F ρ∗
α+1

and q∗ ¹ A0ρ
β+1 ∈ F ρ∗

β+1. Now we add A0ρ(0) to q∗ and extend q∗ ¹ A0τ
β+1 to an element

q∗∗ of F τ∗
β+1 ∩ A0ρ(1), where F τ∗

β+1 is the fixed dense closed subset of F τ
β+1. At the next

stage we extend the combination of q∗ and q∗∗ by adding A0ρ(1). We continue to extend

in the same fashion for every γ < κ+ρ+1, exactly as in Lemma 4.18. Finally, we add A0ρ
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as the maximal coordinate. F ρ∗ is generated by this process. F ρ is obtained from F ρ∗ by

adding everything necessary in order to satisfy the requirements of 4.14. Thus, let us check

4.14(2(n)), which contains a small new point. Let p ∈ F ρ which includes both A0ρ
α+1 and

A0ρ
β+1, and F ρ

α+1 3 q ≥∗ p ¹ A0ρ
α+1. We need to show that then the combination of p and q is in

F ρ. By the choice of F ρ∗ and then F ρ, A0τ
β is in p. Then, the choice of the ∆-system implies

that p ¹ A0τ
β with A0τ

β removed is exactly p ¹ A0ρ
α+1. Since everything inside A0ρ

β+1 intersected

with A0τ
β is already inside the kernel, i.e. A0ρ

0 . Let q̃ be obtained from q by adding A0τ
β as the

maximal element. Then q̃ ∈ F τ
β ⊆ F τ

β+1. Now, both q̃ and p are in F τ
β+1 and p ¹ A0τ

β ≤∗ q̃.

So, by 4.14(2(n)) for F τ
β+1, the combination of p and q̃ is in F τ

β+1. Clearly, it is the same as

the combination of p and q. So the combination of p and q is in F τ
β+1 and hence also in F ρ.

This completes the inductive definition of 〈A0ρ, A1ρ, F ρ〉 and hence also 〈〈A0ρ, A1ρ, F ρ〉 |
ρ ≤ δ〉. Which leads to the contradiction since the last condition is stronger than both

〈〈A0ρ
α+1, A

1ρ
α+1, F ρ

α+1〉 | ρ ≤ δ〉 and 〈〈A0ρ
β+1, A

1ρ
β+1, F

ρ
β+1〉 | ρ ≤ δ〉.

¤
Let G ⊆ P be generic. We define as in Section 3 our main forcing P∗∗ to be ∪{F 0 |

∃A00, A10, 〈〈A0τ , A1τ , F τ 〉 | 0 < τ ≤ δ〉 〈〈A0ν , A1ν , F ν〉 | ν ≤ δ〉 ∈ G}. Then such forcing

〈P∗∗,≤〉 shares the properties of those of Section 3.

The proof of the next lemma repeats the proof of 3.19 with 4.13 replacing 3.8.

Lemma 4.20 In V P , 〈P∗∗,→〉 satisfies κ++-c.c.

5 Wide Gaps With Shorter Extenders

In this section we shall implement Shelah’s idea [Sh1] which allows us here to use shorter

extenders while making wider gaps than those of the previous section. Unfortunately we

are unable to break completely the linkage between the number of cardinals in between κ

and 2κ and the lengths of extenders used over κn’s, and by Shelah pcf theory [Sh2] for good

reasons.

Let us first deal with countable gaps. Our aim will be to show the following:

Theorem 5.1 Let α < ω1. Suppose that κ is a cardinal of cofinality ω and for every n < ω

{β < κ | o(β) = β+n} is unbounded in κ. Then there is a cofinality preserving extension

satisfying 2κ ≥ κ+α.

Remark. By [Git-Mit] this provides the equiconsistency for infinite α’s. Or if κ is singular

in the core model.
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Proof. Let us use the notation of previous sections. Assume now that each κn has an

extender of the strength κ+n+2+n. Fix a countable ordinal α. Let α\{0, 1, 2} = {αk | k < ω}.
We set D1 = {κ++, κ+α+1}, D2 = D1 ∪ {κ+α0+1} and Dk+1 = Dk ∪ {κ+αk−1+1} for every

k < ω.

We like to use the forcing of the type P of the previous section with corrections on the

number of cardinals reserved at each level n < ω.

First let us assign cardinals below κ to the cardinals {κ+β+1 | 1 ≤ β ≤ α}. At level 1 let

κ++ corresponds to κ+1+2
1 and κ+α+1 corresponds to κ+1+2+1

1 . At level 2 let κ++ corresponds

to κ+2+2
2 , κ+α+1 to κ+2+2+2

2 and κ+α0+1 to κ+2+2+1. At level n let κ+νi corresponds to κ+n+2+i
n ,

where {κ+νi | i ≤ n} is an increasing enumeration of Dn.

Definition 5.2. The forcing notion P(α) consists of all sequences 〈〈A0ν , A1ν , F ν〉 | ν ≤ α〉
so that

(1) 〈〈A0ν , A1ν〉 | ν ≤ α〉 is as in 4.14

(2) for every ν ≤ α F ν consists of p = 〈pn | n < ω〉 and every n ≥ `(p), pn = 〈an, An, fn〉
as in 4.14 with the following changes related only to an:

(i) an(κ+νi) = κ+n+2+i
n for every i ≤ n, where {κ+νi | i ≤ n} is the increasing enumeration

of Dn.

(ii) κ+ν+1, κ+ν+2 ∈ D`(p) and hence are in each Dm with m ≥ `(p)

(iii) only models of cardinalities in Dn can appear in dom an.

The definition of the order on P(α) is as in the previous sections. Also (P(α))≥τ and

(P(α))<τ are defined as in Section 4.

The basic lemmas of the previous section hold here (almost) without changes.

Lemma 5.3 For every τ ≤ α (P(α))≥τ is κ+τ+2-strategically closed.

Lemma 5.4 For every τ ≤ α (P(α))<τ satisfies κ+τ+1-c.c. inside V (P(α))≥τ .

Finally, we define 〈P∗(α),→〉 in V P(α), as in Section 4.

Lemma 5.5 〈P∗(α),→〉 satisfies κ++-c.c. in V P(α).

Using similar ideas it is not hard to show the following

Theorem 5.6 Suppose that κ =
⋃

n<ω κn, κ0 < κ1 < · · · < κn < · · · Let α be a countable

ordinal and δ < κ0. Assume that for every n < ω o(κn) = κ+δ+mn
n +1, where 〈mn | n < ω〉 is
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a converging to infinity sequence of natural numbers. Then there is a cofinality preserving

extension satisfying 2κ ≥ κ+δ+α.

In a further paper we plan to extend the present techniques in order to handle arbitrary

gaps between κ and 2κ. The subject of consistency strength here was almost completely

ignored. We hope to deal with this matter in a further paper as well.
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