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ON COHEN AND PRIKRY FORCING NOTIONS

TOM BENHAMOU AND MOTI GITIK

Abstract. (1) We show that it is possible to add κ+−Cohen subsets
to κ with a Prikry forcing over κ. This answers a question from
[10].

(2) A strengthening of non-Galvin property is introduced. It is shown
to be consistent using a single measurable cardinal which improves
a previous result by S. Garti, S. Shelah, and the first author [6].

(3) A situation with Extender-based Prikry forcings is examined. This
relates to a question of H. Woodin.

0. Introduction

0.1. Intermediate models of the tree-Prikry forcing. In many math-
ematical theories, such as groups, vector spaces, topological spaces, graphs
etc., the study of submodels of a given model is indispensable to the un-
derstanding of the model and in some sense measures its complexity. In
forcing theory, subforcings of a given forcing generate intermediate mod-
els to a generic extension by the forcing. Hence, the study of intermediate
models is somehow parallel to the one regarding subforcings. There are nu-
merous classification results in this spirit, for example, some forcing such as
the Sacks forcing [34] and variants of the tree-Prikry forcing [25] do not have
proper intermediate models. Other forcings such as the Cohen forcing [24],
Random forcing [27], Prikry forcing [20], and Magidor forcing [8], [7] have
intermediate models of the same type. A tree Prikry forcing or its particular
case, which will be central for us in this paper, the Prikry forcing with a
non-normal ultrafilter can behave differently. For example, under suitable
large cardinal assumptions, every κ-distributive forcing of cardinality κ is
a projection of this forcing. Actually, more is true, under the assumption
that κ is κ-compact there is a single Prikry-type forcing which absorbs all
the κ-distributive forcings of cardinality κ (see [19]). In the absence of very
large cardinals the situation changes, indeed, [10] Hayut and the authors
proved that if a certain < κ-strategically closed forcing of cardinality κ is
a projection of the tree-Prikry forcing then it is consistent that there is a
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2 TOM BENHAMOU AND MOTI GITIK

cardinal λ with high Mitchell order, namely o(λ) > λ+. In [8], the authors
proved that starting from a measurable cardinal (which is the minimal large
cardinal assumption in the context of Prikry forcing) it is consistent that
there is a (non-normal) ultrafilter U , such that the Prikry forcing with U
projects onto the Cohen forcing Cohen(κ, 1), this was improved later in [10]
to a larger class of forcing notions called Masterable forcings. In the context
of Prikry-type forcings, the existence of such embeddings and projections
allows one to iterate distributive forcing notions on different cardinals, see
[17, Section 6.4].

It remained open whether it is possible to get more Cohen subsets of κ
after forcing with the Prikry forcing with a κ-complete ultrafilter U over κ.
This was asked explicitly in [10].

The basic difficulty is that the size of Cohen(κ, κ+) is κ+ and it is not
hard to see (Proposition 2.9) that this cannot happen, if U has the Galvin
property.

We formulate a certain strengthening of the negation of the Galvin prop-
erty, show its consistency starting with a measurable cardinal and finally
apply it in order to construct an ultrafilter U such that the Prikry forcing
(For a formal definition of the Prikry forcing with non-normal ultrafilter see
Definition 1.2) with it adds a generic subset to Cohen(κ, κ+).

0.2. Extender-based Prikry forcing and a question of Woodin. Magi-
dor and the second author developed the Extender-based Prikry forcing in
[21] to violate the SCH under mild large cardinal assumptions. Later Meri-
movich [29],[30], presented a variation of this forcing which will be used in
this paper.

H. Woodin asked1 in the early 90s whether, assuming that there is no
inner model with a strong cardinal, it is possible to have a model M in
which 2ℵω ≥ ℵω+3, GCH holds below ℵω, there is an inner model N such
that κ = (ℵω)

M is a measurable and 2κ ≥ (ℵω+3)
M .

A natural approach to tackle Woodin’s question is to use the Extender-
based Prikry with interleaved collapses forcing, defined my the second author
and M. Magidor in [21]. This forcing collapses a measurable cardinal to ℵω

and simultaneously blows up the powerset of that measurable. Hence, if one
can show that the a generic extension by the Extender-based Prikry forcing
has an intermediate model where κ stays measurable and 2κ is large, this will
provide a positive answer to Woodin’s question. In this paper we show that
this approach is doomed. More precisely, we address in general the question
whether it is possible to add many subsets of κ 〈xα | α < λ〉, λ ≥ κ++ with
the Extender-based Prikry forcing over κ such that κ remains a regular
cardinal in V [〈xα | α < λ〉]. We give a negative answer to this question
with respect to the Extender-based Prikry forcing as defined in [21] and the
Merimovich version of the forcing presented in [30, 31]. In particular, as a

1We would like to thank Mohammad Golshani for reminding us of the exact formulation
of Woodin’s question.
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consequence of our results (Theorems 4.5,4.6), the Extender-based Prikry
forcing cannot be used to answer Woodin’s question.

0.3. The Galvin property. F. Galvin [2], in 70th, showed that if κ<κ = κ
and F is a normal filter over κ then the following combinatorial property
holds:

For every {Xi | i < κ+} ⊆ F there is I ⊆ [κ+]κ such that ∩i∈I Xi ∈ F.

We denote this statement by Gal(F, κ, κ+). In particular, this holds for the
club filter Cubκ as it is a normal filter over a cardinal κ.

In [1], Uri Abraham and Saharon Shelah constructed a model where
Gal(Cubκ+, κ+, κ++) fails for a regular κ. Shimon Garti [14],[13] and later
together with the first author and Alejandro Poveda [5] continued the inves-
tigation of the Galvin property for the club filter. The Galvin property for
κ-complete ultrafilters over a measurable cardinal κ was used recently in [18]
and [9]. The question of failure of the Galvin property for such ultrafilters
was shown to be independent. Namely, in [9] the authors observed that in
L[U ] every κ-complete ultrafilter has the Galvin property, and Garti, She-
lah and the first author, starting with a supercompact cardinal, produced a
model with a κ-complete ultrafilter which contains Cubκ and fails to satisfy
the Galvin property.

In section 2, we isolate a property of sequences we call a strong witness
for the failure of Galvin’s property which implies in particular the failure
of Galvin’s property. This property is used in theorem 2.6, where we start
from a single measurable cardinal, and construct a model with an ultrafilter
which fails to satisfy the Galvin property. This improves the initial large
cardinal assumption of [6].

Later in theorem 2.10, we were able to slightly modify the construction of
theorem 2.6, construct an ultrafilter W and a strong witness for the failure
of the Galvin property for it, which serves to glue together initial segments
of functions and obtain κ+-mutually generic Cohen function on κ. This idea
is generalized to longer sequences (and in turn to more Cohen functions) in
Theorems 3.1,3.3.

Our main results are:

Theorem 2.6. Assume GCH and let κ be measurable in V . Then there
is a cofinality preserving forcing extension V ∗ in which there is a κ-complete
ultrafilter W over κ which concentrates on regulars, extends Cubκ, and has
a strong witness for the failure of Galvin’s property.

Theorem 2.10. Assume GCH and that κ is a measurable cardinal
in V . Then there is a cofinality preserving forcing extension V ∗ in which
GCH still holds, and there is a κ-complete ultrafilter U∗ ∈ V ∗ over κ such
that forcing with Prikry forcing Pikry(U∗) introduces a V ∗-generic filter for
CohenV ∗

(κ, κ+).
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Theorem 3.1. Assume GCH and that there is a (κ, κ++)-extender over
κ in V . Then there is a cofinality preserving forcing extension V ∗ such that
V ∗ |= 2κ = κ++, in V ∗ there is a κ-complete ultrafilter W over κ which
concentrates on regulars, extends Cubκ, and has a strong witness of length
κ++ for the failure of Galvin’s property.

Theorem 3.3. Assume GCH and that E is a (κ, κ++)− extender in
V . Then there is a cofinality preserving forcing extension V ∗ in which 2κ =
κ++ and a non-Galvin ultrafilter W ∈ V ∗ such that forcing with Prikry(W )
introduces a V ∗-generic filter for CohenV ∗

(κ, κ++)-generic filter.

Theorem 4.5. Let PE be the Extender-based Prikry forcing of [21], and
G ⊆ P be a generic. Suppose that A ∈ V [G] \ V is a subset of κ. Then κ
changes its cofinality to ω in V [A].

Theorem 4.6. Assume GCH, let E an extender over κ and PE be the
Merimovich version of the Extender-based Prikry forcing of [29, 30, 31]. Let
G be a generic subset of PE and let 〈Aα | α < κ++〉 be different subsets
of κ in V [G]. Then there is I ⊆ κ++, I ∈ V, |I| = κ such that κ is a
singular cardinal of cofinality ω in V [〈Aα | α ∈ I〉]. In particular, there is
no intermediate model of V [G] where κ is measurable and 2κ > κ+.

This paper is organized as follows:

• Section 1: We provide the basic definitions and background for this
paper.

• Section 2: We prove Theorems 2.6, 2.10.
• Section 3: We prove Theorems 3.1, 3.3.
• Section 4: We prove Theorems 4.5,4.6.

1. Basics

1.1. The forcing notions. In our notations p ≤ q means that q is stronger
than p. We assume that the reader is familiar with the forcing method and
iterated forcing. Most of our notations are inspired by [12],[17] where we
refer the reader for more information regarding forcing and iterations. Let
us present the definitions of the forcing we intend to use:

Definition 1.1. The forcing adding λ-many Cohen functions to κ denoted
by Cohen(κ, λ) consists of all partial functions f : κ× λ → {0, 1} such that
|f | < κ. The order is defined by f ≤ g iff f ⊆ g.

Definition 1.2. Let U be a κ-complete non-trivial ultrafilter over κ and
π : κ → κ be the function representing κ in the Ult(V,U). The Prikry
forcing with U , denoted by Prikry(U) consists of all sequences 〈α1, ..., αn, A〉
such that:

(1) 〈α1, ..., αn〉 is an π-increasing sequence of ordinals below κ i.e. for
every 1 ≤ i < n, αi < π(αi+1)

(2) A ∈ U , π(min(A)) > αn.
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The order is defined by 〈α1, ..., αn, A〉 ≤ 〈β1, ..., βm, B〉 iff:

(1) n ≤ m and for every i ≤ n, αi = βi.
(2) for every n < i ≤ m, βi ∈ A.
(3) B ⊆ A.

If n = m we say that q directly extends p and denote it by p ≤∗ q.

If U is normal then we can take π = id and the forcing Prikry(U) is the
standard Prikry forcing. The requirement that the sequence is π-increasing
ensures that the forcing Prikry(U) is forcing equivalent to the tree-Prikry
forcing defined in [17]. Also, it enables to define a diagonal intersection
suitable for the non-normal case, namely, for {Ai | i < κ} ⊆ U define

∆∗
i<κAi := {α < κ | ∀i < π(α).α ∈ Ai}.

This kind of diagonal intersection instead of the standard one is used to
prove the Prikry property of Prikry(U).

Later we will need the easy direction of the Mathias criterion [28] for
Prikry-generic sequences, and the proof can be found in [4, Corollary 4.22]:

Lemma 1.3. Let G ⊆ Prikry(U) be a generic filter producing a Prikry
sequence {cn | n < ω}. Then for every A ∈ U , there is N < ω such that for
every n ≥ N , cn ∈ A.

For more information regarding the tree-Prikry forcing see [17] or [4]. In
the following, we define the notion of lottary sum. The terminology “lottery
sum” is due to Hamkins, although the concept of the lottery sum of partial
orderings has been around for quite some time and has been referred to, for
example, as “disjoint sum of partial orderings”:

Definition 1.4. Let P0,P1 be two forcing notions. The lottery sum of P0

and P1 denoted by LOTT(P0,P1) is the forcing whose underlining set is
P0 × {0} ∪ P1 × {1} and the order is define by 〈p, i〉 ≤ 〈p′, j〉 iff i = j and
p ≤Pi

p′.

The forcing LOTT(P0,P1) generically chooses P0 or P1 and adds a V−generic
filter for it. As Hamkins observed in [22], iterating such forcing notions
leaves a certain amount of freedom when lifting ground model embeddings,
this will be exploited in most of our construction.

In section 4 we will discuss the Extender-based Prikry forcing which was
originally defined by Magidor and the second author in [21]. A more recent
variation of it is due to Carmi Merimovich [29, 30, 31].

Let us present the two versions. Let E be a (κ, λ)−extender and j =
jE : V → ME ≃ Ult(V,E) the natural elementary embedding (See [23]
for the definition of extenders and related constructions) and suppose that
fλ : κ → κ is a function such that j(fλ)(κ) = λ (our result uses λ = κ++

and we can simply take fλ(ν) = ν++). Let us first present the Merimovich
version of the Extender-based Prikry forcing.

For each set of cardinality ≤ κ, d ∈ [λ \ κ]≤κ with κ ∈ d. Define

E(d) = {X ∈ Vκ | (j ↾ d)−1 ∈ j(X)}.
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If A ∈ E(d) we can assume that for every ν, µ ∈ A, ν : d → κ is order
preserving, κ ∈ dom(ν), |ν| ≤ ν(κ), ν(κ) = µ(κ) → dom(ν) = dom(µ).
Merimovich calls such a set a good set.

Definition 1.5. The conditions of PE are pairs p = 〈fp, Ap〉 such that

(1) fp : d → [κ]<ω is the “Cohen Part” of the condition, d ∈ [λ \ κ]<ω,
κ ∈ d.

(2) Ap ∈ E(d) is a good set.
(3) for every ν ∈ Ap and α ∈ dom(ν), max(fp(α)) < ν(κ).

The order of PE is defined in two steps: a direct extension is defined by
〈f,A〉 ≤∗ 〈g,B〉 if

(1) f ⊆ g.
(2) B ↾ dom(f) := {ν ↾ dom(ν) ∩ dom(f) | ν ∈ B} ⊆ A.

A one-point extension of p = 〈f,A〉 for ν ∈ A is defined by paν = 〈g,B〉
where

(1) dom(g) = dom(f).
(2) for every α ∈ dom(g)

g(α) =

{

f(α)aν(α) α ∈ dom(ν)

f(α) else
.

(3) B = {µ ∈ A | supα∈dom(ν)(ν(α) + 1) ≤ µ(κ)}.

an n-point extension pa~ν is defined recursively by consecutive one-point
extensions. A general extension is defined by p ≤ q iff for some ~ν ∈ [Ap]<ω,
pa~ν ≤∗ q.

As in Merimovich [30], we will sometime replace the large set A in a
condition 〈f,A〉 with a Tree T which is E(dom(f))-fat.

Let us now present the original version defined by M. Magidor and the
second author from [21]. Define for every κ ≤ α < λ:

Uα := {X ⊆ κ | α ∈ j(X)}

These are P−point ultrafilters. For every α ≤ β < λ we define that α ≤E β
if there is some f : κ → κ, j(f)(β) = α. This implies that f Rudin-Keisler
projects Uβ onto Uα. For every such pair α ≤E β fix such a projection
πβ,α such that πα,α = id. The projections to the normal measure Uκ have a
uniform definition, πα,κ(ν) = ν0 where ν0 is the maximal inaccessible ν∗ ≤ ν
such that fλ ↾ ν∗ : ν∗ → ν∗, fλ(ν

∗) > ν and πα,κ(ν) = 0 if there is no such
ν∗. Suppose that the system 〈Uα, πα,β | α ≤ β < λ,α ≤E β〉 is a nice system
(See [21] or [17, Discussion after Lemma 3.5]). Let us say that ν is permitted
for ν0, ...νn is ν0 > maxi=0,..,n ν

0
i .

Definition 1.6. The condition of the forcing PE are pairs p = 〈f, T 〉 such
that:

(1) f : λ \ κ → [κ]<ω, κ ∈ dom(f), |f | ≤ κ.
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(2) For each α ∈ Supp(p) := dom(f), π′′
α,κf(α) is a finite increasing

sequence.
(3) The domain of f has a ≤E-maximimal element mc(p) := α =

max(Supp(p)).
(4) π′′

mc(p),κf(mc(p)) = f(κ).

(5) For every γ ∈ Supp(p), πmc(p),γ(max(f(mc(p))) is not permitted to
f(γ).

(6) T is a Umc(p)-splitting tree with stem f(mc(p)), namely, for s ∈ T ,

either s ≤ t, or s ≥ t and SuccT (s) := {α < κ | saα ∈ T} ∈ Umc(p).
(7) For every ν ∈ SuccT (f(mc(p))),

|{γ ∈ Supp(p) | ν is permitted to f(γ)}| ≤ ν0.

The order is defined p ≤ q if:

(1) Supp(p) ⊆ Supp(q).
(2) for γ ∈ Supp(p), f q(γ) is an end-extension of fp(γ).
(3) f q(mc(p)) ∈ T p.
(4) for γ ∈ Supp(p), f q(γ) \ fp(γ) = π′′

mc(p),γf
q(mc(p)) \ fp(mc(p)) ↾

(i+1), where i is maximal such that f q(mc(p)) is not permitted for
fp(γ).

(5) π′′
mc(q),mc(p)T

q ⊆ T p.

(6) For every γ ∈ Supp(p), and ν ∈ SuccT q(f q(mc(q))), such that ν is
permitted for f q(γ) (So by condition (7) there are only ν0-many such
γ’s) then πmc(q),γ(ν) = πmc(p),γ(πmc(q),mc(p)(ν))

1.2. Canonical functions. The main construction of this paper uses the
notion of canonical functions:

Definition 1.7. For every limit ordinal δ < κ+, fix a cofinal sequence
δ̄ = {δi | i < cf(δ)}. Let us define inductively functions τα : κ → κ for
α < κ+:

τ0(x) = 0.

τα+1(x) = τα(x) + 1.

For limit δ, τδ(x) = sup
y<min(x,cf(δ))

τδy(x).

Proposition 1.8. Let λ ≤ κ be a regular cardinal. Then:

(1) For every α < β < λ+, {ν | τα(ν) ≥ τβ(ν)} is bounded in λ.
(2) For every any α < λ+, τα : λ → λ.
(3) For every normal measure V on λ, and for every α < λ+, [τα]V = α.
(4) If λ < κ, then for every β, τβ(λ) < λ+.

Proof. For (1), we prove inductively on β < λ+ that for every α < β, (1)
holds. For β = 0 this is vacuous. The successor stage is also easy since for
every x, τβ(x) < τβ+1(x) so if α < β then by induction hypothesis there
is ξ < λ from which τβ dominates τα i.e. ∀ν ∈ (ξ, λ).τα(ν) < τβ(ν). It
follows that for the same ξ, τα(ν) < τβ+1(ν). As for limit points δ. Fix



8 TOM BENHAMOU AND MOTI GITIK

any α < δ, then there is i < cf(δ) ≤ λ such that δi > α. By induction
hypothesis there is ξi < λ such that τδi(ν) > τα(ν) for every ν ∈ (ξi, λ). Let
ξ∗ := max{ξi, i}+ 1 < λ. It follows that for every ν ∈ (ξ∗, λ), ν > i, hence

τδ(ν) = sup
y<min(ν,cf(δ))

τδy(ν) ≥ τδi(ν) > τα(ν).

Prove (2), (3), (4) by induction on α < λ+. For α = 0 this is trivial.
Suppose that (2), (3), (4) holds for α then clearly by induction hypothesis
τα+1 : λ → λ, and τα+1(λ) = τα(λ) + 1 < λ+, namely (2), (4) follows. Also,
λ = {ν < λ | τα(ν) + 1 = τα+1(ν)} ∈ V, hence by Lós theorem and the
induction hypothesis:

α+ 1 = [τα]V + 1 = [τα+1]V .

Suppose that δ < λ+ is limit, then by induction hypothesis, for every x < λ
and y < min(x, cf(δ)) < λ, τδy(x) < λ . It follows from the regularity of λ
that

τδ(x) = sup
y<min(x,cf(δ))

τδy(x) < λ.

This concludes (2). Also, (4) follows similarly using the regularity of λ+. As
for (3), we use (1) to conclude that for every α < δ, {ν < λ | τα(ν) ≥ τδ(ν)}
is bounded. Hence by induction α = [τα]V < [τδ]V . It follows that δ ≤ [τδ]V .
For the other direction, suppose that [f ]V < [τδ]V , then

E := {x < λ | f(x) < τδ(x)} ∈ V.

By definition of τδ, for every x ∈ E, there is yx < min(x, cf(δ)) such that
τδtx (x) > f(x). the function x 7→ yx is regressive, and by normality we
conclude that there is y∗ < cf(δ) and E′ ⊆ E such that for every x ∈ E′,
f(x) < τδy∗ (x). Hence [f ]V < [τδy∗ ]V = δy∗ < δ and in turn δ = [τδ]V . �

2. The results where GCH holds

2.1. Non-Galvin ultrafilter from optimal assumption. In [6], Garti,
Shelah and the first author constructed a model with a κ-complete ultrafilter
which contains Cubκ and fails to satisfy the Galvin property. The initial
assumption was a supercompact cardinal and the construction went through
adding slim Kurepa trees.

Here we present a different construction. Our initial assumption will be a
measurable cardinal and the property obtained will be a certain strengthen-
ing of the negation of the Galvin property. It will be used further to produce
many Cohens.

Let us first present the stronger form of negation:

Definition 2.1. Let U be a κ−complete ultrafilter non-normal over κ. We
call a family {Aα | α < κ+} ⊆ U a strong witness for the failure of the
Galvin property iff for every subfamily 〈Aαξ

| ξ < κ〉 of size κ the following
hold:

for every ζ, κ ≤ ζ < [id]U , [id]U 6∈ A′
αζ
,
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where 〈A′
αζ

| ζ < jU (κ)〉 = jU (〈Aαξ
| ξ < κ〉).

Remark 2.2. (1) Note that the interval [κ, [id]U ) is non-empty since U
is not normal.

(2) The family {Aα | α < κ+} witnesses the failure of the Galvin prop-
erty for U .

Proof. since whenever 〈Aαξ
| ξ < κ〉 is a subfamily of size κ, then

⋂

ξ<κAαξ
is not in U . Otherwise, suppose that

⋂

ξ<κAαξ
= B ∈ U .

Then [id]U ∈ jU (B), but jU (B) =
⋂

ζ<jU (κ)A
′
αζ
. However, [id]U 6∈

A′
αζ
, for every ζ, κ ≤ ζ < [id]U . Contradiction.

Lemma 2.3. Suppose that {Aα | α < κ+} is a strong witness for the failure
of the Galvin property of the ultrafilter U over κ. Let U0 = {X ⊆ κ | κ ∈
jU (X)} be a projection of U to a normal ultrafilter, ν 7→ πnor(ν) a projection
map and k : MU0 → MU the corresponding elementary embedding. Assume
that crit(k) = jU0(κ) = [id]U . Then [id]U 6∈ B, for every B ∈ jU ({Aα | α <
κ+}) which is in rng(k) \ rng(jU ).

Proof. Let B be as in the statement of the lemma. Pick A′ ⊆ jU0(κ) such
that k(A′) = B. Then A′ 6∈ rng(jU0), since otherwise its image B will be in
the range of jU = k ◦ jU0 . Denote by

{A′
ν | ν < jU0(κ+)} = jU0({Ai | i < κ+})

{A′′
ν | ν < jU (κ

+)} = jU ({Ai | i < κ+})

Since U0 is normal, there is f : κ → κ+ such that A′ = A′
jU0 (f)(κ)

and

thus

B = k(A′) = k(A′
j
U0 (f)(κ)

) = A′′
jU (f)(κ).

Since B is not in the range of k, f is not constant. Recall that {Aα | α < κ+}
is a strong witness for U being non-Galvin ultrafilter over κ. Apply this to
the family {Af(ν) | ν < κ}. It follows that [id]U 6∈ A′′

jU (f)(κ) = B �

Before proving the main result of this section we present two preservation
theorems for being a strong witnesses for the failure of the Galvin property.
These theorems are not used later and the reader can proceed directly to
Theorem 2.6.

Theorem 2.4. Assume 2κ = κ+. Suppose that the family {Aα | α < κ+} is
a strong witness for U being a non-Galvin ultrafilter over κ. Let U0 = {X ⊆
κ | κ ∈ jU (X)} be a projection of U to a normal ultrafilter, ν 7→ πnor(ν) a
projection map and k : MU0 → MU the corresponding elementary embedding.
Assume that crit(k) = jU0(κ) and [id]U = jU0(κ).
Suppose that V ∗ is an extension of V in which all the embeddings jU0 , jU , k
extend to an elementary embedding j0∗ : V ∗ → M0∗, j∗ : V ∗ → M∗,k∗ :
M0∗ → M∗. Define U∗ = {X ⊆ κ | [id]U ∈ j∗(X)}.
Then {Aα | α < κ+} is a strong witness that U∗ is a non-Galvin ultrafilter
over κ.
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Proof. Note that (κ+)V
∗

= (κ+)V . Just otherwise, (κ++)V will be≤ (κ+)V
∗

,
and then, j∗(κ) > (κ++)V . This is impossible, since j∗ extends jU . The rest
follows from the previous lemma and the fact that [κ, [id]U ) ⊆ rng(k) \
rng(jU ) since crit(k) = jU0(κ) = [id]U . �

Theorem 2.5. Assume 2κ = κ+. Suppose that {Aα | α < κ+} is a strong
witness for U being a non-Galvin ultrafilter over κ which contains Cubκ and
be a witnessing family.
Let V ∗ be a κ−c.c. extension of V in which jU extends to an elementary
embedding j∗ : V ∗ → M∗, where M∗ is a corresponding extension of MU .
Define U∗ = {X ⊆ κ | [id]U ∈ j∗(X)}.
Then {Aα | α < κ+} is a strong witness that U∗ is a non-Galvin ultrafilter
over κ.

Proof. Suppose now that 〈Aαξ
| ξ < κ〉 is a subfamily of {Aα | α < κ+} of

size κ in V ∗.
Work in V . Let α∼ξ be a name of αξ. By κ−c.c., then for every ξ < κ there
will be sξ ⊆ κ+ of cardinality less than κ, such that 
 α∼ξ ∈ sξ.
Let S = supξ<κ sξ. Enumerate S = 〈βi | i < κ〉 such that we if βi ∈ sζ and
βj ∈ sµ where ζ < µ then i < j i.e. enumerate first s0 then s1 and so on,
such that the resulting enumeration of S is of order-type κ. This is possible
since each. sζ has cardinality less than κ. Define

C = {ν < κ | ∀ξ < ν(sup(γ | βγ ∈ sξ) < ν)}.

Clearly, C is a club. Hence [id]U ∈ jU (C). Then, by elementarity, for every
ζ < [id]U , and every βi ∈ s′ζ , i < [id]U .

Let us use the fact the the sequence 〈Aα | α < κ+〉 is a strong witness for
U being non-Galvin, hence [id]U 6∈ A′

βζ
, for every κ ≤ ζ < [id]U . Fix any

κ ≤ ξ < [id]U , then by elementarity we have 
 α∼
′
ξ ∈ s′ξ in MU . Therefore

there is some γ < κ such that α′
ξ = βγ . Clearly, γ ≥ κ, and by the closure

property of [id]U , we conclude that γ < [id]U . Hence, in M∗, [id]U 6∈ A′
β′

γ
=

A′
α′

ξ
, as wanted. �

Theorem 2.6. Assume GCH and let κ be measurable in V . Then there is
a cofinality preserving forcing extension V ∗ in which there is a κ-complete
ultrafilter W over κ which concentrates on regulars, extends Cubκ, and has
a strong witness for the failure of Galvin’s property.

Proof. The forcing is simply adding for each inaccessible α ≤ κ, α+-many
Cohen functions to α. Namely, consider the Easton support iteration

〈Pα, Q
∼

β | α ≤ κ+ 1, β ≤ κ〉

such that for α ≤ κ, Q
∼

α is trivial unless α is inaccessible, in which case it is
a Pα-name for Cohen(α,α+).

Let G := Gκ ∗ gκ be V -generic for Pκ ∗ Q
∼

κ. Denote 〈fκ,α | α < κ+〉 be
the enumeration of the κ+ Cohen functions added by gκ. The idea is that
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the sets which are going to be a strong witness for the failure of the Galvin
property are 〈Aα | α < κ+〉, where

Aα = {β < κ | fα(β) = 1}.

The next step is to construct the measure for this witness by extending
ground model embeddings to V [G]. Let U ∈ V be a normal measure over κ
and consider the second ultrapower by U and the corresponding commuta-
tive diagram

j1 := jU : V → MU =: M1, j2 := jU2 : V → MU2 =: M2

k : M1 → M2, j2 = k ◦ j1

where k is simply the ultrapower embedding defined in MU using the ultra-
filter j1(U). Denote κ1 = j1(κ) and κ2 = j2(κ), then k(κ1) = κ2.

By Easton support and elementarity,

j1(Pκ ∗Q
∼

κ) = Pκ ∗Q
∼

κ ∗ P(κ,κ1) ∗Q∼
κ1 .

Where P(κ,κ1) ∗Q∼
κ1 is the quotient forcing above κ, which is forcing equiv-

alent to the continuation of the iteration above κ using the same recipe as
Pκ.

In V [G], let us first construct an M -generic filter for j1(Pκ ∗ Q
∼

κ). Take
Gκ ∗ gκ to be the generic up to κ including κ. Above κ, from the point
of view of V [G], we have κ+-closure for P(κ,κ1). By GCH, and since j1 is

an ultrapower by a measure, there are only κ+-many dense open subsets
of this forcing to meet. Therefore we can construct in V [G] by standard
construction an M1[G]-generic filter G(κ,κ1) for P(κ,κ1). By κ+1 − cc of Qκ1 ,
we can find g′κ1

which is M1[G∗G(κ,κ1)]−generic for Qκ1 . We need to change

the values of g′κ1
= 〈f ′

κ1,α
| α < κ+1 〉 to gκ1 = 〈fκ1,α | α < κ+1 〉 such that for

every α < κ+, fκ1,j1(α) ↾ κ = fκ,α. This will ensure that the Silver criterion
to lift an elementary embedding holds, namely, j′′1Gκ∗g ⊆ Gκ∗g∗G(κ,κ1)∗g

′
κ1
.

Also, we would like to tweak the values of fκ1,j1(α)(κ) to ensure that the sets
Aα are members of the ultrafilter generated by κ. By the definition of Aα,
the way to do this is to set fκ1,j1(α)(κ) = 1.

Formally, for each condition p ∈ Cohen(κ1, κ
+
1 )

M1[Gκ∗G∗G(κ,κ1)
], define a

function p∗ with dom(p∗) = dom(p) and for every 〈γ, α〉 ∈ dom(p∗),

p∗(〈γ, α〉) =







fκ,β(γ) γ < κ ∧ j1(β) = α

1 γ = κ ∧ j1(β) = α

p(〈γ, α〉) else

.

Let gκ1 := {p∗ | p ∈ g′κ1
}. Clearly, the functions 〈fκ1,α | α < κ+1 〉 derived

from gκ1 satisfy that fκ1,j1(β) ↾ κ = fκ,β and fκ1,j1(β)(κ) = 1 for every

β < κ+. It remains to show that gκ1 is generic:

Lemma 2.7. The filter gκ1 is Cohen(κ1, κ
+
1 )

M1[Gκ∗G∗G(κ,κ1)
]-generic filter

over M1[Gκ ∗ g ∗G(κ,κ1)].
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Proof. First let us prove that gκ1 ⊆ Cohen(κ1, κ
+
1 )

M1[Gκ∗G∗G(κ,κ1)
]. Indeed,

g′κ1
⊆ Cohen(κ1, κ

+
1 )

M1[Gκ∗G∗G(κ,κ1)
] and for any p ∈ g′κ1

,

M1[Gκ ∗G ∗G(κ,κ1)] |= |p| < κ1,

hence dom(p)≤κ := {α | ∃〈γ, α〉 ∈ dom(p), γ ≤ κ} is bounded in κ+1 while
j′′1κ

+ is unbounded. It follows that there is θ < κ+ such that

dom(p)≤κ ∩ j′′1κ
+ ⊆ j′′1θ.

Hence from the V -perspective, |dom(p)≤κ ∩ j′′1κ
+| ≤ κ. The difference

between p and p∗ is only on the coordinates of dom(p)≤κ ∩ j′′1κ
+ and by

closure of M1[Gκ ∗ g ∗G(κ,κ1)] to κ-sequences it follows that

p∗ ∈ Cohen(κ1, κ
+
1 )

M1[Gκ∗G∗G(κ,κ1)
], gκ1 ⊆ Cohen(κ1, κ

+
1 )

M1[Gκ∗G∗G(κ,κ1)
].

To see that gκ1 is generic over M1[Gκ ∗G ∗G(κ,κ1)], let D ∈ M1[Gκ ∗G ∗
G(κ,κ1)] be dense open. In M1[Gκ ∗ G ∗ G(κ,κ1)], define D∗ to consist of all

conditions p ∈ Cohen(κ1, κ
+
1 ). Such that

∀q.dom(q) = dom(p) ∧ |{x | p(x) 6= q(x)}| ≤ κ → q ∈ D

thenD∗ is dense open. To see this, pick any p ∈ Cohen(κ1, κ
+
1 )

M1[Gκ∗G∗G(κ,κ1)
]

and enumerate by 〈qr | r < θ〉 all the conditions q such that

dom(q) = dom(p) ∧ |{x | p(x) 6= q(x)}| ≤ κ.

Note θ < κ1 since κ1 is inaccessible in MU [Gκ ∗ g ∗ G(κ,κ1)]. We define
inductively and increasing sequence 〈pr | r < θ〉, and exploit the κ1-closure
of Cohen(κ1, κ

+
1 ) to take care of limit stages. Define p0 = p, and suppose that

pr is defined, let p′r+1 := qr ∪ pr ↾ (dom(pr) \ dom(p)), find p′r+1 ≤ tr+1 ∈ D
which exists by density and set

pr+1 = pr ↾ dom(p) ∪ tr+1 ↾ (dom(tr+1) \ dom(p)).

Then pr ≤ pr+1. Let

p∗ := ∪r<θpr

then p∗ has the property that for κ many changes of p∗ from the domain of
p stays inside D. Namely any q with dom(q) = dom(p∗),

q ↾ (dom(p∗) \ dom(p)) = p∗ ↾ (dom(p∗) \ dom(p))

and |{x ∈ dom(p) | p(x) 6= q(x)}| ≤ κ, q ↾ dom(p) = qr for some r, therefore
q ≥ tr+1 ∈ D. Now we define inductively 〈p(r) | r < κ+〉, p(0) = p at limit

we take union, and at successor step we take p(r+1) = (p(r))∗. We claim

that p∗ := ∪r<κ+p(r) ∈ D∗. First note that κ+ < κ1 hence |p∗| < κ1 (all
the definition is inside MU [Gκ ∗ gκ ∗ G(κ,κ1)]). Let q be any condition with
dom(q) = dom(p∗) and denote by

I = {x ∈ dom(p∗) | q(x) 6= p∗(x)}

and suppose that |I| ≤ κ. Since dom(p∗) = ∪r<κ+ dom(p(r)) and dom(p(r))

is ⊆-increasing, there is j < κ+ such that I ⊆ dom(p(j)). The condition



ON COHEN AND PRIKRY FORCING NOTIONS 13

q ↾ I is enumerated in the construction of p(j+1), hence q ↾ dom(p(j+1)) ∈ D
and since D is open, q ∈ D. This means that p∗ ∈ D∗.

Finally, by genericity of g′κ1
, we can find p ∈ D∗ ∩ g′κ1

. By definition,
p∗ ∈ gκ1 and since dom(p∗) = dom(p) and |{x | p(x) 6= p∗(x)}| ≤ κ it follows
that p∗ ∈ D. �

Denote by H = Gκ ∗ gκ ∗G(κ,κ1) ∗ gκ1 , then j′′1G ⊆ H. Let

j∗1 : V [G] → M1[H]

be the extended ultrapower and derive the normal ultrafilter over κ,

U1 := {X ⊆ κ | κ ∈ j∗1(X)}

then U ⊆ U1 and j∗1 = jU1 . Indeed let k1 : MU1 → M1[H] be the usual
factor map k1(jU1(f)(κ)) = j∗1(f)(κ). We will prove that k1 is onto and
therefore k1 = id. For every A ∈ M1[H], there is a name A∼ ∈ M1 such that
A = (A∼)H . MU is the ultrapower by U , hence there is f ∈ V such that
j1(f)(κ) = A∼. By elementarity for every α < κ, f(α) is name. In V [G]
define f∗(α) = (f(α))G, then by elementarity

k1(jU1(f)(κ)) = j∗1(f
∗)(κ) = (j∗1(f)(κ))j(G) = (j1(f)(κ))H = (A∼)H = A.

Denote by M∗
1 = M1[H] and consider j∗1(U1) ∈ M∗

1 . Let us now define
inside M∗

1 an M2-generic filter for

j2(Pκ ∗Q
∼

κ) = Pκ1 ∗Q∼
κ1 ∗ P(κ1,κ2) ∗Q∼

κ2 ,

in a similar fashion as H was defined. First we take H to be the generic for
Pκ1 ∗Q∼

κ1 . Note that M2 is closed under κ1-sequences with respect to M1.
Therefore, from the M∗

1 -point of view, P(κ1,κ2) ∗ Q
∼

κ2 is κ+1 -closed, and we

can construct an M2[H]-generic filter G(κ1,κ2) ∗ g
′
κ2

∈ M∗
1 for it. We change

the values of g′κ2
a bit differently from the way we changed the values of

g′κ1
. If α < κ+1 is of the form j1(β) let fκ2,k(α)(κ1) = 1 (to guarantee

that Aα’s belongs to the ultrafilter generated by κ1) and if α ∈ κ+1 \ j′′1κ
+

let fκ2,k(α)(κ1) = 0. Also, we would like that fκ2,κ1(0) = κ. Formally,

for every p ∈ Cohen(κ2, κ
+
2 )

M2[H∗G(κ1,κ2)
], define p∗ to be a function with

dom(p) = dom(p∗) and for every 〈γ, α〉 ∈ dom(p∗),

p∗(〈γ, α〉) =







fκ1,β(γ) γ < κ1 ∧ α = k(β)

1 γ = κ1 ∧ α = k(j1(β))

0 γ = κ1 ∧ α = k(β), β /∈ j′′1κ
+

κ γ = 0 ∧ α = κ1

p(〈γ, α〉) else

.

Denote by gκ2 = {p∗ | p ∈ g′κ2
} ∈ V [G] the resulting filter. It is important

that for each p ∈ g′2, the set

X1 := j′′2κ
+ ∩ dom(f)≤κ1 = {j2(α) | ∃〈γ, j2(α)〉 ∈ dom(f), γ ≤ κ1}
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has size at most κ. This ensured that X1 ∈ M∗
1 . Also, k′′κ+1 is unbounded

in κ+2 and conditions in Cohen(κ2, κ
+
2 )

M2[H∗G(κ1,κ2)
] have M2[H ∗ G(κ1,κ2)]-

cardinality less than κ2, which guarantees that for each p ∈ Cohen(κ2, κ
+
2 ),

X2 := k′′κ+1 ∩ dom(p)≤κ1

has size at most κ1. Note that p∗ is definable in M∗
1 from the parameters

p,X1,X2 ∈ M∗
1 , and p∗ differs from p at most on κ1-many values. By the

closure of M2[H ∗G(κ1,κ2)] to κ1-sequences from M∗
1 ,

p∗ ∈ M2[H ∗G(κ1,κ2)] and gκ2 ⊆ Cohen(κ2, κ
+
2 )

M2[H∗G(κ1,κ2)
].

The genericity argument of 2.7 extends to the models M1 and M2[H ∗
G(κ1,κ2)], hence gκ2 is M2[H ∗ G(κ1,κ2)]-generic. Denote by M∗

2 = M2[H ∗
G(κ1,κ2) ∗ gκ2 ]. It follows that k can be extended (in V [G]) to k∗ and also j2
to j∗2 = k∗ ◦ j∗1 : V [G] → M∗

2 . Finally, let

W := {X ∈ P V [G](κ) | κ1 ∈ j∗2(X)} ∈ V [G].

Let us prove that W witnesses the theorem:

Claim 2.8. W is a κ-complete ultrafilter over κ such that:

(1) jW = j∗2 and [id]W = κ1.
(2) Cubκ ⊆ W .
(3) {α < κ | cf(α) = α} ∈ W .
(4) 〈Aα | α < κ+〉 is a strong witness for the failure of the Galvin

property.

Proof. To see (1), let us denote by jW : V [G] → MW the ultrapower embed-
ding by W and kW : MW → M∗

2 defined by kW ([f ]W ) = j∗2(f)(κ1) the factor
map satisfying kW ◦ jW = j∗2 . Let us argue that kW is onto and therefore
kW = id and [id]W = κ1. Indeed, let A ∈ M∗

2 then there is A∼ ∈ M2 such
that (A∼)j∗2 (G) = A. Since j2 = jU2 there is h ∈ V such that j2(h)(κ, κ1) = A∼.

Note that κ = j∗2(fκ)κ1(0), hence define in V [G], h∗(α) = (h(fκ,α(0), α))G.
We have that

kW ([h∗]W ) = j∗2(h
∗)(κ1) = (j2(h)(κ, κ1))j∗2 (G) = (A∼)j∗2 (G) = A

To see (2), for every club C ∈ Cubκ, j
∗
2(C) is closed and j∗1(C) is unbounded

in κ1. Since crit(k
∗) = κ1 and j∗2(C) = k∗(j∗1 (C)) it follows that j∗2(C)∩κ1 =

j∗1(C), hence j∗2(C) ∩ κ1 is unbounded in κ1 which implies that κ1 ∈ j∗2(C).
For (3), since M∗

2 |= cf(κ1) = κ1, it follows that {α | cf(α) = α} ∈ W .
Finally, for every α < κ+,

j∗2(Aα) = {β < κ2 | fκ2,j2(α)(β) = 1}.

Since j2(α) = k(j1(α)), by the definition of gκ2 , fκ2,j2(α)(κ1) = 1, thus
κ1 ∈ j∗2(Aα), and by definition of W , Aα ∈ W .
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For (3), let {Aαi
| i < κ} be any subfamily of length κ and κ ≤ η <

[id]W = κ1. Denote

j2 ∗ (〈Aαi
| i < κ〉) = 〈A

(2)

α
(2)
i

| i < κ2〉, j∗1(〈Aαi
| i < κ〉) = 〈A

(1)

α
(1)
i

| i < κ1〉

Since κ ≤ η < κ1, then η /∈ j′′1κ
+ and thus α

(1)
η /∈ j′′1κ

+. Also, k(α
(1)
η ) =

α
(2)
k(η) = α

(2)
η . Hence by definition, f

κ2,α
(2)
η
(κ1) = 0, hence κ1 /∈ A′

α
(2)
η

�

�

2.2. Adding κ+-Cohen subsets to κ by Prikry forcing. In this section
we will construct a model in which there is a κ-complete ultrafilter W such
that forcing with Prikry(W ) adds a generic for Cohen(κ, κ+). Let us first
observe that such an ultrafilter must fail to satisfy the Galvin property:

Proposition 2.9. If Gal(U, κ, κ+) holds then Prikry(U) does not add a
V -generic filter for Cohen(κ, κ+).

Proof. Suppose that Gal(U, κ, κ+) holds and let G ⊆ Prikry(U) be V -
generic. By [18, Proposition 1.3] every set A ∈ V [G] of size κ+ contains a
set B ∈ V of cardinality κ. Toward a contradiction suppose that H ∈ V [G]
is a V -generic filter for Cohen(κ, κ+). Code H : κ×κ+ → 2 as X ⊆ κ+, just
pick a bijection φ from κ+ to κ+ × κ and let X = {α < κ+ | H(φ(α)) = 1}.
The set X does not contain an old subset of cardinality κ, this is a contra-
diction. To see this, let Y ∈ V such that |Y | = κ, proceed with a density
argument: any condition p ∈ Cohen(κ, κ+) has size < κ and therefore can
be extended to a condition p′ such that for some y ∈ Y , φ(y) ∈ dom(p′) and
p′(φ(y)) = 0. �

Hence the failure of the Galvin property is necessary.

Theorem 2.10. Assume GCH and that κ is a measurable cardinal in V .
Then there is a cofinality preserving forcing extension V ∗ in which GCH
still holds, and there is a κ-complete ultrafilter U∗ ∈ V ∗ over κ such that
forcing with Prikry forcing Pikry(U∗) introduces a V ∗-generic filter for
CohenV ∗

(κ, κ+).

Proof. The model V ∗ is obtained by iterating with Easton support the lot-
tery sum of Cohen forcings for adding α+−Cohen functions 〈fαγ | γ < α+〉
over α, and Cohen2 for adding two blocks of α+−Cohen functions

〈fαγ | γ < α+〉, 〈hαγ | γ < α+〉.

More specifically, let

〈Pα, Q
∼

β | α ≤ κ+ 1, β ≤ κ〉

denotes the Easton support iteration, such that for each α < κ, Q
∼

α is the
trivial forcing unless α is inaccessible in which case Q

∼
α is a Pα-name for the

lottery sum

LOTT(Cohen(α,α+),Cohen(α,α+)× Cohen(α,α+)).
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At κ itself we let Q
∼

κ = Cohen(κ, κ+). Let Gκ ∗ Fκ be a V -generic subset of
Pκ ∗ Q

∼
κ and let V ∗ = V [Gκ ∗ Fκ]. We denote by Fα := 〈fαγ | γ < α+〉 the

generic Cohen function if Cohen(α,α+) was forced in Gκ and by

Fα := 〈fαγ | γ < α+〉, Hα := 〈hα,γ | γ < α+〉

if Cohen(α,α+)× Cohen(α,α+) was.
Let U ∈ V be a normal ultrafilter, j1 := jU : V → MU the corresponding

elementary embedding, κ1 = j1(κ), k := jj1(U) : MU → MU2 , j2 = k ◦ j1,
and κ2 = j2(κ). Let us extend j1, k, j2 in V [Gκ ∗ Fκ]:
We first extend j1 : V → MU to j∗1 : V [Gκ ∗ Fκ] → MU [Gκ1 ∗ Fκ1 ]. Do this
by taking first Gκ1 ∩Pκ = Gκ, at κ we force with the lottery sum so we can
choose to force only one block of Cohens and take Fκ as a generic. Then
defining a master condition sequence, using the closure of the forcing above
κ in MU exploiting GCH to ensure that there are only κ+-many dense sets
to meet. This defines Gκ1 . As for Fκ1 , we first find an MU [Gκ1 ]-generic
F ′
κ1

× H ′
κ1

∈ V [Gκ ∗ Fκ] again using GCH, closure of MU [Gκ1 ] under κ-

sequences and the closure of the forcing (Cohen(κ1, κ
+
1 )

2)MU [Gκ1 ]. Let us
alter some values of F ′

κ1
and H ′

κ1
to define Fκ1 = 〈fκ1,γ | γ < κ+1 〉 and

Hκ1 = 〈hκ1,γ | γ < κ+1 〉 such that for every α < κ+1 :

(1) fκ1,j1(α) ↾ κ = hκ1,j1(α) ↾ κ = fκ,α.
(2) fκ1,j1(α)(κ) = α.

Formally, we change every pair of partial functions p = 〈p0, p1〉 ∈ F ′
κ1

×H ′
κ1

to the pair of partial functions p∗ = 〈p∗0, p
∗
1〉 such that dom(p∗0) = dom(p0),

dom(p∗1) = dom(p1) and for every 〈α, δ〉 ∈ dom(p0):

p∗0(〈α, δ〉) =







fκ,α0(δ) ∃α0 < κ+.α = j1(α0) and δ < κ

α0 ∃α0 < κ+.α = j1(α0) and δ = κ

p0(〈α, δ〉) else

p∗1(〈α, δ〉) =

{

fκ,α0(δ) ∃α0 < κ+.α = j1(α0) and δ < κ

p1(〈α, δ〉) else

Note that for every p0, p1 ⊆ Cohen(κ1, κ
+
1 )

MU [Gκ1 ] we only change κ-many
values as MU [Gκ1 ] |= |dom(p0)|, |dom(p1)| < κ1 hence

|j′′1κ
+ ∩ {α | ∃δ.〈α, δ〉 ∈ dom(p0)}| ≤ κ

since j1(κ
+) =

⋃
j′′1κ

+, the same holds for p1. It follows that

p∗ ∈ (Cohen(κ1, κ
+
1 )

2)MU [Gκ1 ].

Changing less than κ1-many values of a generic for Cohen(κ1, κ
+
1 )

2 does not
impact the genericity. Hence Fκ1×Hκ1 := {p∗ | p ∈ F ′

κ1
×H ′

κ1
} ∈ V [Gκ∗Fκ]

is still MU [Gκ1 ]-generic.
Since at κ we only force Cohen(κ, κ+), in order to extend j1 we only need

a generic for Cohen(κ1, κ
+
1 ) in the MU -side. We constructed Fκ1 so that

j′′1Fκ ⊆ Fκ1 hence j′′1Gκ ∗ Fκ ⊆ Gκ1 ∗ Fκ1 (Hκ1 will be used later). Thus in
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V [Gκ ∗Fκ], we have extended j1 ⊆ j∗1 : V [Gκ ∗Fκ] → MU [Gκ1 ∗Fκ1 ]. Let us
note that j∗1 is actually the elementary embedding derived from the normal

measure U ⊆ U0 := {X ∈ P V [Gκ∗Fκ](κ) | κ ∈ j∗1(X)}:
Clearly the function k0 : MU0 → MU [Gκ1 ∗ Fκ1 ] defined by k0([f ]U0) =

j∗1(f)(κ) is elementary. To see the k0 = id let us prove that k0 is onto. Fix
A = (A∼)Gκ1∗Fκ1

∈ MU [Gκ1 ∗ Fκ1 ] and let f ∈ V be such that j1(f)(κ) = A∼
and define in V [Gκ ∗ Fκ] the function f∗(x) = (f(fκ,κ(x)))Gκ∗Fκ . Then

k0(jU0(f∗)(κ)) = j∗1(f
∗)(κ) = (j∗1(f)(j

∗
1(fκ,κ)(κ)))Gκ1∗Fκ1

=

= (j1(f)(κ))Gκ1∗Fκ1
= (A∼)Gκ1∗Fκ1

= A.

Recall that we have constructed the function Hκ1 ∈ V [Gκ ∗Fκ] such that
Fκ1 ×Hκ1 is MU [Gκ1 ]−generic for Cohen(κ1, κ

+
1 )

2. Now we wish to extend
k : MU → MU2 to k∗ : MU [Gκ1 ∗Fκ1 ] → MU2 [Gκ2 ∗Fκ2 ] in V [Gκ∗Fκ]. We do
this by taking Gκ2∩κ1 = Gκ1 , at κ1 we force Cohen(κ1, κ

+
1 )×Cohen(κ1, κ

+
1 )

putting the generic Fκ1 × Hκ1 , then exploiting the closure and GCH to
complete to a generic Gκ2 ∗ F

′
κ2

∈ V [Gκ ∗ Fκ]. Finally, we wish to modify

some values of F ′
κ2

to a generic Fκ2 = 〈fκ2,γ | γ < κ+2 〉 so that for every

α < κ+1 :

(1) fκ2,k(α) ↾ κ1 = fκ1,α.

(2) For α ∈ j′′1κ
+, fκ2,k(α)(κ1) = 1.

(3) For α ∈ κ+1 \ j′′1κ
+, fκ2,k(α)(κ1) = 0

(4) fκ2,κ1(κ1) = κ.

Again, this is possible since we do not change too many values of F ′
κ2
. At

this point, let us emphasize that we do not use Hκ1 in the generic we have
in the MU -side

2. The generic Hκ1 is used in the construction of the generic
on the MU2-side where we can choose (due to the lottery sum) to force at
κ1 two copies of Cohen(κ1, κ

+
1 ), of course, that at κ2 = j2(κ) we are still

obligated to force one copy of Cohen(κ2κ
+
2 ) which contains the point-wise

image of Fκ1 under the factor map k.
Hence we extended in V [Gκ ∗ Fκ], k ⊆ k∗ : MU [Gκ1 ∗ Fκ1 ] → MU2 [Gκ2 ∗

Fκ2 ].

2Since over V , at κ we forced one copy of Cohen’s i.e. Cohen(κ, κ+), over MU we need
to force only one copy of Cohen(κ1, κ

+
1 ), thus we only need the generic Fκ1

.
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V MU MU2

κ

Gκ Gκ

Fκ

G(κ,κ1) Gκ1 (= Gκ ∗ Fκ ∗G(κ,κ1))

Fκ1 ×Hκ1

Fκ

κ1j′′1Fκ ⊆ Fκ1

κ2k′′Fκ1 ⊆ Fκ2

κ

j1

k

Let j∗2 = k∗ ◦ j∗1 , V
∗ = V [Gκ ∗ Fκ], M

∗
1 = MU [Gκ1 ∗ Fκ1 ] and M∗

2 =
MU2 [Gκ2 ∗ Fκ2 ].

In V ∗, define
U∗ = {X ⊆ κ | κ ∈ j∗2(U)}

W = {X ⊆ κ | κ1 ∈ j∗2(X)}

and for every α < κ+:

Aα = {ν < κ | fκ,α(ν) = 1}.

Then as in Claim 2.8, we have that W is a κ-complete ultrafilter over κ such
that:

(1) j∗1 = j∗U , j
∗
2 = jW and [id]W = κ1.

(2) 〈Aα | α < κ+〉 is a strong witness for W being non-Galvin.
(3) Cubκ ⊆ W .
(4) L0 = {α < κ | Cohen(α,α+) × Cohen(α,α+) was forced in Gκ} ∈

W .

Also, recall that j2 : V → M2 is also the ultrapower by U × U under the
identification(isomorphism):

jU2(f)(κ, κ1) = j2,1(j1(ν 7→ f(ν, ∗))(κ))(κ1).

Clearly, the projections π1, π2 : κ×κ → κ on the first and second coordinates
resp. Rudin-Keisler project U2 on U . Also, W ∩ V = U∗ ∩ V = U and
U∗ ≤R−K W and the projection map is denoted by ν 7→ πnor(ν).

3.
Let us prove that W witnesses the theorem:

3Explicitly, one can define in V [G] the function f(α) = fκ,α(α). Then j∗2 (f)(κ1) =
fκ2,κ1

(κ1) = κ.
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Theorem 2.11. Let H ⊆ Prikry(W ) be a V ∗-generic filter. There is G∗ ∈
V ∗[H] which is V ∗-generic for Cohen(κ, κ+)V

∗

.

Proof of Theorem 2.11: Let 〈cn | n < ω〉 be the W -Prikry sequence corre-
sponding to H. Suppose without loss of generality that for every n < ω,
cn ∈ L0, this will hold from a certain point and the proof can be ad-
justed in a straightforward way. This guarantees that the generic Hcn =
〈hcn,γ | γ < α+〉 for the second component of the generic we have in Gκ

for Cohen(cn, c
+
n )×Cohen(cn, c

+
n ) is defined for every n < ω. The functions

hcn,γ will be used below to define the Cohen generic functions.
Define, for every n < ω, the set

Zn = {α < κ+ | {cm | n ≤ m < ω} ⊆ Aα and n is least possible }.

For every α < κ+, let nα be the unique n such that α ∈ Zn. Let α < κ+,
define f∗

α : κ → κ as follows:
Fix a sequence 〈sα | α < κ+〉 ∈ V ∗ of canonical functions in

∏

ν<κ ν
+.

f∗
α ↾ cnα = hcnαsα(cnα),

f∗
α ↾ [cm−1, cm) = hcm,sα(cm) ↾ [cm−1, cm), for m,nα < m < ω.

Let us argue that F = 〈f∗
α | α < κ+〉 induces a Cohen(κ, κ+)V

∗

generic
filter over V ∗.

Claim 2.12. Let G∗ = {p ∈ Cohen(κ, κ+)V
∗

| p ⊆ F}, then G∗ is a V ∗-
generic filter.

Let A ∈ V ∗ be a maximal antichain in the forcing Cohen(κ, κ+)V
∗

. Note
that since Cohen(κ, κ+)V

∗

is κ−closed then

Cohen(κ, κ+)V [Gκ] = Cohen(κ, κ+)V
∗

.

By κ+−cc of the forcing Pκ+1, there is Y ⊆ κ+, Y ∈ V such that |Y | = κ
and A ⊆ Cohen(κ, Y )V

∗

. Also, since |A| = κ, A ∈ V [Gκ ∗ Fκ], there is
Z ⊆ κ+ such that |Z| = κ such that A ∈ V [Gκ ∗ Fκ ↾ Z]. Without loss of
generality assume that Z = Y ∈ V (Otherwise just take the union). Let
V ∋ φ : κ → Y be a bijection.

Claim 2.13. There is an ∈ −increasing continuous chain 〈Nβ | β < κ〉 of
elementary submodels of Hχ such that

(1) |Nβ | < κ,
(2) Gκ, Fκ,A, φ, 〈sα | α < κ+〉 ∈ N0,
(3) Nβ ∩ κ = γβ is a cardinal < κ, γβ+1 is regular.
(4) for every ρ, δ ∈ φ′′γβ.ρ < δ → ∀γβ ≤ µ < κ, sρ(µ) < sδ(µ).

(5) If γβ is regular, then N
<γβ
β ⊆ Nβ. In particular Cohen(γβ , φ

′′γβ) =

Cohen(κ, Y ) ∩Nβ .
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Proof of Claim 2.13 Let us construct such a sequence inductively. Note
that (4) follows from elementarity and (2). Requirements (1) − (5) are
preserved at limit stages due to continuity. At successor stages, suppose we
have constructed Nβ, find an elementary submodel N0

β+1 such that Nβ ⊆

N0
β+1, 〈Nα | α < β〉 ∈ N0

β+1, then we construct an auxiliary ∈-increasing

and continuous chain of elementary submodels 〈Nα
β+1 | α < κ〉 as follows:

N0
β+1 is already defined. At limits we take the union and at successor let us

take care of requirements 3,5. Let γ′α = sup(Nα
β+1 ∩ κ) < κ. Let Nα+1

β+1 be

an elementary submodel such that Nα
β ,

<γ′

α ,⊆ Nα+1
β+1 and |Nα+1

β+1 | < κ. Note

that the sets

C1 = {α < κ | Nα
β+1 ∩ κ = γ′α ∈ κ}

C2 = {α ∈ C1 | if γα is regular then N<γα
α ⊆ Nα}

are clubs and also C̄ = C1∩C2 is. It follows that {γ′α | α ∈ C̄} is a club and
since κ is measurable, there is a α∗ ∈ C̄ limit such that γ′α∗ is regular. Let
Nβ+1 = Nα∗

β+1, to conclude 2 since γβ+1 = γ′α∗ is regular. �Claim 2.13

Set

C = {β < κ | γβ = β}.

This is club in κ since the sequence γβ is continuous and since the set
{β | γβ = β} is a club.

Claim 2.14. Let

E := {β < κ | ∀γ ∈ φ′′β.∃δ < β+.fκ,γ ↾ β = fβ,δ}.

Then E ∈ W .

Proof of claim 2.14. By construction, for every α < κ+1 , fκ2,k(α) ↾ κ1 =

fκ1,α and therefore for every for every α ∈ j∗2(φ)
′′κ1, there is ν < κ+1 such

that α = k∗(j∗1 (φ))(ν) = k∗(j∗1(φ)(ν)) and j∗1(φ)(ν) < κ+1 . Hence fκ2,α ↾

κ1 = fκ1,β for some β < κ+1 . Reflecting this we obtain the set E ∈ W .
�Claim 2.14

To see that G∗∩A 6= ∅, we will need to catch a piece of A in the elementary
submodels constructed and pick the Prikry points in the club C prepared:

Claim 2.15. For every ν0 ∈ C ∩ E, there is d = dν0 ∈ Nν0 ∩ A such that d
is extended by 〈hν0,sτ (ν0) | τ ∈ φ′′ν0〉.

Proof of Claim 2.15. Fix any ν0 ∈ C∩E. Consider the transitive collapse
of π : Nν0 → N∗

ν0
. Then the critical point of π−1 : N∗

ν0
→ Nν0 is ν0 and

π−1(ν0) = κ. Denote by F κ = π(Fκ), φ = π(φ). Denote F κ = 〈fκ,γ | γ <

π(κ+)〉. For every γ ∈ φ
′′
ν0, there is some δ < ν0 such that,

γ = π(φ)(δ) = π(φ(δ)) and fκ,γ = π(fκ,φ(δ)).
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Moreover, since ν0 ∈ E, fκ,φ(δ) ↾ ν0 = fν0,ρ for some ρ < ν0
+ and therefore

fκ,γ = fν0,ρ. Recall that A = (A∼)Gκ∗Fκ↾Y hence A = (A∼)Gν0∗Fκ↾Y
. We

conclude that for some subset Z ⊆ ν0
+,

A = (A∼)Gν0∗Fν0 ↾Z
∈ V [Gν0 ∗ Fν0 ↾ Z].

Since ν0 ∈ L0, in V [Gκ ∗ Fκ] we also have Hν0 = 〈hν0,α | α < ν+0 〉 which are
mutually Cohen-generic over V [Gν0 ∗ Fν0 ↾ Z].

By construction, ∀τ1 < τ2 ∈ φ′′ν0, sτ1(ν0) < sτ2(ν0), hence 〈hν0,sτ (ν0) |
τ ∈ φ′′ν0〉 are Cohen functions over ν0 which are distinct mutually V [Gν0 ∗
Fν0 ↾ Z]-generic. Also, A ⊆ π(Cohen(κ, Y )) = Cohen(ν0, π(φ)

′′ν0) =
Cohen(ν0, π

′′[φ′′ν0]) is a maximal antichain. Since |π′′φ′′ν0| = ν0 = |φ′′ν0|,
we can change the enumeration of the functions 〈hν0,sτ (ν0) | τ ∈ φ′′ν0〉 to
h′
π(τ) = hν0,sτ (ν0) so that 〈h′ρ | ρ ∈ π′′φ′′ν0〉 is generic for Cohen(ν0, π

′′φ0).

Thus pick d0 ∈ A such that d0 is extended by 〈h′ρ | ρ ∈ π′′φ′′ν0〉. It follows
that

d := π−1(d0) ∈ A ∩Nν0

is a condition with dom(d) = π−1(dom(d0)). Since the critical point of π is
ν0, for every 〈α, β〉 ∈ dom(d0), π

−1(〈α, β〉)) = 〈α, π−1(β)〉, hence

d(〈α, π−1(β)〉) = π−1(d0(α, β)) = d0(α, β).

In particular for every 〈γ, α〉 ∈ dom(d),

d(γ, α) = d0(γ, π(α)) = h′π(α)(γ) = hν0,sα(ν0)(γ).

Thus d is extended by 〈hν0,sτ (ν0) | τ ∈ φ′′ν0〉. �Claim 2.15

It suffices to show that any condition in Prikry(W ) has an extension which
forces that G∗ meets a member of A.

Let p = 〈〈〉, B〉 be a condition (we assume for simplicity that its finite
sequence is empty) and shrink B to B ∩C ∩E. For any ν0 ∈ B ∩C ∩E, we
split φ′′ν0 into two sets:

Xν0
0 := {τ ∈ φ′′ν0 | ν0 ∈ Aτ} and Xν0

1 = φ′′ν0 \X
ν0
0 .

The condition p0 = 〈〈ν0〉, B∩C∩E∩X∩(
⋂

τ∈φ′′ν0
Aτ )〉, forces the following:

(1) the Prikry sequence is included in each Aτ , τ ∈ Xν0
0 , i.e., nτ = 0,

(2) nτ = 1, for every τ ∈ Xν0
1 .

In particular, this condition forces some information about the Cohen func-
tions. Namely that:

(1) for τ ∈ Xν0
0 , f∗

τ ↾ ν0 = hν0,sτ (ν0)
(2) for τ ∈ Xν0

1 , f∗
τ ↾ ν0 = h c∼1,sτ ( c∼1) ↾ ν0.

We would like to find a condition in A which is below these decided parts
of the Cohen. By the previous proposition, there is d ∈ Nν0∩Cohen(κ, Y ) =
Cohen(ν0, φ

′′ν0), which is extended by 〈hν0,sτ (ν0) | τ ∈ φ′′ν0〉. However, by
(1) − (2) we can only ensure that the generic f∗

τ to extend d ↾ ν0 ×Xν0
0 in
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Xν0
0 . We are left to extend d ↾ ν0 ×Xν0

1 . Let us show that for many ν0, X
ν
0

is a relatively large subset of φ′′ν0:

Claim 2.16. Let

R = {ν < κ | ∀α ∈ φ′′πnor(ν), ν ∈ Aα}.

Then R ∈ W .

Proof. Clearly, for every α ∈ j∗2(φ)
′′κ, α = j∗2(φ(γ)) and fκ2,α(κ1) = 1,

reflecting this, we can find a W -large set of ν’s such that for every α ∈
φ′′πnor(ν), fκ,α(ν) = 1. And by definition of Aα, ν ∈ Aα. �

Denote B0 := B ∩ C ∩ E ∩ R. In order to extend d ↾ ν0 × X1, we will
need to pick ν0 high enough in B0, but also the next point ν1 ∈ B0 \ ν0 + 1
in the Prikry sequence such that it will belong to all Aτ with τ ∈ X1 and in
addition the relevant Cohen functions over ν1 extend d ↾ ν0 ×X1.

Let us look at B0 more carefully. Let B0
∼

be its name in V . We fix a
condition m0 ∈ Gκ ∗ Fκ which forces that if ν0 ∈ B0

∼
then the properties of

Claims 2.15, 2.16 holds, namely there is d ∈ Cohen(ν0, φ
′′ν0) ∩ A

∼
which is

extended by 〈h∼ν0,sτ (ν0) | ν0 ∈ φ′′ν0〉, and ∀α ∈ φ′′πnor(ν0)
∼

. ν0 ∈ A∼α. Recall
that by the construction of Gκ2 , we have m0 ∈ Gκ2 ∗ Fκ2 , Let m0 ≤ t ∈
Gκ2 ∗ Fκ2 be a condition such that

(1) t 
 κ1 ∈ j2(B0
∼
).

By the construction of Gκ2 ∗ Fκ2 , t has the form:

t = 〈t<κ, tκ, t(κ,κ1), 〈t
0
κ1
, t1κ1

〉
︸ ︷︷ ︸

tκ1

, t(κ1,κ2), tκ2〉.

Since fκ2,j2(α)(κ1) = 1 for every α < κ+, this will hold for every α ∈ φ′′κ
as well. Also, recall that Y ∈ V , hence φ ∈ V . Thus j2(φ) ∈ M2 and
j2(φ)

′′κ ∈ M2. Also, for (tκ2)Gκ2
∈ M2[Gκ2 ],

j′′2κ
+ ∩ Supp((tκ2)Gκ2

) ∈ M2[Gκ2 ]

and (tκ2)Gκ2
↾ κ×{j2(α)} ⊆ fκ,α. We also fix θ < κ+ such that Supp((tκ2)Gκ2

) ⊆

j2(θ), there is such θ since j′′2κ
+ is unbounded in j2(κ

+). Therefore, we can
extend if necessary t such that

(2a) t<κ2 
 (κ∪{κ1})×j2(φ)
′′κ ⊆ dom(tκ2)∧(0, κ1) ∈ dom(tκ2)∧Supp(tκ2) ⊆ j2(θ)

(2b) t<κ2 
 tκ2(κ1, α) = 1, for every α ∈ j2(φ)
′′κ and tκ2,κ1(0) = κ.

(2c) t<κ2 
 tκ2,j2(α) ↾ κ = f
∼

κ,α for every j2(α) ∈ j′′2κ
+ ∩ Supp(tκ2).

Next consider tκ1 = 〈t0κ1
, t1κ1

〉, it is a Pκ1−name for a condition in Fκ1 ×
Hκ1 . By the construction of the generic Fκ1 × Hκ1 , for every α < κ+, we
made sure that hκ1,j1(α) ↾ κ = fκ,α. Also, j1(φ)

′′κ ∈ M2. Let

µ1 = (j1 ↾ φ
′′κ)−1 ∈ M1
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Note that for every β < κ+, j1(sβ) = sj1(β) : κ1 → κ1 is the canonical
function for j1(β) defined in MU , hence j2(sβ)(κ1) = k(sj1(β))(κ1) = j1(β).
Hence

dom(µ1) = j1(φ)
′′κ = {sγ(κ1) | γ ∈ j2(φ)

′′κ}, rg(µ1) = φ′′κ ⊆ κ+

Extend if necessary t<κ1 , and assume that

(3) t<κ1 
 κ× j1(φ)
′′κ ⊆ dom(t1κ1

) ∧ ∀j1(α) ∈ j1(φ)
′′κ, t1κ1,j1(α)

↾ κ = f
∼

κ,α.

As for the lower part, due to the Easton support, we have

(4) t<κ ∈ Vκ.

Fix functions r,Γ1 which represents t, µ resp. in the ultrapower MU2 ,
namely j2(r)(κ, κ1) = t, j2(Γ1)(κ, κ1) = µ. Without loss of generality,
suppose that for every (ν ′, ν), it takes the form

r(ν ′, ν) = 〈r<ν′rν′ , r(ν′,ν), 〈r
0
ν , r

1
ν〉, r(ν,κ), rκ〉.

Reflecting some of the properties of t we obtain a set B′ ∈ U2 such that
for every (ν ′, ν) ∈ B′:

(1)(ν′,ν) r(ν ′, ν) 
 ν ∈ B0
∼
.

(2a)(ν′,ν) r<κ 
 (ν ′∪{ν})×φ′′ν ′ ⊆ dom(rκ)∧〈0, ν〉 ∈ dom(rκ)∧Supp(rκ) ⊆ θ

(2b)(ν′,ν) r<κ 
 ∀α ∈ φ′′ν ′.rκ,α(ν) = 1 and rκ,ν(0) = ν ′.

(3)(ν′,ν) r<ν 
 ν ′ × dom(Γ1(ν
′, ν)) ⊆ dom(r1ν) and for every

β ∈ dom(Γ1(ν
′, ν)), r1ν,β ↾ ν ′ = f

∼ν′,Γ1(ν′,ν)(β).

(4)(ν′,ν) r<ν′ = t<κ ∈ Vν′ .

Let
B′′ = {ν | ∃(ν ′, ν) ∈ B′.r(ν ′, ν) ∈ Gκ ∗ Fκ}.

Since B′ ∈ U2 we have that (κ, κ1) ∈ j2(B
′) and since j2(r)(κ, κ1) = t ∈

j∗2(Gκ ∗ Fκ) = Gκ2 ∗ Fκ2 , we conclude that B′′ ∈ W . Also, B′′ ⊆ B0 by
clause (1).

We proceed by a density argument, recalling that by the definition of G2,
we have that 〈t<κ, tκ〉 ∈ Gκ ∗ Fκ.

Claim 2.17. Let D be the set of all conditions q ∈ Pκ+1, such that exists
(ν ′0, ν0), (ν

′
1, ν1) ∈ B′, ν ′1 > ν0 and a Pν0−name d∼

ν0 such that

(a) r(ν ′0, ν0), r(ν
′
1, ν1) ≤ q.

(b) q 
 d∼
ν0 ∈ A∼ ∩Cohen(ν0, φ

′′ν0).
(c) q 
 ∀τ ∈ Xν0

1 .h∼ν1,sτ (ν1) ↾ ν0 = d∼
ν0
τ .

Then D is dense (open) above 〈t<κ, tκ〉 and thus D ∩Gκ ∗ Fκ 6= ∅

Proof. Work in V , let 〈t<κ, tκ〉 ≤ p := 〈p<κ, pκ〉 ∈ Pκ+1. We will define two
extensions p ≤ q ≤ q∗ which corresponds to the choice of (ν ′0, ν0), (ν

′
1, ν1)

and such that q∗ ∈ D. By definition of Pκ+1, p<κ 
 pκ ∈ Cohen(κ, κ+),
by κ−cc of Pκ, for some Z ⊆ κ+, Z ∈ V , |Z| < κ and some γ < κ,
p<κ 
 dom(pκ) ⊆ γ × Z. Applying j2, we have that

j2(p<κ) = p<κ 
 dom(j2(pκ)) ⊆ j2(γ×Z) = γ×j′′2Z and j2(pκ)j2(α) = pκ,α ≥ tκ,α
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Combining with (2c), we have both

p<κ 
 Z ⊇ Supp(tκ) ∧ ∀β ∈ Z.j2(pκ)j2(β) ≥ tκ,β

t<κ2 
 ∀j2(τ) ∈ Supp(tκ2) ∩ j2(Z).tκ2,j2(τ) ↾ γ = f
∼

κ,τ ↾ γ.

To reflect this, denote µ = (j2 ↾ (Z ∪ θ))−1 ∈ M2, then

dom(µ) = j2(Z) ∪ j′′2θ, rng(µ) = Z ∪ θ, µ is 1-1.

and we can reformulate:

p<κ 
 µ′′j2(Z) ⊇ Supp(tκ) ∧ ∀β ∈ j2(Z).j2(pκ)β ≥ tκ,µ(β)

t<κ2 
 ∀τ ∈ Supp(tκ2) ∩ j2(Z).tκ2,τ ↾ γ = f
∼κ,µ(τ) ↾ γ.

Also, since we can find δ < κ such that t<κ 
 φ′′(δ, κ) ∩Z = ∅. There exists
such δ since |Z| < κ, t<κ 
 |Supp(tκ)| < κ and by κ−cc of Pκ. Recall that
by the definition of µ1, φ

′′(δ, κ) = µ′′
1{sγ(κ1) | γ ∈ j2(φ)

′′(δ, κ)} and that
µ′′ Supp(j2(pκ)) = Z. Therefore in M2 we will have that

p<κ 
 [µ′′
1{sγ(κ1) | γ ∈ j2(φ)

′′(δ, κ)}] ∩ [µ′′ Supp(j2(pκ))] = ∅.

Let Γ be such that j2(Γ)(κ, κ1) = µ, there is a set B0 ⊆ B′, B0 ∈ U2 such
that for every (ν ′, ν) ∈ B0,

(i) p<κ 
 Γ(ν ′, ν)′′Z ⊇ Supp(rν′) ∧ ∀β ∈ Z.pκ,β ≥ rν′,Γ(ν′,ν)(β),

(ii) r<κ 
 ∀τ ∈ Z ∩ Supp(rκ).rκ,τ ↾ γ = f
∼ν′,Γ(ν′,ν)(τ) ↾ γ.

(iii) p<κ 
 Γ1(ν
′, ν)′′{sγ(ν) | γ ∈ φ′′(δ, ν ′)} ∩ [Γ(ν ′, ν)′′ Supp(pκ)] = ∅.

Let us move to the choice of (ν ′0, ν0), (ν
′
1, ν1). In V [Gκ ∗ Fκ], there exists

(ν00 , ν0), (ν
0
1 , ν1) ∈ B0 such that r(ν00 , ν0), r(ν

0
1 , ν1) ∈ Gκ ∗Fκ (hence they are

compatible) such that ν00 > δ, γ, sup(Supp(p<κ)) and ν01 > ν0,Supp(r<κ(ν
0
0 , ν0)).

In particular, in V we can find (ν ′0, ν0), (ν
′
1, ν1) ∈ B0 such that r(ν ′0, ν0), r(ν

′
1, ν1)

are compatible, ν ′0 > δ, γ, sup(Supp(p<κ)), and ν ′1 > ν0, sup(Supp(r<κ(ν
′
0, ν0))).

Denote

r0 := r(ν ′0, ν0) = 〈r0<ν′0
, r0ν′0

, r0(ν′0,κ)
, r0κ〉,

r1 := r(ν ′1, ν1) = (r1<ν′1
, rν′1 , r(ν′1,ν1), 〈r

0,1
ν1

, r1,1ν1
〉, r1(ν1,κ), r

1
κ〉

Let us define the first extension q, it has the form:

q = p<κ
aqν′0

ar0(ν′0,κ)
aqκ

First, qν′0 is a Pν′0
−name for a condition with Supp(qν′0) = Γ(ν ′0, ν0)

′′Z, by

(i) Supp(qν′0) ⊇ Supp(r0
ν′0
). Set qν′0,Γ(ν′0,ν0)(β) = pκ,β. As for qκ, we set it to

be a Pκ−name for r0κ ∪ pκ.
Once we will prove that p<κ, r

0
<κ ≤ q<κ, from (i), (ii) it will follow that

q<κ forces qκ to be a partial function. Indeed, for every β ∈ Supp(r0κ) ∩ Z,
q<κ will force

r0κ,β ↾ γ = f
∼ν′,Γ(ν′0,ν0)(β)

↾ γ ≥ qν′0,Γ(ν′0,ν0)(β) = pκ,β
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Clearly p ≤ q. To see that r0 ≤ q, up to ν ′0, we have that by (4)(ν′0,ν0)
that

q<ν′0
= p<κ ≥ t<κ = r0<ν′0

.

At ν ′0, if α = Γ(ν ′0, ν0)(β), then (i) insures that qν′0,α = pκ,β ≥ r0ν′,α. Since

in the interval (ν ′0, κ), q and r0 are the same, it follows that q<κ ≥ r0<κ and
at κ it is clear that q<κ 
 r0κ ≤ qκ.

Next let us move to the choice of d∼
ν0 . Since r0 ≤ q and m0 ≤ 〈t<κ, tκ〉 ≤

q 
 ν0 ∈ B
∼0, use the maximality principal to find a Pν0−name, d∼

ν0 such
that q forces (b).4

Define the final condition q ≤ q∗,

q∗ = q<κ
aq∗ν′1

ar1(ν′1,κ)
aq∗κ.

The crucial point here is that by (2b)(ν′1,ν1)

r0<κ 
 ν00 = f
∼

κ,ν0(0) = r0κ,ν0(0) = ν ′0

and since r0 
 ν0 ∈ R∼ we have that r0 
 Xν0
1 ⊆ φ′′(ν ′0, ν0) ⊆ φ′′(ν ′0, ν

′
1). By

(iii) we have that q<κ 
 [Γ1(ν
′
1, ν1)

′′{sγ(ν1) | γ ∈ Xν0
1 }] ∩ [Γ(ν ′1, ν1)

′′Z] = ∅.
This will permit to code dν0 , let

Supp(q∗ν′1
) = [Γ1(ν

′
1, ν1)

′′{sγ(ν1) | γ ∈ Xν0
1 }] ⊎ [Γ(ν ′1, ν1)

′′Z]

and

q∗ν′1,α
=

{

qκ,β ∃β ∈ Γ(ν ′1, ν1)
′′Z.α = Γ(ν ′1, ν1)(β)

d∼
ν0
τ ∃τ ∈ Xν0

1 .α = Γ1(ν
′
1, ν1)(sτ (ν1))

and q∗κ = qκ ∪ r1κ. Note that if τ ∈ Supp(qκ) ∩ Supp(r1κ) then either τ ∈
Supp(r0κ) ∩ Supp(r1κ), and r0κ, r

1
κ are forced to be compatible by q<κ and if

τ ∈ Z ∩ Supp(r1κ) then the same argument as before works. We conclude
that r0 ≤ q ≤ q∗, r1 ≤ q∗, namely (a). Finally, for every τ ∈ Xν0

1 , sτ (ν1) ∈
dom(Γ1(ν

′
1, ν1)) and by (3)(ν′1,ν1) we have that q∗ forces that

h∼ν1,sτ (ν1) ↾ ν0 = f
∼ν′1,Γ1(ν′1,ν1)(sτ (ν1))

↾ ν0 ≥ q∗ν′1,Γ1(ν′1,ν1)(sτ (ν1))
= d∼

ν0
τ

Then p ≤ q∗ and q∗ ∈ D �

By density, we can find such a condition p∗ ∈ Gκ ∗ Fκ ∩ D and points
(ν ′0, ν0), (ν

′
1, ν1) ∈ B′ witnessing p∗ ∈ D. It follows that r(ν ′0, ν0), r(ν

′
1, ν1) ∈

Gκ ∗ Fκ, and by (1)(ν′0,ν0), (1)(ν′1,ν1), ν0, ν1 ∈ B0. Extend 〈〈〉, B〉 by p∗ =

〈ν0, ν1, B0 ∩ (∩τ∈φ′′ν0Aτ 〉 \ ν1 +1〉. By (2b)(ν′1,ν1), for every τ ∈ φ′′ν0 ⊆ φ′′ν ′1,

fκ,τ (ν1) = rκ,τ (ν1) = 1, hence ν1 ∈ ∩τ∈φ′′ν0Aτ and p∗ 
 nτ =

{

0 τ ∈ X0

1 τ ∈ X1
.

In other words, since ν0 ∈ B0,

p∗ 
 ∀τ ∈ X0.f
∼

∗τ ↾ ν0 = hν0,sτ (ν0)

p∗ 
 ∀τ ∈ X1.f
∼

∗τ ↾ ν1 = hν1,sτ (ν1)

4Since the tail forcing P[ν0,κ] is ν0−closed, if there is such dν0 ∈ V [Gκ ∗ Fκ] then

|dν0 | < ν0, hence dν0 ∈ V [Gν0 ].
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Let d = (d∼
ν0)Gν0

∈ Cohen(ν0, φ
′′ν0) ∩ A, it follows that p∗ 
 ∀τ ∈ X0.f

∼
∗
τ

extends dτ , and by (c) of the definition of D, p∗ 
 ∀τ ∈ X1f
∼

∗
τ extends dτ .

Thus p∗ 
 d ∈ G
∼

∗ ∩ A. This concludes the genericity proof. �

�

3. The results where 2κ = κ++

3.1. Strong non-Galvin witnesses of length 2κ = κ++. In this section
we produce a model with a non-Galvin ultrafilter with a strong witnessing
sequence of length 2κ = κ++. This will of course require to violate GCH
on a measurable cardinal and in turn to start with a stronger large cardinal
assumption (see [15],[32]). We will follow a similar construction to the one
given in the case of κ+ addressed in previous sections. Indeed, instead
of iterating Cohen(α,α+) we will iterate Cohen(α,α++) aiming to force
Cohen(κ, κ++), from which we will be able to define a non-Galvin ultrafilter
and a strong witness of length κ++ in a similar fashion to the one we have on
κ+, distinguishing between α’s which are in the image of the second iteration
and those which are in the image of the factor map. The difficulty is, as
always, to extend a ground model embedding. By the large cardinal lower
bound, we can no longer work with an ultrapower by an ultrafilter. The
usual embedding to lift in the context of violation of GCH at measurables
is a (κ, κ++)-extender ultrapower embedding, which we will use here. This
makes the lifting argument more involved and the existence of generic filters
for the iteration requires variations of Woodin’s surgery method (See [12,
Sec. 25]).

Theorem 3.1. Assume GCH and that there is a (κ, κ++)-extender over κ
in V . Then there is a cofinality preserving forcing extension V ∗ such that
V ∗ |= 2κ = κ++, in V ∗ there is a κ-complete ultrafilter W over κ which
concentrates on regulars, extends Cubκ, and has a strong witness of length
κ++ for the failure of Galvin’s property.

Proof. Let E be a (κ, κ++)− extender. Let j1 = jE : V → ME =: M1 be its
ultrapower embedding with crit(jE) = κ and κME ⊆ ME . Denote by Eα

the ultrafilter
Eα := {X ⊆ κ | α ∈ jE(X)}

Denote U := Eκ the normal ultrafilter and let k : MU → ME be the factor
map defined by setting k(jU (f)(κ)) = jE(f)(κ) such that jE = k◦jU . Define
an Easton support iteration 〈Pα, Q

∼
β | α ≤ κ+ 1, β ≤ κ〉 as follows:

Q
∼

β is trivial unless β is inaccessible, in which case Qβ = Cohen(β, β++).
Let Gκ+1 := Gκ ∗ gκ be a V -generic subset of Pκ+1 = Pκ ∗Q

∼
κ. Keeping

similar notations to those from previous sections, let 〈fκ,α | α < κ++〉 be
the Cohen generic functions from κ to 2 introduced by gκ.

Now we apply Woodin’s argument (see [12, Section 25], and Ben Shalom
[3] for constructing generics without additional forcing) to see that there
will be GjE(κ)+1 ∗ H∗ ⊆ jE(Pκ+1) ∗ S in V ∗

1 := V [Gκ+1][H], where H ⊆ S
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is a V [Gκ+1]-generic filter, where S0 is some κ+-distributive in V [Gκ+1] (In
the case of Ban-Shalom, there is no need for H∗ and we can work directly
in V [Gκ+1]) generic over ME and an elementary embedding

j∗1 : V ∗
1 → ME [GjE(κ)+1 ∗ f

∗]

which extends j1. Recall that the generic filter constructed for j1(Qκ) is
obtained by a surgery argument, making small changes on an M1[Gj1(κ)]-

generic filter f to be compatible with j′′1 gκ. For our purposes, we need some
additional changes to be made, for every p ∈ f we change p to p∗ such that
dom(p∗) = dom(p) and

p∗(〈γ, α〉) =







fβ(γ) γ < κ ∧ α = j1(β)

β γ = κ ∧ α = j1(β)

p(〈γ, α〉) else

To see that p was only changed at κ-many places, find a ∈ [κ++]<ω such that

jE(P )(a) = p, where P : κ|a| → Qκ. By elementarity, for every 〈α, j1(β)〉 ∈
κ × j′′1κ

++ ∩ dom(p), there is x ∈ [κ]|a| such that 〈α, β〉 ∈ dom(P (x)). It
follows that |κ×j′′1κ

++∩dom(p)| ≤ κ. Moreover, |{κ}×j′′1κ
++∩dom(p)| ≤ κ,

since otherwise there would be some α < κ++ such that

cf(α) = κ+ and sup{jE(β) | 〈κ, jE(β)〉 ∈ dom(p)} = jE(α).

But |dom(p)|M1 < j1(κ) and cfM1(j1(α)) = j1(κ)
+ which is a contradiction.

Hence p∗ ∈ M1[Gj1(κ)] since we have only changed p at κ-many values and
κM1[Gj1(κ)] ⊆ M1[Gj1(κ)].

The argument that such changes do not affect the genericity is the same
as in [12]. So we additionally obtain that fκ2,α(κ) = α, for every α < κ++.

We also claim that j∗1 is actually the ultrapower embedding by the normal
ultrafilter

U∗ = {X ⊆ κ | κ ∈ j∗1(X)}

extending U . To see this, consider k∗ : MU∗ → M1[Gj1(κ)+1 ∗ H∗] defined
by k∗([f ]U∗) = j∗1(f)(κ), which is clearly elementary. To see that k∗ = id,
let us prove that k∗ is onto. Fix A = (A∼)Gj1(κ)+1∗H∗ ∈ M1[Gj1(κ)+1] and let

f ∈ V , a = {α1, ..., αr} ∈ [κ++]<ω be such that j1(f)(a) = A∼. Define in
V [Gκ+1] the function f∗(x) = (f({fα1(x), ..., fαr (x)}))Gκ+1∗H . Then

k∗(jU∗(f∗)(κ)) = j∗1(f
∗)(κ) = (j1(f)({j

∗
1 (fα1)(κ), ...., j

∗
1 (fα2)(κ)}))Gj1(κ)+1∗H∗

= (j1(f)(a))Gj1(κ)+1
= (A∼)Gj1(κ)+1∗H∗ = A

We would like now to construct a κ−complete ultrafilter W ∈ V [Gκ+1]
over κ which includes Cubκ and the family 〈Aα | α < κ++〉 which is a strong
witness that W fails to satisfy the Galvin Property. Set

Aα := {ν < κ | fα(ν) is odd},

for every α < κ++.
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Consider the second ultrapower (of V ) by E, i.e., Ult(ME , jE(E)). In
order to simplify the notation let us denote ME by M1 and Ult(M1, j1(E))
by M2 and j2,1 := jj1(E) : M1 → M2. Also, let κ1 = j1(κ), E1 = j1(E), and
κ2 = j2,1(κ1). Let j2 : V → M2 be the composition of j1 with j2,1.

Work in M1[Gκ1+1 ∗H
∗] apply there the Woodin argument to E1. There

will be Gκ2+1 ∗H
∗∗ ⊆ j2(Pκ ∗Qκ ∗ S0) (in M1[Gκ1+1 ∗H

∗]) generic over M2

and an elementary embedding

j∗2,1 : M1[Gκ1+1 ∗H
∗] → M2[Gκ2+1 ∗H

∗∗]

which extends jE1 . Additionally, for every α < (κ++
1 )M1 let us arrange the

following:

(1) fκ2,j2,1(α)(κ1) is odd, if α ∈ jE
′′κ++,

(2) fκ2,j2,1(α)(κ1) is an even, if α ∈ (κ++
1 )M1 \ jE

′′κ++.

(3) fκ2,κ1(κ1) = κ.

The point being that this requires only small changes of conditions in (Cohen(κ2, κ
++
2 ))M2 ,

and so preserves the genericity.
Namely, given p ∈ (Cohen(κ2, (κ2)

++))M2 , define p∗ such that dom(p∗) =
dom(p) and

p∗(〈γ, α〉) =







fκ1,β(γ) γ < κ1 ∧ ∃β < κ++
1 α = j2,1(β)

β · 2 + 1 γ = κ1 ∧ ∃β ∈ j′′1κ
++.α = j2,1(β)

β · 2 γ = κ1 ∧ ∃β ∈ κ++
1 \ j′′1κ

++.j2,1(β) = α

κ γ = α = κ1

p(〈γ, α〉) otherwise

In V [Gκ+1 ∗H], |Supp(p)∩ j∗
′′

2 κ++| ≤ κ and M1[Gκ1+1 ∗H
∗] is closed under

κ-sequences hence p∗ ∈ M1. The argument we have seen before applied in
M1[Gκ1+1 ∗H

∗] shows that

M1[G
∗
κ1+1] |= |dom(p) ∩ (κ1 + 1)× j′′2,1(κ

++
1 )M1[Gκ1+1]| ≤ κ1.

This implies that p∗ ∈ M2[Gκ2+1 ∗ H∗∗] since M2[Gκ2+1 ∗ H∗∗] is closed
under κ1-sequences from M1[Gκ1+1∗H

∗]. Then the embedding j2 : V → M2

extends to

j∗2 : V [Gκ+1 ∗H
∗] → M2[Gκ2+1 ∗H

∗∗].

Define now

W = {X ⊆ κ | κ1 ∈ j∗2(X)}.

Claim 3.2. (1) jW = j∗2 , [id]W = κ1, U
∗ ≤R−K W .

(2) Cubκ ⊆ W , {α < κ | cf(α) = α)} ∈ W .
(3) The sequence 〈Aα | α < κ++〉 is a strong witness for ¬Gal(W,κ, κ++),

where

Aα := {ν < κ | fκ,α(ν) is odd}

Proof. Indeed Cubκ ⊆ W and {α < κ | cf(α) = α} ∈ W , is the same
as in Claim 2.8 from the last section. To see (1), we let kW : MW →
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M2[j
∗
2 (G)] be the usual factor map kW ([f ]W ) = j∗2(f)(κ1) and we prove

that kW = id by proving that kW is onto. Let A ∈ M2[Gκ2+1 ∗H
∗∗], then

A = (A∼)Gκ2+1∗H∗∗ where A∼ ∈ M2 is a Pκ2+1 ∗ j2(S0)-name. Since j2,1 is an

(κ1, κ
++
1 )−extender ultrapower, there is f ∈ M1 and a ∈ [κ++

1 ]<ω such that
A∼ = j2,1(f)(a). Suppose that a = {α1, .., αn} is an increasing enumeration.
Then by construction, fκ2,j2,1(αi)(κ1) ∈ {αi · 2, αi · 2 + 1}. In particular we

derive αi from fκ2,j2,1(αi)(κ1)
5. Define gαi

: κ1 → κ1 ∈ M1[Gκ1+1 ∗H
∗] by

gαi
(α) = ⌊

fκ1,αi
(α)

2 ⌋, then j∗2,1(gαi
)(κ1) = ⌊

fκ2,j2,1(αi)
(κ1)

2 ⌋ = αi. Finally, let

g(α) = f(gα1(α), ..., gαn (α)). Then,

j∗2,1(g)(κ1) = j2,1(f)(j
∗
2,1(gα1)(κ1), ..., j

∗
2,1(gαn)(κ1)) = j2,1(f)(a) = A∼

We already know that M1[Gκ1+1 ∗H
∗] is the ultrapower by U∗, hence g =

j∗1(h)(κ) for some h ∈ V [Gκ+1 ∗H] and in turn A∼ = j∗2(h)(κ, κ1). Finally, we
made sure that κ is expressible by κ1, so we define in V [Gκ+1∗H] f∗ : κ → κ
by

f∗(α) = (h(fκ,α(α), α))G

It follows that:

kW ([f∗]W ) = j2(f
∗)(κ1) = (j∗2 (h)(fκ2,κ1(κ1), κ1))Gκ2+1∗H∗∗

= (j∗2(h)(κ, κ1))Gκ2+1∗H∗∗ = (A∼)Gκ2+1∗H∗∗ = A,

this concludes (1), (2), (3) is completely analogous to Claim 2.8. �

�

3.2. Adding κ++-Cohens using Prikry forcing. The construction of
the previous section can be modified to obtain a model in which there is a
κ-complete ultrafilter U∗ over κ such that Prikry(U∗) adds a generic filter
for Cohen(κ, κ++). This will require the violation of SCH and in turn larger
cardinals [16],[33].

Theorem 3.3. Assume GCH and that E is a (κ, κ++)− extender in V .
Then there is a cofinality preserving forcing extension V ∗ in which 2κ =
κ++ and a non-Galvin ultrafilter W ∈ V ∗ such that forcing with Prikry(W )
introduces a V ∗-generic filter for CohenV ∗

(κ, κ++)-generic filter.

Proof. Let j1 : V → ME =: M1 be the ultrapower embedding of E with
crit(j1) = κ and κM1 ⊆ M1 and κ1 = j1(κ). Denote by Eα the ultrafilter
{X ⊆ κ | α ∈ jE(X)}. As before, denote Eκ by U and let k : MU → ME

be defined by setting k(jU (f)(κ)) = jE(f)(κ). Define an Easton support
iteration 〈Pα, Q

∼
β | α ≤ κ+ 1, β < κ〉 as follows:

Q
∼

β is trivial unless β is inaccessible. If β < κ is inaccessible, then

Q
∼

β = LOTT(Cohen(β, β++),Cohen(β, β++)× Cohen(β, β++))

Over κ, we let Q
∼

κ = Cohen(κ, κ++).

5An easy transfinite induction, proves that if an ordinal γ = β · 2 or γ = β · 2+ 1, then
β is unique, we denote β = ⌊ γ

2
⌋.
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Let Gκ+1 = Gκ ∗ Fκ be a V -generic filter of Pκ+1. We denote by Fα :=
〈fα,γ | γ < α++〉 the generic Cohen function if Cohen(α,α++) was forced in
Gκ and by

Fα := 〈fα,γ | γ < α++〉, Hα := 〈hα,γ | γ < α++〉

if Cohen(α,α++) × Cohen(α,α++) was. The elementary embedding j1 ex-
tends to j∗1 : V [Gκ+1] → M1[Gκ1+1] such that at κ we forced one block of
Cohen’s, Cohen(κ, κ++), and for every α < κ++,

fκ1,j1(α)(κ) = α.

Indeed, in the Woodin and Ben-Shalom argument we first build the generic
Gκ1 up to κ1 not including κ1 in the same standard fashion as in [12]. The
original construction of Woodin or Ben-Shalom of the Cohen generic Fκ1

which is M1[Gκ1 ]-generic for Cohen(κ1, κ
++
1 )M1[Gκ1 ] applies in our case, as

it only uses the fact that M1[Gκ1 ] is closed under κ-sequences and properties
of Cohen(κ1, κ

++
1 ). Since

Cohen(κ1, κ
++
1 ) ≃ Cohen(κ1, κ

++
1 )×Cohen(κ1, κ

++
1 ),

we can split the generic Fκ1 and assume it is of the form Fκ1 ×Hκ1 , which is
M1[Gκ1 ]−generic for Cohen(κ1, κ

++
1 )×Cohen(κ1, κ

++
1 ). Work inside V [Gκ∗

Fκ], modify the values of Fκ1 and Hκ1 , as in the previous section so that for
every α < κ++,

fκ1,j1(α) ↾ κ = hκ1,j1(α)·2+1 ↾ κ = fκ,α

and for every α < κ++, fκ1,j1(α)(κ) = α.
Lift j1 to the embedding j1 ⊆ j∗1 : V [Gκ+1] → ME [Gκ1 ∗ Fκ1 ]. Note that

Hκ1 will be used only later. Set

U∗ = {X ⊆ κ | κ ∈ j∗1(X)},

then U ⊆ U∗ and j∗1 is actually the ultrapower embedding by U∗. Continuing
as before, consider the second ultrapower (of V ) by E. Denote ME by
M1 and Ult(ME , jE(E)) by M2, j2,1 = jj1(E) : M1 → M2 the ultrapower
embedding. Also, let E1 = j1(E) and κ2 = j2,1(κ1). Let j2 : V → M2

be the composition of j1 with j2,1. The extension of j2,1 will be such that
at κ1 we force with Cohen(κ1, κ

++
1 ) × Cohen(κ1, κ

++
1 ) part of the Lottery

sum. To realize this, we define in M1[Gκ1 ∗ (Fκ1 ×Hκ1)] we take the generic
Gκ1 up to κ1. At κ1 we take Fκ1 × Hκ1 , then in M1[Gκ1 ∗ (Fκ1 × Hκ1)]
we construct as in Wooding and Ben-shalom argument in V [Gκ ∗ Fκ] an
M2[Gκ1∗(Fκ1×Hκ1)]-generic G(κ1,κ2)∗Fκ2 such that j′′2,1Gκ1∗Fκ1 ⊆ Gκ2∗Fκ2 .

Denote by 〈fκ2,α | α < (κ++
2 )M2〉 the Cohen function induced by Fκ2 . We

also secure that for every α < (κ++
1 )M1 :

(1) fκ2k(α)(κ1) = α · 2 + 1, if α ∈ jE
′′κ++,

(2) fκ2k(α)(κ1) = α · 2, if α ∈ (κ++
1 )M1 \ jE

′′κ++.
(3) fκ2,κ1(κ1) = κ.
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Formally, given p ∈ (Cohen(κ2, (κ2)
++))M2[Gκ2 ], define p∗ such that dom(p∗) =

dom(p) and

p∗(〈γ, β〉) =







fκ1,α(γ) γ < κ1 ∧ β = k(α)

α · 2 + 1 γ = κ1 ∧ β = k(α) ∧ α ∈ j′′Eκ
++

α · 2 γ = κ1 ∧ β = k(α) ∧ α ∈ (κ++
1 )M1 \ j′′Eκ

++

κ α = γ = κ1

p(〈γ, α〉) otherwise

In V [Gκ+1], |dom(p) ∩ j′′
E2κ

++| ≤ κ and M1[Gκ1+1] is closed under κ-
sequences hence p∗ ∈ M1[Gκ1+1]. The argument we have seen before applied
in M1[Gκ1+1], thus

M1[Gκ1+1] |= |dom(p) ∩ (κ1 + 1)× j′′12(κ
++
1 )M1[Gκ1+1]| ≤ κ1.

This implies that p∗ ∈ M2[Gκ2+1] since M2[Gκ2+1] is closed under κ1-
sequences from M1[Gκ1+1].

Extend in V [Gκ ∗ Fκ], j2,1 ⊆ j∗2 : M1[Gκ1 ∗ Fκ1 → M2[Gκ2 ∗ Fκ2 ] and let
j∗2 : V [Gκ ∗ Fκ] → M2[Gκ2 ∗ Fκ2 ] be the composition j∗2,1 ◦ j

∗
1 . Note that j∗2,1

is definable only in V [Gκ ∗ (Fκ]. Denote by V [Gκ ∗ Fκ] = V ∗, define

W = {X ⊆ κ | κ1 ∈ j∗2(X)} ∈ V ∗ and Aα = {β < κ | fα(β) is odd}.

Claim 3.4. W is a κ-complete ultrafilter over κ such that

(1) jW = j∗2 , [id]W = κ1, U
∗ ≤R−K W .

(2) Cubκ ⊆ W , {α < κ | cf(α) = α)} ∈ W .
(3) L0 := {β < κ | Cohen(β, β++)×Cohen(β, β++) was forced in Gκ+1} ∈

W.
(4) For every α < κ++, L1,α := {ν < κ | fκ,α(ν) < ν++} ∈ W
(5) The sequence 〈Aα | α < κ++〉 is a strong witness for ¬Gal(W,κ, κ++).

Moreover, the sequence 〈Aα ∩ L1,α | α < κ++〉 is a witness for
¬Gal(W,κ, κ++).

Proof. (1), (2) and the first part of (5) is the same argument as in Claim 3.2.
As for (3), note that we have constructed the generic Gκ2+1 = j∗2(Gκ+1) so
that on κ1 we have forced Cohen(κ1, κ

++
1 )×Cohen(κ1, κ

++
1 ). To see (4), for

every α < κ++,

j∗2(fκ,α)(κ1) = fκ2,j2,1(j1(α))(κ1) = j1(α) · 2 + 1 < κ++
1 .

Hence by elementarity, κ1 ∈ j∗2(L1,α). Finally, the moreover part of (5),
toward a contradiction if there would be a set I ∈ [κ++]κ such that ∩i∈IAα∩
L1,α ∈ W then clearly ∩i∈IAα ∈ W , contradicting the first part of (5) that
Aα’s form a witness for ¬Gal(W,κ, κ++). �

Denoted by ν 7→ πnor(ν) the Rudin-Keisler projection from W to U∗, and
let us prove that W witnesses the theorem:

Proposition 3.5. Let H ⊆ Prikry(W ) be a V ∗-generic filter. There is
G∗ ∈ V ∗[H] which is V ∗-generic for Cohen(κ, κ++)V

∗

.
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Proof of proposition 3.5: Let 〈cn | n < ω〉 be the W -Prikry sequence cor-
responding to H. Suppose without loss of generality that for every n < ω,
cn ∈ L0.

Define, for every n < ω, the set

Zn = {α < κ++ | {cm | n ≤ m < ω} ⊆ Aα ∩ L1,α and n is least possible }.

For every α < κ++, let nα be the unique n such that α ∈ Zn. Let α < κ+,
define f∗

α : κ → κ as follows:
Denote by

〈fcn,α | α < c++
n 〉, 〈hcn,α | α < c++

n 〉

the generic cn−Cohen functions forced by G and define the function f∗
α :

κ → κ by

f∗
α = hcnα ,fκ,α(cnα ) ∪ (

⋃

nα<n<ω

hcn,fκ,α(cn) ↾ [cn−1, cn))

Note that the Cohen functions on κ play the role of the canonical functions
from the previous section. Let us prove that F = 〈f∗

α | α < κ++〉 are Cohen
generic functions over V ∗.

Claim 3.6. Let G∗ = {p ∈ Cohen(κ, κ++)V
∗

| p ⊆ F}, then G∗ is a V ∗-
generic filter.

Let A ∈ V ∗ be a maximal antichain in the forcing Cohen(κ, κ++)V
∗

. Note
that since Cohen(κ, κ++)V

∗

is κ−closed then

Cohen(κ, κ++)V [Gκ] = Cohen(κ, κ++)V
∗

.

By κ+−cc of the forcing, there is Y ′ ⊆ κ++, Y ′ ∈ V such that |Y ′| = κ and
A ⊆ Cohen(κ, Y ′)V

∗

. Also, since |A| = κ, A ∈ V [Gκ ∗Fκ], there is Z ⊆ κ++

such that |Z| = κ such that A ∈ V [Gκ ∗ Fκ ↾ Z]. Without loss of generality
assume that Z = Y ∈ V . Let V ∋ φ : κ → Y be a bijection.

As in claim 2.13, we can construct an ∈ −increasing continuous chain
〈Nβ | β < κ〉 ∈ V ∗ of elementary submodels of Hχ such that

(1) |Nβ | < κ,
(2) Gκ+1,A, φ, Y ∈ N0,
(3) Nβ ∩ κ = γβ is a cardinal < κ, γβ+1 is regular.
(4) If γβ is regular, then Cohen(γβ, φ

′′γβ) = Cohen(κ, Y ) ∩Nβ.

Set

C = {β < κ | γβ = β}.

This is club in κ since the sequence γβ is continuous and since the set
{β | γβ = β} is a club.

Recall that by construction j∗2(〈fκ,α | α < κ++〉) = 〈fκ2,α | α < κ++
2 〉.

Also, for every ν ∈ j2(φ)
′′κ1 there is γ < κ1 such that ν = j2(φ)(γ), and

since crit(j2,1) = κ1, ν = j2,1(j1(φ)(γ)). Since j1(φ) : κ1 → κ++
1 we conclude

that ν = j2,1(α) for some α < (κ++
1 )M1 which implies that

fκ2,ν(κ1) ∈ {α · 2, α · 2 + 1}.



ON COHEN AND PRIKRY FORCING NOTIONS 33

Since φ is a bijection, for every distinct ν1, ν2 ∈ j2(φ)
′′κ1, fκ2,ν1(κ1) 6=

fκ2,ν2(κ1). Reflecting this, we obtain that the set

E := {ν < κ | ∀ν1, ν2 ∈ φ′′ν.ν1 6= ν2 → fκ,ν1(ν) 6= fκ,ν2(ν)} ∈ W.

Also, by construction, for every α < κ++
1 , fκ2,j2,1(α) ↾ κ1 = fκ1,α and

therefore for every for every α ∈ j2(φ)
′′κ1, there is ν < κ++

1 such that

α = j2,1(j1(φ))(ν) = j2,1(j1(φ)(ν))

and j1(φ)(ν) < κ++
1 . Hence fκ2,α ↾ κ1 = fκ1,β for some β < κ++

1 . Reflecting
this we obtain that the set

F := {β < κ | ∀γ ∈ φ′′β.∃δ < β++.fκ,γ ↾ β = fβ,δ} ∈ W.

Now the argument of Claim 2.15 applies since for every ν0 ∈ C ∩ E ∩ F ,
∀τ1 < τ2 ∈ φ′′ν0, fκ,τ1(ν0) 6= fκ,τ2(ν0), hence 〈hν0,fκ,τ (ν0) | τ ∈ φ′′ν0〉 are
distinct mutually V [Gν0 ∗ Fν0 ]-generic Cohen functions over ν0. Thus , we
can find d ∈ A ∩ Cohen(ν0, ν

++
0 ) such that d is extended by 〈hν0,fκ,α(ν0) |

α ∈ φ′′ν0〉. Finally we note that

R := {ν < κ | ∀α ∈ φ′′πnor(ν).fκ,α(ν) is odd} ∈ W

Let p = 〈〈〉, B〉 be a condition, shrink B to B0 := B ∩C ∩E ∩F ∩R ∈ W
and pick now any ν0 ∈ B0. Split φ

′′ν0 into two sets:

Xν0
0 := {τ ∈ φ′′ν0 | ν0 ∈ Aτ} and Xν0

1 = φ′′ν0 \X
ν0
0 .

Since ν0 ∈ R we have that X1 ⊆ φ′′(πnor(ν0), ν0). The condition p0 =
〈〈ν0〉, B0 ∩ (

⋂

τ∈φ′′ν0
Aτ )〉, forces the following:

(1) the Prikry sequence is included in each Aτ , τ ∈ Xν0
0 , i.e., nτ = 0,

(2) nτ = 1, for every τ ∈ Xν0
1 .

In particular, this condition forces some information about the Cohen func-
tions. Namely that:

(1) for τ ∈ Xν0
0 , f∗

τ ↾ ν0 = hν0,fκ,τ (ν0)
(2) for τ ∈ Xν0

1 , f∗
τ ↾ ν0 = h c∼1,fκ,τ ( c∼1) ↾ ν0.

We would like to find a condition in A which is below these decided parts
of the Cohen. By the previous paragraph, there is d ∈ Nν0 ∩Cohen(κ, Y ) =
Cohen(ν0, φ

′′ν0), which is extended by 〈hν0,fκ,τ (ν0) | τ ∈ φ′′ν0〉. As before we
will need to pick ν0, ν1 so that dν0 ∈ G∗.

Let B0
∼

be a name in V for B0. We fix a condition m0 ∈ Gκ ∗ Fκ which
forces that if ν0 ∈ B0

∼
then there is d ∈ Cohen(ν0, φ

′′ν0)∩A∼
which is extended

by 〈h∼ν0,fκ,τ (ν0) | ν0 ∈ φ′′ν0〉, and ∀α ∈ φ′′πnor(ν0)
∼

. ν0 ∈ A∼α. Recall that by
the construction of Gκ2 , we have m0 ∈ Gκ2 ∗ Fκ2 . Let m0 ≤ t ∈ Gκ2 ∗ Fκ2

be a condition such that

(1) t 
 κ1 ∈ j2(B0
∼
).
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By the construction of Gκ2 ∗ Fκ2 , t has the form:

t = 〈t<κ, tκ, t(κ,κ1), 〈t
0
κ1
, t1κ1

〉
︸ ︷︷ ︸

tκ1

, t(κ1,κ2), tκ2〉.

Distinguishing from the case of κ+, we now have that fκ2,j2(α)(κ1) = j1(α) ·
2+ 1 for every α < κ+, this will hold for every α ∈ φ′′κ as well. Also, recall
that Y ∈ V , hence φ ∈ V . Thus j2(φ) ∈ M2 and j2(φ)

′′κ ∈ M2. Also, for
(tκ2)Gκ2

∈ M2[Gκ2 ],

j′′2κ
++ ∩ Supp((tκ2)Gκ2

) ∈ M2[Gκ2 ]

and (tκ2)Gκ2
↾ κ × {j2(α)} ⊆ fκ,α. We also fix X ∈ V , X ⊆ κ++, |N0| ≤ κ

such that Supp((tκ2)Gκ2
) ⊆ j2(N0).

Therefore, we can extend if necessary t such that

(2a) t<κ2 
 (κ∪{κ1})×j2(φ)
′′κ ⊆ dom(tκ2)∧(0, κ1) ∈ dom(tκ2)∧Supp(tκ2) ⊆ j2(N0)

(2b) t<κ2 
 tκ2(κ1, j2(α)) = j1(α)·2+1, for every j2(α) ∈ j2(φ)
′′κ and tκ2,κ1(0) = κ.

(2c) t<κ2 
 tκ2,j2(α) ↾ κ = f
∼

κ,α for every j2(α) ∈ j′′2κ
+ ∩ Supp(tκ2).

Next consider tκ1 = 〈t0κ1
, t1κ1

〉, it is a Pκ1−name for a condition in Fκ1 ×
Hκ1 . By the construction of the generic Fκ1 ×Hκ1 , for every α < κ++, we
made sure that, hκ1,j1(α)2+1 ↾ κ = fκ,α. Also, (j1(φ)

′′κ) · 2 + 1 ∈ M2
6. Let

µ1 = {〈j1(α) · 2 + 1, α〉 | α ∈ φ′′κ} ∈ M1

The fact that for every β < κ++, fκ2,j2(β)(κ1) = j1(β) · 2 + 1 implies

dom(µ1) = (j1(φ)
′′κ)·2+1 = {fκ2,γ(κ1) | γ ∈ j2(φ)

′′κ}, rng(µ1) = φ′′κ ⊆ κ++

Extend if necessary t<κ1 , and assume that

(3) t<κ1 
 κ×(j1(φ)
′′κ)·2+1 ⊆ dom(t1κ1

)∧∀j1(α) ∈ j1(φ)
′′κ, t1κ1,j1(α)·2+1 ↾ κ = f

∼
κ,α.

As for the lower part, due to the Easton support, we have

(4) t<κ ∈ Vκ.

Fix functions r,Γ1 which represents t, µ resp. in the ultrapowerME2 , namely

for some ~ξ ∈ [κ++
1 ]<ω, j2(r)(~ξ) = t, j2(Γ1)(~ξ) = µ. Without loss of gen-

erality, suppose that both κ and κ1 appear in ~ξ, κ = min(~ξ) = ~ξ(0) and

κ1 = ~ξ(i0). Then the functions ~ν ∈ [κ]|
~ξ| 7→ (~ν(0), ~ν(i0)) represent (κ, κ1).

Without loss of generality, suppose that for every ~ν, it takes the form

r(~ν) = 〈r<~ν(0), r~ν(0), r(~ν(0),~ν(i0)), 〈r
0
~ν(i0)

, r1~ν(i0)〉, r(~ν(i0),κ), rκ〉.

Reflecting some of the properties of t we obtain a set B′ ∈ E(~ξ) such that
for every ~ν ∈ B′:

(1)~ν r(~ν) 
 ~ν(i0) ∈ B0
∼
.

(2a)~ν r<κ 
 (~ν(0) ∪ {~ν(i0)})× φ′′~ν(0) ⊆ dom(rκ)∧
〈0, ~ν(i0)〉 ∈ dom(rκ) ∧ Supp(rκ) ⊆ N0

6For a set of ordinals A, let A · 2 + 1 = {α · 2 + 1 | α ∈ A}.
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(2b)~ν r<κ 
 ∀α ∈ φ′′~ν(0).rκ,α(~ν(i0)) is odd and rκ,~ν(i0)(0) = ~ν(0).

(3)~ν r<~ν(i0) 
 ~ν(0)× dom(Γ1(~ν)) ⊆ dom(r1
~ν(i0)

) and for every

β ∈ dom(Γ1(~ν)), r
1
~ν(i0),β

↾ ~ν(0) = f
∼~ν(0),Γ1(~ν)(β).

(4)~ν r<~ν(0) = t<κ ∈ V~ν(0).

Let
B′′ = {ν(i0) | ∃~ν ∈ B′.r(~ν) ∈ Gκ ∗ Fκ}.

Since B′ ∈ E(~ξ) we have that ~ξ ∈ j2(B
′) and since j2(r)(~ξ) = t ∈ j∗2(Gκ ∗

Fκ) = Gκ2 ∗ Fκ2 , we conclude that B′′ ∈ W . Also, B′′ ⊆ B0 by clause (1).
We proceed by a density argument, recall that by the definition of G2, we

have that 〈t<κ, tκ〉 ∈ Gκ ∗ Fκ.

Claim 3.7. Let D be the set of all conditions q ∈ Pκ+1, such that exists
~ν0, ~ν1 ∈ B′, ~ν1(0) > ~ν0(i0) and a P~ν0(i0)−name d∼

~ν0(i0) such that

(a) r(~ν0), r(~ν1) ≤ q.

(b) q 
 d∼
~ν0(i0) ∈ A∼ ∩ Cohen(~ν0(i0), φ

′′~ν0(i0)).

(c) q 
 ∀τ ∈ X
~ν0(i0)
1 .h∼ν1,fκ,τ (~ν1(i0)) ↾ ~ν0(i0) = d∼

~ν0(i0)
τ .

Then D is dense (open) above 〈t<κ, tκ〉 and thus D ∩Gκ ∗ Fκ 6= ∅

Proof. Work in V , let 〈t<κ, tκ〉 ≤ p := 〈p<κ, pκ〉 ∈ Pκ+1. We will define two
extensions p ≤ q ≤ q∗ as before such that q∗ ∈ D. By definition of Pκ+1,
p<κ 
 pκ ∈ Cohen(κ, κ++), by κ−cc of Pκ, for some Z ⊆ κ++, Z ∈ V ,
|Z| < κ and some γ < κ, p<κ 
 dom(pκ) ⊆ γ × Z The same argument as
before indicate that

p<κ 
 Z ⊇ Supp(tκ) ∧ ∀β ∈ Z.j2(pκ)j2(β) ≥ tκ,β

t<κ2 
 ∀j2(τ) ∈ Supp(tκ2) ∩ j2(Z).tκ2,j2(τ) ↾ γ = f
∼

κ,τ ↾ γ.

Denote µ = (j2 ↾ (Z ∪N0))
−1 ∈ M2, then

dom(µ) = j2(Z) ∪ j′′2N0, rng(µ) = Z ∪ θ, µ is 1-1.

and we can reformulate:

p<κ 
 µ′′j2(Z) ⊇ Supp(tκ) ∧ ∀β ∈ j2(Z).j2(pκ)β ≥ tκ,µ(β)

t<κ2 
 ∀τ ∈ Supp(tκ2) ∩ j2(Z).tκ2,τ ↾ γ = f
∼κ,µ(τ) ↾ γ.

Also, find δ < κ such that t<κ 
 φ′′(δ, κ) ∩ Z = ∅. We have that

φ′′(δ, κ) = µ′′
1{fκ2,γ(κ1) | γ ∈ j2(φ)

′′(δ, κ)}, and µ′′ Supp(j2(pκ)) = Z.

Therefore in M2 we will have that

p<κ 
 [µ′′
1{f∼

κ2,γ(κ1) | γ ∈ j2(φ)
′′(δ, κ)}] ∩ [µ′′ Supp(j2(pκ))] = ∅.

Let Γ be such that j2(Γ)(~ξ) = µ, there is a set B0 ⊆ B′, B0 ∈ E(~ξ) such
that for every ~ν ∈ B0,

(i) p<κ 
 Γ(~ν)′′Z ⊇ Supp(r~ν(0)) ∧ ∀β ∈ Z.pκ,β ≥ r~ν(0),Γ(~ν)(β),

(ii) r<κ 
 ∀τ ∈ Z ∩ Supp(rκ).rκ,τ ↾ γ = f
∼~ν(0),Γ(~ν)(τ) ↾ γ.
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(iii) p<κ 
 Γ1(~ν)
′′{f
∼

κ,γ(~ν(i0)) | γ ∈ φ′′(δ, ~ν(0))} ∩ [Γ(~ν)′′ Supp(pκ)] = ∅.

Find ~ν0, ~ν1 ∈ B0 such that r(~ν0), r(~ν1) are compatible, ~ν0(0) > δ, γ, sup(Supp(p<κ)),
and ~ν1(0) > ~ν0(i0), sup(Supp(r<κ(~ν)). Denote

r0 := r(~ν0) = 〈r0<~ν0(0)
, r0~ν0(0), r

0
(~ν0(0),κ)

, r0κ〉,

r1 := r(~ν1) = (r1<~ν1(0)
, r~ν1(0), r(~ν1(0),~ν1(i0)), 〈r

0,1
~ν1(i0)

, r1,1
~ν1(i0)

〉, r1(~ν1(i0),κ), r
1
κ〉

As before, q has the form: q = p<κ
aq~ν0(0)

ar0(~ν0(0),κ)
aqκ. We have q~ν0(0) is a

P~ν0(0)−name for a condition with Supp(q~ν0(0)) = Γ(~ν0)
′′Z and qν′0,Γ(ν′0,ν0)(β) =

pκ,β. As for qκ, we set it to be a Pκ−name for r0κ ∪ pκ.
The argument that r0 ≤ q is the same as in the case of κ+.
The choice of d∼

~ν0(i0) is possible since r0 ≤ q and m0 ≤ 〈t<κ, tκ〉 ≤ q 


~ν0(i0) ∈ B
∼0.

Define the final condition q ≤ q∗,

q∗ = q<κ
aq∗~ν1(0)

ar1(~ν1(0),κ)
aq∗κ.

Again we have that r0 
 X
~ν0(i0)
1 ⊆ φ′′(~ν0(0), ~ν0(i0)) ⊆ φ′′(~ν0(0), ~ν1(0)) and

by (iii)

q<κ 
 [Γ1(~ν1)
′′{f
∼

κ,γ(ν1) | γ ∈ Xν0
1 }] ∩ [Γ(~ν1)

′′Z] = ∅.

Now for the code of d∼
~ν0(i0), let

Supp(q∗~ν1(0)) = [Γ1(~ν1)
′′{f
∼

κ,γ(~ν1(i0)) | γ ∈ X
~ν0(i0)
1 }] ⊎ [Γ(~ν1)

′′Z]

and

q∗~ν1(0),α =

{

qκ,β ∃β ∈ Γ(~ν1)
′′Z.α = Γ(~ν1)(β)

d∼
~ν0(i0)
τ ∃τ ∈ X

~ν0(0)
1 .α = Γ1(~ν1)(f

∼
κ,τ (~ν1(i0)))

and q∗κ = qκ ∪ r1κ. We conclude that r0 ≤ q ≤ q∗, r1 ≤ q∗, namely (a).

Finally, for every τ ∈ X
~ν0(i0)
1 , f

∼
κ,τ (~ν1(i0)) ∈ dom(Γ1(~ν)) and by (3)(~ν1) we

have that q∗ forces that

h∼~ν1(i0), f∼κ,τ (~ν1(i0)) ↾ ~ν0(i0) = f
∼~ν1(0),Γ1(~ν1)( f∼τ (~ν1(i0))) ↾ ~ν0(i0) ≥

≥ q∗~ν1(0),Γ1(~ν1)( f∼κ,τ (~ν1(i0)))
= d∼

~ν0(i0)
τ

Then p ≤ q∗ and q∗ ∈ D �

The rest of the argument remains unchanged. �

�
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4. On the Extender-based Prikry forcings and adding subsets

to κ

H. Woodin asked in the early 90s whether, assuming that there is no
inner model with a strong cardinal, it is possible to have a model M in
which 2ℵω ≥ ℵω+3, GCH holds below ℵω, there is an inner model N such
that κ = (ℵω)

M is a measurable and 2κ ≥ (ℵω+3)
M . His question was

natural given the results known back then: Magidor proved [26] that it is
consistent relative to a supercompact cardinal and a huge cardinal above it
to have 2ℵω ≥ ℵω+m and GCH<ℵω using the supercompact Prikry forcing
with collapses. Woodin, in an unpublished work which can be found in [11]
reduced Magidor’s large cardinal assumption to get 2ℵω = ℵω+2+GCH<ℵω

to a strong cardinal (actually to a p2κ−hypermeasurable). Later, Gitik and
Magidor [21] proved using the Extender-based Prikry forcing with collapses
that starting from the optimal large cardinal assumption, it is possible to
obtain ℵω+m = 2ℵω and GCH<ℵω . However, Woodin’s question remained
unanswered.

A natural approach to answer Woodin’s question is to force with the
Extender-based Prikry forcing over κ and then argue that in some interme-
diate where κ is measurable we added λ ≥ κ++ many subsets to κ.
Our purpose will be to show that this direction is doomed. More precisely,
we will prove that in any intermediate model of the Extender-based Prikry
forcing where κ++-many subsets of κ were introduced, κ is singularized
(and in particular not measurable. We will analyze the situation in both
the original version of Gitik and Magidor from [21] and Merimovich version
of the Extender-based Prikry forcing from [29, 30, 31]. We will rely on the
following theorem from [8, Theorem 6.7]:

Theorem 4.1. Suppose that U = 〈Ua | a ∈ [κ]<ω〉 is a tree of P−point
ultrafilters. Let G ⊆ P (U) be V−generic, then for every set of ordinals

A ∈ V [G] \ V , cfV [A](κ) = ω.

Note that if U is any κ-complete ultrafilter, then the forcing Prikry(U)
which we use in this paper is forcing equivalent to P (U) where U = 〈Ua |
a ∈ [κ]<ω〉 is such that Ua = U for every a.

Assume 2κ = κ+. Let E be an extender over κ. We consider two sorts
of Extender-based Prikry forcings - the original one, see [21] or [17], and a
more elegant version of Carmi Merimovich [29, 30, 31].

Let us start with Merimovich version, but in which the measures of E are
P−points as in [21].

4.1. The Merimovich version with P−points. Suppose that there is
h : κ → κ such that all the generators of E are below jE(h)(κ).
For example, if E is a (κ, κ++)−extender, this holds with h(ν) = ν++, ν < κ.
This is sufficient to ensure that for every α < λ, Uα is a P−point ultrafilter.

Denote by PE the Merimovich Extender-based Prikry forcing with E, as
defined in [31](or see definition 1.5).
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Theorem 4.2. Let G ⊆ PE be a generic. Suppose that A ∈ V [G] \ V is a
subset of κ. Then κ changes its cofinality to ω in V [A].

Proof. Work in V . Suppose that A∼ is a name of a subset of κ and some
p ∈ PE forces that it is a new subset.

Let us use κ+−properness of the forcing PE, see [31, Claim 2.7] or [29,
Claim 3.29]. Pick now N � Hχ, for some χ large enough such that:

(1) |N | = κ,
(2) N ⊇ κ>N ,
(3) E,PE , p, A∼ ∈ N .

The properness implies that there is p∗ ≥∗ p which is 〈N,PE〉−generic,
i.e.

p∗ 
 (∀D ∈ N( if D is a dense open, then D ∩N ∩G
∼

6= ∅)).

In particular, for every ν < κ, the dense open set

Dν := {q | ∃α.q 
 otp(A∼) > ν → the ν − th element of A∼ is α}

is definable from A∼ and ν, hence in N and it is dense open by elementarity.
Consider X = ∪p∈PE∩N Supp(p), since Supp(p), N are of size κ, we have

that |X| ≤ κ. There exists α∗ < λ such that for some f ∈ V , jE(f)(α
∗) =

(j ↾ X)−1(See for example [17, Lemma 3.3]).
Denote Y = X ∪ {α∗} and fix a set R ∈ EY such that if µ ∈ R, then

f(µ(α∗)) = µ ↾ X. Such a set exists since jE(f)(j
−1(j(α∗))) = (j ↾ X)−1,

hence
(j ↾ Y )−1 ∈ jE({µ ∈ ob(Y ) | f(µ(α∗)) = µ ↾ X}).

Find a condition p∗ ∈ G such that Y ⊆ Supp(p) and Ap∗ ↾ Y ⊆ R. Define
G ↾ Y = {p ↾ Y | p ∈ G/p∗}. Then by genericity of p∗ and definition of
Y , for every α < κ there is pα ∈ G ∩ Dν ∩ N , hence Supp(pα) ⊆ Y and
we can find pα ≤ p∗α ∈ G ↾ Y ∩ Dν . It follows that A ∈ V [G ↾ Y ]. Let
Gα∗ = {p ↾ {α∗} | p ∈ G/p∗}, in particular, p0 := p∗ ↾ {α∗} ∈ Gα∗ . Note
that Gα∗ is essentially a Prikry generic filter for Prikry(Uα∗)

Claim 4.3. V [G ↾ Y ] = V [Gα∗ ].

Proof. Inclusion from right to left is clear as α∗ ∈ Y . For the other direction,
let p0 = 〈t0, B0〉 ≤ q = 〈t, B〉 ∈ Gα∗ . For every |t0| < i ≤ |t| t(i) ∈ B ⊆ B0,
by the property of R, we have that µi := f(t(i)) a t(i) ∈ Ap∗ such that
µi(α

∗) = t(i). Now define q′ = 〈f,B′〉 as follows: dom(f) = Y and

f = fp∗aµ|t0|+1
a...aµ|t|.

In particular f(α∗) = t ≥ fp∗(α∗). Also, let B′ = {µ | µ(α∗) ∈ B′, f(µ(α∗)) =
µ ↾ X}. We claim that G ↾ Y = {q′ | q ∈ Gα∗/p0}. Indeed if p ∈ G/p∗ then
q = p ↾ {α∗} ∈ Gα∗ and it is straightforward to check that q′ = p ↾ Y . It
follows that G ↾ Y is definable in V [Gα∗ ]. �

By our assumption Uα∗ is a P−point ultrafilter. Now, Theorem 4.1 ap-
plies, so

V [A] |= cof(κ) = ω.
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�

4.2. The original version. The difference here from the forcing of the
previous section is that the order ≤∗ is not κ+−closed. However, we will
show that the forcing is still κ+−proper.

Assume for simplicity that E is a (κ, κ++)−extender and the function
ν 7→ ν++ represents κ++ in the ultrapower.

Let PE be the forcing of [21] with E.

Lemma 4.4. Assume p ∈ PE. Let N � Hχ, for some χ large enough such
that:

(1) |N | = κ,
(2) N ⊇ κ>N ,
(3) E,PE , p ∈ N .

Then there is p∗ ≥ p which is 〈N,PE〉−generic.

Proof. Let 〈Dν | ν < κ〉 be an enumeration of all dense open subsets of PE

which are in N . Proceed by induction and define a ≤∗ −increasing sequence
〈pν | ν < κ〉 of extensions of p such that, for every ν < κ,

(a) pν ∈ N .
(b) min(A0

ν) > ν, where A0
ν = {ρ0 | ρ ∈ Aν} is the projection of Aν to

the normal measure,
(c) there is k < ω such that for every 〈ρ1, ..., ρk〉 ∈ [Aν ]

k, pν
⌢〈ρ1, ..., ρk〉 ∈

Dν .

It is natural now to move now to a coordinate η which is above everything
in N and to take the diagonal intersection ∆∗ of the pre-images of Aν ’s
according to the normal measure. However, in order to have the property
(c) above, something more is needed. Namely, we would like to have the
following:

(d) for every 〈ξ1, ..., ξm〉 ∈ [min(A0
ν)]

<ω, if pν
⌢〈ξ1, ..., ξm〉 ∈ PE then

there is k < ω such that:

for every 〈ρ1, ..., ρk〉 ∈ [Aν ]
k, pν

⌢〈ξ1, ..., ξm〉⌢〈ρ1, ..., ρk〉 ∈ Dν .

Given (d), as we will see, the idea above works fine. Let us construct a
sequence which satisfies the conditions (a)-(d).

Pick p0 ∈ N such that p0 ≥∗ p and (d) is satisfied. To define p1, use the
strong Prikry property to pick a condition p′1 ∈ N , p′1 ≥

∗ p0 and

there is k < ω such that for every 〈ρ1, ..., ρk〉 ∈ [A′
1]
k, p′1

⌢〈ρ1, ..., ρk〉 ∈ D1.

Let η0 = min((A′
1)

0), by definition of πα,κ it follows that η0 is an inaccessible
cardinal.
Let 〈~ξi | i < η0〉 be an enumeration of [η0]

<ω.
Define ≤∗ −increasing sequence 〈qi | i < η0〉.

Consider p′1
⌢~ξ0. If it does not extend p0, then set q0 = p′1. Otherwise, pick

(inside N) r0 ≥
∗ p′1

⌢~ξ0 such that

there is k < ω such that for every 〈ρ1, ..., ρk〉 ∈ [A(r0)]
k, r0

⌢〈ρ1, ..., ρk〉 ∈ D1.
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Let q0 = 〈f q0, Aq0〉 be obtained from r0 by removing ~ξ0 from all coordinates
which appear in p′1 (and leaving at new ones), and then, adding a larger
maximal coordinate. Namely, dom(f q0) = dom(f r0) ∪ {α0} where α0 is ≤E

strictly above all the ordinals in dom(f r0). Let t be such that π′′
α,κt = fp′1(κ)

and for every γ ∈ dom(f q0)

f q0(γ) =







fp′1(γ) γ ∈ Supp(p′1)

f r0(γ) γ ∈ Supp(r0) \ Supp(p
′
1)

t γ = α0

.

Let Aq0 = π−1
α0,mc(r0)

[Ar0 ]. Then q0 ∈ N and also q0 ∈ PE . By shrinking Aq0

a bit more (as in [17, Lemma 3.10]) we secure condition (6), and p′1 ≤
∗ q0.

Define q1 in the exact same fashion only replacing p′1 by q0 and ~ξ0 by ~ξ1.
Continue similarly for every i < η0, and finally, let qη0 be a ≤∗ − extension
of all qi’s.
If η0 = min((A(qη0))

0), then set p1 = qη0 . Otherwise, let η1 = min((A(qη0))
0).

Repeat the process above with η1 replacing η0 and qη0 replacing p′1. Con-
tinuing in a similar fashion, we hope to reach some η which is a fixed point,
i.e., η = min((A(qη))

0). However, we need to do this a bit more care-
fully at limit stages. Let us pick an elementary substructure N ′ ≺ Vµ for
sufficiently large µ of cardinality κ+, closed under κ−sequences, including
p′1, p0,PE , E, .... We can find some α < κ++ such that for every p ∈ N ′∩PE

and every γ ∈ Supp(p), γ <E α. Define a sequence of condition 〈qηi | i < η〉
of conditions of N ′.

We start with qη0 which is already defined. Let Y0 ∈ Uα such that
the commutativity requirement from Definition 1.6(6) holds with respect to
Supp(qη0). If η0 = min(Y 0

0 ) we are done. Otherwise, let η1 = min(Y 0
0 ) and

construct qη1 in a similar fashion going over all possible ~ξ ∈ [η1]
<ω, construct

Y1 ∈ Uα to satisfy (6) with respect to Supp(qη1). At a general successor step
, we are given ηi, qηi , and Yi. Check if ηi = min(Y 0

i ), if yes, stop the construc-
tion, set p1 = qηi and we are done. Otherwise, let ηi+1 = min(Y 0

i ), construct

qηi+1 above qηi as we did with qη0 , going over all possible ~ξ ∈ [ηi+1]
<ω, then

find Yi+1 ∈ Uα satisfying (6) with respect to Supp(qηi+1). At limit stages

δ take ηδ = supi<δ ηi, check if ηδ = min((∩i<δYi)
0), if yes, stop the con-

struction and consider the condition p1 = qηδ with maximal coordinate α ,
putting ∩i<δYi as his measure one set. Then qηδ will be as desired. Other-
wise, we find any qηδ ∈ N ′ above all the previous qηi , construct Yδ ∈ Uα with
respect to Supp(qηδ). We can further require that πα,mc(qηi)

′′Yi ⊆ A(qηi) and

that min(A(qηi)
0) > i.

Assume toward a contradiction that no suitable qηδ was found and that
the process goes all the way up to κ. Consider Y ∗ = ∆∗

i<κYi ∈ Uα and

let µ be any limit point of Y ∗. Consider step µ0 of the construction, we
have ηµ0 = supi<µ0 ηi. For every i < µ0, we have that µ ∈ Yi, hence µ ∈

∩i<µ0Yi and µ0 ∈ (∩i<µ0Yi)
0, it follows that ηµ0 ≥ µ0 ≥ min((∩i<µ0Yi)

0) ≥
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ηµ0 . This means that ηµ0 = µ0 = min((∩i<µ0Yi)
0) which indicates that the

construction should have terminated at step µ0, contradiction.
We conclude that p1 is defined. The further construction of pν ’s is similar,
exploiting the κ−closure of ≤∗.

Pick now some α ≥E β, for every β ∈ N ∩ dom(E) which exists since
|N | = κ. Set

A = ∆∗
ν<κÃ(pν) = {ρ < κ | ∀ν < ρ0(ρ ∈ Ã(p(ν)))},

where Ã(pν) is the pre-image of A(pν) under the projection from α tomc(pν).
Define a condition p∗ = 〈f∗, A∗〉 from the sequence 〈pν | ν < κ〉 as follows:
Supp(p∗) = ∪ν<κ Supp(pν) ∪ {α}, from the way we defined pν there is no
problem defining f∗ = ∪ν<κf

pν ∪ {〈α, t〉} where t is any sequence such that
π′′
α,κt = f∗(κ). Then we take A∗ = A. It follows that p∗ ∈ PE , and it has

the property that for every ν < κ and any sequence

ξ1 < .., ξk < min(A0
ν) ≤ ξk+1 < ... < ξn

of ordinals from A, paν 〈ξ1, ..., ξn〉 ≤ p∗a〈ξ1, .., ξn〉.
7 Let us argue that it

is 〈N,PE〉−generic. Let G be generic with p∗ ∈ G. we need to prove that
G ∩N ∩Dν 6= ∅ for every ν < κ. By density, pick any pa〈ξ1, ..., ξk1〉 ≤

∗ q ∈
Dν ∩ G, and let m be such that ξ1, .., ξm < min(A(pν)) ≤ ξm+1 < ... < ξk1 .
By condition (d), there is k2 such that any 〈ν1, ..., νk2〉 ∈ [Aν ]

k2 extension

paν 〈ξ1, .., ξm〉a〈ν1, ..., νk2〉 ∈ Dν . If necessary, extend q to

qa〈ξk1+1, ..., ξk1+k2〉 ∈ G ∩Dν ,

and suppose without loss of generality that k1 ≥ m + k2. Since ν <
min(A(pν)

0) ≤ ξm+1, by definition of πα,κ, it follows that ν < ξ0m+1, and by
diagonal intersection, ξm+1, ..., ξk1 ∈ Aν . It follows that

paν 〈ξ1, .., ξm〉a〈ξm+1, ..., ξm+k〉 ∈ Dν .

Also, paν 〈ξ1, .., ξm〉a〈ξm+1, ..., ξm+k〉 ≤ q hence in G. Hence

paν 〈ξ1, .., ξm〉a〈ξm+1, ..., ξm+k〉 ∈ G ∩Dν ∩N

as wanted.
�

Now, as in the previous section the following holds.

Theorem 4.5. Let G ⊆ PE be a generic. Suppose that A ∈ V [G] \ V is a
subset of κ. Then κ changes its cofinality to ω in V [A].

7Although ξ1, .., ξk /∈ Aν , the condition paν 〈ξ1, ..., ξn〉 is a legitimate condition which is
simply not above pν .
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4.3. The Merimovich version. The previous subsection implies in partic-
ular that PE and PE with P−points cannot add κ++-many mutually generic
Cohen functions. In this subsection, we will provide the general argument
that the Extender-based Prikry forcing PE cannot add κ++-many distinct
subsets of κ which preserves even the regularity of κ.

Theorem 4.6. Assume GCH8 and let E an extender over κ. Let G be a
generic subset of PE and let 〈Aα | α < κ++〉 be different subsets of κ in V [G].
Then there is I ⊆ κ++, I ∈ V, |I| = κ such that κ is a singular cardinal of
cofinality ω in V [〈Aα | α ∈ I〉]. In particular, there is no intermediate model
of V [G] where κ is measurable and 2κ > κ+.

Proof. Let 〈A∼α | α < κ++〉 be PE−names of subsets of κ. We will confuse
them sometimes with their characteristic functions. Work in V , for every
α < κ++, let Nα be an elementary submodel of Hθ of cardinality κ such
that κ>Nα ⊆ Nα, E,PE , α, 〈A∼α | α < κ++〉 ∈ Nα.
Let fα ∈ P

∗
E beNα−completely generic, i.e. f⌢

α 〈~ν1, ..., ~νn〉 ∈ P
∗
E isNα−generic.

Using ∆−system-like arguments, we can assume that 〈fα | α < κ++〉
form a ∆−system such that for every α, β < κ++,

(1) otp(dom(fα)) = otp(dom(fβ)), and the order isomorphism between
dom(fα) and dom(fβ), σα,β is constant on the intersection dom(fα)∩
dom(fβ).

(2) for every ρ ∈ dom(fα), fα(ρ) = fβ(σαβ(ρ)).

Attach to each α < κ+ associate an E(dom(fα))−large tree Tα. Define
Tα level by level as follows. Set Lev1(Tα) = S0

α ∪ S1
α, where

(1) for every ~ν ∈ S0
α, dom(~ν) contains elements in dom(fα) \dom(f0), if

α > 0,
(2) if α = 0, then S0

α = S1
α,

(3) S1
α = {~ν | ~ν is an increasing partial function from dom(f0)∩dom(fα) to κ},

if α > 0,
(4) for every ~ν ∈ S0

α the following holds:
〈fα

⌢~ν,B~ν〉 decides A∼α ∩ ~ν(κ) for some E(dom(fα))-tree B~ν and
such that the decision depends only on ~ν(κ).

In order to find such a tree, we will use the fact that fα ∈ P
∗
E is Nα-generic,

and the set
E = {f | ∃B.〈f,B〉 decides A∼α ∩ ~ν(κ)}

being dense open in P
∗
E. This implies the existence of a E(dom(fα))−tree

B~ν such that
〈fα

⌢~ν,B~ν〉 decides A∼α ∩ ~ν(κ).

Next, in order to make the decision to depend only on ~ν(κ), we use ineffa-
bility: Suppose that 〈fα

⌢~ν,B~ν〉 forces that A∼α ∩ ~ν(κ) = Aα(~ν). Let g be
the function g(~ν) = Aα(~ν). It follows that:

Xα(〈〉) := j(g)((j ↾ dom(fα))
−1) ⊆ κ.

82κ = κ+ is enough, since κ is a measurable, and so, 2ν = ν+ on relevant sets.
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Also, since crit(j) = κ, it follows that j(Xα(〈〉)) ∩ κ = Xα(〈〉). Combine
this together with the fact that:

j′′ dom(fα)) contains elements not in j(dom(f0))

to find a E(dom(fα))-large set S0
α, such that (1) holds and for all ~ν ∈ S∗

α,

Aα(~ν) = Xα(〈〉) ∩ ~ν(κ)

Finally, we let Lev1(Tα) = S0
α ∪ S1

α. Note that if α > 0, then S0
α and S1

α are
disjoint and therefore S1

α 6∈ E(dom(fα)). Define now the next level of Tα.
So let ~ρ ∈ Lev1(Tα) and set SuccTα(~ρ) = S0

α~ρ ∪ S1
α~ρ, where

(1) for every ~ν ∈ S0
α~ρ ∪ S1

α~ρ, ~ν(κ) > sup(rng(~ρ)).

(2) S0
α~ρ ⊆ SucB~ρ

(~ρ).

(3) if α > 0, then for every ~ν ∈ S0
α~ρ, dom(~ν) contains elements in

dom(fα) \ dom(f0),
(4) if α = 0, then S0

α~ρ = S1
α~ρ,

(5) if ~ρ ∈ S0
α and α > 0, then S1

α~ρ = ∅,

(6) if ~ρ ∈ S1
α and α > 0, then S1

α~ρ = {~ν | ~ν is an increasing partial function from

dom(f0) ∩ dom(fα) to κ, ~ν(κ) > sup(rng(~ρ))},
(7) for every ~ν ∈ S0

α~ρ the following holds:

〈fα
⌢〈~ρ, ~ν〉, B~ρ~ν〉 decides A∼α ∩ ~ν(κ) and the decision depends only

on ~ρ⌢~ν(κ),
for some E(dom(fα))−tree B~ρ~ν , which is a subtree of B~ρ.

The further levels are defined in the same fashion. Denote by T 0
α the tree

Tα with S1
α~ν1,...,~νn

removed from SuccTα(〈~ν1, ..., ~νn〉)
9. Clearly, T 0

α is still

E(dom(fα))−tree.
The tree T 0

α has the property that for every 〈~ν1, ..., ~νn〉 ∈ Tα, and every ~ν ∈
SuccT 0

α
(〈~ν1, ..., ~νn〉), item (2) above ensures that (T 0

α)〈~ν1,...,~νn,~ν〉 ⊆ B〈~ν1,...,~νn,~ν〉

and by item (7) we obtain

(∗) 〈fa
α 〈~ν1, ..., ~νn, ~ν〉, (T

0
α)〈~ν1,...,~νn,~ν〉〉 
 Xα(〈~ν1, ..., ~νn〉) ∩ ~ν(κ) = A∼α ∩ ~ν(κ)

By shrinking if necessary, we can assume that the trees are isomorphic un-
der the obvious isomorphism induced by the ∆−system.Moreover, by GCH,
there are only κ+-many decisions possible on a fixed isomorphism-type of
trees and therefore we can stabilize the decisions so they do not depend on
a particular choice of α. Let us now take κ elements and combine them into
a single condition. Namely, we consider 〈〈fα, Tα〉 | 0 < α < κ〉 and define a
condition 〈f∗, T ∗〉 as follows:
Let f∗ =

⋃

0<α<κ fα. Define a E(dom(f∗))−tree T ∗. It will be a sort of a
diagonal intersection of Tα, 0 < α < κ. Set

X = {~ν | ~ν is an increasing partial function from dom(f∗) to κ,

9Even if 〈~ν1, ..., ~νn〉 ∈ Tα \ T 0
α the set SuccT0

α

(〈~ν1, ..., ~νn〉) is still defined.
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dom(~ν) ⊆
⋃

ξ<~ν(κ)

dom(fξ), (∀ξ < ~ν(κ))|dom(~ν) ∩ dom(fξ)| = ~ν(κ)}.

To see that X ∈ E(dom(f∗)), note that

dom((j ↾ dom(f∗))−1) = j′′ dom(f∗) ⊆ ∪ξ<κ dom(j(fξ)).

Also, for every ξ < κ, |j′′ dom(f∗)∩dom(j(fξ))| = |j′′ dom(fξ)| = |dom(fξ)|
and since fξ is completely generic we conclude that this cardinality must be
κ. Hence (j ↾ dom(f∗))−1 ∈ j(X). Define the first level of the tree

Lev1(T
∗) = SuccT ∗(〈〉) := X ∩∆∗

ξ<κπ
−1
dom(f∗) dom(fξ)

SuccT 0
ξ
(〈〉).

Let now ~ρ ∈ Lev1(T
∗), and define SuccT ∗(~ρ). As above, we consider first

the set

X~ρ = {~ν | ~ν is an increasing partial function from dom(f∗) to κ, ~ν(κ) > sup(rng(~ρ)),

dom(~ν) ⊆
⋃

ξ<~ν(κ)

dom(fξ), (∀ξ < ~ν(κ))|dom(~ν) ∩ dom(fξ)| = ~ν(κ)}.

Clearly, X~ρ ∈ E(dom(f∗)). Let

SuccT ∗(~ρ) = X~ρ ∩∆∗
ξ<κπ

−1
dom(f∗) dom(fξ)

SuccT 0
ξ
(~ρ ↾ dom(fξ)).

Continue to define T ∗ in a similar fashion. We need to ensure that for every
ξ < κ, SuccT 0

ξ
(~ρ ↾ dom(fξ)) is well defined. Namely:

Claim 4.7. For every ξ < κ, ~ρ ↾ dom(fξ) ∈ Lev1(Tξ). Moreover, ξ < ~ρ(κ)
iff ~ρ ↾ dom(fξ) ∈ Lev1(T

0
ξ ).

Proof of claim 4.7: For every ξ < ~ρ(κ), we have

~ρ ∈ π−1
dom(f∗) dom(fξ)

(Lev1(T
0
ξ ))

and therefore ~ρ ↾ dom(fξ) ∈ Lev1(T
0
ξ ). If ξ ≥ ~ρ(κ), then since ~ρ ∈ X,

dom(~ρ)∩dom(fξ) = dom(~ρ)∩dom(f0) and therefore ~ρ ∈ S1
α = Lev1(Tα). �

Lev1(T
∗) has the property that for all ~ρ ∈ Lev1(T

∗) and α < ~ρ(κ),

〈f∗⌢~ρ, (T ∗)~ρ〉 ≥
∗ 〈fα

⌢~ρ ↾ dom(fα), (T
0
α)~ρ↾dom(fα)〉.

Hence, by (∗), 〈f∗⌢~ρ, (T ∗)~ρ〉 also forces Xα(〈〉) ∩ ~ρ(κ) = A∼α ∩ ~ρ(κ). In
addition, if we have α, β < ~ρ(κ), then A∼α ∩ ~ρ(κ), A∼β ∩ ~ρ(κ) depends only
on (~ρ ↾ dom(fα))(κ) = ~ρ(κ) = (~ρ ↾ dom(fβ))(κ) and since the isomorphism
σα,β fixes κ (as κ ∈ dom(fα)∩ dom(fβ)) it follows that A∼β ∩ ~ρ(κ), A∼α ∩ ~ρ(κ)
are decided to be the same set.

Next consider 〈~ρ, ~ν〉 ∈ T ∗, as in claim 4.7, we have that for all α < ~ν(κ),

(∗∗)〈f∗a〈~ρ, ~ν〉, (T ∗)〈~ρ,~ν〉〉 ≥ 〈fa
α 〈~ρ ↾ dom(fα), ~ν ↾ dom(fα)〉, (T

0
α)〈~ρ↾dom(fα),~ν↾dom(fα)〉〉

However, since the decision about A∼α ∩ ~ν(κ) depends now on ~ρa~ν(κ), then
if α or β are below ~ρ(κ), then ρ ↾ dom(fα) might include in its domain
ordinals which are moved under the isomorphism σα,β and therefore we are
not guaranteed that the decision about A∼α∩~ν(κ), A∼α∩~ν(κ) is the same (up
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to ~ρ(κ) it is still the same decision). However, if both α, β ∈ [~ρ(κ), ~ν(κ)) we
have the following claim:

Claim 4.8. If α, β ∈ [~ρ(κ), ~ν(κ)) then 〈f∗a〈~ρ, ~ν〉, (T ∗)〈~ρ,~ν〉〉 decides the val-
ues of A∼α ∩ ~ν(κ) and A∼β ∩ ~ν(κ) to be the same.

Proof of claim 4.8: By definition, since ~ρ ∈ X and α, β ≥ ~ρ(κ), ~ρ ↾ dom(fα) =
~ρ ↾ dom(fβ) and dom(~ρ ↾ dom(fα)) ⊆ dom(fα) ∩ dom(f0). Since the iso-
morphism σα,β fixes the kernel of the ∆-system, we have that the decision
of

〈fa
α 〈~ρ ↾ dom(fα), ~ν ↾ dom(fα)〉, (T

0
α)〈~ρ↾dom(fα),~ν↾dom(fα)〉〉

about A∼α ∩ ~ν(κ) and the decision of

〈fa

β 〈~ρ ↾ dom(fβ), ~ν ↾ dom(fβ)〉, (T
0
β )〈~ρ↾dom(fβ),~ν↾dom(fβ)〉〉

about A∼β ∩ ~ν(κ) is the same. By (∗∗), the condition 〈f∗a〈~ρ, ~ν〉, (T ∗)~ρ,~ν〉
decides the values the same way. �

Similar properties persists if we move to higher levels of T ∗.
Using density arguments we can assume that such defined condition 〈f∗, T ∗〉

is in the generic subset G of PE. Denote by 〈κn | n < ω〉 the Prikry sequence
for the normal measure Eκ.

It follows that the sets 〈Aα | α < κ〉 have the following property in V [G]:

(∗∗) ∀n < ω.∀α, β ∈ [κn−1, κn).Aα ∩ κn = Aβ ∩ κn

Now, let us turn to the model M∗ = V [〈Aα | α < κ〉] and prove that
cfM∗

(κ) = ω. Let us define in M∗ an ω-sequence 〈ζn | n < ω〉 as follows:
First, let ζ ′0 be the least such that for some for some α, β < κ, Aα ∩ ζ ′0 6=

Aβ ∩ ζ ′0. There exists such ζ ′0 since the sets in the sequence 〈Aα | α < κ〉 are
distinct. Let ζ ′′0 be the least such that for some α < ζ ′′0 , Aα ∩ ζ ′0 6= Aζ′′0

∩ ζ ′0.

Define ζ0 = max(ζ ′0, ζ
′′
0 )

Claim 4.9. ζ0 ≥ κ0

Proof of claim 4.9: If ζ ′0 ≥ κ0 then we are done. Otherwise, suppose ζ ′0 ≤ κ0,
then by (∗∗) for every α < β < κ0, we have Aα ∩ ζ ′0 = Aβ ∩ ζ ′0. Hence by
the definition of ζ ′′0 , we have ζ ′′0 ≥ κ0 and also ζ0 ≥ κ0 �

Suppose that ζn < κ was defined. Then the sequence 〈Aα | ζn < α < κ〉
consist of κ-many distinct subsets of κ. Since κ is strong limit in V [G],
2ζn < κ, hence there must be ζn < α < β < κ such that Aα \ ζn + 1 6=
Aβ \ ζn + 1. Let ζ ′n+1 be the minimal such that for some ζn < α < β < κ,
Aα ∩ ζ ′n+1 = Aβ ∩ ζ ′n+1. Finally, let ζn < ζ ′′n+1 be the minimal such that for
some α < ζ ′′n+1, Aα ∩ ζ ′n+1 6= Aζ′′n+1

∩ ζ ′n+1 and ζn+1 = max(ζ ′n+1, ζ
′′
n+1). To

conclude that cfM∗

(κ) = ω is suffices to prove the following lemma:

Claim 4.10. For every n < ω, ζn ≥ κn.
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Proof of claim 4.10: By induction, for n = 0 this is just the previous claim.
Suppose that ζn ≥ κn, and toward a contradiction suppose that ζn+1 < κn+1.
Then by definition, there is α, such that κn ≤ ζn < α < ζ ′′n+1 < κn+1 such
that Aα ∩ ζ ′n+1 6= Aζ′′n+1

∩ ζ ′n+1. However, since ζ ′n+1 < κn+1 we reached a

contradiction to (∗∗), since we found two indices α, β ∈ [κn, κn+1) such that
Aα ∩ κn+1 6= Aβ ∩ κn+1. �

The sequence 〈ζn | n < ω〉 will be a cofinal sequence in κ which
belongs to V [〈Aα | α < κ〉]. �

It turns out that PE can add κ+-many mutually generic over V Cohen
functions, for specially chosen extender E.

Theorem 4.11. Assume GCH and suppose that E is a (κ, κ++)-extender.
Then after the preparation of Theorem 2.10, there exists an extender E′ such
that PE′ adds κ+ mutually generic over V Cohen functions.

Proof. Let j = jE : V → M be the natural ultrapower by the (κ, κ++)−
extender E, then j(κ) > κ++, crit(j) = κ and κM ⊆ M . Recall that the
preparation forcing in Theorem 2.10 is an Easton support iteration

〈Pα, Q
∼

β | α ≤ κ+ 1, β ≤ κ〉

such that Q
∼

β is trivial unless β is inaccessible in which case if β < κ then
Q
∼

β is a Pβ-name for LOTT(Cohen(β, β+),Cohen(β, β+)2). At κ, Q
∼

κ is a
name for Cohen(κ, κ+). Let Gκ ∗gκ be V−generic for Pκ ∗Q

∼
κ. In V [Gκ ∗gκ]

we can construct an M−generic filter for j(Pκ ∗ Q
∼

κ) by taking Gκ ∗ gκ
to be the generic up to κ, including κ and choosing that the lottery sum
forces Cohen(κ, κ+) (this forcing is the same in V [Gκ] and M [Gκ] since

(κ+)M [Gκ] = κ+ and M [Gκ] is closed under κ-sequences of V [Gκ]). Above
κ we have sufficient closure, from the point of view of V [Gκ ∗ gκ], and by
GCH there are not too many dense open subsets of the tail forcing P(κ,j(κ)]

to meet, hence the embedding j lifts to

j ⊆ j∗ : V [Gκ ∗ gκ] → M [j(Gκ) ∗ j(gκ)].

Since the cardinals in all the models are preserved, it follows that ([12,
Proposition 8.4])

(κ++)M [j(Gκ)∗j(gκ)] = κ++ < j(κ) and κM [j(Gκ)∗j(gκ)] ⊆ M [j(Gκ)∗j(gκ)].

So in V [Gκ∗gκ] the extender E extender to an extender E′ = 〈E′
a | a ∈ [κ]<ω〉

defined by E′
a = {X ⊆ κ|a| | a ∈ j∗(X)}.

Let W be the non-Galvin, κ−complete ultrafilter over κ with preparation
for adding κ+-many Cohens (See Theorem 2.11).

Combine E′,W together as follows. First take an ultrapower with E′.
Let jE′ : V → ME′ be the corresponding embedding. Denote jE′(κ) by
κ1 and let W ′ = jE′(W ). Then take an ultrapower of ME′ with W ′. Let
jW ′ : ME′ → M be the corresponding embedding.
Consider j∗ = jW ′ ◦ jE′ : V → M . Let E∗ be the derived (κ, λ)-extender for
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some κ1 < λ ≤ j∗(κ).
Note that E∗(κ1) = W , since for any X ⊆ κ,

X ∈ E∗(κ1) ⇔ κ1 ∈ j∗(X) ⇔ κ1 ∈ jW ′(jE′(X)) ⇔ jE′(X) ∈ W ′

⇔ jE′(X) ∈ jE′(W ) ⇔ X ∈ W.

The Prikry forcing with W adds κ+−many Cohens over V . This forcing
is a part of PE∗, sinceW appears as one of the measures of E∗, which implies
the Theorem.

�

4.4. Cohen subsets of κ+. Let us argue here that both versions add
κ++−many (or λ−many if the extender has λ generators for a regular λ > κ)
Cohen subsets of κ+ mutually generic over V .

Start with PE of [21].

Theorem 4.12. Let G ⊆ PE be a generic. Then in V [G] there is a sequence
〈Zξ | ξ < κ++〉 of mutually generic over V Cohen subsets of κ+.

Proof. Let 〈tα | α < κ++〉 be the Prikry sequences added by G.
Split, in V , κ++ into disjoint intervals 〈Iξ | ξ < κ++〉 order type of each

κ+. Denote by σξ the order isomorphism between Iξ and κ+.
Now, in V [G], set

Zξ = {σξ(α) ∈ Iξ | tα(0) is even }.

Let us argue that such a sequence is as desired.
Work in V . Let p ∈ P and D be a dense open subset of Cohen(κ+, κ++).

Let us find q ≥ p such that

q 
 〈Z∼ξ | ξ < κ++〉 extends an element of D.

Extend first p to some r such that for every γ ∈ Supp(r), rγ is not equal
to the empty sequence. Now, using Iξ, σξ’s turn 〈rγ(0) | γ ∈ Supp(r)〉 into
a condition in Cohen(κ+, κ++). Extend it to one in D and move back to
P using Iξ, σ

−1
ξ ’s. Finally, turn the result into a condition q in P stronger

than r. It will be as desired.
�

The situation in the case of the Merimovich version is very similar:

Theorem 4.13. Let G ⊆ PE be a generic. Then in V [G] there is a sequence
〈Zξ | ξ < κ++〉 of mutually generic over V Cohen subsets of κ+.

Proof. Proceed as in 4.12 and define 〈Zξ | ξ < κ++〉.
Work in V . Let p ∈ P and D be a dense open subset of Cohen(κ+, κ++).

Let us find q ≥ p such that

q 
 〈Z∼ξ | ξ < κ++〉 extends an element of D.

A slight difference here is that the support of p = 〈f, T 〉, i.e., dom(f) may
have κ many places γ with f(γ) = 〈〉.
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As a result, for such γ, tγ(0) will be determined only after an element of the
corresponding set of measure one is picked, and there are κ−many such γ’s.
However, we do not need the exact value of tγ(0), but rather to know whether
it is even or odd. This is determined (on a set of measure one) by γ itself.
Namely, in this situation, tγ(0) will be even iff γ is even.
The rest of the argument is as in 4.12.

�
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