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Abstract

We deal with some questions related to xk—compact cardinals.

1 Introduction

Definition 1.1 k is k-compact cardinal iff every x complete filter over k£ can be extended

to a k—complete ultrafilter over k.

Clearly, if x is 2"-supercompact or even 2”-strongly compact, then it is xk-compact.
In [7] W. Mitchell asked whether o(k) = x*7 is sufficient for model with a x-compact
cardinal. It was answered negatively in [1]. It was shown there that at least a strong
cardinal is required. Here we will somewhat improve this result and also will address some

related questions raised in [1].

2 An application to distributive forcing notion.

Let us argue first that x-compact cardinal generates an extender suitable for Extender Based

Prikry forcing.
Theorem 2.1 Let k be a k-compact cardinal. Then there is an extender E over k such that

1. "Mg C M, where ig : V — Mg ~ Ult(V, E) is the corresponding elementary embed-
ding,

2. every k complete filter over k can be extended to a k—complete ultrafilter over k of the
form Eg, for some & <ig(k), where B ={X C k| €ip(X)}.

*The work was partially supported by ISF grant no. 58/14
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Proof. Let A = (22")*. Let
Wy | < A)

be a list of all k—complete non-principle ultrafilters over x (with repetitions). Then for every
k—complete non-principle filter U over k there is o < A such that U C W,,.

It is enough to construct an extender E with ultrapower closed under x—sequences which
has all W,’s among its measures.

The construction is similar to those from [1].

Denote by Pe+()) the set {a C A | |a| < k}. For every 7 < k™ let f; : Kk — k be a canonical
function representing 7. We shall define a k—complete ultrafilter U, concentrating over the
set Xo = {{a | v < fop(a)(a0)) | o < K01 < vy =, < @} for a € Pes (). Once b C a,
U, will be obtained from U,, as follows. Let (a; | i < otp(a)) be the increasing enumeration
of a. Then for some increasing sequence (i; | j < otp(b)),b = (a;; | j < otp(b)). Project
U, to the coordinates (i; | 7 < otp(b)). Let 74 be such a projection. Then U,, will be the
set of {7/, (X) | X € U,}. Let us turn to the definition of U,’s. Fix some enumeration
(aa | < &) of Pus(A). For every a < k', set Urqy = Wi,

Suppose now that

L. for every § < a, a k—complete ultrafilter U,, is defined;

2. for every b € P,+(N), if for some v < «, b C a,, then U, is defined and it is the

projection of Uy, by 74 p.

Let us define U,,. The only nontrivial case is when there is no v < « such that a, 2 a,.
Define then first a kx—complete filter U concentrating over Xop(,,). Set X € U iff for some
v < a, some b C a, N ay there exists X, € £, such that X = W;alb”Xb. Using the inductive
assumptions (1), (2) and the commutativity of the projection function 7.4, it is not hard to
see that a so-defined U is a k—complete filter. Let U, be a k—complete ultrafilter extending
U. For every b C a,, if U, is still not defined, define it to be the projection of U, by m,_s.
This completes the construction of (U, | o < A).

Let N, be the ultrapower of V by U, and i, : V — N,, the canonical embedding. The
projection 7, induces the elementary embedding iy, : Ny — Nuo (Ngyiap | @ C bya,b €
P.o+(A)) forms a directed system, where Ny =V and iy, = i,. The direct limit of this system
is well-founded and closed under k—sequences. Let F be the derived extender. Then it is as
desired.

O

Let us now use such an extender F to define a variation Extender Based Prikry forcing.



Theorem 2.2 Assume GCH. Let k be a k—compact cardinal. Then there is a cardinal
preserving extension in which for every k—distributive forcing notion QQ € V' of cardinality

k there is a V —generic subset.

Remark 2.3 Note that it is easy to obtain such generics once & is a k't —strongly compact

cardinal, but ™ is collapsed in the extension.

Proof. Fix an extender E given by 2.1. We assumed GCH, so F can be picked to be an

extender over k of the length «™ 7.

Let Q be k—distributive forcing notion of cardinality . Replace by an isomorphic one over

K.

Consider the filter Fy of its dense open subsets. Then Fy is a k—complete filter over x.

Hence, for some n < k™, Fy C E,. Denote the least such n by ng.

It is possible to force now with Extender F based Prikry forcing in the Merimovich style [6]

or, after an additional forcing turning F into a P-point, with the original extender based

Prikry forcing, as in [3]. This will produce Prikry sequences for each Fg as above, i.e.

sequences (g, | n < w) such that for every dense open D C @, ¢, € D, for all but finitely

many n’s.

However, it is not enough to produce a generic subset of (), since such ¢,’s need not be

compatible.

Let us modify slightly the extender based forcing used, in order to overcome this difficulty.
Denote by @y, for every ¢ € @), the set

{d €Q|d >q}

Then @, is a k—distributive forcing notion of cardinality x as well. So, Fp, is defined. In
addition, for every D € Fy, the set

{de€Q|qd >qand ¢ € D}

is in Fy,.

Without loss of generality we can assume that each ) under the consideration is nowhere
atomic forcing notion. Then, for every A C @, |A| < &, there is a dense open D C @ with
AN D =1(. Just for each ¢ € A consider

Dy={d €Q|qd >qorq g}

Then every D, is a dense open and ﬂqu D, is a dense open disjoint from A.
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A typical condition p in the extender based Prikry forcing with E is of the form

((p" | v € supp(p)), (p™, T)).

The support of p, supp(p) is a subset of k™t of cardinality < k, k € supp(p). The
maximal coordinate mc = me(p) is an ordinal o < k% which is above (in the order <g of
the extender) every 3 € supp(p). Each p7,~ € supp(p) and p™€ is a finite increasing sequence
of ordinals. They are initial segments of the Prikry sequences for 4’s and mc respectively.
The set TP is responsible for potential extensions.

Let us make the following changes:

L. if for some @, ng € supp(p) U {mc(p)}, then for every ¢ € Q, g, € supp(p) U {mc(p)},
as well;

2. p'Q is increasing also in the order of Q);

3. once extending a condition p, p"? extends by a member of a set of measure one for

Em,g 0 instead of a member of a set of measure one for Em,g-
max(p"1Q)

The basic properties of the forcing remain valid after this changes.
The last condition insures that the generic w—sequences growing over a coordinate 7g will
be increasing in the order of ), and so will generate a V' —generic subset of ).
OJ

3 Strength of k—compact cardinals.

It was shown in [1] that an inner model with a strong cardinal is a lower bounds on a strength

of k—compact cardinals. Here we would like to improve this lower bound.

Theorem 3.1 Suppose k is k—compact then there is a inner model with a Woodin cardinal

Proof. Suppose otherwise. Then by Jensen-Steel [5], the core model K exists.
Define
B = (B)" ={v <& | (cf()" =w}

and let
Fo = (Cub | E)*.

Then Fj is a normal filter on x in K.



Let, in V',
F={XCkr|3TAe€ FH(AC X)}.

Lemma 3.2 F is a k-complete filter in V.

Proof. By [5], K satisfies GCH, in particular, 2¢ = k. So, in K, there is a sequence
(An | @ < k™) such that

1. A, € Cub, | E, for every B < a < k™,
2. A, CF Ag (Le. |[A\Ap| < k) for every f < a < kT,
3. VA € Cub, | E there is o < " such that 4, C A.

Now,work in V. We have, by [5], (¢7)* = k™.
Let
(X, | 7<)

be the sequence of members of F for some ¢ < k. Let us show that
m X5 e F.
T
For each 7 < § there is A € (Cub, | E)¥ such that X, D A. Then there is a;; < s+ such
that A, C* A. Pick p, < k with A D A,_\p,. Then,
X; D Au \pr

Let
p* =sup({pr | T <}) <w"
and
of =sup({a, | T < }) < k™.
Then for all 7 < § we have
Aa* g* Aa

e

Pick & < k such that A,:\& C A,,. Set

6* = SUpr<s&r < K.



Then
Ao\ max(p*,€%) C X,

for each 7 < §. Clearly,
Ay \max(p*, &) € F.

Hence,

ﬂXTe]-“.

T4

[J of the lemma.
There is a F* O F that is a k-complete ultrafilter, since x is a k—compact cardinal.
Consider
iV — M~V"/F*.

Let 7 = i | K. By R. Schindler 8], i is an iterated ultrapower along the cofinal branch of an
iteration tree.

Claim 1 6 can not be of the form k., where k, is one of the images of k along

the iteration 1.

Proof. Just otherwise, § will be regular in (K)™, but ¢ € i(E).
[ of the claim.
So, 0 is not one of k,’s. Then, unless there is an extender involved of a super-strong

type, there will be n < w, f : [k|™ — K, generators p; < ... < f1,, < d such that

Consider in K the following set
C={v<k|Va,..a, € V]¥flay,...,a,) <V}

Then, C is a club. Hence, C € Fy, C F. So, § € i(C) = i(C), which is impossible.
Contradiction.
l



4 Some weakening.
Let us consider the following natural weakening of k—compactness:

Definition 4.1 k is weakly xk—compact iff for every stationary S C k, the filter Cub | S

can be extended to a k complete ultrafilter over k.

Let us recall the following notion:

Definition 4.2 (Mitchell) Let (U(k, 8) | 8 < p) be a sequence of measures over x. We say

p* < pis a weak repeat point for the sequence iff for every A € U(k, 8*) there is some v < §*
such that A € U(k, 7).

Note that under GCH, the first weak repeat point is an ordinal of cofinality x*, above
k1 and below k.

The next lemma is well known and likely is due to W. Mitchell.

Lemma 4.3 Let /= (U, ) | @ < Ky € dom([?z)&ﬁ < 05(04)> be a coherent sequence
k € dom(U), k = maxdom(U). Suppose that 5* < oY (k) is the first weak repeat point
for (U(k,B) | B < oY (k)). Then there is a sequence (Ag | < B*) such that for every

B # B <5, Ag € Ulw, U (k, ).
Proof. Let < §*. Then there is Bg € U(k, ) such that for every v < S,
Bs & U(k,7)-
Consider

Xp = {v <5 |VE <ol ()(By v ¢ U(w,€))}.

Then Xz € U(k, §), since by coherence
M&g ): V§ < Oiﬁ(U)(/i) = 6(@5,5(35) N /f) = Bﬁ ¢ U(H, f))
It follows that x € i, 3(X3) and then X3 € U(k, 3), where
ip = Gumg) t V — Meg = V©/U(k,B).

Take Ag = Bz N Xs. Then Az € U(k, ), Ag & U(k,7y) for every v < f3, but, also, we

—

can check that Ag € U(k, ) for 8 < v < oY (k).
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Thus, if Az € U(k,7),8 <7< oﬁ(n), then s € i, ,(Xj) and, consequently,

M FVE<y (in,v(Bﬁ Nk) = Bgnek ¢ U(k,€) ),

but f < v and Bs € U(k, S)
|

Theorem 4.4 Suppose that k is a weakly k—compact, then there is a weak repeat point for

the coherent sequence of measures over k in the core model K.

Proof. Pick be a normal measure W over &.
Let
iV e— M=V~
Let i =i [ K. Then
i K — (K)M
is an iterate of K.
Let U(k,n) be the first measure used in 7.

Assume that there is no repeat point over x in K. Then there will be a set 4, € K,
A, € U(k,n) such that

vE#n (Ay £ U(k,E)).

Lemma 4.5 Suppose that B C A,, B € K and B ¢ U(k,n). Then, in V, B is non-

stationary.

Proof. Suppose otherwise. Then there is B C A,,.B € K,B ¢ U(x,n) stationary in V.
Work in V. Let F := Cub, | B.
By the assumption, there is a xk-complete ultrafilter F* over x such that F* D F.
Let
iV —M~V/F*

and

K =1 K — (K)M,
Then 7* it is an iterate ultrapower of K. Let

Then § € i*(B) = i*(B), also, for every C' C & club in K, § € i*(C)
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Claim 2 6 can not be any of the images k, of x obtained during the iteration i*.

Proof. Suppose otherwise. Then there is o such that § = k,. Write i>5 015 = i* where
§ = Ko = crite(isg). So there is v < oM (kq) such that U(kq,7y) is used in the iteration.
Then § € +*(B) implies i.5(B) € U(kq,7). But

K = V€ < o(k) (B ¢ Uk, g)).

Then by elementarity of i.5, we have that

ics(B) & Ul(ka,7)-

Contradiction.
0 of the claim.
So, 4§ is not an image of x during the iteration. Then there are f : [k|® — & and

Kays -+ Ka, < 0 such that

() (Kayy e Kay, ) = 0.

Consider
C¢:= {V S | vp17"7pn <v f(ph;pn) < l/}'

Then C is a club in &, C € K, but § € ¢*(C). Contradiction.
O of the lemma.
Let us conclude now the proof of the theorem.
Notice that Cub | A, € M, since (P(k))" = (P(k))™. By the lemma, it follows that

(P(r))* N Cub | A, =Ul(k,n) € M,

this is a contradiction since U(k,n) coheres with K™ and is in M (it implies that it is in
K™ by its maximality) but is not in K,
UJ

Remark 4.6 1. The above proof actually shows that non of U(k,n)’s with 1 below a
weak repeat point can be extended to a normal k—complete ultrafilter and every stationary
X C k,X € K must have measure one in one of the measures over x in K.
2. If we assume that only the following:

for every stationary A C k, A € K the filter C'ub | A extends to a k—complete ultrafilter,

then the argument goes through and the conclusion will be the same.



The next result is strengthening a bit the previous one.

Theorem 4.7 Suppose that for every A C k, A € K such that AN Regular is stationary,
the filter generated by (Cub, | AN Regular)X extends to a k—complete ultrafilter. Then

there is a repeat point for the coherent sequence of measures over k in the core model K.

Proof. Proceed as in 4.4. Let W be a normal measure over x.
Let
i Ve— Mx=VE/W.

Consider ¢ =i | K. Then
it K — (K)M

is an iterate of K.

Let U(k,n) be the first measure used in 7.

Assume that there is no repeat point over x in K. Then there will be a set A, € K,
A, € U(k,n) such that

Ve # 1 (Ay £ U(k,E)).

Some of the elements of A, may be singular in V, still AN Regular is stationary since A € W
and W is a normal measure.

The following analog of Lemma 4.5:

Lemma 4.8 Suppose that B C A,, B € K and B ¢ U(k,n). Then, in'V, BN Regular is

non-stationary.

Proof. Suppose otherwise. Then there is B C A,,B € K,B ¢ U(k,n) stationary in V.
Work in V.
Let F be the filter generated by (Cub, | B)¥, i.e.

F={XCk|(3CeK aclb)(XDBnC)}.

By the assumption, there is a xk-complete ultrafilter F* over x such that £* D F.
Continue now exactly as in Lemma 4.5. Note that the club C defined there at the final
stage is in K, hence § € 7*(C). Contradiction.

O of the lemma.
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Let us conclude now the proof of the theorem.
Notice that Cub, [ A, N Regular € M, since V and M agree about regularity of cardinals
below « (just x is the critical point) and (P(k))" = (P(k))™. By the lemma, it follows that

(P(k))* N (Cub | A, N Regular) = U(k,n) € M,

this is a contradiction since U(k,n) coheres with K* and is in M (it implies that it is in
KM by its maximality) but is not in K,
U

5 Forcing constructions-regular cardinals.

In this section we would like to provide an upper bound on consistency strength of a weakly
rk—compact cardinal x and weaker properties considered in the previous section.

Let us start with the following observation.

Theorem 5.1 Suppose that there is a weak repeat point over k in the core model. Then
there is a cofinality preserving extension in which for every X C k, X € K stationary and
consisting of regular cardinals, the filter generated (Cub, | X)X extends to a k—complete
ultrafilter. However there is X C k, X € K stationary and consisting of reqular cardinals,
such that the filter Cub, | X does not extend to a k—complete ultrafilter.

Proof. Let

U={U(ka)a<n

be a coherent sequence of measures over £ in K, o(k) =n+ 1 and 7 is the least weak repeat
point for U. Tt is well known (see for example [2]) that then cof(n) = st and for every
X € U(k,n) the set

{E<n| XUk}

is unbounded in 7. Denote by F, the following set:

{(XCr[Iy<nVB(y<B<n— X cU(B)}

Then it is a k—copmplete filter over x and U(k,n) O F,, since otherwise there will
be a set Y € F, \ U(k,n). But, then s \'Y € U(x,n), which is impossible, since the set
{E<n|r\Y € U(k, &)} is unbounded in 7.
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Define now a Backward Easton iteration
(Pa,Qp | B< Ky < K+ 1),

Suppose that o < k + 1 and P, is defined. Define ). Set ), to be a trivial forcing unless
o(a) > 0 is a limit ordinal. ~ h
Once o(a) > 0 and it is a limit ordinal, then let @, be the less than a—support iteration of
the standard forcing notion for adding a club intoNX U Singular, for every X C « such that
for some vy < a,
Xe () Up.
7<B<o(a)

Now, the elementary embedding i, : K — K, ~ K"/U(k,n) extends, but non of i, for
¢ < n. However, we will extend the embeddings by U(k,n) x U(k, &), for £ < 5. This way it
will be insured that for each X C kN Regular, X € K which is stationary in the extension
there will be a k—complete ultrafilter including (Cub, | X)X. Such ultrafilter will be an
extension of U(k,n) x U(k, &) with X € U(k,£).

Let G(P,) * G(Qyx) be a generic subset of P, gﬁ.

Lemma 5.2 The elementary embedding
iy K = K, ~ K*/U(k,n)
extends to an elementary embedding

iy KIG(Pe) * G(Qu)] = IG[G (P () % G(Qiy )],

n

for some K, —generic subsets G(P;, (x) * G(Qi,(x)) 0f in(Pe * Qx).

Proof. Note that F,, € M,, by the coherency of the sequence U. The club subsets are added
over k to X U Singular, for every X € F,. But each X like this is necessary in U(k, 7).
So i, extends in a standard way. Note that the adding of singulars provides enough closure
in order to construct a master condition sequence.
0 of the lemma.
Let
ine t K — K¢ K* JU(k,n) x U(k, &)

be the elementary embedding corresponding to U(k,n) x U(k, &), where & < n.

Then, similar to 5.2, we obtain the following:

12



Lemma 5.3 Let & < 1. Then the elementary embedding
ine + W — Kope
extends to an elementary embedding
g+ K[G(Pe)  G(Qr)] = KnelG (P () * G( Qi)
for some K,¢—generic subsets G(P;, (x) * G(Qi,(x)) Of ine( P * Qﬁ)

Suppose now that X C kN Regular, X € K is stationary in the extension. Then there
is £ < n such that X € U(k,¢). Hence,

k € ig(X) and ip(k) € ie(X).
Also, if C C k,C € K is a club, then
k € ig(C) and i, (k) € inye(C).
Consider now in K[G(P,) * G(Q,)] the following k—complete ultrafilter:
Us :={Y C & |iy(r) € ipe(Y)}.
Then
(Cub | X)® C Uk

It remains to give an example of a stationary (in the extension) set X C kN Regular, X €
K such that the filter Cub, [ X does not extend to a k—complete ultrafilter.
Let X be any F,—positive set in K which does not belong to U(k,n).
Suppose that the filter Cub,, [ X extends to a k—complete ultrafilter W. Consider

iw : K[G(P,) * G(Qr)] = Mw ~ K[G(P,) * G(Q.)]"/W.
Let
§ = [idly and i = iy | K.
Then
it — KM

The forcing used was cofinality preserving forcing. Then, also, K™% and My, agree on
cofinality of ordinals. In addition, My is closed under k—sequences of its elements, as an
ultrapower by a k—complete ultrafilter. Hence, 7 is finite iterated ultrapower of K.

It follows, as in 4.5, that ¢ is k or one its images in this iteration.
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Claim 3 § # k.

Proof. Suppose otherwise. Then W is normal. The iteration ¢ starts with a normal measure
U(k,§), for some £ <n=o(k)—1,and W D U(k, ). But X ¢ U(k,n), hence £ < n. Recall
that 7 is the first weak repeat point. So, there is A, € U(k, &) which does not belong to
any other U(k, &) with & # £. Then the forcing @), adds a club C' disjoint with A,. Hence,
C € W, but also X N A¢ € U(k, &) C W. Contradiction.

[ of the claim.

So, § # k. In addition, W 2 U(k,n). Hence there is £ < 7 such that ¢ is the critical point
of the iteration at a step where an image of U(k, &) was applied. Then W D U(k, &), but
such possibility was already ruled out in the claim above. Hence we obtain a contradiction.

In order to finish the proof, we need to show that the set X as above remains stationary.
Suppose otherwise. Then the forcing Q) over K[G(P)] adds a club C disjoint to X. Recall
that Q, is a < k—support iteration of forcings of cardinality x of the length x*. So, there
B < kT such that already @, | 5 adds C.

Pick now p < n such that

1. X € U(k,p),

2. for every p',p < p' < n, for every Y € U(k,p') there is no forcing shooting a club
through Y in the iteration @, [ B.

This is possible since cof(n) = k* and X € U(k, () for unboundedly many ¢ < 7. But, the
elementary embedding
i, K = K, ~ K"/U(k,p)

extends to an elementary embedding
iy K[G(FPe) * (G(Qx | p)] = KyG (P, (n) * G(Qiy )],
as in Lemma 5.2. This is clearly impossible, since we will have that both
Kk € 1,(X) =i, (X) and k € i, (C).

Contradiction. So, we are done.
O

Let us deal now with an other filter and extend the previous result to filters of the form
Cub, | X where X is as in 5.1.
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Theorem 5.4 Suppose that there is a weak repeat point over k in the core model. Then
there 1s a cofinality preserving extension in which for every X C k, X € K stationary and

consisting of reqular cardinals, the filter C'ub,, | X extends to a k—complete ultrafilter.

Proof. Let
U= (U(k,a) | a <n)
be a coherent sequence of measures over « in K, o(k) = n+ 1 and 7 is the least weak repeat

point for U. It is well known (see for example [2]) that then cof(n) = x* and for every
X € U(k,n) the set

{E<nXeUx &}
is unbounded in 7. Denote by G, the filter

ﬂ U(k, ).

a<n

We have
ﬂ Uk, a) = ﬂ U(k,a) and U(k,n) 2 ﬂ Uk, a),

a<n a<n a<n
since 7 is a weak repeat point.

Define a Backward Easton iteration
(Pa,Qp | B < Ky < K+ 1),

Suppose that o < k + 1 and P, is defined. Define (),. Set @), to be a trivial forcing unless
o(a) > 0 is a limit ordinal.
Once o(e) > 0 and it is a limit ordinal, then let @, be the less than a—support iteration of

the standard forcing notion for adding a club into X U Singular, for every X C « such that

Xe [ Ulap).
B<o(a)

Let G(Py) * G(Q,) be a generic subset of Py * Q.

The proof of the next lemma is the same as those of 5.2.
Lemma 5.5 The elementary embedding
in: K — K, ~ K"/U(k,n)
extends to an elementary embedding
iy K[G(Fe) x G(Qx)] = KGR, () * G(Qiym)],
for some K, —generic subsets G(P;, (x)) * G(Qi,(x)) 0of 1n( P * g“)
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Let £ < 7. Consider
ing I — Koy = K U (1, 1) x U5, €)
the elementary embedding corresponding to U(k,n) x U(k,&). It can be written also as
K —" K, —"t K, ¢,

where k¢ is the canonical embedding of K, into its ultrapower by i,(U(k,&)).

Similar to 5.2, we have the following:

Lemma 5.6 Let £ <n. Then the elementary embedding
e : K — K¢
extends to an elementary embedding
e+ KIG(Fr) x G(Qr)] = K| G(F ) * G(Qi ()]

for some K,c—generic subsets G(P;,  (x)) * G(Qi,e(r)) Of ine(Pr % Qﬁ)

Let us argue that in the present situation also k¢, and so, the all diagram extends.
Lemma 5.7 Let £ <n. Then the diagram

K —" K, —"t K,

extends to

K[G(F) + G(Qu)] —" K[G(Pi) * G(Qiy )] —" Kne[G(Prrein) * Qi)

for some K,¢—generic subsets G(P;, . (x)) * G(Qi,e(r)) 0f ine( P * Q).

Proof. The new point here is that the forcing Q;, (x) used at i, (k) over K,[G(P; (x| shoots
clubs only to sets which belong to

In particular, every subset of 4,(x) into which @, (. shoots a club belongs to U (i, (k),i,(£)).
Also,

in(K) € kye(X) iff X € U(iy(k),i,(8)).
Hence, we can add iy (k) to k,s"C = C and keep it a condition in @; .(x), for every generic

(ie. in G(Qi,(x))) club C Ciy(x). So, ky¢ extends as well as the diagram.

O of the lemma.
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Lemma 5.8 Let £ <n and
e + K[G(Fx) % G(Qr)] = Ke[ G(Piy ) * G(Qiy))];
be as in the previous lemma (5.7). Then for every club C C k in K[G(P,)*G(Q)], we have
in(K) € ine(C).

Proof. By Lemma 5.7,

The critical point of k;; is i,(x) and 7;(C) is unbounded in 4,(x). Hence,

in(K) € ke (i (C) = i (C).

O of the lemma.
Suppose now that X C kN Regular, X € K is stationary in the extension. Then there
is £ < n such that X € U(k,¢). Hence,

k € ig(X) and i, (k) € ipe(X).
Also, if C' C k is a club, then, by Lemma 5.8,
in(K) € ine(C).
Consider now in K[G(P,) x G(Q,)] the following k—complete ultrafilter:
Us :={Y C & |iy(k) € ip(Y)}.
Then
Cub | X CUk.
O
Remark 5.9 It is possible to show that in K[G(P,) * G(Qy)],
U () = {V C k| m € i3V}
is the only normal measure and each Ug, with £ < 7, is a non-normal )—point measure.
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Let us now remove the restriction X € K from the previous theorem.

Theorem 5.10 Suppose that there is a weak repeat point over k in the core model. Then
there is a cofinality preserving extension in which for every stationary X C k consisting of

reqular cardinals, the filter Cub, | X extends to a k—complete ultrafilter.

Proof. We proceed as in 5.4.
Let

—

U={U(ka)la<mn

be a coherent sequence of measures over « in K, o(k) = n+ 1 and 7 is the least weak repeat
point for U. Tt is well known (see for example [2]) that then cof(y) = st and for every
X € U(k,n) the set

{E<n| X eUx}

is unbounded in 7. Denote by G, the filter

ﬂ U(k, ).

a<n

We have
ﬂ U(k,a) = ﬂ U(k,«) and U(k,n) 2 ﬂ Uk, a),

a<n a<n asn
since 7 is a weak repeat point.

Let us first continue further as in 5.4. So, we define a Backward Easton iteration

(Pa,Qp | B< ki, < K+ 1),

Let G(P,) * G(Q,) be a generic subset of P, * Q.
Suppose now that X C x is stationary in V[G(P,) * G(Q,)] which consists of regular
cardinals.

Cousider first extensions of
iy V — M, ~V"*/U(k,n).

If there are condition p € G(P,) * G(Qx) and ¢ € i,(Py * Qx)/ Py * Q, such that

~Y

(p7 Q) H_ K€ ZH(X)a

~ Y
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then X will belong to a normal ultrafilter which extends U(k, n).
Suppose that this is not the case.
Then, there is p € G(P,) * G(Q,) such that

(p, 0) IFn & ip(X).

We can alter the name X of X such that for every v < &, if a condition (s, 1) € Py is

incompatible with f(v), then
(7, (s, 1)) € X,

where f is a function which represents (p, 0) in M,. So, using such name, we will have

OPin(n)Jrl I+ n ¢ Zﬁ(‘,)\,()

Set
Y, ={v<k|0Op, FvgX}

Then Y;, € U(x, ) and, in VIG(Fy) + G(Qn)],

Y,NnX =0.

Now, let us do a similar thing for every £ < n.
Consider
ing 2 V = Myg = V™ [U(k, 1) % U(5,£)

the elementary embedding corresponding to U(k,n) x U(k,&). It can be written as
V. —t M, —Fe M, .,

where k¢ is the canonical embedding of M, into its ultrapower by 4, (U(k, £)).
By Lemma 5.6, the elementary embedding

ine 1V — My
extends to an elementary embedding
e+ VIG(Py) * G(Qr)] = Mye[G(Ps () * G( Qi)
for some M,e—generic subsets G (P, . (x)) * G(Qi,¢(x)) OF tine(Px * Qﬁ) Also, ke extends to
k;;é : Mn[G(Pin(n)) * G(Qin(m))] - Mnf[G(Hng(K)) * G(Qz’ng(m))h
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for some M, —generic subsets G (P ;(x)) * G(Qi,¢(x)) Of ine(Px * Q). If there are condition
p={(r,5) € G(P:)*G(Qx) and ¢ € iye(Py *Qy)/ Py * Q, which extends 7,” s and such that

(p, g) I i,(k) € in§(;>g)7

then X will belong to a normal ultrafilter which extends U(k, &).
Suppose that it is not the case. Then there is a condition p = (r, s) € G(Px) * G(Q,) such
that for every ¢ € ipe(Ps * Qx)/Ps * Q. which extends 4," s, we have

(0. 0) I ig() & inglX).

Counsider
ig: V= M ~ VF/U(k, €).

Claim In Mg,
(2, 0) IF & & ie(X).

Proof. Suppose otherwise. Then there is some ¢ € ig( Py * gﬁ)/Pﬁ * Q,{, t >1i¢" s such that
(0. 1) I 5 € ig(X).
We would like to use now the elementary embedding
Ogy + Mg — Mye
which is defined as follows:
oen(ie(9) (k) = (ine(9))(in(k))-
Apply ogy to (p, ). Then, by elementarity, in M,

(s 06y (1)) IF £ € 0y (ie(X)) = ine(X).

The condition ¢ > " s translates into og,(#) > i," s. But this is impossible.
Contradiction.
[ of the claim.
Now, as above with 7, we can alter the name X and find Y; € U(x,£) such that in
VIGP) + G(Qy)
YenX =0.

20



Set Y = .., Ye. Then YN X =0 and for every { <n, Y 2 Y, € U(k, ).
Hence, if Y € V then a club was added to Y U Singular.

We have 2¢ = kT and the forcing P, ; satisfies k™ —c.c., hence, there is a sequence
(Ze|E<m eV

such that Z, € U(k, &) and |Z; N X| < k.

However this does not guarantee that there will be a set in 7, = (., U(k, &) disjoint with
X.

In order to deal with this problem, let us modify the forcing a bit: if at some stage of the
iteration a set X as above appears, then let us force a club disjoint to it.

Such modified version shares the properties of the original forcing, but in the final extension
there will be no stationary sets X as above and so for every stationary set S consisting of

regular cardinals the filter Cub, | S extends to a k—complete ultrafilter.
O

6 Forcing constructions-singular cardinals.

Let us extend now the previous results in order to include stationary sets consisting of

singular ordinals as well.

Theorem 6.1 Suppose that there is a weak repeat point over k in the core model. Then
there is cardinal preserving extension in which for every X C k, X € K stationary, the filter

Cub, | X extends to a k—complete ultrafilter.

Proof. Let

U=({U(r,a)|v<kor)>0a<or))

be a coherent sequence of measures in K. Assume that o(k) = n+ 1 and 7 is the least weak
repeat point for
Uk, a) [ <

Force with Easton iteration of Prikry-Magidor forcings and change cofinality of each
v < k such that o(r) > 0 and cof(o(v)) < v*. This way v’s below x with cof(o(v)) = v

remain measurable.
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Let V = K and denote the generic extension above V; = V[G].
Fix an extension U;(k,n) of U(k,n) in Vi. Let

iy : Vi =VI[G] = M) = M,[G]

n

be the corresponding embedding. Note that Mn is not M, but rather its iterated ultrapower.
Consider the set R, of all possible extensions of U(x,§) in M, or equivalently in M, [G], for
every £ < 7. Set

R(n) = [ JRe.

&<n

Lemma 6.2 Let X € Uy(k,n). Then X € W, for some normal measure W € R(n).

Proof. 1t is enough to proof the statement for sets of the form

X, ={v<k|plv f,(v) G},

where p € G and [ represents (mod Uy (k, 7)) the part of p above k.
Clearly there are many W € R with X, € W.
O of the lemma.

Define now over V; a Backward Easton iteration
(Pa,Qp | B < Ky < K+ 1),

Suppose that o < kK + 1 and P, is defined. Define ),. Suppose first that o < k. Set @, to
be a trivial forcing unless in K, cof(o(«)) = k™.
Once it is, then let @), be the less than a—support iteration of the standard forcing notion

for adding a club into X, for every X C « such that

X € (R(a),

where R(«) is is the intersection of all a—complete ultrafilters over « in Vj, i.e. of all
extensions of U(q, f), 8 < o(a).

Note that such @, preserves cardinals (and cofinality), since we have here closed chunks of
Magidor sequences of arbitrary length below «.

If & = k, then let ga be the less than a—support iteration of the standard forcing notion

for adding a club into X, for every X C « such that

X € ﬂR(n)
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Again, such @, preserves cardinals (and cofinality), since we have here closed chunks of

Magidor sequences of arbitrary length below x.
Let G(P,) * G(Qy) be a generic subset of Py * Q.

It is natural now to try to extend the elementary embedding

iy : Vi =VI[G] = M} = M,[G].

However, the forcing ), seems to have not enough closure for this. So, instead of dealing
directly with i717’ let us choose an other embedding.

Consider in V' the sequence
({U(k,B) | B <r").
The first forcing turns it into a Rudin-Keisler increasing. More precisely, there is a sequence

(Uy(k,B8) | B< k™)

in V; (i.e. before forcing clubs) of extensions which is a Rudin-Keisler increasing. Also, there

is such a sequence consisting of elements of R(n). Let

(Uy(k,B) | B< k™)

be such a sequence.

Consider now the following sequence
(Ui(s,m) x Ur(k, B) | B < 7).
It is still a Rudin-Keisler increasing. Let
iy Vi — My

be the corresponding embedding into its direct limit. Then M} is closed under k—sequences
of its elements and its core model, which we denote by K7, is a further iteration of Mn which

uses measures from
(k. B) | B < K7)).

We claim that the embedding 4; extends.
Lemma 6.3 The elementary embedding
z:; V= M;
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extends to an elementary embedding
iy VI[G(P) * G(Qu)] = MG, () * G(Qiy )],

for some My—generic subsets G(P, (x)) * G(Qi,(x)) of 1(Pe * Q).

Proof. The proof is rather standard and similar to those of Lemma 5.5. The new point here

is to use the critical points measures

iy ((Ui(k, B) | B < KT))

in order to proceed k' —many steps in the process of constructing of a master condition
sequence.
(1 of the lemma.

Let £ < 7. Consider

. Ii2
e - K — Kﬁ:f ~ K /U(/{777) X U(’@f)
the elementary embedding corresponding to U(k,n) x U(k,&). It can be written also as
K —" K, —"t K, ¢,

where k;¢ is the canonical embedding of K, into its ultrapower by i,(U(k,&)).
Now, instead of extending this diagram directly, as in 5.4, let us add a Rudin -Keisler
increasing sequences of the length x* to both 1 and &.
Proceed as follows. Let U, (k, ) be an extension in V; of U(k, &) which belongs to R (7).
Let
it : Vi = V[G] = M} = M¢[G]
be the corresponding elementary embedding.
Let
Uik, B) | B < KT)
be as above. We will use
(Ui(k,m) x Ui(k, B) | B < k"),
its elementary embedding
iy Vi = M,

and an extension

iy Vi[G(Px) % G(Qx)] = My[G(Pi) * G(Qiy )],

n
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given by Lemma 6.3.
Add Ui (k, &) in the following fashion. Consider

<U1(H777) X Ul(/{7ﬁ) X Ul('%7€) X Ul(/{7ﬁ) ‘ ﬁ < H+>‘
It is still Rudin-Keisler increasing. Let
e+ Vi — My,

be its elementary embedding into the direct limit.
It can be written also as

Vi — My e My

where k. is the canonical embedding of M} into its ultrapower by the system
in(U1(5,€) x Ur(k, B) | B < KT)).
Then the following analog of Lemma 5.7 holds:
Lemma 6.4 Let £ <n. Then the diagram
Vi —h My —Pe M,
extends to

5ok K

VI[G(Py) x G(Qy)] —" My[G(P; () * G(Qis )] — ¢ Mye[G(Pr: () % G(Qi )],

n
for some My.—generic subsets G(PZ-:K(H)) % G(Q%(K)) of iype( Py * QK)

Proof. The proof just combines the arguments of 5.7 and 6.3.

O of the lemma.
Lemma 6.5 Let £ <7 and
i22 VG (P + GlQu)] — MGy * Qo)
be as in the previous lemma (6.4). Then for every club C C k in Vi[G(P,)*G(Qy)], we have

(k) € i%2(C).
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Proof. By Lemma 6.4,

ek 7ok sk
e = kpg 01"
The critical point of kf is iy (x) and 4;*(C) is unbounded in 4;(x). Hence,

O of the lemma.

Suppose now that X C x, X € K is stationary in the final extension Vi[G(F;) * G(Qx)]-
Then there is £ < 1 such that X € U(k,¢). Hence,

K € ig(X) and iy (k) € iye(X).
Also, if C' C k is a club, then, by Lemma 6.5,
in(K) € iy (C).
Consider now in V;[G(P;) * G(Q)] the following xk—complete ultrafilter:
U ={Y Crl|ip(r) €ipe(Y)}.
Then

Cub | X C U

OJ
In order to deal with arbitrary stationary sets which may be not in K, combine the

previous construction (6.1) with one of 5.10. We obtain the following:

Theorem 6.6 Suppose that there is a weak repeat point over k in the core model. Then there
s cardinal preserving extension in which for every X C k stationary, the filter Cub, | X

extends to a k—complete ultrafilter.

7 Open problems.

Let us conclude with the following questions.
Question 1. What is the exact consistency strength of a k—compact cardinal k9

We think that it should be somewhere beyond a superstrong.
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Question 2. What is the exact consistency strength of the following statement:
every normal k—complete filter over a cardinal k extends to a k—complete ultrafilter?

By previous results at least a weak repeat is needed. But may be the upper bound is

below o(k) = k17
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