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Abstract. Continuing [1], we develop a version of Extender-based Magidor-

Radin forcing where there is no extender on the top ordinal. As an application,
we provide another approach to obtain a failure of SCH on a club subset of

an inaccessible cardinal, and a model where the cardinal arithmetic behaviors

are different on stationary classes whose union is a club.

1. Introduction

In [1], we developed a Prikry-type forcing which shoots a club subset of κ con-
taining all former regular cardinals from the optimal assumption. Unlike [2], the
regular cardinals outside the club remain regular. The forcing in [1] can be viewed
as the Magidor-Radin forcing with interleaving quotients, and there were no ul-
trafilters on the top cardinal required in the forcing construction. In this work,
we develop a forcing with the same style, but use Extender based Magidor-Radin
forcing instead.

In [3], they provided a consistency results where there are models of ZFC such
that there are stationary classes in which the cardinal arithmetic behaves differently
with the optimal assumptions. As an application, we provide a ZFC model where
GCH fails on a club, and a ZFC model where there are stationary classes in which
cardinal arithmetic behaves differently, as stated in Theorem 9.1.

The organization of the paper is the following. In Section 2 we introduce all
basic ingredients we need to develop the forcing. From Section 3 to Section 8,
we develop the forcing in which a club class of cardinals α with 2α = α++. The
forcing for building a club class of cardinals is built from approximated forcings,
which will be built by recursion. The basic cases are constructed in Section 3. In
Section 4 we state all the properties we need to be true, and show that the forcings
in the first few levels satisfies the properties. Then the construction proceeds in
Section 5, Section 6, and Section 7. The main forcing will then be introduced in
8. Lastly, in Section 9, we sketch a generalization of the forcing to get different
cardinal behaviors on different stationary classes.

Although a version of Extender-based forcing and the Extender-based Magidor-
Radin forcing looks slightly different from [4], I assume that the readers are familiar
with the Extender-Based Magidor-Radin forcing.

Conventions: Without mentioning, we assume that every forcing has the weakest
element 1. p ≤ q means p is stronger than q. When possible, every name in this
paper will be in the simplest form. For sets A and B, A ⊔ B just means A ∪ B
where A ∩B = ∅. If f is a function and d is a set, define f ↾ d as f ↾ [d ∩ dom(f)].

The authors were partially supported by ISF grant No. 1216/18.
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Throughout the paper, the forcing at level ρ, denoted by Pρ will be defined. We
often abbreviate the ⊩Pρ by ⊩ρ. If x⃗ = ⟨xα,β⟩ is a sequence indexed by pairs of
ordinals, we define

x⃗ ↾ (α, β) = ⟨xα′,β′ | α′ < α or (α′ = α and β′ < β)⟩,
and

x⃗ ↾ α = x⃗ ↾ (α, 0).

2. Basic preparation

From now until Section 8, we have the following hypotheses.

Assumption 2.1. GCH holds. κ is a strongly inaccessible cardinal. There is a

function ◦ : κ → κ and E⃗ = ⟨E(α, β) | α < κ, β < ◦(α)⟩ such that

(1) E(α, β) is an (α, α++)-extender, which means that if

jα,β : V → Ult(V,E(α, β)) =: Mα,β

is the ultrapower map, then crit(jα,β) = α, and Mα,β computes cardinals
correctly up to an including α++.

(2) E⃗ is coherent, namely

jα,β(E⃗) ↾ (α+ 1) = E⃗ ↾ (α, β).

(3) for all α, ◦(α) < α.
(4) For every γ < κ, the collection

{α < κ | ◦(α) ≥ γ}
is stationary.

Definition 2.2. Let α < κ. We say that d is a α-domain if d ∈ [α++ \ α]≤α and
α ∈ d. Define C(α+, α++) as the collection of functions f such that dom(f) is a
α-domain d, and rng(f) ⊆ α. Define the ordering in C(α+, α++) by f ≤ g iff f ⊇ g.

Note that C(α+, α++) is isomorphic to Add(α+, α++), the forcing adding α++

subsets of α+.

Remark 2.3. If |P | ≤ α and Ċ(α+, α++) is a P -name of the forcing interpreted in
the extension, then

⊩P “{ḟ ∈ Ċ(α+, α++) | dom(ḟ) = ď, d ∈ V } is dense”.

We identify such and ḟ by f with dom(f) = d, and for α ∈ dom(f), f(α) is a
P -name of an element below α.

Until the end of this section, fix α with ◦(α) > 0 and β < ◦(α). We introduce
some definitions and facts which will be used since Section 7. Fix a α-domain d.

• Define mcα,β(d) = {(jα,β(ξ), ξ) | ξ ∈ d}.
• Define Eα,β(d) by X ∈ Eα,β(d) iff mcα,β(d) ∈ jα,β(X). Then Eα,β(d) con-

centrates on the collection OBα,β(d) of (α, β)-d-objects, which are functions
µ such that

– α ∈ dom(µ) ⊆ d, rng(µ) ⊆ α (in fact, we can assume that rng(µ) ⊆
µ(α)++).
(The reason is that dom(mcα,β(d)) = jα,β [d] ⊆ jα,β(d), jα,β(α) ∈
jα,β [d], rng(mcα,β(d)) = d ⊆ α++ = mcα,β(d)(jα,β(α))

++).
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– ◦(µ(α)) = β, in particular, µ(α) is strongly inaccessible, |dom(µ)| ≤
µ(α)++, and µ is order-preserving.
(The reason is that jα,β(◦)(α)Mα,β = β, α is inaccessible, |dom(mcα,β(d))| =
|d| ≤ α++, and mcα,β is order-preserving.)

• Let Xν ∈ Eα,β(d) for ν < α. Define the diagonal intersection

∆ν<αXν = {µ ∈ OBα,β(d) | ∀ν < µ(α)(µ ∈ Xν)}.

Then ∆ν<αXν ∈ Eα,β(d).
• The measure Eα,β({α}) is normal, and is isomorphic to Eα,β(α), which is
defined by X ∈ Eα,β(α) iff α ∈ jα,β(X).

• if d′ ⊇ d is an α-domain, there is an associated projection from Eα,β(d
′)

to Eα,β(d) induced by the map πd′,d : OBα,β(d
′) → OBα,β(d) defined by

πd′,d(µ) = µ ↾ d (i.e. µ ↾ (d ∩ dom(µ)). In particular, there is a projection
from Eα,β(d) to Eα,β({α}).

• Similar as in the proof of Lemma 2 [5], there is a measure-one set Bd ∈
Eα,β(d) such that for every ν < α, {µ ∈ OBα,β(d) | µ(α) = ν} ≤ ν++. We
will assume that for every A ∈ Eα,β(d), A ⊆ Bd.

We now no longer fix β, but still fix α and d.

• µ is an α-d-object if µ is an (α, β)-d-object for some β < ◦(α). Denote the
collection of α-d-object by OBα(d). For each pair of α-d-objects µ and τ ,
define µ < τ if dom(µ) ⊆ dom(τ) and µ(α) < τ(α). Equivalently, µ < τ iff
dom(µ) ⊆ dom(τ) and for γ ∈ dom(µ), µ(γ) < τ(γ).

• Define X ∈ E⃗α(d) iff X can be written as X = ∪β<◦(α)Xβ where Xβ ∈
Eα,β(d). Note that for each α-d-object µ, {τ ∈ OBα(d) | µ < τ} ∈ E⃗α(d).

• Let Xν ∈ E⃗α(d) for ν < α. The diagonal intersection

∆ν<αXν = {µ ∈ OBα(d) | ∀ν < µ(α)(µ ∈ Xν)}

is in E⃗α(d).
• If µ < τ , we define µ ↓ τ = µ ◦ τ−1, which is the function whose domain
is τ [dom(µ)] and for γ ∈ dom(µ), (µ ↓ τ)(τ(γ)) = µ(γ). Since τ is order-
preserving, we have that µ ↓ τ is well-defined.

• If X is a set of α-d-object and τ ∈ OBα(d), define X ↓ τ = {µ ↓ τ |
µ < τ, ◦(µ(α)) < ◦(τ(α))}. By the coherence of the extenders, we also

assume that every X ∈ E⃗α(d) is coherent, i.e. for every τ ∈ X, X ↓ τ ∈
E⃗τ(α)(τ [d ∩ dom(τ)]).

• Let µ⃗ = ⟨µ0, · · · , µn−1⟩ be an increasing sequence of α-d-objects, define
µ⃗(α) = µn−1(α), which is just an inaccessible cardinal below α. Also
write dom(µ⃗) = dom(µn−1). Also, if µn−1 < τ , we define µ⃗ ↓ τ = ⟨µ0 ↓
τ, · · · , µn−1 ↓ τ⟩.

• A is an α-d-tree if A consists of nonempty finite increasing sequences of
α-d-objects, and A has the following descriptions:

– µ⃗ ≤A τ⃗ iff µ⃗ ⊑ τ⃗ (µ⃗ is an initial segment of τ⃗).
– Levn(A) is the collection of ⟨µ0, · · · , µn⟩ in A, so they have lengths

n+ 1.
– We require that Lev0(A) ∈ E⃗α(d).
– For µ⃗ ∈ A, define SuccA(µ⃗) = {τ | µ⃗⌢⟨τ⟩ ∈ A}. We require that

SuccA(µ⃗) ∈ E⃗α(d).
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• If A is an α-d-tree and µ ∈ Lev0(A), define A⟨µ⟩ = {τ⃗ | ⟨µ⟩⌢τ⃗ ∈ A}, and
we recursively define A⟨µ0,··· ,µn⟩ = (A⟨µ0··· ,µn−1⟩)⟨µn⟩.

• Fix d′ ⊆ d an α-domain and µ⃗ = ⟨µ0, · · · , µn−1⟩ is a finite increasing
sequence of α-d-objects, define µ⃗ ↾ d′ = ⟨µ0 ↾ d, · · · , µn−1 ↾ d′⟩. If we
assume that A is an α-d-tree, define A ↾ d′ = {µ⃗ ↾ d′ | µ⃗ ∈ A}. Then A ↾ d′

is an α-d′-tree.
• If d′ ⊇ d is an α-domain, and A is an α-d-tree, the pullback of A to d′, is
{µ⃗ ∈ [OBα(d

′)]<ω | µ⃗ is increasing and µ⃗ ↾ d ∈ A}. Note that the pullback
is an α-d′-tree.

• A treeA is generated byB ∈ E⃗α(d) if Lev0(A) = B, and for µ⃗ = ⟨µ0, · · · , µn−1⟩ ∈
A, SuccA(µ⃗) = {τ ∈ B | µn−1 < τ}. Such a tree is an α-d-tree. Further-
more, every α-d-tree A has a sub α-d-tree which is generated by some B ∈
E⃗α(d): for each ν < α, let Xν = ∩µ⃗∈T,µ⃗(α)≤ν SuccA(µ⃗), and B = ∆νXν .
We assume that every d-tree A is generated by some B ⊆ Bd.

• We write A(α) = {µ⃗(α) | µ⃗ ∈ A}. If A is generated by B, then A(α) =
B(α) = {µ(α) | µ ∈ B}.

• If A is an α-d-tree and τ is an object, define A ↓ τ = {µ⃗ ↓ τ | ∀i(µi <
τ and ◦ (µi(α)) < ◦(τ(α)))}. By the coherence, assume that for each τ ,

A ↓ τ is an τ(α)-τ [d ∩ dom(τ)]-tree, with respects to E⃗τ(α)(τ [d ∩ dom(τ)]).

Remark 2.4. For every d-tree A and ν, we assume that {µ⃗ ∈ A | µ⃗(α) = µ|µ⃗|−1(α) =

ν} has size at most ν++.

3. The first few levels

We consider the forcings at the first ω inaccessible cardinals, so, the extenders are
not involved. We first analyze just for the first few inaccessible cardinals concretely,
which will be served as the first few basic cases for our induction scheme for the
forcings in the general levels, which will be listed later in Section 4.1.

3.1. The first inaccessible cardinal. Let α0 be the least inaccessible cardinal.
The following describe the scenario at the level α0.

• The forcing Pα0
consists of ⟨f⟩ where f ∈ C(α+

0 , α
++
0 ). For ⟨f⟩, ⟨g⟩ ∈ Pα0

,
define ⟨f⟩ ≤α0

⟨g⟩ iff f ≤∗
α0

g iff f ⊇ g.

• Let Ċα0 be a Pα0-name for the set {α0}.
• Let Ṗα0/α0

be a Pα0-name of the trivial forcing, with the obvious extension
and the obvious direct extension.

• In V Pα0 , let Ċα0/α0
be a Ṗα0/α0

-name of the empty set.

The forcing at the first inaccessible cardinal has nothing particularly interest-
ing. The name Ċα0 will be served as the initial approximation of the final club

where GCH fails at its limit points. The quotient forcing like Ṗα0/α0
will show its

importance later. Ċα0/α0
will also be considered for an approximation of the final

club. It will be more meaningful to write Ṗα̌0/α0
since in general, the ordinal which

appears for the numerator, like α̌0, may be a non-trivial name of an ordinal. Since
this is a check name, we omit the check symbol. A trivial remark is that forcing
Pα0

∗ Ṗα0/α0
is equivalent to Pα0

.

3.2. The second inaccessible cardinal. Let α0 < α1 be the first two inaccessible
cardinals.
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Definition 3.1. The forcing Pα1
consists of two kinds of conditions (apart from

the weakest condition). Conditions of different kinds are not compatible.

(1) The first kind consists of ⟨f⟩ in C(α+
1 , α

++
1 ). For ⟨f⟩ and ⟨g⟩ which are of

first kind, define ⟨f⟩ ≤α1 ⟨g⟩ iff ⟨f⟩ ≤∗
α1

⟨g⟩ iff f ⊇ g.

(2) The second kind consists of p = (⟨f0⟩, ⟨Ṗξ̇/α0
, q̇0⟩)⌢⟨f1⟩, where

• f0 ∈ C(α+
0 , α

++
0 ).

• ⊩α0 “ ≤ α0 ≤ ξ̇ < α1 is strongly inaccessible” (in this case, we can

assume that ξ̇ is α0, or more formally, α̌0).

• ⊩α0
“q̇0 ∈ Ṗξ̇/α0

”.

• dom(f1) is an α1-domain, and for γ ∈ dom(f1), f1(γ) is a Pα0
∗ Ṗξ̇/α0

-

name, ⊩Pα0∗Ṗα0/α0
“f1(γ) < α1”.

• For such a condition, define p ↾ Pα0
= ⟨f0⟩.

From now, we replace ξ̇ by α0. We say that

(⟨f0⟩, ⟨Ṗα0/α0
, q̇0⟩)⌢⟨f1⟩ ≤α1

(⟨g0⟩, ⟨Ṗα0/α0
, ṙ0⟩)⌢⟨g1⟩ iff

(⟨f0⟩, ⟨Ṗα0/α0
, q̇0⟩)⌢⟨f1⟩ ≤∗

α1
(⟨g0⟩, ⟨Ṗα0/α0

, ṙ0⟩)⌢⟨g1⟩ iff
f0 ⊇ g0,dom(f1) ⊇ dom(g1), and for γ ∈ dom(g1), (⟨f0⟩, q̇0) ⊩Pα0∗Ṗα0/α0

“f1(γ) = g1(γ)”.

Let Ċα1
be a Pα1

-name such that for p of the first kind, p ⊩α1
Ċα1

= {α1}, and
for p of the second kind, p ⊩α1

“Ċα1
= {α0, α1}”. We now define different types of

quotients.

• Ṗα1/α1
is a Pα1 -name of the trivial forcing, with the obvious extension and

the obvious direct extension. In V Pα1 , let Ċα1/α1
be a Ṗα1/α1

-name of the
empty set.

• The quotient Ṗα1/α0
is a Pα0 -name of the following forcing notion. Let G be

Pα0
-generic. The forcing Pα1

[G] := Ṗα1/α0
[G] consists of (⟨∅⟩)⌢⟨f⟩ where

⊩Ṗα0/α0
[G] “f ∈ C(α+

1 , α
++
1 )” (C(α+

1 , α
++
1 ) is considered in (V [G])Ṗα0/α0

[G]),

and dom(f) ∈ V . The extension and the direct extension are the natural

ones. Back to the ground model, in V Pα0 , let Ċα1/α0
be the Ṗα1/α0

-name
for {α1}. The point of having an empty set in the condition because it
is more natural to translate a condition in Pα1

of the second kind to a

condition in Ṗα1/α0
, namely, for each p = (⟨f0⟩, ⟨Ṗξ̇/α0

, q̇0⟩)⌢⟨f1⟩ in Pα1
,

we have that ⊩α0
“(⟨q̇⟩)⌢⟨f1⟩ ∈ Ṗα1/α0

”. This is because q̇ is always in-

terpreted as the empty set in Ṗα0/α0
, and f1 is a function whose range

contains names of ordinals in with respect to the correct forcing. Note
that {p ∈ Pα1

| p is of the second kind} can be densely embedding in

Pα0
∗ Ṗα1/α0

in the sense of ≤ and ≤∗.

The subforcing of Pα1
containing conditions of second kinds is nothing but a

two-step iteration of the Cohen forcings, except that the domains can always be
decided by the weakest element to be in the ground model.

4. The induction scheme

We are now stating the induction scheme, and point out that it holds for the
basic case.
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Proposition 4.1 (The induction scheme). Let α be an inaccessible cardinal.

(1) The basic properties of the forcing (Pα,≤,≤∗).
• |Pα| = α++.
• (Pα,≤) is α++-c.c.
• (Pα,≤,≤∗) has the Prikry property.

(2) The Pα-name of the set Ċα. Let Cα = Ċα[G] where G is generic over Pα.
• Cα ⊆ α+ 1, max(Cα) = α.
• If ◦(α) = 0, then Cα ∩ α is a bounded subset of α.
• If ◦(α) > 0, then Cα ∩ α is a club subset of α.
• Cα contains only former inaccessible cardinals.

(3) Cardinals and cofinalities in the extension.
• If ◦(α) = 0, then α remains regular in the extension over Pα.
• If ◦(α) > 0, then when we force over Pα, α is singularized and cf(α) =

cf(ω◦(α)) (the ordinal exponentiation).
• In the extension, for every cardinal β ≤ α, 2β = β+ or 2β = β++, and

2β = β++ iff β ∈ lim(Cα).
• For each V -regular β ≤ α, β is singularized iff β ∈ lim(Cα).

(4) Ṗα/α is always a Pα-name of the trivial forcing ({∅},≤,≤∗).

(5) The factor Ṗα/β for β < α.

• {p ∈ Pα | p ↾ Pβ exists} densely embeds into Pβ ∗ Ṗα/β.

• ⊩β “|Ṗα/β | = α++, (Ṗα/β ,≤) is α++-c.c.”.

• ⊩β “(Ṗα/β ,≤∗) is β∗-closed”, where β∗ = min{ξ > β | ξ is strongly
inaccessible}.

• ⊩β “(Ṗα/β ,≤,≤∗) has the Prikry property”.

(6) The quotient set Cα/β: In V Pβ , consider the properties of Ṗα/β-name of

the set Ċα. Let G be Pβ-generic over V and H be Ṗα/β [G]-generic over

V [G]. Let Cα/β = Ċα/β [G][H].
• If β = α, then Cα/β = ∅.
• Suppose β < α. Then I = G ∗ H is Pα-generic, which introduces
the set Cα. Also, G introduces the set Cβ. Then Cα/β ⊆ (β, α], and
Cα = Cβ ⊔ Cα/β.

(7) Double quotients: Let γ ≤ β ≤ α and G is Pγ-generic. Then Ṗα/β [G] is
defined as

⊩Pβ [G] “p ∈ Ṗα/β [G] iff p ∈ Pα[G ∗ Ḣ]”,

where Ḣ is the canonical Pβ [G]-generic.

For a non-triviality, we now show that the forcing Pα1
as described in Definition

3.1 satisfies the induction scheme.

Proposition 4.2. Let α0 < α1 be the first two inaccessible cardinals. Then Pα1

satisfies the induction scheme

Proof. (1) • The set of conditions in Pα1
of the first kind is essentially

C(α+
1 , α

++
1 ), whose size is (α++)≤α = α++. Conditions of the sec-

ond kind are of the form (⟨f0⟩, ⟨Ṗξ̇/α0
, q̇0⟩)⌢⟨f1⟩. We assume that the

names are in their simplest form in the sense that ξ̇ = α̌0, q̇0 = ∅̌. The
part (⟨f0⟩, ⟨Ṗξ̇/α0

, q̇0⟩) is in Vα1
. Then for each γ ∈ dom(f1), f1(γ) is
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a Pα0
∗ Ṗα0/α0

-name of an ordinal below α. By replacing f1(γ) with
its nice name, assume that f1(γ) ∈ Vα1

. Hence, the number of such
f1’s is (α

++
1 )α1 = α++

1 . Hence, |Pα1 | = α++
1 .

• Suppose that X = {pγ | γ < α++
1 } is an antichain of conditions in

Pα1 . By shrinking X, we may assume that X contains conditions of
the same kind. If it contains conditions of the first kind, then the
standard ∆-system applies. Suppose X contains conditions of the
second kind. By shrinking further, assume there is p0 such that for
every γ, pγ = p0

⌢⟨fγ
1 ⟩. Then we can apply a standard ∆-system

argument on {fγ
1 | γ < α++

1 }, and we are done.
• Obvious, since ≤ and ≤∗ on Pα1 are the same.

(2) Note that ◦(α1) = 0. If G contains conditions of the first kind, then Cα1 =
{α1}, and if G contains conditions of the second kind, then Cα1

= {α0, α1}.
In both cases, it is a subset of α1+1 whose maximum is α1. Also, Cα1

∩α1

is either ∅ or {α0} which is bounded in α1, and Cα1
contains only former

inaccessible cardinals.
(3) ◦(α1) = 0, and the forcing Pα1 is equivalent to either a Cohen forcing

Add(α+
1 , α

++
1 ), or a two-step iteration of Cohen forcings Add(α+

0 , α
++
0 ) ∗

Add(α+
1 , α

++
1 ). In both cases, α1 remains regular, GCH still holds, and

lim(Cα) = {∅}.
(4) Ṗα1/α1

is a Pα1
-name of the trivial forcing.

(5) Consider Ṗα1/α0
.

• For each p = (⟨f0⟩, ⟨Ṗξ̇/α0
, q̇0⟩)⌢⟨f1⟩, consider the map π(p) = (⟨f0⟩, (⟨q̇⟩)⌢f1⟩).

Clearly, this map is a dense embedding from {p ∈ Pα1 | p ↾ Pα0} to

Pα0 ∗ Ṗα1/α0
.

• Since Pα0
forces GCH, a similar argument as in (1) shows that ⊩α0

“|Ṗα1/α0
| = α++

1 , (Pα1/α0
,≤) is α++

1 -c.c., ”
• Let G be Pα0 -generic. Conditions in Pα1 [G] are of the form (⟨∅⟩)⌢⟨f1⟩.
We ignore the empty set’s part. Note that since Pα0 [G] := Ṗα0/α0

[G] is
trivial, so f1 is just a Cohen condition in V [G]. We now assume that a
condition in Pα1

[G] is ⟨f1⟩. Let ⟨fγ
1 | γ < γ∗⟩ be a decreasing sequence

of conditions, where γ∗ < α1. In V , let d∗ = ∪γ<γ∗{d | ∃p ∈ Pα0 .
Then d∗ ∈ V , and let f∗ be such that dom(f∗) = d∗, and in V [G],
f∗ ≤ fγ

1 for all γ. Then f∗ is as required.

• ⊩α0 “ ≤,≤∗ are the same in Ṗα1/α0
, hence has the Prikry property”.

(6) In V Pα1
∗Ṗα1/α1 , Cα1/α1

is the empty set. In V Pα0
∗Ṗα1/α0 , Cα1/α0

= {α1} ⊆
(α0, α1], and in this model, Cα−0⊔Cα1/α0

= Cα1
, since it is the same model

with the extension V Pα1 using conditions of the second kind.
(7) Trivial since the definition is given.

□

Remark 4.3. (1) Pα0
∗ Ṗα1/α0

is equivalent to the subforcing Pα1
containing

conditions of the second kind, and there is a natural translation from one
generic to another. Namely, suppose that G ∗ H is such a generic object.
Define I = {(p0, ⟨Ṗα0/α0

, q̇⟩)⌢p1 | p0 ∈ G,⊩α0
“(⟨q̇⟩)⌢p1 ∈ Ḣ”}. Then

V [I] = V [G ∗H].
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(2) If we force with conditions in Pα1
of the second kind, we can obtain an

equivalent generic object from Pα0
∗ Ṗα1/α0

naturally. Namely, if I is Pα1
-

generic containing conditions of the second kind, let

G = {⟨f0⟩ | ∃q̇, f1(⟨f0, ⟨Ṗα0/α0
, q̇⟩)⌢⟨f1⟩ ∈ I},

and

H = {(⟨∅⟩)⌢⟨f1[G]⟩ | ∃f0, q̇(⟨f0, ⟨Ṗα0/α0
, q̇⟩)⌢⟨f1⟩ ∈ I}.

5. Below the first measurable cardinal

Let α be a strongly inaccessible cardinal which is below the first α∗ with ◦(α∗) =
1. We will assume that α is at least the ω + 1-th strongly inaccessible cardinal so
that the conditions of arbitrarily length will appear at this stage.

Definition 5.1. Pα consists of the conditions of the following kinds:

• The pure conditions, which are conditions of the form ⟨f⟩, where f ∈
C(α+, α++).

• The impure conditions, which are conditions of the form

(⟨f0⟩⌢⟨Ṗβ̇0/α0
, q̇0⟩)⌢ · · ·⌢(⟨fn−1⟩⌢⟨Ṗβ̇n−1/αn−1

, q̇n−1⟩)⌢⟨f⟩,

for some n > 0, where
– α0 < · · · < αn−1 < α are inaccessible.

– for all i, ⊩αi
“αi ≤ β̇i < αi+1”, where αn = α.

– f0 ∈ C(α+
0 , α

++
0 ) and for i > 0, dom(fi) = di is an αi-domain (in the

sense of V ), and for ζ ∈ di,

⊩Pαi−1
∗Ṗβ̇i−1/αi−1

“fi(ζ) < αi”.

In particular,

⊩Pαi−1
∗Ṗβ̇i−1/αi−1

“fi ∈ Ċ(α+
i , α

++
i ).

– dom(f) = d is an α-domain, and for ζ ∈ d,

⊩Pαn−1
∗Ṗβ̇n−1/αn−1

“f(ζ) < α”.

In particular,

⊩Pαn−1
∗Ṗβ̇n−1/αn−1

“f ∈ Ċ(α+, α++)”.

– for all i, ⊩αi
“q̇i ∈ Ṗβ̇i/αi

”.

By recursion, we consider

(⟨f0⟩⌢⟨Ṗβ̇0/α0
, q̇0⟩)⌢ · · ·⌢⟨fi⟩

as a condition in Pαi . Denote p ↾ Pαi as the condition as bove. We also consider

(⟨f0⟩⌢⟨Ṗβ̇0/α0
, q̇0⟩)⌢ · · ·⌢(⟨fi⟩, ⟨Ṗβ̇i/αi

, q̇i⟩)

as a condition in Pαi
∗ Ṗβ̇i/αi

. Denote such a condition by p ↾ (i+ 1).

The ordering ≤α and ≤∗
α will be the same. We only define ≤α. We will also write

a pure condition in an impure condition’s format. When we mention a condition p,
we put the superscript p to every component in the condition. If p is the condition
as in the definition, we write np = n, top(p) = f .
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Definition 5.2. Let

p0 = (⟨f0⟩⌢⟨Ṗβ̇0/α0
, q̇0⟩)⌢ · · ·⌢(⟨fn−1⟩⌢⟨Ṗβ̇n−1/αn−1

, q̇n−1⟩)⌢⟨f⟩,

and

p1 = (⟨g0⟩⌢⟨Ṗξ̇0/γ0
, ṙ0⟩)⌢ · · ·⌢(⟨gn−1⟩⌢⟨Ṗξ̇n−1/γn−1

, ṙm−1⟩)⌢⟨g⟩.
We say that p0 ≤α p1 iff

• n = m.
• for i < n, αi = γi.
• f0 ⊇ g0, ⟨f0⟩ ⊩α0

“β̇0 = ξ̇0 and q̇0 ≤β̇0/α0
ṙ0”.

• for i > 0, dp
0

i ⊇ dp
1

i , and for ζ ∈ dp
1

i , p ↾ i ⊩Pαi
∗Ṗβ̇i/αi

“fi(ζ) = gi(ζ)”.

• for i > 0, (p0 ↾ i)⌢⟨fi⟩ ⊩αi
“β̇i = ξ̇i and q̇i ≤β̇i/αi

ṙi”.

• dom(f) ⊇ dom(g) and for ζ ∈ dom(g),

p0 ↾ n ⊩Pαn−1
∗Ṗβ̇n−1/αn−1

“f(ζ) = g(ζ)”.

We may also assume that ξ̇i = β̇i for all i. The extension relation does not
increase the length of a condition. For a generic G containing a condition p, define
Cα as the following: If p is pure, then Cα = {α}. Assume p is impure and n = np.

Then p ↾ n ∈ Pαn
∗ Ṗβ̇n/αn

. Let βn = β̇n[G ↾ Pαn−1
]. By Proposition 4.1 (2) and

(6), G ↾ (Pαn ∗ Ṗβ̇n/αn
) introduces the set C ′ = Cαn−1 ⊔ Cβn−1/αn−1

⊆ βn−1 + 1

with max(C ′) = βn−1. Define Cα = C ′ ∪ {α}. Still, this forcing does not change
the cardinal arithmetic.

We now define Pα/β . An intuition is that we need {p ∈ Pα | p ↾ Pβ is defined}
to be densely embedded in Pβ ∗ Ṗα/β .

Definition 5.3 (The quotient forcing). Let Ṗα/α be the Pα-name of the trivial

forcing ({∅},≤,≤∗). In V Pα , let Ċα/α be the Ṗα/α-name of the empty set. Now

assume that β < α. Define Ṗα/β as the following. Let G be Pβ-generic. Define

Pα[G] = Ṗα/β [G] as the forcing consisting of conditions of the form

p = (⟨Pβ′ [G], q′⟩)⌢(⟨f0⟩, ⟨Ṗβ̇0/α0
[G], q̇0⟩) · · ·⌢(⟨fn−1⟩, ⟨Ṗβ̇n−1/αn−1

[G], q̇n−1⟩)⌢⟨f⟩
where n ≥ 0 and

(1) β ≤ β′ < α, so Pβ′ [G] was already defined by recursion, which is just

Ṗβ̇′[G]/β [G] and β′ = β̇′[G]. Furthermore, q′ ∈ Pβ′ [G].

(2) If n > 0, then α0 < · · · < αn−1, and for i < n,
• let di = dom(fi), then di is an αi-domain, di ∈ V .
• for ζ ∈ d0, ⊩Pβ′ [G] “f0(ζ) < α0”, and if i > 0, then for ζ ∈ di,

⊩Pαi−1
[G]∗Ṗβ̇i−1/αi−1

[G] “fi(ζ) < αi”.

• ⊩Pαi
[G] “αi ≤ β̇i < αi+1”, where αn = α.

• ⊩Pαi
[G] “q̇i ∈ Ṗβ̇i/αi

[G]”.

(3) d := dom(f) is an α-domain, and is in V .
(4) Fix ζ ∈ d. If n = 0, then ⊩Pβ′ [G] “f(ζ) < α”, otherwise, ⊩Pαn−1

[G]∗Pβ̇n−1/αn−1
[G]

“f(ζ) < α”.

Back in V . If ṗ is a Pβ-name of a condition in Ṗα/β , then by density, there is
p0 ∈ Pβ such that p0 decides n, α0, · · · , αn−1, dom(f0), · · · ,dom(fn−1), dom(f).
In this case, we say that p0 interprets ṗ. All in all, for such p0 which interprets all
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the relevant components of ṗ, let p1 be such the interpretation. Write p0 as r0
⌢⟨g⟩

and by the interpretation, we may write

p1 = (⟨Ṗβ′/β , q̇
′)⌢(⟨f0⟩, ⟨Ṗβ̇0/α0

, q̇0⟩) · · ·⌢(⟨fn−1⟩, ⟨Ṗβ̇n−1/αn−1
, q̇n−1⟩)⌢⟨f⟩.

There is a natural concatenation p0 with p1, written by p0
⌢p1, which is

r = r0
⌢(⟨g⟩, ⟨Ṗβ′/β , q̇

′⟩)⌢ · · ·⌢(⟨fn−1⟩, ⟨Ṗβ̇n−1/αn−1
, q̇n−1⟩)⌢⟨f⟩.

Then r ∈ Pα with r ↾ Pβ exists. For p0 and p1 in Ṗα/β , we say that p0 ≤ p1 if

there is p ∈ GPβ such that p interprets p0 and p1, and p⌢p0 ≤α p⌢p1. Also define
p0 ≤∗ p1 if there is p ∈ GPβ such that p interprets p0 and p1, and p⌢p0 ≤∗

α p⌢p1
(note that at this level ≤∗ and ≤ are still the same). One can check that the map

ϕ : {p ∈ Pα | p ↾ Pβ exists} → Pβ ∗ Ṗα/β defined by ϕ(p) = (p ↾ Pβ , p \ Pβ) is a

dense embedding, where p \ Pβ is the obvious component of p which is in Ṗα/β .

In V Pβ , let Ċα/β be a Ṗβ̇/α-name of the set described as the following. Let G be

Pβ-generic. Write

p = (⟨Pβ′ [G], q′)⌢(⟨f0⟩, ⟨Ṗβ̇0/α0
[G], q̇0⟩) · · ·⌢(⟨fn−1⟩, ⟨Ṗβ̇n−1/αn−1

[G], q̇n−1⟩)⌢⟨f⟩

as an element in Pα[G]. The part which excludes the top part, i.e.

(⟨Pβ′ [G], q′)⌢(⟨f0⟩, ⟨Ṗβ̇0/α0
[G], q̇0⟩) · · ·⌢(⟨fn−1⟩, ⟨Ṗβ̇n−1/αn−1

[G], q̇n−1⟩)

is in Pαn−1
[G]∗ Ṗβ̇n−1/αn−1

[G]. Let H be generic over the forcing. By our induction

scheme, H produces C0 ⊔ C1, where C0 ⊆ (β, αn−1] (can be empty if n = 0), and

C1 ⊆ (αn−1, βn−1] (can be empty if βn−1, the interpretation of β̇n−1, is αn−1). If
n > 0, then max(C0) = αn−1, and if βn−1 > αn−1, then max(C1) = βn−1. Let
Cα/β = C0 ∪ C1 ∪ {α}.

Proposition 5.4. Pα and the relevant quotients at α satisfy Proposition 4.1.

Proof. (1) Similar as the proof of the corresponding properties in Propoisition
4.2.

(2) ◦(α) = 0. Then the forcing Pα introduces the set Cα ⊆ α+1 where Cα\{α}
is a bounded subset of α. By induction hypothesis, it is easy to see that
Cα contains only former inaccessible cardinals.

(3) The forcing Pα under a certain condition can be factored to P 0∗Ċ(α+, α++),
where P 0 ∈ Vα, and hence, α is still regular. Note that by induction on α,
Cα is still finite, and since P 0 is either empty or a two-step iteration where
it forces GCH. Hence, Pα still forces GCH.

(4) Obvious.
(5) Let β < α.

• The map p 7→ (p ↾ Pβ , p \Pβ) is a dense embedding from {p ∈ Pα | p ↾
Pβ exists} to Pβ ∗ Ṗα/β .

• Similar to the proof of the corresponding properties in Proposition 4.1,
⊩β “|Ṗα/β | = α++ and is α++-c.c.”

• Let β′ < β∗ and ⊩β “{pγ | γ < β′} be a ≤∗-decreasing sequence

of conditions in Ṗα/β”. We may assume that pγ = pγ0
⌢⟨fγ⟩. Then

⊩β “{pγ0 | γ < β′} is a ≤∗-decreasing sequence in a certain forcing

Pα∗ ∗ Ṗβ̇∗/α∗”. By induction hypothesis, the two-step iteration is β∗-

closed under ≤∗. Let p∗0 be such that for all γ, ⊩β “p∗0 ≤∗ pγ0”. Now a
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similar proof as in the corresponding property of Proposition 4.1 can
be used to find f∗

1 such that for all γ, ⊩β “p∗0
⌢⟨f∗

1 ⟩ ≤∗ pγ0
⌢⟨fγ

1 ⟩”.
• Since ≤ and ≤∗ on Ṗα/β coincide, the Prikry property holds.

(6) By the construction of Ċα/β and the factorization, the property holds.
(7) Obvious by the definition of the double quotient stated in the Proposition

4.1.
□

6. At the first α with ◦(α) = 1

We exhibit the forcing at the level of the first cardinal with a positive Mitchell
order. Let α be the first such that ◦(α) = 1. A variation of the Extender-based
Prikry forcing will be introduced. Instead of diving into a full definition all at once,
we progress through a series of definitions.

Definition 6.1. A pure condition of Pα is p = ⟨f0, f⃗ , A, F ⟩ where there is a common
domain d such that

(1) A is a d-tree.
(2) dom(F ) = A(α).

(3) for ν ∈ dom(F ), F (ν) = ⟨Ṗβ̇ν/ν
, q̇⟩ where ⊩ν “ν ≤ β̇ν < α and q̇ ∈ Ṗβ̇ν/ν

”.

(4) dom(f) = d and f0 ∈ C(α+, α++).

(5) f⃗ = ⟨fν | ν ∈ A(α)⟩.
(6) for each ν ∈ A(α), dom(fν) = d and for ζ ∈ d, ⊩Pν∗Ṗβ̇ν/ν

“fν(ζ) < α”. In

particular, fν(ζ) is a Pν ∗ Ṗβ̇ν/ν
-name.

The forcing seems like a version of an Extender-Based Prikry forcing with inter-
leaved forcings. The main difference is that now we have a sequence of Cohen-like
functions. The role of the sequence of the Cohen-like functions is that we want
the quotient forcings at this level (and also in general) to be highly closed with
respect to the direct extension relation. If we just use a Cohen function in the
ground model, then the corresponding quotient will no longer be highly closed with
respects to the direct extension relation. When we perform a one-step extension,
we want to somehow change the Cohen function to a name of a Cohen function
with respects to the part of the condition below. The explanation will make a bit
more sense once we introduce the one-step extension operation.

We now discuss a one-step extension of a pure condition. Suppose that p =

⟨f0, f⃗ , A, F ⟩ with the common domain d. Let ⟨µ⟩ ∈ Lev0(A) with µ(α) = ν. The
one-step extension of p by µ is r⌢⟨g0, g⃗, A′, F ′⟩ such that

• r = (⟨f0 ◦ µ−1⟩, F (ν)). Write F (ν) = ⟨Ṗβ̇ν/ν
, q̇⟩.

• A′ = {τ⃗ ∈ A⟨µ⟩ | τ0(α) > β∗} where β∗ = sup{γ | ∃r ∈ Pν(r ⊩ν “β̇ν =
γ)”}.

• F ′ = F ↾ (A′(α)).
• dom(g0) = d.

• ⊩Pν∗Ṗβ̇/ν
“g0 = fν ⊕ µ”, i.e. for ζ ∈ d, if ζ ∈ dom(µ), g0(ζ) = ˇµ(α),

otherwise, ⊩Pν∗Ṗβ̇/ν
“g0(ζ) = fν(ζ)” (we can assume tat g0(ζ) = fν(ζ) for

ζ ∈ d \ dom(µ)).
• g⃗ = ⟨fν′ | ν′ ∈ A′(α)⟩.
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Note that particular, ⟨f0 ◦µ−1⟩ ∈ Pν , and so, r can be considered as a condition

in Pν ∗ Ṗβ̇ν/ν
. Like in a lot of Pirkry-type forcings, a d-tree at α gives us objects to

create new blocks below α. The part ⟨g0, g⃗, A′, F ′⟩ looks similar to a pure condition
except that for each ζ, we now have that each g0(ζ) is a name with respects to the
forcing corresponding to where r lives.

We now define a condition in a general form.

Definition 6.2. A condition in Pα is either pure or of the form (which we call
impure) which is of the form

p = (⟨f0⟩⌢⟨Ṗβ̇0/α0
, q̇0⟩)⌢ · · ·⌢(⟨fn−1⟩⌢⟨Ṗβ̇n−1/αn−1

, q̇n−1⟩)⌢⟨g0, g⃗, A, F ⟩,

for some n > 0, and a common domain d such that

(1) (⟨f0⟩⌢⟨Ṗβ̇0/α0
, q̇0⟩)⌢ · · ·⌢⟨fn−1⟩ ∈ Pαn−1

, where αn−1 < α.

(2) ⊩αn−1
“αn−1 ≤ β̇n−1 < α, q̇n−1 ∈ Ṗβ̇n−1/αn−1

”.

(3) d is an α-domain (we emphasize that d ∈ V ).

(4) A is a d-tree, min(A(α)) > β∗, where β∗ = sup{γ | ∃r ∈ Pαn−1(r ⊩ β̇n−1 =
γ)}.

(5) dom(F ) = A(α), and for each ν ∈ A(α), F (ν) = ⟨Ṗβ̇ν/ν
, q̇⟩, where ⊩ν “ν ≤

β̇ν < α and q̇ ∈ Ṗβ̇ν/ν
”.

(6) g⃗ = {gν′ | ν′ ∈ A(α)}.
(7) dom(g0) = d and for all ν′, dom(gβ̇ν′

) = d.

(8) For ζ ∈ d, ⊩Pαn−1
∗Ṗβ̇n−1/αn−1

“g0(ζ) < α”, and for all ν′, ⊩Pν′∗Ṗβ̇
ν′/ν′

“gν′(ζ) < α”.

We write p ↾ Pαi
= (⟨f0⟩⌢⟨Ṗβ̇0/α0

, q̇0⟩)⌢ · · ·⌢⟨fi⟩, so p ↾ Pαi
∈ Pαi

. Also write

p ↾ i = (⟨f0⟩⌢⟨Ṗβ̇0/α0
, q̇0⟩)⌢ · · ·⌢(⟨fi⟩⌢⟨Ṗβ̇i/αi

, q̇i⟩), and we consider p ↾ i as a

condition in Pαi
∗ Ṗβ̇i/αi

. We put the superscript p to every component, including

the common domain, i.e. we write dp for d. We call q̇i’s the interleaving part of
p. With p as above, we write top(p) = ⟨g0, g⃗, A, F ⟩, stem(p) = p \ top(p) and say
that stem(p) has n blocks. From the definition, it is straightforward to check that
|Pα| = α++.

Definition 6.3 (The one-step extension). Let

p = (⟨f0⟩⌢⟨Ṗβ̇0/α0
, q̇0⟩)⌢ · · ·⌢(⟨fn−1⟩⌢⟨Ṗβ̇n−1/αn−1

, q̇n−1⟩)⌢⟨g0, g⃗, A, F ⟩,

with its common domain d, and ⟨µ⟩ ∈ Lev0(A). Say ν = µ(α). The one-step
extension of p by µ, denoted by p+ ⟨µ⟩, is the condition

p′ = (⟨f0⟩⌢⟨Ṗβ̇0/α0
, q̇0⟩)⌢ · · ·⌢(⟨fn−1⟩⌢⟨Ṗβ̇n−1/αn−1

, q̇n−1⟩)⌢r0
⌢r1,

where

(1) r0 = (g0 ◦ µ−1, F (ν)),
• g0 ◦ µ−1 has domain rng(µ).
• for ζ ∈ dom(µ), (g0 ◦ µ−1)(µ(ζ)) = g0(ζ).

• Write F (ν) = ⟨Ṗβ̇ν/ν
/q̇⟩.

(2) r1 = ⟨h′
0, h⃗

′, A′, F ′⟩,
• A′ = {τ⃗ ∈ A⟨µ⟩ | τ0(α) > β∗}, where β∗ = sup{γ | ∃r ∈ Pν(r ⊩ν

“β̇ν = γ”)}.
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• F ′ = F ↾ A′(α).

• h⃗ = {gν′ | ν′ ∈ A′(α)}.
• dom(h0) = d, and for all ν′, dom(hν′) = d.

• ⊩Pν∗Ṗβ̇/ν
“h0 = gν ⊕ µ”, i.e. for ζ ∈ d, if ζ ∈ dom(µ), h0(ζ) = ˇµ(α),

otherwise, ⊩Pν∗Ṗβ̇/ν
“h0(ζ) = gν(ζ)” (we may assume that for ζ ∈

d \ dom(µ), h0(ζ) = gν(ζ)).
• for ν′ ∈ A′(α), hν′ = gν′

We define p+⟨⟩ as p, and by recursion, define p+⟨µ0, · · · , µn⟩ = (p+⟨µ0, · · · , µn−1⟩)+
⟨µn⟩.

Definition 6.4 (The direct extension relation). Let

p = (⟨f0⟩⌢⟨Ṗβ̇0/α0
, q̇0⟩)⌢ · · ·⌢(⟨fn−1⟩⌢⟨Ṗβ̇n−1/αn−1

, q̇n−1⟩)⌢⟨g0, g⃗, A, F ⟩,

and

p′ = (⟨h0⟩⌢⟨Ṗξ̇0/γ0
, ṙ0⟩)⌢ · · ·⌢(⟨hm−1⟩⌢⟨Ṗξ̇m−1/γm−1

, ṙm−1⟩)⌢⟨t0, t⃗, A′, F ′⟩.

We say that p is a direct extension of p′, denoted by p ≤∗
α p′, if the following hold.

(1) n = m.
(2) for i < n, αi = γi.
(3) p ↾ n ≤∗ p′ ↾ n, i.e.

• f0 ⊇ h0.
• for i ≤ n, p ↾ Pαi

⊩αi
“β̇i = ξ̇i and q̇i ≤∗

Ṗβ̇i/αi

ṙi” (we can take β̇i = ξ̇i).

• for i ∈ (0, n), dom(fi) ⊇ dom(hi), and for ζ ∈ dom(hi), p ↾ i ⊩Pαi
∗Ṗβ̇i/αi

“fi(ζ) = hi(ζ)”.

(4) dp ⊇ dp
′
.

(5) A ↾ dp
′ ⊆ A′.

(6) for every ν ∈ A(α) and µ⃗ ∈ A with µ⃗(α) = ν,

p+ µ⃗ ↾ Pν ⊩ν “F (ν)0 = F ′(ν)0 and F (ν)1 ≤∗
F (ν)0

F ′(ν)1”.

(7) For ζ ∈ dp
′
,

• p ↾ n ⊩Pαn−1
∗Ṗβ̇n−1/αn−1

“g0(ζ) = t0(ζ)”.

• for ν ∈ A(α), write F (ν) = (Ṗβ̇ν/ν
, q̇), and every µ⃗ with µ⃗(α) = ν, we

have

p+ µ⃗ ↾ (n+ |µ⃗|) ⊩Pν∗Ṗβ̇ν/ν
“gν(ζ) = tν(ζ)”.

Definition 6.5 (The extension relation). Let

p = (⟨f0⟩⌢⟨Ṗβ̇0/α0
, q̇0⟩)⌢ · · ·⌢(⟨fn−1⟩⌢⟨Ṗβ̇n−1/αn−1

, q̇n−1⟩)⌢⟨g0, g⃗, A, F ⟩,

and p′ ∈ Pα. We say that p is an extension of p′, denoted by p ≤α p′, if there is
µ⃗ ∈ Ap′

, or µ⃗ = ⟨⟩, such that by letting p∗ = p′ + µ⃗ and write

p∗ = (⟨h0⟩⌢⟨Ṗξ̇0/γ0
, ṙ0⟩)⌢ · · ·⌢(⟨hm−1⟩⌢⟨Ṗξ̇m−1/γm−1

, ṙm−1⟩)⌢⟨t0, t⃗, A′, F ′⟩,

we then have that

(1) p ↾ n ≤ p∗ ↾ m, namely,
• αn−1 = γm−1.
• p ↾ Pαn−1

≤αn−1
p∗ ↾ Pαn−1

.
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• p ↾ Pαn−1
⊩αn−1

“β̇n−1 = γ̇m−1 and q̇ ≤Ṗβ̇n−1/αn−1

ṙm−1” (we can

take β̇n−1 = γ̇m−1).
(2) dp ⊇ dp

∗
.

(3) A ↾ dp
∗ ⊆ A′.

(4) for every ν ∈ A(α) and µ⃗ ∈ A with µ⃗(α) = ν,

p+ µ⃗ ↾ Pν ⊩ν “F (ν)0 = F ′(ν)0 and F (ν)1 ≤∗
F (ν)0

F ′(ν)1”.

(5) For ζ ∈ dp
∗
,

• p ↾ n ⊩Pαn−1
∗Ṗβ̇n−1/αn−1

“g0(ζ) = t0(ζ)”.

• for ν ∈ A(α), write F (ν) = ⟨Ṗβ̇/ν , q̇⟩, then

p+ µ⃗ ↾ (n+ |µ⃗|) ⊩Pν∗Ṗβ̇/ν
“gν(ζ) = tν(ζ)”.

Note that equivalently, p ≤ p′ if there is µ⃗ such that p is a condition obtained
by extending the interleaving part of a direct extension of p′ + µ⃗. For p′ ≤ p, the
interpolant of p′ and p is p∗ such that there exist unique µ⃗ such that p∗ = p + µ⃗
and p′ is obtained by extending the interleaving part of the direct extension of p∗.

Proposition 6.6. (Pα,≤) has the α++-chain condition.

Proof. Let {pγ | α++} be a collection of conditions in Pα. pγ can be written as

pγ0
⌢⟨fγ

0 , f⃗
γ , Aγ , F γ⟩, with the corresponding common domain dγ . By shrinking

the collection, we may assume that there are p0, d, b such that for all γ, pγ0 = p0,
b = Aγ(α), and d is the root of the ∆-system {dγ | γ < α++}. Since for each
γ < α++, ζ ∈ d, and ν ∈ b, fγ

0 (ζ), f
γ
ν (ζ) ∈ Vα, and F γ(ν) ∈ Vα, we can shrink

the collection of conditions further so that there are xζ,0, xζ,ν , yν , such that for all
γ < α++, fγ

0 (ζ) = xζ,0, f
γ
ν (ζ) = xζ,ν , and F γ(ν) = yν . Then any two conditions

are compatible.
□

Proposition 6.7. ({p ∈ Pα | p is pure},≤∗) is α-closed.

Proof. Let β < α and ⟨pβ′ | β′ < β⟩ be a ≤∗-decreasing sequence of conditions

in Pα. Write pβ
′
= ⟨fβ′

0 , f⃗β′
, Aβ′

, F β′⟩ with its common domain dβ
′
. Let d∗ =

∪β′<βd
β′
, f∗

0 = ∪β′<βf
β′

0 . Let (Aβ′
)∗ be the d∗-tree obtained by pulling back Aβ′

,

and A∗ = ∩β′<β(A
β′
)∗. Shrink A∗ further so that min(A∗(α)) > β. By induction

on ν ∈ A∗(α), we may find f∗
ν and F ∗(ν) such that

• for ζ ∈ d∗, f∗
ν (ζ) is “forced” to be equal to fβ′

ν (ζ) for some sufficiently large

β′ that ζ ∈ dom(fβ′
).

• F ∗(ν) = ⟨Ṗβ̇ν/ν
, q̇∗ν⟩ is such that q̇∗ν is “forced” to be a ≤∗-lower bound

of ⟨q̇β′

ν | β′ < β⟩, where F β′
(ν) = ⟨Ṗβ̇ν/ν

, q̇β
′

ν ⟩. This is possible because

⊩ν “(Ṗβ̇ν/ν
,≤∗) is ν∗-closed”, where ν∗ is the least inaccessible above ν,

and ν > β.

Then ⟨f∗, f⃗∗, A∗, F ∗⟩, where f⃗∗ = {f∗
ν | ν ∈ A∗(α) is inaccessible}, is as required.

□

Theorem 6.8. (Pα,≤,≤∗) has the Prikry property, i.e. for p ∈ Pα and a forcing
statement φ, there is p∗ ≤∗ p such that p∗ ∥ φ.

To prove Theorem 6.8, we start with the following lemma.
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Lemma 6.9. Let p ∈ Pα and φ be a forcing statement. Then there is p∗ ≤∗ p such
that if r = r0

⌢ top(r), r ≤ p∗, p′ is the interpolant of r and p∗, and r ∥ φ, then

r0
⌢ top(p′) ∥ φ the same way.

Proof. Assume for simplicity that p is pure and write p = ⟨f0, f⃗ , A, F ⟩ with its
common domain d. A forcing A consists of conditions of the form g = ⟨g0⟩⌢g⃗,
where there is a common domain dg such that

• dom(g0) = dg, g⃗ = ⟨gν | ν ∈ A(α)⟩, and for all ν, dom(gν) = dg.
• for ζ ∈ dg, f0(ζ) < α and for β < α inaccessible, ⊩Pν∗Ṗβ̇ν/ν

“gβ(ζ) < α”.

For g0, g1 ∈ A, define g0 ≤A g1 if g00 ⊇ g10 , and for ν ∈ A, ζ ∈ dg1 , and relevant

r ∈ Pν ∗ Ṗβ̇ν/ν
, r ⊩Pν∗Ṗβ̇ν/ν

“g0ν(ζ) = g1ν(ζ)”. Clearly, A is α+-closed.

Let N ≺ Hθ for some sufficiently large regular θ, <αN ⊆ N , |N | = α, d, Vα ⊆ N ,

p,P,A ∈ N . Build an A-decreasing sequence ⟨fγ | γ < α⟩ below ⟨f0⟩⌢f⃗ such that
for every dense open set D ∈ N ∩ P(A), there are unboundedly many γ < α such

that fγ ∈ D. Let f∗ = ⟨f∗
0 ⟩⌢f⃗∗ be the maximal ≤∗-lower bound of ⟨fγ | γ < α⟩

and d∗ be its common domain, so d∗ = N ∩ α++. Let A∗ be the d∗-tree which is
the pullback of A. Note that A∗ ⊆ N .

We are now going to consider an A-decreasing subsequence ⟨fγν | ν ∈ A∗(α)⟩ of
⟨fγ | γ < α⟩, together with ⟨q̇νν′ | ν, ν′ ∈ A∗(α)⟩ and ⟨Aν | ν ∈ A∗(α)⟩ satisfying a
certain property, and

• for each ν′, ⟨q̇νν′ | ν ∈ A∗(α)⟩ is forced to be ≤∗-decreasing below q̇ν′ , where

F (ν′) = ⟨Ṗβ̇ν′/ν′ , q̇ν′⟩.
• for ν′ < ν, q̇νν′ = q̇ν

′

ν′ .

All the proper initial subsequences will be in N . Let ν ∈ A∗(α) and suppose that

⟨fγν′ | ν′ < ν, ν′ ∈ A∗(α)⟩, ⟨q̇ν′

ρ | ν′ < ν, ν′, ρ ∈ A∗(α)⟩ have been constructed.

For ν′ < ν, let q̇νν′ = q̇ν
′

ν′ . Let f ′ be the maximal lower bound of the sequence

⟨fγν′ | ν′ < ν, ν′ ∈ A∗(α)⟩. For ρ ≥ ν, Let q̇∗ρ be a Pρ-name of a condition in Ṗβ̇ρ/ρ

which is forced to be a ≤∗-maximal lower bound of (q̇ν
′

ρ )ν′<ν . This is possible

since ⊩ρ “(Ṗβ̇ρ/ρ
,≤∗) is ν+-closed” and note that ⟨q̇∗ρ | ρ ≥ ν⟩ ∈ N . Consider the

following set Dν ⊆ A. g = ⟨g0⟩⌢g⃗ ∈ Dν with the common domain dg, if either

⟨g0⟩⌢g⃗ is incompatible with ⟨f0⟩⌢f⃗ , or the following holds:

• for every µ⃗ ∈ A∗ with µ⃗(α) = ν, dom(µ⃗) ⊆ dg.
• there are

– a Pν-name of a condition q̇∗∗ν in Ṗβ̇ν/ν
which is forced to be ≤∗ below

q̇∗ν
– a dg-tree Aν with min(Aν(α)) > ξ∗ := {ξ | ∃t ∈ Pν(t ⊩ν “β̇ν = ξ”)},

and
– a function F ν with dom(F ν) = Aν(α),
– for ρ ∈ Aν(α) and all relevant r ∈ Pρ, r ⊩ρ “F ν(ρ)1 ≤∗ q̇∗ρ”,

such that for every r ∈ Pν and q̇′, if there are h0, h⃗, A
′, and F ′ such that

r⌢⟨Ṗβ̇ν/ν
, q̇′⟩⌢⟨h0, h⃗, A

′, F ′⟩ ≤∗ r⌢⟨Ṗβ̇ν/ν
, q̇∗ν⟩⌢⟨gν , ⟨gν′ | ν′ ∈ Aν(α)⟩, Aν , F ν⟩,

and

r⌢⟨Ṗξ̇ν/ν
, q̇′⟩⌢⟨h0, h⃗, A

′, F ′⟩ ∥ φ,
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then

r⌢⟨Ṗβ̇ν/ν
, q̇′⟩⌢⟨gβ̇ν

, ⟨gβ̇ν′
| ν′ ∈ Aν(α)⟩, Aν , F ν⟩ ∥ φ the same way.

Claim 6.10. Dν ∈ N is open dense.

Proof. The parameters we use to define Dν are: A, p, Pν , and {µ⃗ ∈ A∗ | µ⃗(α) = ν}.
By Remark 2.4, the latter set has size at most ν++, and for each µ⃗ ∈ A∗, by the
closure of N , µ⃗ ∈ N , hence, there is an enumeration of such a set in N . Thus,
Dν ∈ N . To check the openness of Dν , note that if g⃗0 ≤A g⃗1 and g⃗1 ∈ Dν with the
witnesses q̇∗∗ν , Aν . and F ν , then g⃗0 is also in Dν with the same witnesses.

It remains to show that Dν is dense. Let g0
⌢g⃗ ∈ A. If ⟨g0⟩⌢g⃗ ∦ ⟨f0⟩⌢f⃗ , then we

are done. Suppose not, we may assume ⟨g0⟩⌢g⃗ ≤A ⟨f0⟩⌢f⃗ . By (1) of Proposition

4.1 for ν, let ⟨rξ, q̇ξ | ξ < (ξ∗)++⟩ be an enumeration of elements in Pν ∗ Ṗβ̇ν/ν
(with

some repetitions if needed). Build sequences ⟨⟨hξ
0⟩⌢h⃗ξ⟩, ⟨Aξ, Fξ | ξ ≤ (ξ∗)++⟩ such

that

• ⟨⟨hξ
0⟩⌢h⃗ξ⟩ξ≤ν++ is A-decreasing, and is below ⟨g0⟩⌢g⃗.

• ⟨Aξ | ξ ≤ ν++⟩ is a dom(hξ
0)-tree and for ξ < ξ′, Aξ′ projects down to a

subset of Aξ, min(Aξ(α)) > ξ∗.
• for ν′ ∈ Aξ(α), ⟨Fξ(ν

′)1⟩ξ≤ν++ is forced to be ≤∗-decreasing below q̇∗ν′ .

• for ξ < (ξ∗)++, if there are h′
0, h⃗

′, A′, and F ′ such that

rξ
⌢⟨Ṗβ̇ν/ν

, q̇ξ⟩⌢⟨h′
0, h⃗

′, A′, F ′⟩

is a direct extension of

t∗ := rξ
⌢⟨Ṗβ̇ν/ν

, q̇ξ⟩⌢⟨hξ+1
ν , ⟨hξ+1

ρ | ρ ∈ Aξ+1(α)⟩, Aξ+1, Fξ+1⟩,

and

rξ
⌢⟨Ṗβ̇ν/ν

, q̇ξ⟩⌢⟨h′
0, h⃗

′, A′, F ′⟩ ⊩ φ,

then t∗ decides φ the same way.

The construction is straightforward, and for a limit ξ, we can take any witnesses at

the stage ξ as long as the requirements are met. Finally, let ⟨g0⟩⌢g⃗ = ⟨hν++

0 ⟩⌢h⃗ν++

,
Aν = Aν++ , and F ν = Fν++ . These will be the witnesses for ⟨g0⟩⌢g⃗ ∈ Dν .

□

Let γν ≥ supν′<ν γν′ such that fγν ∈ Dν . Also, we obtain the witnesses, Aν and
F ν . Let q̇νν = q̇∗ν . For ρ > ν, let q̇νρ be the second component of F ν(ρ) if exists,
otherwise, let q̇νρ = q̇∗ρ. This completes our analysis.

Assume that the pullback of Aν to the d∗-tree has a subtree which is gener-
ated by Bν ∈ E(d∗). Let A∗∗ be a d∗-tree generated by ∆νB

ν . Let F ∗∗ be a

function with dom(F ∗∗) = A∗(α) and for ν ∈ A∗∗(α), F ∗∗(ν) = ⟨Ṗβ̇ν/ν
, q̇∗∗ν ⟩, q̇∗∗ν

is the ≤∗-maximal lower bound of (q̇ν
′

ν )ν′∈A(α). This is possible since (q̇ν
′

ν )ν′∈A(α)

stabilizes after the stage ν′ = ν (equivalently, we take q̇∗∗ν = q̇νν ). Then p∗ =

⟨f∗
0 , f⃗

∗, A∗∗, F ∗∗⟩ ≤∗ p satisfies.
We now show that p∗ satisfies Lemma 6.9. Let p′ ≤ p∗ such that p′ decides φ,

p′ is of the form

p′ = r⌢⟨Ṗβ̇ν/ν
, q̇⟩⌢⟨h′

0, h⃗
′, A′, F ′⟩,

Without loss of generality, assume that p′ ⊩ φ. Let p̄ be the interpolant of p∗

and p′. We consider the notions of the proof of Claim 6.10. Say that r = rξ and
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q̇ = q̇ξ. By the construction of A∗∗, we have that A∗∗ projects down to a subset of

Aν . This makes p′ ≤∗ t∗, and hence, t∗ ⊩ φ. Thus, rξ
⌢⟨Ṗβ̇ν/ν

, q̇ξ⟩⌢ top(p̄) ⊩ φ.

This completes the proof of Lemma 6.9.
□

Proof of Theorem 6.8. Let p be a condition and φ be a forcing statement. For

simplicity, assume p is pure and p satisfies Lemma 6.9. Write p = ⟨f0, f⃗ , A, F ⟩, d is
the common domain for p.

We build a ≤∗-decreasing sequence ⟨pν | ν ∈ A(α)⟩ below p by induction.

Assume pν
′
is constructed for ν′ < ν. Let p′ν be a ≤∗-lower bound of ⟨pν′ |

ν′ < ν⟩. Write p′ν = ⟨f ′
0, f⃗

′, A′, F ′⟩ with the common domain d′. For every ξ,

let Qξ := Pξ ∗ Ṗβ̇ξ/ξ
. Let ξ∗ = sup{γ | ∃r ∈ Pν(r ⊩ν “β̇ν = γ”)}. Fix ρ > ξ∗,

ρ ∈ A′(α). Let Ġρ be the canonical name for Qρ. Define

φ0
ρ ≡ “∃t ∈ Ġρ(t

⌢ top(p̄) ⊩ φ)”.

φ1
ρ ≡ “∃t ∈ Ġρ(t

⌢ top(p̄) ⊩ ¬φ)”.

φ1
ρ ≡ “∄t ∈ Ġρ(t

⌢ top(p̄) ∥ φ)”,

where p̄ is the appropriate interpolation, as described in Lemma 6.9. Note that for
r ∈ Qρ, there are at most one i such that r ⊩ φi

ρ. Enumerate ⟨µ ∈ Lev0(A
′) | µ(α) =

ρ⟩ as {µξ}ξ<ρ++ . By the closure of (Ṗβ̇ρ/ρ
,≤∗), we can find q̇∗ρ such that ⊩ρ “q̇∗ρ ≤∗

F ′(ρ)1” such that for every r ∈ Qν and ξ < ρ++, there is fµξ with r ⊩Qν
“fµξ ≤∗

f∗
ν ◦ µ−1

ξ ”, and if there are f , q̇ with r⌢(⟨f, ⟨Ṗβ̇ρ/ρ
, q̇⟩) ≤∗ r⌢(⟨fµξ , ⟨Ṗβ̇ρ/ρ

, q̇∗ρ⟩)
which forces φi

ρ, then so is r⌢(fµξ , ⟨Ṗβ̇ρ/ρ
, q̇∗ρ⟩). Now, for each µ = µξ, we have

fµ = fµξ . Let f∗
ν = jE(α,0)(µ 7→ fµ)(mc(d′)). Then f∗

ν is forced to be an extension
of f ′

ν . Say d∗ = dom(f∗
ν ). For ρ ̸= ν including 0, let f∗

ρ = f ′
ρ ∪ {(ξ, 0) | ξ ∈

d∗ \ d′}. Let F ∗(ρ) = F (ρ) for ρ ≤ γ∗, otherwise, F ∗(ρ) = ⟨Ṗβ̇ρ/ρ
, q̇∗ρ⟩. Take

p∗ρ = ⟨f∗
0 , f⃗

∗, A′, F ∗⟩.
Now assume that A′ is generated by B′. By shrinking further, assume that

for µ ∈ B′, f∗
ν ◦ µ−1 = fµ↾d′

. For r ∈ Qν and µ ∈ B′, with µ(α) = ρ, by
the Prikry property, and the construction as above there is rµ ≤ r such that
rµ⌢(⟨f∗

ν ◦µ−1, ⟨Ṗβ̇ρ/ρ
, q̇∗ρ⟩⟩) ⊩ φi

ρ for a unique i. Let Br
i be the collection of µ such

that by writing ρ = µ(α),

rµ⌢(⟨f∗
ν ◦ µ−1, ⟨Ṗβ̇ρ/ρ

, q̇∗ρ⟩) ⊩ φi
ρ.

There exists unique i = ir such that Br
ir

is of measure-one. By shrinking further,
assume that there is r∗ such that for every µ ∈ Br

ir
, rµ = r∗. Let B∗ = ∆ν ∩r∈Qν

Br
ir
. Let A∗ be generated by B∗ and pν = ⟨f∗

0 , f⃗
∗, A∗, F ∗⟩. This completes the

construction of pν .

We now change a notation by saying that pν = ⟨fν
0 , f⃗

ν , Aν , F ν⟩ and Bν generates

Aν . Let p∗ = ⟨f∗
0 , f⃗

∗, A∗, F ∗⟩, where A∗ is generated by ∆νB
ν , f∗ = ∪νf

ν
0 , and for

ρ ∈ A∗(α), f∗
ρ = ∪ρf

ρ
ρ , and F ∗(ρ) = ⟨Ṗβ̇ρ/ρ

, q̇∗ρ⟩, where q∗ρ is forced to be a ≤∗-lower

bound of ⟨F ν(ρ)1⟩ν . This is possible because for every ρ, ⟨F ν(ρ)⟩ν stabilizes at
ν = ρ. Note that p∗ ≤∗ p.

Claim 6.11. p∗ satisfies the Prikry property.
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Proof. Let p′ ≤ p∗ with p′ ∥ φ, Assume p′ ⊩ φ and the interpolant of p′, p∗, say p̄,
is such that p̄ = p∗ + µ⃗ with the minimal n∗ = |µ⃗|. If n∗ = 0. then we might apply
p′ for the Prikry property instead. Assume n∗ > 0.

For simplicity, we establish the case n∗ = 2. Say p̄ = p∗ + ⟨µ0, µ1⟩. Let

p′ = (g0, ⟨Ṗβ̇0/ν0
, q̇0⟩)⌢(g1, ⟨Ṗβ̇1/ν1

, q̇1⟩)⌢ top(p′).

Since p satisfies Lemma 6.9, we have that

(g0, ⟨Ṗβ̇0/ν0
, q̇0⟩)⌢(g1, ⟨Ṗβ̇1/ν1

, q̇1⟩)⌢ top(p̄) ⊩ φ.

Set r = (g0, ⟨Ṗβ̇0/ν0
, q̇0⟩). We use the notation for the construction of pν1

. Note

that r ⊩ g1 ≤ fµ1 and r⌢⟨g1⟩ ⊩ν1
“q̇1 ≤ q̇∗ν1

”. We claim that ir = 0. Otherwise,
we may assume ir = 1 (the case ir = 2 is similar). Let G be Qν1 -generic containing
stem(p∗). Then there is t ∈ G such that t⌢ top(p̄) ⊩ ¬φ, but if t ≤ stem(p∗), we
get a condition having contradictory decisions, which is a contradiction.

Note that µ1(α) = ν1. We claim that r∗⌢(fµ1↾d
′
, ⟨Ṗβ̇1/ν1

, q̇∗ν1
⟩)⌢ top(p̄) ⊩ φ.

Otherwise, we use the same argument as above and Lemma 6.9 to get a contradic-
tion.

Consider p∗ + ⟨µ0⟩. Since ir = 0, we have that for every ⟨µ⟩ ∈ Lev0(A
p+⟨µ0⟩),

µ ↾ d′ ∈ Br
0 . By a similar argument as above, if pµ = p∗ + ⟨µ⟩, then

r∗⌢⟨fµ↾d′
, F ∗(µ(α))⟩⌢ top(pµ) ⊩ φ.

By a density argument, r∗⌢ top(p + ⟨µ0⟩) ⊩ φ, which contradicts the minimality
of |µ⃗|.

□

□

By the Prikry property and the fact the direct extension on Pα restricted to the
pure conditions are α-closed, it is standard to verify that all cardinals up to and
including α are preserved.

The forcing singularizes α to have cofinality ω, and add α++ subsets of α: for
γ ∈ [α, α++), define tγ : ω → α as the following. By a density argument, let p ∈ G
be such that the common domain contains γ. Assume that np is the number of the
blocks in p \ top(p). For n > np, find any pγ ∈ G such that the number of blocks
in pγ \ top(pγ) ≥ n. Write

pγ = s0
⌢ · · ·⌢sn−2

⌢(fn−1, s
′
n−1)

⌢ · · ·⌢(fk−1, s
′
n−1)

⌢⟨f, f⃗ , A, F ⟩.

By compatibility between pγ and p, we have that f(γ) has to be of the form ξ̌0,
ξ0 ∈ dom(fn−1), fn−1(ξ0) = ξ̌1, and so on. Define tγ(n) = fn−1 ◦ · · · ◦ fk−1 ◦ f(γ).
Clearly tα gives a cofinal sequence of α of length ω, and hence, α is singularized to
have cofinality ω. Again, by a standard argument with the Prikry property, α+ is
preserved. Since the forcing is α++-c.c., all the cardinals are preserved. One can
show that for γ < γ′, there is p ∈ G such that for every relevant object µ appearing
in the tree part, γ, γ′ ∈ dom(µ). From here, use a density argument to show that
tγ <∗ tγ′ . Hence, the forcing violates the SCH at α.

The set Cα is derived from the generic object as the following. If G is Pα-generic,
define C ′ = rng(tα) ∪ {α}. Each condition p ∈ G is of the form

s⌢(fk, ⟨Ṗξ̇k/νk
, q̇⟩)⌢⟨f, f⃗ , A, F ⟩
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where νk = tα(k + 1). In this case, the forcing Ṗξ̇k/νk
also derives the set Ck =

Cξk/νk
, where tα(k + 1) = νk < ξk < νk+1 = tα(k + 2). Let Cα = C ′ ∪ ∪k<ωC

k.
Then Cα ⊆ α + 1, max(Cα) = α, Cα \ {α} is a cofinal subset of α, containing a
subset of order-type ω. So far, we have verified items (1) through (3) of Proposition
4.1.

Definition 6.12 (The quotient forcing). Let Ṗα/α be the Pα-name of the trivial

forcing ({∅},≤,≤∗). In V Pα , let Ċα/α be the Ṗα/α-name of the empty set. Now

assume that β < α. Define Ṗα/β as the following. Let G be Pβ-generic. Define

Ṗα[G] = Pα/β [G] as the forcing consisting of conditions of the form

p = (⟨Pβ′ [G], q′)⌢(⟨f0⟩, ⟨Ṗβ̇0/α0
[G], q̇0⟩) · · ·⌢(⟨fn−1⟩, ⟨Ṗβ̇n−1/αn−1

[G], q̇n−1⟩)⌢⟨g0, g⃗, A, F ⟩
where n ≥ 0 and

(1) β ≤ β′ < α, so Pβ′ [G] was already defined by recursion, which is just
Pβ′/β [G], q0 ∈ Pβ′ [G].

(2) If n > 0, then α0 < · · · < αn−1, and for i < n,
• let di = dom(fi), then di is an αi-domain, di ∈ V .
• for ζ ∈ d0, ⊩Pβ′ [G] “f0(ζ) < α0”, and if i > 0, then for ζ ∈ di,

⊩Pαi−1
[G]∗Ṗβ̇i−1/αi−1

[G] “fi(ζ) < αi”.

• ⊩Pαi
[G] “αi ≤ β̇i < αi+1”, where αn = α.

• ⊩Pαi
[G] “q̇i ∈ Ṗβ̇i/αi

[G]”.

(3) A is a E(d)-tree.
(4) d ∈ [α++]≤α is the common domain for p, i.e. dom(g0) = d, and g⃗ = ⟨gν |

ν ∈ A(α)⟩ and for each ν, dom(gν) = d.
(5) Fix ζ ∈ d. If n = 0, then ⊩Pβ′ [G] “g0(ζ) < α”, otherwise, ⊩Pαn−1

[G]∗Pβ̇n−1/αn−1
[G]

“g0(ζ) < α”.
(6) for ν ∈ A(α) and ζ ∈ d, ⊩Pν [G]∗Ṗβ̇ν/ν [G] “gν(ζ) < α”.

(7) dom(F ) = A(α).

(8) for ν ∈ dom(F ), F (ν) = ⟨Ṗβ̇ν/ν
[G], q̇⟩, where ⊩Pν [G] “ν ≤ ξ̇ν [G] < α, q̇ ∈

Ṗβ̇ν/ν
[G]”

Back in V . If ṗ ∈ Ṗα/β , then by density, the collection of p0 ∈ Pβ such that p0
decides n, α0, · · · , αn−1, dom(f0), · · · ,dom(fn−1), the common domain, A, q′ (as

the equivalent Ṗβ̇′/β-name, and so on), is open dense. In this case, we say that p0
interprets ṗ. All in all, for such p0 which interprets all the relevant components of
ṗ, let p1 be such the interpretation. Write p0 as r0

⌢⟨g⟩ and by the interpretation,
we may write

p1 = (⟨Ṗβ′/β , q̇
′)⌢(⟨f0⟩, ⟨Ṗβ̇0/α0

, q̇0⟩) · · ·⌢(⟨fn−1⟩, ⟨Ṗβ̇n−1/αn−1
, q̇n−1⟩)⌢⟨f⟩.

There is a natural concatenation p0 with p1, written by p0
⌢p1, which is

r = r0
⌢(⟨g⟩, ⟨Ṗβ′/β , q̇

′⟩)⌢ · · ·⌢(⟨fn−1⟩, ⟨Ṗβ̇n−1/αn−1
, q̇n−1⟩)⌢⟨f⟩.

Then r ∈ Pα with r ↾ Pβ exists. We denote p1 by r/Pβ . For p0 and p1 in Ṗα/β ,

we say that p0 ≤ p1 if there is p ∈ GPβ such that p interprets p0 and p1, and
p⌢p0 ≤α p⌢p1. Also define p0 ≤∗ p1 if there is p ∈ GPβ such that p interprets p0
and p1, and p⌢p0 ≤∗

α p⌢p1. One can check that the map ϕ : {p ∈ Pα | p ↾ Pβ

exists} → Pβ ∗ Ṗα/β defined by ϕ(p) = (p ↾ Pβ , p/Pβ) is a dense embedding, where
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p \Pβ is the obvious component of p which is in Ṗα/β . Note that if G is Pβ-generic
and H is Pα[G]-generic, there is a generic I for Pα such that V [G ∗ H] = V [I],
where I is generated by {p | p ↾ Pβ exists, p ↾ Pβ ∈ G and (p/Pβ)[G] ∈ H}. If I
is Pα-generic and for some p ∈ I, p ↾ Pβ exists, we can get G which is Pβ-generic
and H which is Pα[G]-generic such that V [G ∗H] = V [I] where G is generated by
{p ↾ Pβ | p ∈ I and p ↾ Pβ exists} and H = {(p/Pβ)[G] | p ∈ I and p ↾ Pβ exists}.

In V Pβ , let Ċα/β be a Ṗα/β-name of the set described as the following. Let G

be Pβ-generic. and H be generic over Pα[G] = Ṗα/β [G]. Then let I = G ∗ H be
Pα-generic. I derives the set Cα ⊆ α + 1 and G derives the set Cβ ⊆ β + 1. Let
Cα/β = Cα \ Cβ .

The following have the same proof as for Pα essentially. The one that we would
like to point out is the closure property.

Proposition 6.13. • ⊩β “(Ṗα/β ,≤∗) is α++-c.c.”

• ⊩β “(Ṗα/β ,≤,≤∗) has the Prikry property.

• ⊩β “(Ṗα/β ,≤∗) is β∗-closed”, where β∗ is the least inaccessible cardinal
greater than β.

Proof. We only proof item (3). For simplicity, let β′ < β∗ and in V Pβ , let ⟨pγ | γ <
β′⟩ be a ≤∗-decreasing sequence. Write pγ = ⟨Pξ[G], qγ⟩⌢⟨gγ0 , g⃗γ , Aγ , F γ⟩ with the
common domain dγ . Since (Pξ[G],≤∗) is β∗-closed, let q∗ be a ≤∗-lower bound of

qγ . In V , let d∗ = ∪{d | ∃γ∃p ∈ Pβ(p ⊩β ḋγ = d)}. For all β (including 0) with
gγβ exists, let dom(g∗β) = d∗, and for ζ ∈ d, g∗β(ζ) is forced to be the same as the

interpretation g∗β(ζ) for some sufficiently large γ, if exists, otherwise, gγβ(ζ) = 0̌.

Let A∗ = ∩γ ∩p {A | A is the pullback of Aγ,p} where p ⊩β “Ȧγ = Aγ,p”. By
shrinking, assume min(A∗(α)) > β. Finally, for each γ ∈ A∗(α), the forcing which
is relevant to F γ(α) (for any γ) is greater than γ-closed in the direct extension,
and γ > β, so we can find F ∗ such that ⟨Pξ[G], q∗)⌢⟨g∗, g⃗∗, A∗, F ∗⟩ is a ≤∗-lower
bound of ⟨pγ | γ < β′⟩. □

With all the definitions, one can verify the rest of Proposition 4.1.

7. The general levels

Let α < κ be inaccessible. We may assume that α is greater than the first β
with ◦(β) = 1. This forcing will generalize all of the forcings in previous sections.

Definition 7.1. A condition in Pα is of the form

p = stem(p)⌢ top(p).

We have two cases.

(1) stem(p) is empty. In this case, p is said to be pure.
(2) stem(p) is non-empty. In this case, p is said to be impure. Then stem(p) is

of the form

(s0, ⟨Ṗβ̇0/α0
, q̇0⟩)⌢ · · ·⌢(sn−1, ⟨Ṗβ̇n−1/αn−1

, q̇n−1⟩),
for some n > 0. We say that the number of blocks in stem(p) is n. We

have that
• α0 < · · · < αn−1 < α.
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• for all i, ⊩αi
“αi ≤ β̇i < αi+1”, where αn = α.

• (s0, ⟨Ṗβ̇0/α0
, q̇0⟩)⌢ · · ·⌢sn−1 ∈ Pαn−1

.

• ⊩αn−1
“q̇n−1 ∈ Ṗβ̇n−1/αn−1

”.

Equivalently, stem(p) ∈ Pαn−1 ∗ Ṗβ̇n−1/αn−1
.

top(p) also depends on stem(p) and α. We have several cases.

(1) The case where p is pure.
(a) ◦(α) = 0. Then top(p) = ⟨f⟩, f ∈ C(α+, α++).

(b) ◦(α) > 0. In this case, top(p) = ⟨f0, f⃗ , A, F ⟩, where
• f⃗ = ⟨fβ | β < α is inaccessible⟩.
• there is a common domain d, which is an α-domain, dom(f0) = d
and for all β, dom(fβ) = d.

• f ∈ C(α+, α++) and for each inaccessible β < α, and ζ ∈ d,
⊩β “fβ(ζ) < α”.

• A is a d-tree, with respect to E⃗α(d).
• dom(F ) = A(α).

• for ν ∈ dom(F ), F (ν) = ⟨Ṗβ̇ν/ν
, q̇⟩ where ⊩ν “ν ≤ β̇ν <

α and q̇ ∈ Ṗβ̇ν/ν
”.

(2) The case where p is impure, say stem(p) ∈ Pα′ ∗ Ṗβ̇′/α′ =: Q.

(a) ◦(α) = 0. Then top(p) = ⟨f⟩, dom(f) = d ∈ V is an α-domain and for
ζ ∈ d, ⊩Q “f(ζ) < α”.

(b) ◦(α) > 0. In this case, top(p) = ⟨f0, f⃗ , A, F ⟩, where there is a common
domain d ∈ [α++]≤α, d ∈ V , d is an α-domain such that

• A is a d-tree, with respect to E⃗α(d), min(A(α)) > sup{γ | ∃r ∈
Pαn−1(r ⊩ β̇n−1 = γ)}.

• f⃗ = ⟨fν | ν ∈ A(α)⟩.
• dom(F ) = A(α).

• for ν ∈ dom(F ), F (ν) = ⟨Ṗξ̇ν/ν
, q̇⟩ where ⊩ν “ν ≤ ξ̇ν < α and q̇ ∈

Ṗβ̇ν/ν
”.

• dom(f0) = d and for all ν, dom(fν) = d.
• for ζ ∈ d, ⊩Q “f0(ζ) < α”.
• for ν ∈ A(α) and ζ ∈ d, ⊩Pν∗Ṗβ̇ν/ν

“fβ(ζ) < α”.

Definition 7.2 (The one-step extension). Assume ◦(α) > 0. Let p = stem(p)⌢⟨f0, f⃗ , A, F ⟩
with the common domain d. Let ⟨µ⟩ ∈ Lev0(A) with µ(α) = ν. The one-step ex-
tension of p by µ, denoted by p+ ⟨µ⟩, is the condition p′ = stem(p′)⌢⟨g0, g⃗, A′, F ′⟩
such that

(1) if ◦(µ(α)) = 0, then stem(p′) = stem(p)⌢(f0◦µ−1, F (µ(α))), where dom(f0◦
µ−1) = rng(µ), for γ ∈ dom(µ), f0 ◦ µ−1(µ(γ)) = f0(γ).

(2) if ◦(µ(α)) > 0, then stem(p′) = stem(p)⌢(⟨f0 ◦ µ−1, ⟨fβ ◦ µ−1 | β ∈ (A ↓
µ)(µ(α)), A ↓ µ, F ′⟩, F (µ(α))), where dom(F ′) = (A ↓ µ)(µ(α)), and for ν,
F ′(ν) = F (ν).

(3) Write Q as the forcing in which stem(p′) lives. Say Q = Pµ(α) ∗ Ṗβ̇/µ(α).

Then
• ⊩Q “g0 = fµ(α) ⊕ µ”, namely dom(g0) = d, for ζ ∈ dom(µ), g0(ζ) =
µ(ζ), and for the other ζ, g0(ζ) = fµ(α)(ζ) =
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• g⃗ = {gβ′ | β′ ∈ {τ⃗ ∈ A⟨µ⟩ | τ0(α) > ξ∗}, where ξ∗ = sup{γ | ∃r ∈
Pµ(α)(r ⊩µ(α) β̇µ(α) = γ}.

• A′ = A⟨µ⟩ | τ0(α) > ξ∗}.
• F ′ = F ↾ (A′(α)).

We define p+⟨⟩ as p, and by recursion, define p+⟨µ0, · · · , µn⟩ = (p+⟨µ0, · · · , µn−1⟩)+
⟨µn⟩.

Definition 7.3 (The direct extension relation). Let p = stem(p)⌢ top(p) and
p′ = stem(p′)⌢ top(p′). We say that p is a direct extension of p′, denoted by
p ≤∗

α p′, if the following hold.

(1) stem(p) ≤∗ stem(p′) (in some Q := Pα′ ∗ Ṗβ̇′/α′).

(2) If ◦(α) = 0, write top(p) = ⟨f⟩ and top(p′) = ⟨g⟩, then dom(f) ⊇ dom(g),
and for ζ ∈ dom(g), ⊩Q “f(ζ) = g(ζ)”.

(3) Suppose ◦(α) > 0. Write top(p) = ⟨f0, f⃗ , A, F ⟩ and top(p′) = ⟨g0, g⃗, A′, F ′⟩.
Let dp and dp

′
be the common domains for p and p′, respectively. Then

• dp ⊇ dp
′
.

• A ↾ dp
′ ⊆ A′.

• for ζ ∈ dp
′
, ⊩Q “f0(ζ) = g0(ζ)”.

• for ν ∈ A(α) and µ⃗ ∈ A with µ⃗(α) = ν, say F (ν) = ⟨Ṗξ̇ν/ν
, q̇⟩, and for

ζ ∈ dp
′
, we have

p+ µ⃗ ↾ (Pν ∗ Ṗβ̇ν/ν
) ⊩Pν∗Ṗβ̇ν/ν

“fν(ζ) = gν(ζ)”.

• for ν ∈ A(α) and µ⃗ ∈ A with µ⃗(α) = ν,

p+ µ⃗ ↾ Pν ⊩ν “F (ν)0 = F ′(ν)0 and F (ν)1 ≤∗
F (ν)0

F ′(ν)1”

(the last direct extension is intentional).

Definition 7.4 (The extension relation). Let p = stem(p)⌢ top(p) and p′ =
stem(p′)⌢ top(p′). We say that p is a extension of p′, denoted by p ≤α p′, if
the following hold.

(1) The case ◦(α) = 0. Then

• stem(p) ≤ stem(p′) in some Q = Pα′ ∗ Ṗβ̇′/α′ .

• Write top(p) = ⟨f⟩ and top(p′) = ⟨g⟩. Then dom(f) ⊇ dom(g) and for
ζ ∈ dom(g), stem(p) ⊩Q “f(ζ) = g(ζ)”.

(2) The case ◦(α) > 0. Then there is µ⃗ (possibly empty) such that if p∗ = p′+µ⃗,

and we write top(p) = ⟨f, f⃗ , A, F ⟩ and top(p∗) = ⟨g, g⃗, A∗, F ∗⟩, dp and d∗

are the common domains for p and p∗, respectively, then
• stem(p) ≤ stem(p∗) in some Q = Pα′ ∗ Ṗβ̇′/α′ .

• dp ⊇ dp
∗
.

• A ↾ dp
∗ ⊆ A∗.

• for ζ ∈ dp
∗
, ⊩Q “f0(ζ) = g0(ζ)”.

• for ν ∈ A(α) and µ⃗ ∈ A with µ⃗(α) = ν, say F (ν) = ⟨Ṗβ̇ν/ν
, q̇⟩, and for

ζ ∈ dp
′
, we have

p+ µ⃗ ↾ (Pν ∗ Ṗξ̇ν/ν
) ⊩Pν∗Ṗβ̇ν/ν

“fν(ζ) = gν(ζ)”.

• for ν ∈ A(α) and µ⃗ ∈ A with µ⃗(α) = ν,

p+ µ⃗ ↾ Pν ⊩ν “F (ν)0 = F ∗(ν)0 and F (ν)1 ≤∗
F (ν)0

F ∗(ν)1”.
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Equivalently, p ≤ p′ if there is µ⃗ such that p is a condition obtained by extending
the interleaving part of a direct extension of p′ + µ⃗. We call p∗ the interpolant of p
and p′. To be precise, p∗ is the unique condition such that p∗ = p+ µ⃗ for some µ⃗,
p′ is obtained by extending the interleaving part of a direct extension of p′.

Proposition 7.5. (Pα,≤) has the α++-chain condition.

Proof. Similar to the proof of Proposition 6.6. □

Proposition 7.6. ({p ∈ Pα | p is pure},≤∗) is α-closed.

Proof. Similar to the proof of Proposition 6.7. □

Let β < ◦(α). Let ⟨f0⟩⌢⟨fξ̇ν | ν ∈ B⟩, B ∈ ∩γ<◦(α)E(α, γ)({α}), there is

d ∈ [α++]≤α such that dom(f0) = d, for all ν, dom(fξ̇ν ) = d, and each ζ ∈ d,

⊩Pν∗Ṗξ̇ν/ν
“fξ̇ν < α”. Let X ∈ E(α, β)(d) and for each µ ∈ X, g⃗µ = ⟨g0⟩⌢⟨gξ̇ν′

|
ν′ ∈ B ↓ µ⟩ ≤ ⟨f0 ◦ µ−1⟩⌢⟨fξ̇ν′

◦ µ−1 | ν′ ∈ B ↓ µ⟩, where B ↓ µ = {ν′ ∈ B ∩ µ(α) |
◦(ν′) < ◦(µ(α))}. Let g⃗ = jE(α,β)(µ 7→ g⃗µ)(mcα,β(d)). Then

(1) g⃗ = ⟨f0⟩⌢⟨fξ̇ν′
| ν′ ∈ B, ◦(ν′) < β⟩.

(2) g⃗ ≤ f⃗ ↾ {ν′ ∈ B | ◦(ν′) < β}.
The point is g⃗ ≤ jE(α,β)(µ 7→ (f⃗ ↾ B ↓ µ) ◦ µ−1)(mcα,β(d)). jE(α,β)(d)(µ 7→ B ↓

µ−1)(mcα,β(d)) = {ν′ ∈ B | ◦(ν′) < β}, and for each ν′, jE(α,β)(fξ̇ν′
) ◦mcα,β(d) =

fξ̇ν′
.

Theorem 7.7. (Pα,≤,≤∗) has the Prikry property, i.e. for p ∈ Pα and a forcing
statement φ, there is p∗ ≤∗ p such that p∗ ∥ φ.

If ◦(α) = 0, any p ∈ Pα is a finite iteration of Prikry-type forcings, hence, it has
the Pirkry property. The proof for ◦(α) = 1 is similar to the proof of Theorem 6.8.
We assume ◦(α) > 1.

Lemma 7.8. Let p ∈ Pα and φ be a forcing statement. Then there is p∗ ≤∗ p such
that if r = r0

⌢ top(r), r ≤ p∗, p′ is the interpolant of r and p∗, and r ∥ φ, then

r0
⌢ top(p′) ∥ φ the same way.

Proof. The proof is essentially the same as the proof of Lemma 6.9. □

proof of Theorem 7.7. Assume for simplicity that p is pure and write p = ⟨f0, f⃗ , A, F ⟩.
Let d be the common domain of p. Build a ≤∗-decreasing sequence ⟨pν | ν ∈ A(α)⟩
below p be induction.

Assume pν
′
is constructed for ν′ < ν. Let p′ν be a ≤∗-lower bound of ⟨pν′ |

ν′ < ν⟩. Write p′ν = ⟨f ′
0, f⃗

′, A′, F ′⟩ with the common domain d′. For every ξ, let

Qξ = Pξ ∗ Ṗβ̇ξ/ξ
. Let γ∗ = {γ | ∃r ∈ Pν(r ⊩ν “β̇ν = γ”)}. Fix ρ > ξ∗, ρ ∈ A′(α).

Let Ġρ be the canonical name for Qρ. Define

φ0
ρ ≡ ∃t ∈ Ġρ(t

⌢ top(p̄) ⊩ φ)”

φ1
ρ ≡ ∃t ∈ Ġρ(t

⌢ top(p̄) ⊩ ¬φ)”

φ2
ρ ≡ ∄t ∈ Ġρ(t

⌢ top(p̄) ∥ φ)”,

where p̄ is the appropriate interpolation, as described in Lemma 7.8. Enumerate
Qν as {rξ}ξ<(γ∗)++ (repetition is fine here). We are building ⟨pν,ξ | ξ ≤ (ξ∗)++⟩
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which is ≤∗-decreasing below p′ν . At limit ξ, take any pν,ξ which is a ≤∗-lower

bound of ⟨pν,ξ′ | ξ′ < ξ⟩. Suppose pν,ξ is constructed and let pν,ξ = ⟨fξ
0 , f⃗

ξ, Aξ, F ξ⟩
and dξ be the common domain. Let ρ ∈ Aξ(α). By the closure of (Ṗβ̇/ρ,≤∗), there

is q̇∗ρ such that for every µ ∈ Aξ(α) with µ(α) = ρ, by the Prikry property, there

are rµ, fµ
0 , f⃗

µ Aµ, and Fµ with

rµ⌢(fµ, f⃗µ, Aµ, Fµ, ⟨Ṗβ̇ρ/ρ
, q̇∗ρ⟩) ≤∗

rξ
⌢(fξ

ν ◦ µ−1f⃗ ↾ (Aξ ↓ µ)(ρ), Aξ ↓ µ, F ξ ↾ (Aξ ↓ µ)(ρ), F ξ(ρ)),

and there is unique i = iµ,r such that

rµ⌢(fµ, f⃗µ, Aµ, Fµ, ⟨Ṗβ̇ρ/ρ
, q̇∗ρ⟩) ⊩ φ

iµ,rξ
ρ .

For β < ◦(α). there is unique irξ,β such that the collection of µ with ◦(µ(α)) = β
and iµ,rξ = irξ,β is of measure-one. Let Bξ,β := Brξ,β be such a set. By shrinking,
assume further that there is r∗ξ such that for every µ ∈ Brξ,β , r

µ = r∗ξ . We now
have two cases.

Case 1: For every β, irξ,β = 2. In this case, let pν,ξ = ⟨fξ
0 , f⃗

ξ, A∗, F ξ ↾ A∗(α)⟩,
where A∗ is generated by ∪β<◦(α)Brξ,β .

Case 2: There is β such that irξ,β < 2. Let gν = jE(α,β)(µ 7→ fµ)(mcα,β(d
ξ)).

Then gν ⊇ jE(α,β)(µ 7→ fξ
ν ◦µ−1)(mcα,β(d

ξ)) = fξ
ν . Let d

∗ = dom(fξ+1
ν ). For ρ ̸= ν

including 0. Assume now that Aµ is generated by Bµ. Let B<β = jE(α,β)(µ 7→
Bµ)(mcα,β(d)). We have B<β = ∩β′<βE(α, β′)(d∗). Let g⃗<β = jE(α,β)(µ 7→
f⃗µ)(mcα,β(d

ξ)). Then g⃗ = ⟨gν′ | ν′ ∈ B<β(α)⟩ and each dom(gν′) = d∗. Let
F<β = jE(α,β)(µ 7→ Fµ)(mcα,β(d

ξ)). Let Bβ be the collection of τ ∈ OBα,β(d
∗)

such that

• τ ↾ dξ ∈ Brξ,β . Write µ = τ ↾ dξ and ρ = µ(α).

• B<β ↓ τ := {σ ◦ τ−1 | σ ∈ B<β} is equal to Bµ.
• for gν ◦ τ−1 = fµ and for η ∈ (B<β ↓ τ)(ρ), g<β

η ◦ τ−1 = fµ
η .

• F<β ↾ (B<β ↓ τ)(ρ) = Fµ.

We now take B>β as the collection of τ ∈ ∪β′>β OBα,β′(d∗) such that µ :=
τ ↾ dξ ∈ Lev0(A

ξ), and (B<β ∪ Bβ) ↓ τ ∈ ∩β′≤βE(τ(α), β′)(τ [d∗ ∩ dom(τ)]). Let
B∗ = B<β ∪ Bβ ∪ B>β . Let g0 = fξ ∪ {(ζ, 0) | ζ ∈ d∗ \ dξ}. For ρ ∈ B>β(α), let
gρ = fξ

ρ ∪ {(ζ, 0) | ζ ∈ d∗ \ dξ}. Let A∗ be generated by B∗. Let F ∗ be such that

for ρ ∈ A∗(α), if ◦(ρ) < β, F ∗(ρ) = F<β(ρ). If ◦(ρ) = β, let F ∗(ρ) = ⟨Ṗβ̇ρ/ρ
, q̇∗ρ⟩.

If ◦(ρ) > β, let F ∗(ρ) = F ξ(ρ). Finally, let pν,ξ+1 = ⟨g0, g⃗, A∗, F ∗⟩. This finishes
the construction of pν,ξ+1. Finally, we let pν = pν,(ξ∗)++ . Note that min(A∗(α)) >
γ∗ ≥ ν.

We now change the notations slightly. Let pν = ⟨fν
0 , f⃗

ν , Aν , F ν⟩. Assume Aν

is generated by Bν . Let A∗ be generated by B∗ := ∆νB
ν . Let f∗

0 = ∪νf
ν
0 . For

ρ ∈ A∗(α), let f∗
ρ = ∪νf

ν
ρ , F

∗(ρ) = ⟨Ṗβ̇ρ/ρ
, q̇ρ⟩, where q̇ρ is forced to be a ≤∗-lower

bound of ⟨F ν(ρ)1⟩ν < ρ. This is possible because the closure of (Ṗβ̇ρ/ρ
,≤∗) is at

least ρ+.

Claim 7.9. p∗ satisfies the Prikry property.

Proof. If there is p′ ≤∗ p∗ deciding φ, then we may use p′ instead. Suppose p′ ≤ p∗,
p′ is impure, and p′ ∥ φ. Assume p′ ⊩ φ, assume stem(p′) has the minimum number
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of blocks n∗. We will demonstrate the case n∗ = 2. Let p̄ be the interpolant of p∗

and p′, so p̄ = p∗ + ⟨µ0, µ1⟩. Let

p′ = (g0, g⃗0, A0, F0, ⟨Ṗβ̇0/ν0
, q̇0⟩)⌢(g1, g⃗1, A1, F1, ⟨Ṗβ̇1/ν1

, q̇1⟩)⌢ top(p′).

Say that the tree part in top(p′) is T . Since p satisfies Lemma 7.8, we have that

(g0, g⃗0, A0, F0, ⟨Ṗβ̇0/ν0
, q̇0⟩)⌢(g1, g⃗1, A1, F1, ⟨Ṗβ̇1/ν1

, q̇1⟩)⌢ top(p̄) ⊩ φ.

Set r = (g0, g⃗0, A0, F0, ⟨Ṗβ̇0/ν0
, q̇0⟩), ν = ν0, Qν = Pν∗Ṗβ̇0/ν

(which is Pν∗Ṗβ̇ν/ν
).

Assume ◦(µ1(α)) = β′. Note that µ1(α) = ν1. Let µ = µ ↾ dξ, where dξ is described
when we construct pν,ξ+1. We now use the notations for the construction of pν .
Let r = rξ.

Claim 7.10. irξ,β = 0.

Proof. We divide into cases, depending on β′. Suppose for a contradiction that
irξ,β = 1 (the case irξ,β = 2 is similar).

Case 1: β′ = β. Write ν1 = ρ. Then ⊩ρ “Ṗβ̇1/ν1
= Ṗβ̇ρ/ρ

”. Then note that

r⃗0 := r∗ξ
⌢(g1, g⃗1, A1, F1⟨Ṗβ̇1/ν1

, q̇1⟩) ≤ rξ
⌢(fµ, f⃗µ, Aµ, Fµ, ⟨Ṗβ̇ρ/ρ

, q̇∗ρ⟩) =: r⃗1.

Let G be Qρ := Pρ ∗ Ṗβ̇ρ/ρ
-generic containing r⃗0, hence containing r⃗1. Then there is

t ∈ G such that t⌢p̄ ⊩ ¬φ. We can take t ∈ G such that t ≤ r⃗1, but this contradicts
with the fact that r⃗1

⌢ top(p̄) ⊩ φ.
Case 2: β′ < β. Pick any τ ∈ Lev0(A

′), say µ = τ ↾ d′ and ρ = τ(α). Note that
B<β ↓ τ = Bµ. We can see that µ1 ◦ τ−1 ∈ Bµ, and with other properties of τ . Let
p′′ be obtained by extending the r part of p′ + ⟨τ⟩ to rµ. We then have that

p′′ ≤ r∗ξ
⌢(fµ, f⃗µ, Aµ, Fµ, ⟨Ṗβ̇ρ/ρ

, q̇∗ρ⟩)⌢ top(p∗ + ⟨µ0, τ⟩).

LetG beQρ-generic containing stem(p′′). Then it contains r∗ξ
⌢(fµ, f⃗µ, Aµ, Fµ, ⟨Ṗβ̇ρ/ρ

, q̇∗ρ⟩).
Find t ∈ G such that t⌢ top(p̄) ⊩ ¬φ and t ≤ stem(p′′), but then ⌢ top(p̄) gives
contradictory decisions on φ, a contradiction.

Case 3: β′ > β. Then take any τ ′ ∈ Lev0(A1) with ◦(τ ′(µ1(α)) = β. τ ′ = τ ◦µ−1
1

for some τ with ◦(τ(α)) = β. Write µ = τ ↾ dξ, ρ = τ(α). Let p′′ be obtained by
extending p′ with τ ′ is a similar fashion as the one-step extension and extend the r
part to pµ. Then p′′ ↾ Qρ exists and

p′′ ≤ r∗ξ
⌢(fµ, f⃗µ, Aµ, Fµ, ⟨Ṗβ̇ρ/ρ

, q̇∗ρ⟩)⌢

(g1,ρ ⊕ τ ′, ⟨g1,η | η ∈ (A1)τ ′(µ1(α))⟩(A1)⟨τ ′⟩, F1 ↾ (A1)⟨τ ′⟩(µ1(α)), ⟨Ṗβ̇1/ν1
, q̇1⟩)⌢ top(p′).

LetG beQρ-generic containing p
′′ ↾ Qρ. ThenG contains r∗ξ

⌢(fµ, f⃗µ, Aµ, Fµ, ⟨Ṗβ̇ρ/ρ
, q̇∗ρ⟩).

Find t ∈ G such that t ≤ p′′ ↾ Qρ and t⌢ top(p̄) ⊩ ¬φ, but then

t⌢(g1,ρ⊕τ ′, ⟨g1,η | η ∈ (A1)τ ′(µ1(α))⟩(A1)⟨τ ′⟩, F1 ↾ (A1)⟨τ ′⟩(µ1(α)), ⟨Ṗβ̇1/ν1
, q̇1⟩)⌢ top(p′)

is stronger than t⌢ top(p̄) and p′, so the condition gives contradictory decisions, a
contradiction. □

All in all, we have that irξ,β = 0. A similar proof as before shows that for every

τ with ρ = τ(α), µ = τ ↾ dξ, and ◦(ρ) = β, we have that

r∗ξ
⌢(fµ, f⃗µ, Aµ, Fµ, ⟨Ṗβ̇ρ/ρ

, q̇∗ρ⟩)⌢ top(t̄) ⊩ φ
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for the appropriate interpolant t̄. Note that then for each extension of r∗ξ
⌢ top(p∗+

⟨µ0⟩) can be extended further to a condition t where an object τ∗ with ◦(τ∗) = β
is used. With the fact that irξ,β = 0, we have that t ⊩ φ. By a density argument,
we have that r∗ξ

⌢ top(p∗ + ⟨µ0⟩) ⊩ φ, and this contradicts with the minimality of
n∗. □

This completes the proof of Theorem 7.7. □

We now consider the club introduced by Pα and the cardinal arithmetic. By
the Prikry property, all the forcings below Pα preserve all cardinals, and ({p ∈
Pα, p is pure,≤∗) is α-closed, one can show that all cardinals below α are preserved.
Since Pα has the α++-chain condition, all cardinals from α++ and above are pre-
served. For generality, we consider the case ◦(α) > 0. LetG be Pα-generic. Then for

each ν < α such that by letting Qν = Pν∗Ṗβ̇ν/ν
, we have that G ↾ Qν exists. G ↾ Qν

is Qν-generic, and it introduces a set Cν∪Cβν/ν where βν = β̇ν [G ↾ Pν ], C
ν ⊆ ν+1

with max(Cν), Cβν/ν ⊆ (ν, βν ] such that max(Cβν/ν) = βν if βν > ν, otherwise,
Cβν/ν = ∅. Let Cα = (∪{ν|G↾Qν exists}(C

ν ∪ Cβν/ν)) ∪ {α}. Since ◦(α) > 0,
we can perform one-step extension of any condition so that {ν | G ↾ Qν exists}
is unbounded in α. Like in the extender-based Magidor-Radin forcing, {ν | Qν

exists} has a tail of order-type ω◦(α). Hence, in V [G], α is singularized to have
cofinality cf(ω◦(α)). From here and the Prikry property, one can show that α+ is
preserved. Also, note that for ν < ν′, with the way we constructed the sets, we
have that Cν ∪ Cβν/ν is an initial segment of Cν′

, so it is an initial segment of
Cα. Thus, lim(Cα) = (∪{ν|G↾Qν exists}(lim(Cν) ∪ lim(Cβν/ν))) ∪ {α} Fix ξ ∈ Cα

with ξ < α. Then ξ ∈ Cν ∪ Cβν/ν for some ν. Forcing with G can be factored
into G ↾ Qν ∗ G/Qν . We can also form the quotient Pα/Qν where the conditions
look similar to the conditions of Pα, except that all the components lie above βν .
One can verify that ⊩Qν

“(Pα/Qν ,≤,≤∗) has the Prikry property and (Pα/Qν ,≤∗)

is β̇∗
ν -closed” where β̇∗

ν is forced to be the first inaccessible above β̇ν . Also, G is
isomorphic to G0 ∗ G1 where G0 is Qν-generic and G1 is Pα/Qν [G]-generic. The
forcing Pα/Qν does not affect cardinals above βν . Now, note that by Proposition
4.1 items (3) and (6), we have that either 2ξ = ξ+ and 2ξ = ξ++, and 2ξ = ξ++ iff
ξ ∈ lim(Cν) ∪ lim(Cβν/ν). Hence, the cardinal arithmetic below α satisfies (3) of
Proposition 4.1. Since α ∈ lim(Cα), it remains to show that 2α = α++.

Work with a pure condition p ∈ G. Enumerate {ν | G ↾ Pν exists } increasingly
as {νi | i < ωcf(α). . Fix γ ∈ [α, α++). By a density argument, let pγ ≤ p, pγ ∈ G

be such that if top(pγ) = ⟨fγ , f⃗γ , Aγ , F γ⟩, then for every object µ which appears

in Aγ , γ ∈ dom(µ). Suppose that stem(pγ) ∈ Pνγ
i
∗ Ṗβ̇ν

γ
i
/νγ

i
. For i ≤ iγ , define

tγ(i) = 0. For i > γ, there is an extension pγ,i ∈ G such that

(1) pγ,i ↾ Pνi
exists.

(2) by writing pγi as

(s0, ⟨Ṗβ̇0/α0
, q̇0⟩)⌢ · · ·⌢(sn−1, ⟨Ṗβ̇n−1/αn−1

, q̇n−1⟩)⌢⟨f, f⃗ , A, F ⟩,

then (s0, ⟨Ṗβ̇0/α0
, q̇0⟩)⌢ · · ·⌢sk ∈ Pνi

, and

• f(γ) is a check-name γ̌0, then γ0 ∈ fn−1, where fn−1 is the first
coordinate of sn−1.
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• by recursion, γ0, · · · , γl−1 is defined for l < n − k − 1, then γl−1 ∈
dom(fn−l), where fn−l is the first coordinate of sn−l, and fn−l(γl−1)
is a check-name γl.

We define tγ(i) = fk(γn−k−1). For γ < γ′, there is a condition pγ,γ
′ ∈ G such that

if Aγ,γ′
is the tree appearing in top(pγ,γ

′
, we have that for every µ appearing in

Aγ,γ′
, γ, γ′ ∈ dom(µ) and µ(γ) < µ(γ′). From this, it can be shown that tγ <∗ tγ′ ,

which means there is i∗ such that for i > i∗, tγ(i) < tγ′(i). This gives α++ different

functions from ωcf(α) to α. It is easy to show that α is a strong limit cardinal, and
so in V [G], 2α = αcf(α) ≥ α++. Since Pα is α++-c.c., 2α = α++ as desired.

Definition 7.11 (The quotient forcing). Let Ṗα/α be the Pα-name of the trivial

forcing ({∅},≤,≤∗). In V Pα , let Ċα/α be the Ṗα/α-name of the empty set. Now

assume that β < α. Define Ṗα/β as the following. Let G be Pβ-generic. Define

Pα[G] = Ṗα/β [G] as the forcing consisting of conditions of the form stem(p)⌢ top(p),
where

(1) stem(p) is of the form

(Pβ′ [G], q′)⌢(s0, ⟨Ṗβ0/α0
[G], q̇0)

⌢(sn−1, ⟨Ṗβ̇n−1/αn−1
[G], q̇n−1⟩),

for some n (if n = 0, then stem(p) is only (Pβ′ [G], q′)) such that

• Pβ′ [G] = Ṗβ̇′/β [G], and q′ ∈ Pβ′ .

• if n > 0, then α0 < · · · < αn−1, and for i < n,

– if ◦(αi) = 0, si = ⟨fi⟩, and if ◦(αi) > 0, si = ⟨fi, f⃗i, Ai, Fi⟩,
where di = dom(fi) is an αi-domain, di ∈ V .

– for ζ ∈ d0, ⊩Pβ′ [G] “f0(ζ) < α0” and if i > 0, then for ζ ∈ di,

⊩Pαi−1
[G]∗Ṗβ̇i−1/αi−1

[G] “fi(ζ) < αi”.

– ⊩Pαi
[G] “αi ≤ β̇i < αi+1”, where αn = α.

– ⊩Pαi
[G] “q̇i ∈ Ṗβ̇i/αi

[G]”.

– if ◦(αi) > 0,

∗ Ai is a di-tree with respects to E⃗αi
(di) (in the sense of V ).

∗ f⃗i = ⟨fi,ν | ν ∈ Ai(αi)⟩.
∗ for each ν, dom(fi,ν) = di.
∗ for ζ ∈ di, ⊩Pν [G]∗Ṗβ̇ν/ν [G] “fi,ν(ζ) < αi”.

∗ dom(Fi) = Ai(αi).

∗ for ν ∈ Ai(αi), Fi(ν) = ⟨Ṗβ̇ν/ν
[G], q̇⟩, ⊩Pν [G] “ν ≤ β̇ν < αi”

and ⊩Pν [G] “q̇ ∈ Ṗβ̇ν/ν
[G]”.

(2) if ◦(α) = 0, then top(p) is ⟨f⟩, and if ◦(α) > 0, then top(p) = ⟨f, f⃗ , A, F ⟩,
where there is a common domain d, which is an α-domain (in the sense of
V ) such that

• If ◦(α) = 0, then dom(f) = d and for ζ ∈ d, ⊩Pβ′ [G] “f(ζ) < α”.

• Assume ◦(α) > 0. Then,

– A is a d-tree with respects to E⃗α(d) (in the sense of V ).

– dom(F ) = d and for ν ∈ dom(F ), F (ν) = ⟨Ṗβ̇ν/ν
[G], q̇⟩ where

⊩Pν [G] “ν ≤ β̇ν < α and q̇ ∈ Ṗβ̇ν/ν
[G]”.

– dom(f) = d, f⃗ = ⟨fν | ν ∈ A(α)⟩, and for all ν, dom(fν) = d.
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– for ζ ∈ d, ⊩Pαn−1
[G]∗Ṗβ̇n−1/αn−1

[G] “f(ζ) < α” and for ν ∈ A(α),

⊩Pν [G]∗Ṗβ̇ν/ν [G] “fν(ζ) < α”.

Back in V . If ṗ ∈ Ṗα/β , then by density, the collection of p0 ∈ Pβ such that p0
decides n, α0, · · · , αn−1, dom(f0), · · · ,dom(fn−1), the common domain, Ai, A, q′

(as the equivalent Ṗβ̇′/β-name, and so on), is open dense. In this case, we say that

p0 interprets ṗ. All in all, for such p0 which interprets all the relevant components
of ṗ, let p1 be such the interpretation. Assume ◦(β) > 0 and ◦(α) > 0 (the other
cases are simpler) write p0 as r0

⌢⟨g, g⃗, B,H⟩ and by the interpretation, we may
write

p1 = (⟨Ṗβ′/β , q̇
′)⌢(s0, ⟨Ṗβ̇0/α0

, q̇0⟩) · · ·⌢(sn−1, ⟨Ṗβ̇n−1/αn−1
, q̇n−1⟩)⌢⟨f, f⃗ , A, F ⟩.

There is a natural concatenation p0 with p1, written by p0
⌢p1, which is

r = r0
⌢(⟨g, g⃗, B,H⟩, ⟨Ṗβ′/β , q̇

′⟩)⌢ · · ·⌢(sn−1, ⟨Ṗβ̇n−1/αn−1
, q̇n−1⟩)⌢⟨f, f⃗ , A, F ⟩.

Then r ∈ Pα with r ↾ Pβ = p0 exists. Denote r/Pβ the term p1. For Pβ-names

p0 and p1 in Ṗα/β , we say that p0 ≤ p1 if there is p ∈ GPβ such that p interprets

p0 and p1, and p⌢p0 ≤α p⌢p1. Also define p0 ≤∗ p1 if there is p ∈ GPβ such
that p interprets p0 and p1, and p⌢p0 ≤∗

α p⌢p1. One can check that the map

ϕ : {p ∈ Pα | p ↾ Pβ exists} → Pβ ∗ Ṗα/β defined by ϕ(p) = (p ↾ Pβ , p/Pβ) is a

dense embedding, where p \ Pβ is the obvious component of p which is in Ṗα/β .
Note that if G is Pβ-generic and H is Pα[G]-generic, there is a generic I for Pα such
that V [G ∗H] = V [I], where I is generated by {p | p ↾ Pβ exists, p ↾ Pβ ∈ G and
(p/Pβ)[G] ∈ H}. If I is Pα-generic and for some p ∈ I, p ↾ Pβ exists, we can get G
which is Pβ-generic and H which is Pα[G]-generic such that V [G∗H] = V [I], where
G is generated by {p ↾ Pβ | p ∈ I and p ↾ Pβ exists} and H = {(p/Pβ)[G] | p ∈ I
and p ↾ Pβ exists}.

In V Pβ , let Ċα/β be a Ṗα/β-name of the set described as the following. Let G

be Pβ-generic. and H be generic over Pα[G] = Ṗα/β [G]. Then let I = G ∗ H be
Pα-generic. I derives the set Cα ⊆ α + 1 and G derives the set Cβ ⊆ β + 1. Let
Cα/β = Cα \ Cβ .

Proposition 7.12. • ⊩β “(Ṗα/β ,≤) is α++-c.c.”

• ⊩β “Ṗα/β ,≤,≤∗) has the Prikry property.

• ⊩β “(Ṗα/β ,≤∗) is β∗-closed”, where β∗ is the least inaccessible cardinal
greater than β.

We conclude that from all the analysis, Proposition 4.1 holds for Pα and all
relevant quotients at α.

8. The main forcing

We are now defining our main forcing P. The forcing P = ∪{α<κ|α is inaccessible}Pα.
For p and p′ in P, define p ≤ p′ if p ∈ Pα, p

′ ∈ Pα′ , α ≥ α′, p ↾ Pα′ exists, and
p ↾ Pα′ ≤α′ p. The forcing is κ+-c.c. Let G be P-generic. Then if p ∈ G is such
that p ↾ Pα exists, then G ↾ Pα is Pα-generic. We briefly describe P/Pα for α < κ
inaccessible. Recall that for α ≤ η < κ, ⊩α “{p/Pα | p ∈ Pη, p ↾ Pα exists} is

densely embedded in Ṗη/α”. For α < κ inaccessible, let P/Pα as the collection
{p/Pα | p ∈ P, p ↾ Pα exists}. Note that the notation makes sense, since p ∈ Pη for
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some η. For p0, p1 ∈ P/Pα, define p0 ≤ p1 (in V Pα) if there is p ∈ Pα such that
p⌢p0 ≤P p ⌢ p1.

Remark 8.1. V Pα , for every p ∈ P/Pα, there is η such that p ∈ Ṗη/α.

This introduces the set Cα. Let C = ∪α{Cα | G ↾ Pα is Pα-generic}. Then
C ⊆ κ is a club. The next theorem shows that the cardinal arithmetic should be
as expected.

Theorem 8.2. Let ḟ be a P-name of a function from β to ordinals such that β < κ
and G is P-generic. Then f ∈ V [G ↾ Pα] for some α < κ.

Proof. We show by a density argument. Let p ∈ P and ḟ be a P-name of functions
from β to ordinals, where β < κ. For simplicity, assume p is an empty condition.
Let M ≺ Hθ for some sufficiently large regular θ, β ⊆ M , ḟ , p,P ∈ M , VM∩κ ⊆ M ,
and ◦(M ∩ κ) ≥ β. Say α = M ∩ κ. We are going to build p∗ ∈ Pα of the form

p∗ = ⟨f, f⃗ , A, F ⟩. Let f, f⃗ , and A be any objects. Fix γ < β and ν ∈ A(α) such
that ◦(ν) = γ. Let Yν be a maximal antichain of relevant collections in Pν . For
each r ∈ Yν , let Gr be Pν-generic containing r. Since Vα ⊆ M , M [G]∩ κ = M ∩ κ.

Find q ∈ P/G such that q decides ḟ(γ)[G]. By elementarity, we may find such a q

in M [G]. Then q ∈ Pξ/G for some ξ < α. Back in M , let ξ̇ and q̇ be the names for

such ξ and q. Define F (ν) = ⟨Ṗξ̇/ν , q̇⟩. For ν with ◦(ν) ≥ β, we assign F (ν) to be

any value. This completes the construction of F . By our design, we have that p∗

decides ḟ , and hence, p∗ ⊩P ḟ ∈ V Pα .
□

Corollary 8.3. κ is inaccessible in V P.

Proof. By Theorem 8.2, if κ is collapsed, then the witness function has to be in
V Pα for some α < κ, but κ is preserved in Pα, a contradiction. The same argument
shows that κ is regular. Finally, for every β < κ, the value 2β must be determined
in V Pα for some sufficiently large α because the forcing can be factored so that the
quotient forcing after the stage β is β+-closed under the direct extension, □

Corollary 8.4. Every cardinal is preserved in V P.

Proof. Similar to the previous corollary. □

Corollary 8.5. For β < κ the value 2β is determined in V Pα for some α ∈ (β, κ).

Theorem 8.6. In V P, κ is inaccessible, there is a club D ⊆ κ such that for β ∈ D,
2α = α++ and for α ̸∈ D, 2β = α+.

Proof. Let C be the club derived from P and D = lim(C). Then D satisfies the
theorem. □

9. Getting different cardinal behaviors on stationary classes

Assume GCH. Let κ be a strongly inaccessible cardinal. For each γ < κ, let

fγ : κ → κ. Assume that for each γ, there is a coherent sequence of extenders E⃗γ ,
on a set Xγ ⊆ κ and ◦γ : Xγ → κ such that

• E⃗γ = ⟨Eγ(α, β) | β < ◦γ(α)⟩.
• each Eγ(α, β) is an (α, α+fγ(α)) extender witnesses α being α+fγ(α)-strong.
• ◦γ(α) < α.
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• for ν < κ, {α | ◦γ(α) ≥ ν} is stationary.

Then we can proceed a similar forcing construction, except that the corresponding

Cohen part at α will be C(α+, αfγ(α)). Let P⟨f⃗γ |γ<κ⟩ be the corresponded forcing.

Theorem 9.1. In the forcing P⟨fγ |γ<κ⟩, all the cardinals are preserved, the forcing
produces a club C ⊆ ∪γ<κXγ such that for each 0 < ξ < κ regular and γ < κ, the

collection of α with cf(α) ≥ ξ and 2α = α+fγ(α) is stationary.

Proof Sketch. Fix ξ > 0 and a P-name of a club subset of κ Ḋ. Let p be a condi-
tion, Ḋ a name of a club subset of κ. Let M ≺ Hθ where θ is sufficiently large,
Ḋ, p,P⟨fβ |β<κ⟩ ∈ M , VM∩κ ⊆ M , and ◦γ(M ∩ κ) ≥ ξ. Let α = M ∩ κ. We are now

extending p to a condition whose top level is α. Let p = ⟨f, f⃗ , A, F ⟩ ∈ Pα, where

f, f⃗ , A can be any sensible components. For each ν ∈ A(α), let F (ν) be a condition

that decides an element ξ̇ which is the minimum of the interpretation of Ḋ\ (ν+1).

By elementarity, ξ̇ is decided to be below α. Then the final condition forces that α
is in Ċ ∩ Ḋ, and forces that 2α = αfγ(α), and cf(α) ≥ ξ. □

Example 9.2. Start from GCH, κ carrying a (κ, κ+κ)-extender. Then it is possible

that for γ < κ, there is a sequence coherent sequence of extenders E⃗γ on a stationary
set Xγ ⊆ κ where each Eγ(α, β) witnesses α being α+γ-strong. Let fγ : ξ 7→ γ.

Then the forcing P⟨fγ |γ<κ⟩ forces that κ is inaccessible, and in Vκ and each γ < κ,
there is a stationary class Sγ ⊆ κ such that for α ∈ Sγ , 2

α = α+γ .
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