EXTENDER-BASED MAGIDOR-RADIN FORCINGS WITHOUT
TOP EXTENDERS

MOTI GITIK AND SITTINON JIRATTIKANSAKUL

ABSTRACT. Continuing [1], we develop a version of Extender-based Magidor-
Radin forcing where there is no extender on the top ordinal. As an application,
we provide another approach to obtain a failure of SCH on a club subset of
an inaccessible cardinal, and a model where the cardinal arithmetic behaviors
are different on stationary classes whose union is a club.

1. INTRODUCTION

In [1], we developed a Prikry-type forcing which shoots a club subset of x con-
taining all former regular cardinals from the optimal assumption. Unlike [2], the
regular cardinals outside the club remain regular. The forcing in [1] can be viewed
as the Magidor-Radin forcing with interleaving quotients, and there were no ul-
trafilters on the top cardinal required in the forcing construction. In this work,
we develop a forcing with the same style, but use Extender based Magidor-Radin
forcing instead.

In [3], they provided a consistency results where there are models of ZFC such
that there are stationary classes in which the cardinal arithmetic behaves differently
with the optimal assumptions. As an application, we provide a ZFC model where
GCH fails on a club, and a ZFC model where there are stationary classes in which
cardinal arithmetic behaves differently, as stated in Theorem 9.1.

The organization of the paper is the following. In Section 2 we introduce all
basic ingredients we need to develop the forcing. From Section 3 to Section 8,
we develop the forcing in which a club class of cardinals o with 2¢ = a™F. The
forcing for building a club class of cardinals is built from approximated forcings,
which will be built by recursion. The basic cases are constructed in Section 3. In
Section 4 we state all the properties we need to be true, and show that the forcings
in the first few levels satisfies the properties. Then the construction proceeds in
Section 5, Section 6, and Section 7. The main forcing will then be introduced in
8. Lastly, in Section 9, we sketch a generalization of the forcing to get different
cardinal behaviors on different stationary classes.

Although a version of Extender-based forcing and the Extender-based Magidor-
Radin forcing looks slightly different from [4], T assume that the readers are familiar
with the Extender-Based Magidor-Radin forcing.

Conventions: Without mentioning, we assume that every forcing has the weakest
element 1. p < ¢ means p is stronger than g. When possible, every name in this
paper will be in the simplest form. For sets A and B, AL B just means A U B
where AN B = 0. If f is a function and d is a set, define f [ d as f | [d N dom(f)].

The authors were partially supported by ISF grant No. 1216/18.
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Throughout the paper, the forcing at level p, denoted by P, will be defined. We
often abbreviate the I-p, by IF,. If ¥ = (z4,) is a sequence indexed by pairs of
ordinals, we define

T (a,8) = (e p | <aor (o =aand B <pj)),

and
Zla=2Z1 (a,0).

2. BASIC PREPARATION
From now until Section 8, we have the following hypotheses.

Assumption 2.1. GCH holds. k is a strongly inaccessible cardinal. There is a
function o : k — Kk and E = (E(a, 8) | a < kK, § < o)) such that

(1) E(a, B) is an (o, a™)-extender, which means that if
Jag iV = UL(V, E(a, 8)) = Mas

is the ultrapower map, then crit(jo,3) = o, and M, g computes cardinals
correctly up to an including o™ .
(2) E is coherent, namely

Jas(E) [ (a+1)=E | (a, ).
(3) for all a, o(a) < a.
(4) For every v < k, the collection
{a <k |o(a) 27}
18 stationary.

Definition 2.2. Let a < k. We say that d is a a-domain if d € [a*F \ o]>% and
a € d. Define C(at,a™™) as the collection of functions f such that dom(f) is a
a-domain d, and rng(f) C a. Define the ordering in C(a™,a™) by f < giff f D g.

Note that C'(a™,a™") is isomorphic to Add(a™,a™™), the forcing adding a*+
subsets of a™.

Remark 2.3. If |P| < a and C(at,at™) is a P-name of the forcing interpreted in
the extension, then

Fp “{f € Clat,a™) | dom(f) =d,d e V} is dense”.

We identify such and f by f with dom(f) = d, and for a € dom(f), f(a) is a
P-name of an element below «.

Until the end of this section, fix a with o(a)) > 0 and 8 < o(«). We introduce
some definitions and facts which will be used since Section 7. Fix a a-domain d.

e Define meq,s(d) = {(jos(€),€) | € € d}.
e Define E, g(d) by X € E, g(d) iff mc, g(d) € ja,3(X). Then E, g(d) con-
centrates on the collection OB, g(d) of (a, 8)-d-objects, which are functions
1 such that
— «a € dom(pu) C d,rng(p) C « (in fact, we can assume that rng(p) C
p(@) ™).
(The reason is that dom(mca g(d)) = ja,sld] C ja,s(d), japle) €
Jaosld], g(mea,s(d) = d € 0+ = mea(d)(ap(a)) )
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— o(u(@)) = B, in particular, u(a) is strongly inaccessible, | dom(u)| <
pu(a)™T, and pu is order-preserving.
(The reason is that j, 5(o)(a)Me# = B, avis inaccessible, | dom(mcq, 5(d))| =
|d| < atT, and mc, g is order-preserving.)
o Let X, € E, g(d) for v < a. Define the diagonal intersection

AucaX, = {11 € OBus(d) | Vv < p(a)( € X,)}.

Then A, <o X, € E, 5(d).

e The measure E, g({a}) is normal, and is isomorphic to E, g(ca), which is
defined by X € E, g(a) iff a € jo,g(X).

e if d D dis an a-domain, there is an associated projection from E, g(d’)
to Eq g(d) induced by the map 7 4 : OBy g(d’) — OBgy g(d) defined by
wara(p) = p | d (le. p | (dNdom(p)). In particular, there is a projection
from E, g(d) to Eq g({a}).

e Similar as in the proof of Lemma 2 [5], there is a measure-one set By €
E, g(d) such that for every v < a, {u € OB, 5(d) | p(a) = v} <vtt. We
will assume that for every A € E, g(d), A C By.

We now no longer fix 3, but still fix « and d.

o 1 is an a-d-object if p is an (o, B)-d-object for some 3 < o(a). Denote the
collection of a-d-object by OB, (d). For each pair of a-d-objects p and 7,
define p < 7 if dom(p) C dom(7) and p(a) < 7(a). Equivalently, u < 7 iff
dom(u) C dom(7) and for v € dom(u), u(y) < 7(%).

e Define X € E,(d) iff X can be written as X = Ug<o(a)Xp Where Xpg €
E, p(d). Note that for each a-d-object p, {7 € OB, (d) | p <7} € Ea(d).

o Let X, € Ea(d) for v < a. The diagonal intersection

ApcaXy ={pn € OBu(d) | Vv < p(a)(p € Xu)}

is in E(d).

o If u < 7, we define u | 7 = po 77!, which is the function whose domain
is 7[dom(yu)] and for v € dom(u), (1 4 7)(7(y)) = p(y). Since 7 is order-
preserving, we have that p | 7 is well-defined.

e If X is a set of a-d-object and 7 € OB,(d), define X | 7 = {p | 7|
u < 7,0(p(a)) < o(r(a))}. By the coherence of the extenders, we also
assume that every X € Ea(d) is coherent, i.e. for every 7 € X, X | 7 €
Er (o) (7[d N dom(7))).

e Let i = (po, -+ ,pn—1) be an increasing sequence of a-d-objects, define
fi(a) = pp—1(e), which is just an inaccessible cardinal below «. Also
write dom(g) = dom(p,—1). Also, if pp—1 < 7, we define i | 7 = (uo |
o et 4 7).

e A is an a-d-tree if A consists of nonempty finite increasing sequences of
a-d-objects, and A has the following descriptions:

— <, 7iff fC 7 (fis an initial segment of 7).

— Lev,,(A) is the collection of (g, ,un) in A, so they have lengths
n+ 1.

— We require that Levo(A) € E,(d

— For ji € A, define Succy(ji) =
Succa(fi) € Eqo(d).

).
{r | i~(r) € A}. We require that
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e If Ais an a-d-tree and u € Levg(A), define A,y = {7 | (u) "7 € A}, and
we recursively define A, .. 1) = (Ao in_1)) (un)-

e Fix d C d an a-domain and @ = (ug, - ,ptn—1) is a finite increasing
sequence of a-d-objects, define @ | d' = (ug [ d,-+ ,pin—1 [ d'). If we
assume that A is an a-d-tree, define A [ d' = {i [ d' | i€ A}. Then A | d’
is an a-d’'-tree.

e If d D dis an a-domain, and A is an a-d-tree, the pullback of A to d’, is
{fi € [OBu(d")]<“ | i is increasing and i | d € A}. Note that the pullback
is an a-d’-tree.

e Atree Ais generated by B € Ea(d) if Levg(A) = B, and for i = (ug, - , in—1) €
A, Succa (i) = {7 € B | pn—1 < 7}. Such a tree is an a-d-tree. Further-
more, every a-d-tree A has a sub a-d-tree which is generated by some B €
Ea(d): for each v < a, let X, = Nger ji(a)<y Succa(fi), and B = A, X,.
We assume that every d-tree A is generated by some B C By.

o We write A(a) = {fi(a) | § € A}. If A is generated by B, then A(a) =
B(a) = {u(a) | 4 € B}.

e If A is an a-d-tree and 7 is an object, define A | 7 = {{ | 7| Vi(u; <
7 and o (p;(a)) < o(r(«)))}. By the coherence, assume that for each T,
A | 7 is an 7(a)-7[d N dom(7)]-tree, with respects to Er(a) (r[d N dom(T)]).

Remark 2.4. For every d-tree A and v, we assume that {ji € A | fi(a) = pz-1(a) =
v} has size at most v .

3. THE FIRST FEW LEVELS

We consider the forcings at the first w inaccessible cardinals, so, the extenders are
not involved. We first analyze just for the first few inaccessible cardinals concretely,
which will be served as the first few basic cases for our induction scheme for the
forcings in the general levels, which will be listed later in Section 4.1.

3.1. The first inaccessible cardinal. Let o be the least inaccessible cardinal.
The following describe the scenario at the level ay.
e The forcing P,, consists of (f) where f € C(ag,ad™). For (f),{g) € Pa,,
define (f) <a, (g9) iff f <, giff f D g.
e Let C,, be a P,,-name for the set {ag}.
e Let Pao Jao D€ a Py -name of the trivial forcing, with the obvious extension
and the obvious direct extension.
o In VP, let Cao/ao be a Pao/ao—name of the empty set.

The forcing at the first inaccessible cardinal has nothing particularly interest-
ing. The name C,, will be served as the initial approximation of the final club

where GCH fails at its limit points. The quotient forcing like P, will show its

o/ao
importance later. C"ao Jao Will also be considered for an approximation of the final
club. It will be more meaningful to write Pdo /ao Since in general, the ordinal which
appears for the numerator, like ¢, may be a non-trivial name of an ordinal. Since
this is a check name, we omit the check symbol. A trivial remark is that forcing

P,, * Pao/ao is equivalent to Py, .

3.2. The second inaccessible cardinal. Let oy < ay be the first two inaccessible
cardinals.
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Definition 3.1. The forcing P,, cousists of two kinds of conditions (apart from
the weakest condition). Conditions of different kinds are not compatible.

(1) The first kind consists of (f) in C’(af‘, o ™). For (f) and (g) which are of
first kind, define (f) <a, (g) iff (f) <}, < yiff fDg.
(2) The second kind consists of p = ((fo), (P, ¢ oy Go)) " {(f1), where
e foeClaf,af™).
o Iy, “<ap < f < «y is strongly inaccessible” (in this case, we can
assume that 5 is v, or more formally, dp).
° “_ao “go € Pé/aow
e dom(f1) is an ag-domain, and for v € dom(f1), fi(7y) is a Py, * P.f/ag
o SR <"
e For such a condltlon define p [ P, = (fo)-
From now, we replace 5 by ag. We say that

({f0), (Pag /e @0)) ™ (1) <ay ({90}, (Pag/aq: 70)) ™ (g1) iff

)~
((f0), (P /oo 40)) ™ (f1) <&, ({90) (Pag/aqs 70)) ™ (g1) iff
fo 2 go,dom(f1) 2 dom(g1), and for v € dom(g1), ((fo), o) IF o * Pa
“fl(,.y) — 91(7)77.
Let Cy, be a P, -name such that for p of the first kind, p IFo, Co, = {1}, and

for p of the second kind, p IF,, “Ca, = {ao,a1}”. We now define different types of
quotients.

name, II- J#Pa

0/a0

° .041 Ja, 18 @ Py, -name of the trivial forcing, with the obvious extension and
the obvious direct extension. In Vo1, let C’al/al be a Pal/al—name of the
empty set.

e The quotient Pa1 Jap 18 @ Py -name of the following forcing notion. Let G be
P,,-generic. The forcing Py, [G] := Pa, /a,[G] consists of ((§))™(f) where
F g “f € Claf,af ™) (C(af, af ") is considered in (V[G])F~o/e0lGl),
and dom(f) € V. The extension and the direct extension are the natural
ones. Back to the ground model, in V=0 let Cal/ao be the Pal/ao—name
for {a1}. The point of having an empty set in the condition because it
is more natural to translate a condition in P,, of the second kind to a
condition in Py, /q,, namely, for each p = ((fo), (P4, d0)) " (f1) in Pa,,
we have that IFo, “((¢)) " (f1) € Pal/ao”. This is because ¢ is always in-
terpreted as the empty set in Pao Jao, and f1 is a function whose range
contains names of ordinals in with respect to the correct forcing. Note
that {p € P,, | pis of the second kind} can be densely embedding in
Py, * Pal/ao in the sense of < and <*.

The subforcing of P,, containing conditions of second kinds is nothing but a
two-step iteration of the Cohen forcings, except that the domains can always be
decided by the weakest element to be in the ground model.

4. THE INDUCTION SCHEME

We are now stating the induction scheme, and point out that it holds for the
basic case.
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Proposition 4.1 (The induction scheme). Let « be an inaccessible cardinal.
(1) The basic properties of the forcing (Pa, <, <*).
o [Py =aTT.
o (Py,<)isat-c.c.
o (P,,<,<*) has the Prikry property.
(2) The P,-name of the set C,. Let C, = C, [G] where G is generic over P,.
e C, Ca+1, max(Cy) = a.
o Ifo(a) =0, then Cq N is a bounded subset of .
e Ifo(a) >0, then C, N« is a club subset of a.
e C,, contains only former inaccessible cardinals.
(8) Cardinals and cofinalities in the extension.
e Ifo(a) =0, then o remains regular in the extension over P,.
o Ifo(a) > 0, then when we force over Py, o is singularized and cf(a) =
cf(w°®)) (the ordinal exponentiation,).
e In the extension, for every cardinal f < o, 28 = B or 28 = g++, and
20 = BT iff B € lim(C,,).
e For each V-regular 8 < «, B is singularized iff § € lim(C,,).
(4) Pa/a is always a P,-name of the trivial forcing ({0}, <, <*).
(5) The factor Pa/g for B < a.
e {pe P, |p]l Ps exists} densely embeds into Py Pa/g.
o kg “|Pa/5| =atTt, (Pa/ﬂ, <) dsatt-ce”
o k3 “(Pa/ﬂ,g*) is B*-closed”, where f* = min{€ > 5 | £ is strongly
inaccessible}.
o kg “(Pa/ﬁ, <,<*) has the Prikry property”.
(6) The quotient set Cy/5: In VPs | consider the properties of Pa/g—name of
the set Cy. Let G be Pg-generic over V and H be PQ/B[G]—generic over

VI[G]. Let Ca/g = Ca/g[G][H].
o If =q, then Cy/p = 0.
e Suppose B < «. Then I = G x H is P,-generic, which introduces
the set Co. Also, G introduces the set Cg. Then Co 3 C (B,a], and

Ca = Cﬁ U Coc/ﬁ'
(7) Double quotients: Let v < < a and G is Py-generic. Then Pa/lg[G] 18
defined as

Fpyic) “P € PayslGl iff p € PolG x H]”,
where H is the canonical P3|G]-generic.

For a non-triviality, we now show that the forcing P,, as described in Definition
3.1 satisfies the induction scheme.

Proposition 4.2. Let ag < a1 be the first two inaccessible cardinals. Then Py,
satisfies the induction scheme

Proof. (1) e The set of conditions in P,, of the first kind is essentially
C(af,af™), whose size is (at+)S* = a**. Conditions of the sec-
ond kind are of the form ({fo), (P ,,.d0)) ™ (f1). We assume that the

names are in their simplest form in the sense that 5 = ay, §o = (). The
part ((fo), (F¢/q,-40)) is in Vo, . Then for each v € dom(f1), fi(7) is
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a Py, * Pao/ao—name of an ordinal below a. By replacing fi(v) with
its nice name, assume that fi(y) € V,,. Hence, the number of such
fi'sis (af 7)™ = af . Hence, |P,,| =a] .

e Suppose that X = {p'y | ¥ < af T} is an antichain of conditions in
P,,. By shrinking X, we may assume that X contains conditions of
the same kind. If it contains conditions of the first kind, then the
standard A-system applies. Suppose X contains conditions of the
second kind. By shrinking further, assume there is py such that for
every v, p? = po(f{). Then we can apply a standard A-system
argument on {f] | v < af *}, and we are done.

e Obvious, since < and <* on F,, are the same.

(2) Note that o(c;) = 0. If G contains conditions of the first kind, then C,, =
{a1}, and if G contains conditions of the second kind, then Cy, = {ap, a1}
In both cases, it is a subset of a1 +1 whose maximum is ;. Also, Co, Ny
is either ) or {a} which is bounded in oy, and C,, contains only former
inaccessible cardinals.

(3) o(ey) = 0, and the forcing P,, is equivalent to either a Cohen forcing
Add(af, aﬁ), or a two-step iteration of Cohen forcings Add(ag,agt) *
Add(af,af™). In both cases, a; remains regular, GCH still holds, and
lim(Ca) = {0}.

(4) Pal/al is a P,,-name of the trivial forcing.

(5) Consider Pal/ao.

e Foreach p = ((fo), (P4, d0)) "~ (f1), consider the map 7 (p) = ((fo),
Clearly, this map is a dense embedding from {p € P,, | p | Pa,}
Pao * Poq/om .
e Since P,, forces GCH, a similar argument as in (1) shows that Ik,
“|Pa1/ao| =af", (Pa /o> <) 18 ait-cc.,”
e Let G be P,,-generic. Conditions in P,, [G] are of the form ((#))™(f1).
We ignore the empty set’s part. Note that since Py, [G] := Pao/ao [G] is
trivial, so fi is just a Cohen condition in V[G]. We now assume that a
condition in P,, [G] is (f1). Let (f] | v < ~v*) be a decreasing sequence
of conditions, where v* < aq. In V, let dx = Uycqy-{d | Ip € Pa,,.
Then d* € V, and let f* be such that dom(f*) = d*, and in V[G],
f* < f{ for all 4. Then f* is as required.
o Iy, “ <, <" are the same in Pal/ao, hence has the Prikry property”.
(6) In VFPer*Fay/ar Ca,/a, is the empty set. In VPao*Pay /e Cay /oo = {1} C
(ap, 1], and in this model, Co_oUCy, /o, = Ca,, since it is the same model
with the extension VFe1 using conditions of the second kind.
(7) Trivial since the definition is given.

()™ fu)-
t

O

Remark 4.3. (1) P, = Pal/ao is equivalent to the subforcing P,, containing
conditions of the second kind, and there is a natural translation from one
generic to another. Namely, suppose that G * H is such a generic object.

Define I = {(po, { aoMo,q})”‘pl | po € G,lFo, “({(@))"p1 € H”}. Then
V[I] = V|G * H].
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(2) If we force with conditions in P,, of the second kind, we can obtain an
equivalent generic object from Py, * Py, /o, naturally. Namely, if I is Py, -
generic containing conditions of the second kind, let

G = {{fo) | 3¢, [1({fo: (Pag/ao: @) (f1) € I},

and

H ={((0)" (f1[G]) | 3fo0,d((fo, (Pag/ae:- @)~ (f1) € I}.
5. BELOW THE FIRST MEASURABLE CARDINAL

Let « be a strongly inaccessible cardinal which is below the first a* with o(a*) =
1. We will assume that « is at least the w + 1-th strongly inaccessible cardinal so
that the conditions of arbitrarily length will appear at this stage.

Definition 5.1. P, consists of the conditions of the following kinds:
e The pure conditions, which are conditions of the form (f), where f €
Cla™,a™™).
e The impure conditions, which are conditions of the form

(o) ™ (g o @0)) ™+~ ({fne1) (s, jon o Gn1)) (),

for some n > 0, where

— o < -+ < an,_1 < a are inaccessible.
— for all ¢, Ik, “a; < B; < ajy1”, where a,, = .
— fo € Clag,ag ™) and for i > 0, dom(f;) = d; is an a;-domain (in the

sense of V), and for ¢ € d;,

”_P"‘i—l*PB'ifl/'lifl “fZ(C) <ai
In particular,
N+
“_Pai_l*PBi,l/ai,l “fie Cla;,af ™).

— dom(f) = d is an a~-domain, and for ¢ € d,
[ “flO) < ar.

o

1 *PBn—l/an—l

n—

In particular,
I-p

o

" uf c Cv(a+,a++>”_
177 Bp—1/an—1

— for all i, IF,, “¢; € PBi/ai”'
By recursion, we consider

((f0) (P, jg s 40)) ™ -+ (i)
as a condition in P,,. Denote p [ P,, as the condition as bove. We also consider
((£0) ™ (P jagr G00) ™+~ ((F) (P, oy 63))
as a condition in P, PB%,/OM" Denote such a condition by p [ (i + 1).
The ordering <, and <}, will be the same. We only define <,. We will also write
a pure condition in an impure condition’s format. When we mention a condition p,

we put the superscript p to every component in the condition. If p is the condition
as in the definition, we write n? = n, top(p) = f.
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Definition 5.2. Let
Po = ((f0) " (Pyy jag» 80)) ™+~ ((Fam1) " (Ps,_ jan_ s Gn1)) (),

and

pr=((90) " (Pe, /o> T0)) " - T ({gn=1)" (P, /1 Tm=1))" (9)-

We say that py <, pp iff

® N =1m.

ofori<n,ai:%.. _
fo 2 g0, {fo) Fay “Bo = o and go <g /., 70"
o fori>0,d" Dd’ andfor Ced’  pli oy ety
for i >0, (po 1)~ (fi) Fa, “Bi =& and ¢; <p ), 74"
dom(f) D dom(g) and for ¢ € dom(g),

pintp, ., () = 9(0)".

17" Bp_1/ap_1

“fi(€) = 9:(0)".

We may also assume that & = f; for all i. The extension relation does not
increase the length of a condition. For a generic G containing a condition p, define
C,, as the following: If p is pure, then C, = {a}. Assume p is impure and n = nP.
Then p [ n € P, * PB”/an' Let 8, = B, [G | P,,_,]. By Proposition 4.1 (2) and
(6), G I (Pa, * P3, ,,) introduces the set C'"=Ca,_,UCs, /0, 1 C Bu1+1
with max(C’) = f,—1. Define C,, = C" U {a}. Still, this forcing does not change
the cardinal arithmetic.

We now define P, /3. An intuition is that we need {p € P, | p [ Ps is defined}

to be densely embedded in Pg * P, /8-

Definition 5.3 (The quotient forcing). Let Pa/a be the P,-name of the trivial
forcing ({0}, <,<*). In VP, let C"a/a be the Pa/a-name of the empty set. Now
assume that 8 < «. Define P, /3 as the following. Let G' be Pg-generic. Define

P,[G] = P, ,3[G] as the forcing consisting of conditions of the form
p = (Bo[G D)~ (fobs (Bsy janGlido)) (Ui (B, e [Glin 1))~ ()
where n > 0 and
(1) B < B < «, so Py[G] was already defined by recursion, which is just
Pg(c5(G] and B = B'[G]. Furthermore, ¢’ € Py/[G].
(2) If n >0, then ag < -+ < ay—1, and for i < n,
e let d; = dom(f;), then d; is an a;-domain, d; € V.
e for ¢ € do, IFp,, ) “fo(¢) < ap”, and if ¢ > 0, then for { € d;,
I 71/%71[67] “fz(C) < ai”'
° “_P(”[G] “op < B < ai41”, where oy, = .
) ”_Pai[G] “q.i S Pﬁz/(% [Gr.
(3) d:=dom(f) is an a~domain, and is in V.
(4) Fix¢ €d. Ifn =0, thenlrp (g “f(() < @”, otherwise, IFp., L (Gl+P, e
“f(é‘) < a”'
Back in V. If p is a Pg-name of a condition in P, /8, then by density, there is

po € Pg such that pg decides n, ag, -+, an—1, dom(fy),--- ,dom(fp—1), dom(f).
In this case, we say that py interprets p. All in all, for such pg which interprets all

Pa, [G]*PBI_

(G

n—1
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the relevant components of p, let p; be such the interpretation. Write pg as ro ™ (g)
and by the interpretation, we may write

p1= (P, 6") " ((F0)s (P, jergr G0)) -+~ ({Fre1)s (By. s Gn—1)) " (f)-

There is a natural concatenation py with p;, written by po™p1, which is
r=710"((9), (Prys: ) T ({fam1)s (Ps, ja_yrGn=1)) " ()-

Then r € P, with r | Ps exists. For py and p; in Pa/ﬁ, we say that py < p; if
there is p € GP# such that p interprets po and pi, and p~py <o p " p1. Also define
po <* py if there is p € G# such that p interprets pp and p;, and p~po <X p " p1
(note that at this level <* and < are still the same). One can check that the map
¢:{p € Py |p| Pp exists} — Pg * P,/ defined by ¢(p) = (p [ Pg,p\ P3) is a
dense embedding, where p \ Pg is the obvious component of p which is in P, /8-

In VFPs let Ca//g be a Pg/a—name of the set described as the following. Let G be
Pg-generic. Write

p = ((Por[G),d') " ((f0), (Ps, /g [G1rd0)) -+ ~((Frm1)s (Ps, s (Gl Gn1)) " (f)

as an element in P,[G]. The part which excludes the top part, i.e.

(Por[G],d) ™ ({fo): (Piy g [G1,d0)) -~ ({fum) (Bs, Gl 1))

isin P,, ,[G] *PB"?l/anq [G]. Let H be generic over the forcing. By our induction
scheme, H produces Cy U Cy, where Cy C (8, a,—1] (can be empty if n = 0), and
C1 C (ap—1,Bn-1] (can be empty if 3,1, the interpretation of Bn,l, is ap_1). If
n > 0, then max(Cy) = ay—1, and if 8,-1 > a,—1, then max(Cy) = B,-1. Let
Ca/ﬁ =CoUC1 U {a}

Proposition 5.4. P, and the relevant quotients at « satisfy Proposition 4.1.

Proof. (1) Similar as the proof of the corresponding properties in Propoisition

4.2.

(2) o(a) = 0. Then the forcing P, introduces the set C, C a+1 where C,, \{a}
is a bounded subset of «. By induction hypothesis, it is easy to see that
C,, contains only former inaccessible cardinals.

(3) The forcing P, under a certain condition can be factored to P+C/(at, att),
where PY € V,,, and hence, « is still regular. Note that by induction on a,
C,, is still finite, and since PY is either empty or a two-step iteration where
it forces GCH. Hence, P, still forces GCH.

(4) Obvious.

(5) Let 8 < a.

e The map p+— (p | Ps,p\ P3) is a dense embedding from {p € P, | p |
Py exists} to Pg * Pa//;.

e Similar to the proof of the corresponding properties in Proposition 4.1,
g “|Paysl = @t and is att-c.c.”

e Let B/ < p* and IFg “{p” | v < B’} be a <*-decreasing sequence
of conditions in P, /8" We may assume that p? = pj~(f7). Then
kg “{pg | v < B’} is a <*-decreasing sequence in a certain forcing
P Pg’* /a*”. By induction hypothesis, the two-step iteration is 5*-

closed under <*. Let p§ be such that for all v, IFg “p§ <* pJ”. Now a
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similar proof as in the corresponding property of Proposition 4.1 can
be used to find f; such that for all v, Ikg “p§ = (f1) <* pd~ ().
e Since < and <* on P, /g coincide, the Prikry property holds.
(6) By the construction of C., /s and the factorization, the property holds.
(7) Obvious by the definition of the double quotient stated in the Proposition
4.1.
O

6. AT THE FIRST o WITH o(a) = 1

We exhibit the forcing at the level of the first cardinal with a positive Mitchell
order. Let a be the first such that o(a) = 1. A variation of the Extender-based
Prikry forcing will be introduced. Instead of diving into a full definition all at once,
we progress through a series of definitions.

Definition 6.1. A pure condition of P, is p = (fo, f, A, F) where there is a common
domain d such that

(1) Ais a d-tree.

(2) dom(F) = A(a). . . '

(3) for v € dom(F), F(v) = (P, ,,.q) where Ik, “v < B, <aand € Py "
(4) dom(f) =d and fy € C(a tath).

() f={fvIveA).

(6) for each v € A(a), dom(f,) = d and for ¢ € d, “_P"*PB,,/U “f,(¢) <a’. In

particular, f,(¢) is a P, x PBV/V—name.

The forcing seems like a version of an Extender-Based Prikry forcing with inter-
leaved forcings. The main difference is that now we have a sequence of Cohen-like
functions. The role of the sequence of the Cohen-like functions is that we want
the quotient forcings at this level (and also in general) to be highly closed with
respect to the direct extension relation. If we just use a Cohen function in the
ground model, then the corresponding quotient will no longer be highly closed with
respects to the direct extension relation. When we perform a one-step extension,
we want to somehow change the Cohen function to a name of a Cohen function
with respects to the part of the condition below. The explanation will make a bit
more sense once we introduce the one-step extension operation.

We now discuss a one-step extension of a pure condition. Suppose that p =
(fo, [, A, F) with the common domain d. Let (i) € Levo(A) with p(a) = v. The
one-step extension of p by u is 1 {go, g, A’, F') such that

o r=((foou™t),F(v)). Write F(v) = ( By /1,7Q> )

° A)’ }: {T € Ay | 7o(a) > B*} where 3% = sup{y | Ir € P,(r IF, “B, =
,7 ” .

o F' =F | (A(a)).

e dom(gg) = d.
i |'_P *PB/ ‘90 = fl/ ® /J/”a ie. for C € d, if C € dOI’Il(/J,), gO(C) = /”L(a)v

otherwise, ”_PV*PB/U “90(¢) = f,(¢)” (we can assume tat go(¢) = f,.(¢) for
¢ € d\ dom(y)).
o g={fv |V €Aa)).
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Note that particular, (foopu~!) € P,, and so, r can be considered as a condition
in P, x PBV/V' Like in a lot of Pirkry-type forcings, a d-tree at a gives us objects to
create new blocks below a. The part (go, g, A’, F') looks similar to a pure condition
except that for each ¢, we now have that each go({) is a name with respects to the
forcing corresponding to where r lives.

We now define a condition in a general form.

Definition 6.2. A condition in P, is either pure or of the form (which we call
impure) which is of the form

(<f0> < ﬂo/a07QO>) . (<fn 1> < Br_1/0tn_ laQn 1>)A<90a§7AaF>7
for some n > 0, and a common domain d such that
(1) ((fo) ™ (P4, jag: 40)) " =+ " (fu=1) € Pa,_,, Where a1 < a.

(2) H_ozn,l “anp—1 < /Bn—l <, Qn—l € Pﬁn,l/an,1”'

(3) dis an a-domain (we emphasize that d € V). '

(4) Ais a d-tree, min(A(a)) > 5*, where f* =sup{y | Ir € P,, _,(rlF 1 =
)} .

(5) dom(F) = A(a), and for each v € A(w), F(v) = (Py ,,,q), where IF, “v <

5l,<aandqu5 /V.

(6) §=Ag, [V € Al)}.
(7) dom(go) = d and for all v/, dom(g; ,) = d.
(8) For ¢ € d, IFp Py “g0(¢) < «”, and for all v/, ”_P/*P[, ,
“g’/ (C) < a??
We write p [ Po, = (<f0> < Bo/ao’q0>) ’ A<f1> so p | Pa, € Py,. Also write
P = ((fo)™( 50/a0,q0>) (! Bz/anql))’ and we consider p | i as a

condltlon in P,, * Pﬁ faur We put the superscript p to every component, including
the common domain, i.e. we write dP for d. We call ¢;’s the interleaving part of
p. With p as above, we write top(p) = (go, g, 4, F), stem(p) = p \ top(p) and say
that stem(p) has n blocks. From the definition, it is straightforward to check that
|P,| = a™T.

Definition 6.3 (The one-step extension). Let

= (o) ™ (P jagr G00) ™+ " ({fam1) " {Ps,_, sy 1)) " {90, 7, A, F),

with its common domain d, and (u) € Levg(A). Say v = p(a). The one-step
extension ofp by w, denoted by p + (u), is the condition

= (o) ™ (Pg, jargr G0)) ™+ " () ™ (Pp, sy Gn—1)) "0,
where

(1) ro = (oo ', F(v)),
e goop ! has domain rng(u).
o for ¢ € dom(u), (g0 0o p “H(1(€)) = g9o(Q).
o Write F(v) = (P, /i)
(2> T = < OahlaA/7F/>7
. A{ = {7 € Ay | 7o(a) > B*}, where * = sup{y | Ir € P,(r I,
“/81/ — Py”)},
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F'=F| A («a).

h={g, |V € A(a)}.

dom(hg) = d, and for all v/, dom(h, ) = d.

Fp,up,, “ho =gy @y, ie. for ¢ € d, if ¢ € dom(u), ho(() = (),
otherwise, H—PU*PB ) “ho(¢) = ¢,(¢)” (we may assume that for ¢ €

d\ dom(p), ho(¢) = g.(C))-
o for v € A'(a), hy = gur

We define p+() as p, and by recursion, define p+{pg, - - , in) = (p+ {10, =+ 5 fn—1))+
{tn)-

Definition 6.4 (The direct extension relation). Let

P = (o) By jagrd00) ™ T (fam1) " (Bs, .y dn-1)) " {90, 7, A, F),

and

P = (ho) ™ (B oo T ™+ (o) ™ (B 1)) (s £ AT, F).
We say that p is a direct extension of p’, denoted by p <¥ p', if the following hold.
(1) n=m.
(2) fori<n, o; =;.
3) pIn< plnie

® fo 2 ho. o o
o fori <n,p| Po,lra, “B; =& and ¢; <}, 7" (we can take §8; = &;).
B/
e fori € (0,n), dom(f;) 2 dom(h;), and for ¢ € dom(h;), p [ i H_Pav*PB./ »
“fi(Q) = hi(C)7
(4) dP D dP.
(5) Aldr CA.

5
(6) for every v € A(a) and i € A with fi(a) = v,
p+il Pk, “F(v)g = F'(v)o and F(v)1 <pq,, F'(V)1"

(7) For ¢ de/,
e plnlFy

ap—1*

P, “90(¢) = to()"-

Bn—1/an—1
o for v € A(w), write F(v) = (PBV/V’ q), and every i with fi(a) = v, we
have

pril (i) Fp.p,  “9,(C) =t (C)"

Bu /v

Definition 6.5 (The extension relation). Let

p= (<f0>A<Pﬂ'0/a0’qO>)A T A(<fn71>A<PBn,1/an,1’qn*1>)/—\<907gvAaF>v

and p’ € P,. We say that p is an extension of p’, denoted by p <, p/, if there is
i € AP | or [i = (), such that by letting p* = p’ + [ and write

D' = (o)™ (P 700 ()™ (B ims)) ™ (to T AL F),
we then have that
(1) p [ n < p* [ m, namely,
® Op—1 = "TYm—1-

®p [P, i <o, 0" [ Pa, ;-
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® D f Pan,l H_ozn,l “ﬁn—l = ’.Ym—l and q SP TPm—1" (We can

) Br—1/cn—1
take (3,1 = FYm—-1)-

(2) d? D dP .

(3) Ajar C A.

(4) for every v € A(a) and i € A with fi(o) = v,
pHil P Ik, “F(v)o=F'(v)o and F(v)1 <, F' ()1

(5) For ¢ € dr’,
epln ||—Pan71*p_ “g0(¢) = to(C)"-

Bn—1/n—1
o for v € A(a), write F'(v) = (P, q), then
prpal+la) Fp,.p,, <90 (C)=1t(C)".

Note that equivalently, p < p’ if there is f such that p is a condition obtained
by extending the interleaving part of a direct extension of p’ + . For p’ < p, the
interpolant of p' and p is p* such that there exist unique [ such that p* = p + [
and p’ is obtained by extending the interleaving part of the direct extension of p*.

Proposition 6.6. (P,,<) has the o™ -chain condition.

Proof. Let {p” | a™*} be a collection of conditions in P,. p, can be written as
.~ (fd, [, A7, F7), with the corresponding common domain d?. By shrinking
the collection, we may assume that there are pg,d, b such that for all v, pj = po,
b = AY(a), and d is the root of the A-system {d” | v < a®™*}. Since for each
y<att (ed and v eb, fj(C), f1(C) € Va, and F7(v) € V,, we can shrink
the collection of conditions further so that there are x¢ o, ¢, ¥, such that for all
v < att, fJ(¢) = z¢co, f1(C) = x¢0, and F7(v) = y,. Then any two conditions
are compatible.

O

Proposition 6.7. ({p € P, | p is pure}, <*) is a-closed.

Proof. Let 8 < « and (pﬁ/ | 8/ < B) be a <*-decreasing sequence of conditions
in P,. Write p# = <f05/,f5/,A5l,F5'> with its common domain d? . Let d* =
Uprepd? | fi =Ugcpfl . Let (AP')* be the d*-tree obtained by pulling back A7,
and A* = Ng<5(AP")*. Shrink A* further so that min(A*(a)) > 8. By induction
on v € A*(«), we may find f; and F*(v) such that

e for ¢ € d*, f(C) is “forced” to be equal to fﬁ'(g) for some sufficiently large

v

B’ that ¢ € dom(f%).
o F*(v) = (P, ,,,4;) 1s such that g is “forced” to be a <*-lower bound
of (¢F' | B < B), where FF'(v) = (Pﬁ-y/”,q'ffl). This is possible because
Ik, “(PB,,/V’ <*) is v*-closed”, where v* is the least inaccessible above v,
and v > (3.
Then (f*, f*, A*, F*), where f* = {f | v € A*(a) is inaccessible}, is as required.
(I

Theorem 6.8. (P,,<,<*) has the Prikry property, i.e. for p € P, and a forcing
statement p, there is p* <* p such that p* || ¢.

To prove Theorem 6.8, we start with the following lemma.
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Lemma 6.9. Let p € P, and ¢ be a forcing statement. Then there is p* <* p such
that if r = ro™ top(r), r < p*, p’ is the interpolant of r and p*, and r || ¢, then

ro” top(p') || ¢ the same way.

Proof. Assume for simplicity that p is pure and write p = (fo, f,A,F> with its
common domain d. A forcing A consists of conditions of the form g = {(go) g,
where there is a common domain dg4 such that

e dom(go) =dg, §= (9v | ¥ € A(e)), and for all v, dom(g,) = d,.
e for ¢ € dy, fo(¢) < a and for 8 < « inaccessible, ”_PU*P,; , “g5(¢) < .

For ¢°, g* € A, define ¢ <4 ¢* if g§ D g§, and for v € A, € dj1, and relevant
re b, PB,,/W T “_Pv*PBV/V “g9(¢) = gL(¢). Clearly, A is at-closed.

Let N < Hy for some sufficiently large regular §, <*N C N, |[N| =«, d,V, C N,
p,P,A € N. Build an A-decreasing sequence (7 | v < «) below <f0>“fsuch that
for every dense open set D € N N P(A), there are unboundedly many v < « such
that 7Y € D. Let f* = (f&)™ f* be the maximal <*-lower bound of (f7 | v < a)
and d* be its common domain, so d* = N Na*t. Let A* be the d*-tree which is
the pullback of A. Note that A* C N.

We are now going to consider an A-decreasing subsequence (7 | v € A*(a)) of
(f7 | v < ), together with (¢”, | v,/ € A*(a)) and (A" | v € A*(«)) satisfying a
certain property, and

e for each v/, (¢¥, | v € A*(a)) is forced to be <*-decreasing below ¢,, where
F() = By i)

o for v/ < v, % =d%.
All the proper initial subsequences will be in N. Let v € A*(a) and suppose that
(fr |V < v e A% (), <qg’ | v < v, V,p e A*(a)) have been constructed.
For v/ < v, let ¢4, = qg,’. Let f’ be the maximal lower bound of the sequence
(fr | v <wvv' € A*(a)). For p > v, Let ¢; be a Py-name of a condition in Py /y
which is forced to be a <*-maximal lower bound of (QZ/),,/<V. This is possible
since |-, “(P; <*) is v*-closed” and note that (¢} | p > v) € N. Consider the
following set D, C A. g = (go)" ¢ € D, with the common domain dg, if either
(90) g is incompatible with {fo)™ f, or the following holds:

e for every i € A* with fi(a) = v, dom(f) C d,.

e there are )

— a P,-name of a condition ¢}* in PBU v which is forced to be <* below

ok

ql/ .
— a dg-tree AV with min(A”(a)) > & :={{|H € P,(t -, “B, = &)},
and
a function F¥ with dom(F") = A¥(«a),
for p € A”(a) and all relevant r € P, r Ik, “F"(p)1 <* ¢;”,
such that for every r € P, and ¢/, if there are hg, h, A’, and F’ such that

1Py o d) (oo By AL FY) 1 (B 05 g (g |V € A¥(a)), AV, FY),

and
TA<P§'V/y’q./>ﬂ<h07h7A/aFl> || ©,
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then
r“(PBy/w )" (95, (95, | V' e A¥(a)), AY, F") || ¢ the same way.
Claim 6.10. D, € N is open dense.

Proof. The parameters we use to define D, are: A, p, P,, and {ji € A* | i(a) = v}.
By Remark 2.4, the latter set has size at most v™F, and for each i € A*, by the
closure of N, i € N, hence, there is an enumeration of such a set in N. Thus,
D, € N. To check the openness of D,, note that if §° <, g' and §' € D, with the
witnesses ¢3*, AV. and F”, then g° is also in D, with the same witnesses.

It remains to show that D, is dense. Let go~g € A. If (go) "G X <f0>“f, then we
are done. Suppose not, we may assume (go) g <a <f0>“f. By (1) of Proposition
4.1 for v, let (re, ge | € < (£*)T) be an enumeration of elements in P, *PBu/u (with

some repetitions if needed). Build sequences ((h§)~h¢), (Ag, Fe | € < (£*)*F) such
that

((hg)“ﬁf>§§l,++ is A-decreasing, and is below (go) 4.

(Ae | € < vt is a dom(h§)-tree and for £ < ¢, Aer projects down to a
subset of A¢, min(A¢ (o)) > &*.

for v € A¢(ar), (Fe(V')1)e<p++ is forced to be <*-decreasing below ¢,

for £ < (¢*)*+, if there are hf), i/, A’, and F’ such that

T§A<Pﬁy/y7q§>/\< 67 H,7A/a F/>

is a direct extension of
= re Py 1, de) T (BETL (WET  p € Agya(a)), Agra,s Feqa),
and ' _
e (Ps, 10de) " (ho I AL F) IF
then t* decides ¢ the same way.

The construction is straightforward, and for a limit £, we can take any witnesses at
the stage £ as long as the requirements are met. Finally, let (go) ™ ¢ = <h6’++>’\h”++,
A = A ++, and FY = F,++. These will be the witnesses for (go)™g € D,.

O

Let v, > sup, ., 7. such that f7 € D,. Also, we obtain the witnesses, A" and
Fv. Let ¢, = ¢;. For p > v, let ¢, be the second component of F”(p) if exists,
otherwise, let ¢y = ¢;. This completes our analysis.

Assume that the pullback of A” to the d*-tree has a subtree which is gener-
ated by B¥ € E(d*). Let A** be a d*-tree generated by A,B”. Let F** be a
function with dom(F**) = A*(«) and for v € A**(a), F**(v) = (PBU/V,q'jj*>, g
is the <*-maximal lower bound of (qg’)y/eA(a). This is possible since (zjz')l,/eA(a)
stabilizes after the stage v/ = v (equivalently, we take ¢:* = ¢~). Then p* =
(fg,f*,A**,F**) <* p satisfies.

We now show that p* satisfies Lemma 6.9. Let p’ < p* such that p’ decides ¢,
p’ is of the form

P =17 .0 (ho, WAL FY,

Without loss of generality, assume that p’ IF . Let p be the interpolant of p*

and p’. We consider the notions of the proof of Claim 6.10. Say that r = r¢ and
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G = g¢. By the construction of A**, we have that A™* projects down to a subset of
AY. This makes p’ <* t*, and hence, t* IF . Thus, Tg“(PBu/V,(k) top(p) IF .
This completes the proof of Lemma 6.9.

(Il

Proof of Theorem 6.8. Let p be a condition and ¢ be a forcing statement. For
simplicity, assume p is pure and p satisfies Lemma 6.9. Write p = (fo, f, A,F), dis
the common domain for p.

We build a <*-decreasing sequence (p” | v € A(a)) below p by induction.

Assume p¥ is constructed for v/ < v. Let p,, be a <*-lower bound of (p*" |
Vv < v). Write p), = <f67f7,A’,F’> with the common domain d’. For every &,
let Q¢ 1= Pe Pﬁ /e Let & = sup{vy | Ir € P,(r I, “B, = v")}. Fix p > &%,
p € A'(a). Let G, be the canonical name for Q,. Define

@0 = “Tt € Gyt~ top(p) IF ¢)".
@b = “Tt € Gyt~ top(p) IF —p)”.
pp = “Bt € G,(t top(p) || #)”,

where p is the appropriate interpolation, as described in Lemma 6.9. Note that for
7 € Q,, there are at most one i such that r I ¢!, Enumerate (u € Levo(A') | u(a) =

<k

p) as {i¢te<pr+. By the closure of (Pﬁp/p, <*), we can find ¢ such that I-, “¢;
F'(p)1” such that for every r € Q, and £ < p++ there is f#¢ with r Ikq, “ff‘& <*
fooug 1 and if there are f, ¢ with r—((f, (P 5, 1o @) =TT ((fre (P, 5, o0 45))
which forces ¢!, then so is 7 (f#s, (P ' /0 ,4,)). Now, for each pu = pe, we have
JH = fre. Let f) = jEp(a,0) (1 f”)(mc(d')) Then f} is forced to be an extension
of f,. Say d* = dom(f;). For p # v including 0, let f; = f, U {(£0) | £ €
d*\ d'}. _Ij;et F*(p) = F(p) for p < ~*, otherwise, F*(p) = (PBp/p,q';>. Take
p, = (5. " A F7).

Now assume that A’ is generated by B’. By shrinking further, assume that
for p € B, fropt = fr14 Forr € Q, and u € B', with u(a) = p, by
the Prikry property, and the construction as above there is 7# < r such that
rh((frop™t, <P/§p/pv ;) IF @), for a unique i. Let B be the collection of x such
that by writing p = u(«),

(o nT Py e @) IF e
There exists unique ¢ = i, such that B] is of measure-one. By shrinking further,
assume that there is r* such that for every u € Bl , r* =r*. Let B* = A, Nyeq,
B} . Let A* be generated by B* and p” = (fo,f*,A*,F*>. This completes the
construction of p¥.

We now change a notation by saying that p* = (f}, f¥, A¥, F¥) and B generates
A”. Let p* = (f§, f*, A*, F*), where A* is generated by A, B, f* = U, f¥, and for
p € A*(a), f; =U,fr, and F*(p) = <PBp/p’ q3), where g3 is forced to be a <*-lower
bound of (F”(p)1),. This is possible because for every p, (F¥(p)), stabilizes at
v = p. Note that p* <* p.

Claim 6.11. p* satisfies the Prikry property.
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Proof. Let p’ < p* with p’ || ¢, Assume p’ I ¢ and the interpolant of p’, p*, say p,
is such that p = p* + [ with the minimal n* = |f{|. If n* = 0. then we might apply
p’ for the Prikry property instead. Assume n* > 0.

For simplicity, we establish the case n* = 2. Say p = p* + (uo, pu1). Let

p/ = (907 <Pfjo/yovqo>)/\(gla <P51/V1>CJ1>)A top(p/)

Since p satisfies Lemma 6.9, we have that

(90, {Pgy /g 40)) " (91, (Pg, 1, »41)) " top(p) I .

Set r = (go, (PBO/VO,(}())). We use the notation for the construction of p,,. Note
that r I g1 < f# and r~(g1) IF,, “¢1 < ¢;,”. We claim that i, = 0. Otherwise,
we may assume i, = 1 (the case i, = 2 is similar). Let G be Q,,-generic containing
stem(p*). Then there is ¢t € G such that ¢t~ top(p) IF —¢, but if ¢ < stem(p*), we
get a condition having contradictory decisions, which is a contradiction.

Note that pi(a) = 1. We claim that 7*~(fr11d" (I—.’Bl/yl,ql’jl})“ top(p) I+ .
Otherwise, we use the same argument as above and Lemma 6.9 to get a contradic-
tion.

Consider p* + {(uo). Since 4, = 0, we have that for every (u) € Levo(AP+{ro))
w | d € Bj. By a similar argument as above, if p* = p* + (u), then

P (A F (u(a))) top(ph) I .

By a density argument, r* 7 top(p + {uo)) IF o, which contradicts the minimality
of |
]

O

By the Prikry property and the fact the direct extension on P, restricted to the
pure conditions are a-closed, it is standard to verify that all cardinals up to and
including « are preserved.

The forcing singularizes a to have cofinality w, and add a™ subsets of a: for
v € [, at), define t, : w — a as the following. By a density argument, let p € G
be such that the common domain contains . Assume that n? is the number of the
blocks in p \ top(p). For n > n?, find any p” € G such that the number of blocks
in p7 \ top(p?) > n. Write

PY =507 Tspma” (famtySho1) T (famtshoy) (L FLALF).

By compatibility between p” and p, we have that f(v) has to be of the form &,
& € dom(frn_1), fan—1(0) = &1, and so on. Define t,(n) = fr_10---0 fr_1 0 f(7).
Clearly t, gives a cofinal sequence of « of length w, and hence, « is singularized to
have cofinality w. Again, by a standard argument with the Prikry property, ot is
preserved. Since the forcing is o™ -c.c., all the cardinals are preserved. One can
show that for v < 7/, there is p € G such that for every relevant object u appearing
in the tree part, v, € dom(p). From here, use a density argument to show that
t, <* ty. Hence, the forcing violates the SCH at «.

The set C,, is derived from the generic object as the following. If G is P,-generic,
define ¢’ = rng(t,) U {a}. Each condition p € G is of the form

5 (fir (B j @) LA F)
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where v, = to(k + 1). In this case, the forcing Pék /v, also derives the set ck =
Ce, jvp» Where to(k+1) = vp < & < vpg1 = ta(k+2). Let Cy = C'U Ur<wC*.
Then C,, C a+ 1, max(Cy) = «, Cy \ {a} is a cofinal subset of «, containing a
subset of order-type w. So far, we have verified items (1) through (3) of Proposition
4.1.

Definition 6.12 (The quotient forcing). Let Pa/a be the P,-name of the trivial
forcing ({0}, <,<*). In VP, let C"a/a be the Pa/a-name of the empty set. Now
assume that 8 < «. Define P, /3 as the following. Let G' be Pg-generic. Define
P.[G] = P, /5[G] as the forcing consisting of conditions of the form
P = (PGl )™ (o) (B, s |G d0)) -+~ (Fumt)s (P, [Gly 1)) (g0, 5, A, F)
where n > 0 and
(1) B < B < a, so Pg|G] was already defined by recursion, which is just
PB//B[G], qo € PB' [G]
(2) If n > 0, then ag < -+ + < ap—1, and for i < n,
e let d; = dom(f;), then d; is an a;-domain, d; € V.
e for ( € dy, Ikpﬂ,[G] “fo(¢) < ao”, and if i > 0, then for ¢ € d;,
“_Pai7 [G] “fl(c) < ai”.
o lFp, (¢ “oq < Bi < a;41”, where a,, = a.
° “_Pai[G] “q; € PBi/ai [G]”.
(3) Ais a E(d)-tree.
(4) d € [aT+]=% is the common domain for p, i.e. dom(gg) = d, and § = (g, |
v € A(a)) and for each v, dom(g,) = d.
(5) Fix¢ € d. If n =0, then Il—pﬁ,[G} “g0(¢) < ”, otherwise, ||‘pan71[G]*PB ey |
“go(C) < a”.
(6) for v € A(a) and ¢ € d, H_PV[G]*PBU/V[G] “g,(0) < .
(7) dom(F) = A(a). . .
(8) ff)r v € dom(F), F(v) = (P ,,|G],q), where IFp,q) “v < §[G] < g €
Py, 1, 1GT”
Back in V. If p € PQ/B, then by density, the collection of py € Ps such that pg
decides n, ag,- - ,an_1, dom(fp), - ,dom(f,_1), the common domain, A, ¢’ (as
the equivalent PB’ g-hame, and so on), is open dense. In this case, we say that pg

1 [G]*PBi—l/ai—l

@l

interprets p. All in all, for such py which interprets all the relevant components of
p, let p; be such the interpretation. Write pgy as o™ (g) and by the interpretation,
we may write

b1 = (<Pﬁ’/57q/)ﬁ(<f0>7 <PBO/a07qo>) c T ((famr),s <P,('3n,1/an,1’QN*1>)A<JC>'

There is a natural concatenation py with p;, written by po ™ p1, which is
r=10"((9), (Ppryp:d'N) " - T ({fn=1), (Pp, a2 dn—1)) " (f)-

Then r € P, with r | Pg exists. We denote p; by r/Pz. For py and p; in Pa//g,
we say that pg < pp if there is p € G# such that p interprets pg and p;, and
P po <o pp1. Also define py <* p; if there is p € G such that p interprets pg
and p1, and pTpo <X pTp1. One can check that the map ¢ : {p € P, | p | Ps
exists} — Pg * Pa/ﬁ defined by ¢(p) = (p | Ps,p/Pgs) is a dense embedding, where
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p\ Pg is the obvious component of p which is in P, /8- Note that if G is Pg-generic
and H is P,[G]-generic, there is a generic I for P, such that V[G x H| = V[I],
where I is generated by {p | p | Ps exists, p | Ps € G and (p/P3)[G] € H}. If I
is P,-generic and for some p € I, p | Py exists, we can get G which is Pg-generic
and H which is P, [G]-generic such that V[G x H| = V[I| where G is generated by
{pI Ps|pelandp| Psexists} and H = {(p/P3)[G] | p € I and p | Ps exists}.
In V5, let C’a/g be a Pa/g—name of the set described as the following. Let G

be Pg-generic. and H be generic over P,[G] = P,/3[G]. Then let I = G * H be
P,-generic. I derives the set C, C o+ 1 and G derives the set C3 C 8+ 1. Let
Casp = Ca \ Cp.

The following have the same proof as for P, essentially. The one that we would
like to point out is the closure property.
Proposition 6.13. o lrg “(Pyyp, <*) is att-c.e.”

o IFs “(Pa/g, <,<*) has the Prikry property.

o kg “(Py/p,<*) is B*-closed”, where B* is the least inaccessible cardinal
greater than (3.

Proof. We only proof item (3). For simplicity, let 8’ < 8* and in V2, let (p, | v <
B’) be a <*-decreasing sequence. Write p, = (P¢[G],q") (94,9, AY, F7) with the
common domain d?. Since (P¢[G], <*) is f*-closed, let ¢* be a <*-lower bound of
q". Tn V, let d* = U{d | 3y3p € Ps(p -5 d, = d)}. For all 3 (including 0) with
gg exists, let dom(gj) = d*, and for ¢ € d, g5(C) is forced to be the same as the
interpretation g5(¢) for some sufficiently large v, if exists, otherwise, gg(C) = 0.
Let A* = N, N, {A | Ais the pullback of A7?} where p IFg “A7 = AVP”. By
shrinking, assume min(A*(«)) > S. Finally, for each v € A*(a), the forcing which
is relevant to F7(a) (for any ) is greater than ~-closed in the direct extension,
and v > f3, so we can find F* such that (P¢[G],q¢*) " (g*,7", A", F*) is a <*-lower
bound of (py | v < §'). O

With all the definitions, one can verify the rest of Proposition 4.1.

7. THE GENERAL LEVELS

Let o < k be inaccessible. We may assume that « is greater than the first 3
with o(8) = 1. This forcing will generalize all of the forcings in previous sections.

Definition 7.1. A condition in P, is of the form

p = stem(p)” top(p).
We have two cases.
(1) stem(p) is empty. In this case, p is said to be pure.
(2) stem(p) is non-empty. In this case, p is said to be impure. Then stem(p) is
of the form

(505 (Ps, /a2 40)) " -+ (sn=1,(Pg /0, s dn—1)),
for some n > 0. We say that the number of blocks in stem(p) is n. We
have that
o o << ap_1 <.
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o for all 4, Ik, “oy < Bi < ajy1”, where a,, = a.
* (s0, <P50/a0740>)A o TSpo1 € P,y
o o, “Gn1€Py 0 7

Equivalently, stem(p) E P, *Ps o

Ap—1
top(p) also depends on stem(p) and a. We have several cases.

(1) The case where p is pure.
(a) o(a) = 0. Then top(p) = (f), f € C(a™,a™ ™).
(b) o(a) > 0. In this case, top(p) = (fo, f, A, F), where
o f={(f3|B < ais inaccessible).
e there is a common domain d, which is an a-domain, dom(fo) = d
and for all 5, dom(f3) = d.
e [ € Cla™,at™) and for each inaccessible 8 < «, and ¢ € d,
s “f5(0) <o, )
e Ais a d-tree, with respect to E,(d).
e dom(F) = A(a).
o for v € dom(F), Fv) = (PBV/V,@ where IF, ‘v < f, <
aand ¢ € P, 5, /V .
(2) The case where p is impure, say stem(p) € P, * P 5 jor = Q-
(a) o(a) = 0. Then top(p) = (f), dom(f) =d € V is an a-domain and for
Ced kg “f(¢) <a”.
(b) o(a) > 0. In this case, top(p) = (fo, f, A, F), where there is a common
domain d € [atT]=% d € V, d is an a-domain such that
e Ais a d-tree, with respect to Eq(d), min(A(a)) > sup{y | 3r €
Jianfl(r Ik Brn_1=7)}
o f={fvlveAl)).
e dom(F) = A(a).
e forv € dom(F), F(v) = (Pé-y/y,q'> where Ik, “v < £, < a and § €
Po, -
e dom(fy) = d and for all v, dom(f,) =d
o for ¢ €d, o “fo(¢) < a”.
o for v € A(a) and ¢ € d, H_Pv*PﬁV/V “fz(¢) < «

Definition 7.2 (The one-step extension). Assume o(a) > 0. Let p = stem(p) ™ (fo, f. A, F)
with the common domain d. Let () € Levg(A) with p(a) = v. The one-step ex-
tension of p by u, denoted by p+ (u), is the condition p’ = stem(p’) ™ (g0, g, A’, F")

such that

(1) ifo(p(a)
1) T

(2) 1f o(u(a
) (p(a)
Fv) =
(3) Write @ as the forcing in which stem(p’) lives. Say Q = P, Pﬂ/u(a)
Then
 IFq “90 = fu(a) ® 17, namely dom(go) = d, for ¢ € dom(u), go(¢) =
M(C)’ and for the other C? gO(C) = f;t(oc) (C) =

) = 0, then stem(p’) = stem(p) ™ (foou™!, F(u(a))), where dom( foo
ng(p ) for v € dom(), foo p='(u(v)) = fo(y)-

)) > 0, then stem(p’) = stem(p) ™ ((foopu ™', (fsop™t | B e (4]
A ). P, where dom() = (4 1)), for
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o §={gs | B € {F € Ay | mla) > €}, where & = sup{y | 3 €
Pue) (r Fu() Bugey = 7}
o A=Ay | 10(a) >}
o I =F | (A(a)).
We define p+() as p, and by recursion, define p+ (g, - - - , in) = (P+ {0, =+ 5 fin—1))+
<,un>'

Definition 7.3 (The direct extension relation). Let p = stem(p)™ top(p) and
p’ = stem(p’)” top(p’). We say that p is a direct extension of p’, denoted by
p <X p/, if the following hold.
(1) stem(p) <* stem(p’) (in some Q := Py * PB’/a’)'
(2) If o(cx) = 0, write top(p) = (f) and top(p') = (g), then dom(f) D dom(g),
and for ¢ € dom(g), IFg “f(¢) = g({)”.
(3) Suppose o(a) > 0. Write top(p) = (fo, f> A, F) and top(p) = (g0, 7, A', F').
Let d? and d”’ be the common domains for p and p/, respectively. Then

o d’Ddr.

o AldP CA.

o for (€ d?, kg “fo(¢) = go(¢)”. .

o for v € A(a) and ji € A with ji(a) = v, say F(v) = (F ,,q), and for

(e d?", we have

PHET(PoxPy ) pp  “fulC) =gu(0)".
o for v € A(a) and ji € A with fi(a) = v,
p+il P Ik, “F(v)o = F'(v)o and F(v)1 <pgy, F'(¥)1”
(the last direct extension is intentional).

Definition 7.4 (The extension relation). Let p = stem(p)” top(p) and p’ =
stem(p’)” top(p’). We say that p is a extension of p’, denoted by p <, p/, if
the following hold.

(1) The case o(a) = 0. Then

o stem(p) < stem(p) in some Q = P x Py, -
e Write top(p) = (f) and top(p’) = (g). Then dom(f) D dom(g) and for
¢ € dom(g), stem(p) IFq “f(¢) = g(<)".

(2) The case o(«) > 0. Then there is i (possibly empty) such that if p* = p'+[i,
and we write top(p) = (f,f:A,F} and top(p*) = (g,g, A*, F*), d? and d*
are the common domains for p and p*, respectively, then

o stem(p) < stem(p*) in some Q = Por * Py, /.
dr D dr.
Al dr C A
for ¢ € ", Ikq “fo(C) = g0(C)”- .
for v € A(a) and [i € A with ji(o) = v, say F(v) = (P ,,,4q), and for
(e d?", we have
P (BB ) pp,  “fu(C) = 0(0)

v/v

o for v € A(a) and ji € A with fi(a) = v,
p+iil Pl “F(v)o = F*(v)o and F(v)1 <p, F*(¥)1".
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Equivalently, p < p’ if there is f such that p is a condition obtained by extending
the interleaving part of a direct extension of p’ + . We call p* the interpolant of p
and p’. To be precise, p* is the unique condition such that p* = p + ji for some fi,
p’ is obtained by extending the interleaving part of a direct extension of p’.

Proposition 7.5. (P,,<) has the o™ -chain condition.
Proof. Similar to the proof of Proposition 6.6. (]
Proposition 7.6. ({p € P, | p is pure}, <*) is a-closed.
Proof. Similar to the proof of Proposition 6.7. O
Let § < ofa). Tet (fo)~(fz, | v € B), B € Mo E(as7)({a}), there is
d € [arT]= such that dom(fy) = d, for all v, dom(f; ) = d, and each ¢ € d,
IFp, B “f¢, <’. Let X € E(a,B)(d) and for each € X, g, = (go) (g , |
Ve BLp) <(foop )" (fe,ont |V €Blp), where Bl p={v € BNu(a) |
o(') < o(u())}. Let § = jr(a,p) (= gu)(meq p(d)). Then
(1) G=(fo) (f¢, |V € B,o(t') < B).
(2) g Fi{v eBlo(V) < B}
The point is § < jga,s) (4 > (71 B 1 1) 0 =) (0o p(d)). jges(d)(n— B |
p 1) (meqy p(d)) = {v/ € B | o(v) < B}, and for each v/, JE(ap)(f¢ ) omea p(d) =
Te,
Theorem 7.7. (P,,<,<*) has the Prikry property, i.e. for p € P, and a forcing
statement p, there is p* <* p such that p* || ¢.

If o(a) =0, any p € P, is a finite iteration of Prikry-type forcings, hence, it has
the Pirkry property. The proof for o(a) = 1 is similar to the proof of Theorem 6.8.
We assume o(a) > 1.

Lemma 7.8. Let p € P, and ¢ be a forcing statement. Then there is p* <* p such
that if r = ro™ top(r), r < p*, p’ is the interpolant of r and p*, and r || ¢, then

ro” top(p') || ¥ the same way.
Proof. The proof is essentially the same as the proof of Lemma 6.9.

O
proof of Theorem 7.7. Assume for simplicity that p is pure and write p = (fo, f, A, F).
Let d be the common domain of p. Build a <*-decreasing sequence (p” | v € A(«))
below p be induction.
Assume p”’ is constructed for v/ < v. Let pl, be a <*-lower bound of (p*" |
vV < v). Write p,, = (fé,ﬁ,A’,F’) with the common domain d’. For every &, let
Qe = P *Pﬂ e Let v ={v|3Ir e P,(rl-, “B, =~")}. Fix p > €*, p e A(a).

Let Gp be the canonical name for (),. Define
goprItGG(t top(p) Ik »)”
<pp =3t € G,(t™ top(p) IF —p)”
=t € G, (¢ top(D) || ¥)7,

where p is the appropriate interpolation, as described in Lemma 7.8. Enumerate
Qo as {re}ec(y)++ (repetition is fine here). We are building (p,¢ | £ < (£*)7)
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which is <*-decreasing below p/,. At limit £, take any p, ¢ which is a <*-lower
bound of (p, ¢ | £ < ). Suppose p, ¢ is constructed and let p, ¢ = (fg, fﬁ,Ag, F¢)
and d¢ be the common domain. Let p € A%(a). By the closure of (PB/p’ <*), there
is ¢, such that for every p € A¢(a) with p(a) = p, by the Prikry property, there
are r#, fl') f* A" and F* with

TNA(fli’fM’AN’FM7 <P5p/p7q;>) é*
re (fS o uT T (AS L p)(p), AS L, FE 1 (AS L ) (p), FE(p)),

and there is unique ¢ = ¢, , such that

PP A FE (B ) IE e
For 8 < o(a). there is unique i,, g such that the collection of p with o(u(a)) = 3
and iy ., = ir. g is of measure-one. Let B¢ s := B, g be such a set. By shrinking,
assume further that there is r{ such that for every p € By, g, 7 = r{. We now
have two cases.

Case 1: For every B, ir, 3 = 2. In this case, let p, ¢ = (fg,ff,A*,F5 I A*(a)),
where A* is generated by Ug<o(a)Br -

Case 2: There is 8 such that i, 3 < 2. Let g = jg(a,p (1 — f*)(mcq,5(d%)).
Then g, 2 jp(as) (1 = fEou") (Meqs(dS)) = f5. Let d* = dom(fEF1). For p # v
including 0. Assume now that A* is generated by B*. Let B<F = JE(a,p) (1 =
B#)(mcq5(d)). We have B<F = Mg gE(a, B)(d*). Let §<° = jpp(p —
M) (meq 5(d€)). Then § = (g, | v € B<F(a)) and each dom(g,) = d*. Let
F<P = jpap(u — F")(mca g(d®)). Let B be the collection of 7 € OBg 5(d*)
such that

o 7]d* € B, 3. Write p =7 [ d° and p = p(a).

e B<h | r:={0077! |0 € B} is equal to B".

e for g, o771 = f# and for n € (B<F | 7)(p), g5l o7t = fL.
o PP 1 (B | 7)(p) = F*

We now take B>? as the collection of 7 € Ugi~5 OB, g/(d*) such that p =
7 [ d® € Levg(A%), and (B<P U BP) | 7 € Ngr<gE(r(), B')(7[d* N dom(7)]). Let
B* = B<PUBPUB>P. Let go = fSU{(¢,0) | ¢ € d*\ d¢}. For p € B>?(a), let
gp = fpf U{(¢,0) | ¢ € d*\ d®}. Let A* be generated by B*. Let F* be such that

for p € A*(a), if o(p) < B, F*(p) = F<F(p). If o(p) = B, let F*(p) = (P ,,.4p)-
If o(p) > B, let F*(p) = F&(p). Finally, let p,¢i1 = (go,d, A*, F*). This finishes
the construction of p, ¢y1. Finally, we let p, = p,, (¢+)++. Note that min(A*(a)) >
v >

We now change the notations slightly. Let p¥ = (f§, f"’,A”7 F"). Assume A
is generated by BY. Let A* be generated by B* := A,B". Let fi = U, f§. For
p €A (a), let fr =U,f), F*(p) = <PBp/p’ dp), where ¢, is forced to be a <*-lower

bound of (F¥(p)1), < p. This is possible because the closure of (PBp/p’ <*) is at
least pT.

Claim 7.9. p* satisfies the Prikry property.

Proof. If there is p’ <* p* deciding ¢, then we may use p’ instead. Suppose p’ < p*,
p’ is impure, and p’ || ¢. Assume p’ IF ¢, assume stem(p’) has the minimum number
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of blocks n*. We will demonstrate the case n* = 2. Let p be the interpolant of p*
and p', so p = p* + (po, pt1). Let
p/ = <907§07 A07 F07 <PBO/V07 QO>)A(91a gh Ala F17 <Pﬁ'1/y1a CI1>)A tOp(p/)
Say that the tree part in top(p’) is T. Since p satisfies Lemma 7.8, we have that

(907§0u A07F0u <PBO/UO7q0>)A(gl7§17 A17 F17 <PBI/V17C]1>)A tOp(p) I+ ©.

Setr = (go,ﬁo, Ao,Fo, <Pﬁo/uo7q0>)’ V=1, Q, = P”*pﬂo/v (Wthh is P’/*PBI,/V)'
Assume o(p1(a)) = B’. Note that yy(a) = v1. Let u = p | d¢, where d¢ is described
when we construct p,¢+1. We now use the notations for the construction of p”.
Let r = r¢.

Claim 7.10. i, 5 = 0.

Proof. We divide into cases, depending on /3'. Suppose for a contradiction that
ire,3 = 1 (the case i, 3 = 2 is similar).

Case 1: ' = 5. Write v; = p. Then I, “Pﬁ'l/ul =P

7o = 1¢ " (91,91, A Fi(Py, g, d0) < e (fF f1 AR PR (P ) ds) =7

Let G be Q, := P, *Pﬂp /p-generic containing 70, hence containing 7. Then there is
t € G such that t™p IF —p. We can take t € G such that ¢t < 77, but this contradicts
with the fact that 71 top(p) IF ¢.

Case 2: ' < . Pick any 7 € Levg(4’), say u =7 [ d’ and p = 7(«). Note that
B<P | 7+ = B*. We can see that p; or~! € B*, and with other properties of 7. Let
p”" be obtained by extending the r part of p’ 4+ (1) to r*. We then have that

P < (AR PR (P L 05)) T top(p” + (o, T)).-

Let G be Q) ,-generic containing stem(p”). Then it contains 7“2?“(]"”7 f“, AHFH, <Pﬂp/p’ a))-
Find ¢ € G such that ¢~ top(p) IF —¢ and ¢ < stem(p”), but then ~ top(p) gives
contradictory decisions on ¢, a contradiction.

Case 3: 8/ > 3. Then take any 7/ € Levo(A;) with o(7/ (1 () = 8. 7/ = Tou; "
for some 7 with o(7(a)) = 8. Write p = 7 [ d°, p = (). Let p” be obtained by
extending p’ with 7/ is a similar fashion as the one-step extension and extend the r
part to p#. Then p” | Q, exists and

P A By )

(91,0 @7 (gL | 1€ (Ar)rr (@) (A1) (rrys P T (A1) ey (1 (), (P, /15 61)) ™ top ().
Let G be @ ,-generic containing p” [ @,. Then G contains rg’“(f“, f“, AF FH, <PBp/p’ a))-
Find ¢ € G such that ¢t < p” | Q, and ¢~ top(p) IF =, but then

(91,087 (g1, | 1 € (A1) 2 (11 () (A1) (mry, Fy T (A1) oy (1 (), (P, 5,15 62)) 7 top(p)

is stronger than ¢ top(p) and p’, so the condition gives contradictory decisions, a
contradiction. g

”. Then note that

All in all, we have that i,. 5 = 0. A similar proof as before shows that for every
7 with p = 7(a), p = 7 | d®, and o(p) = 3, we have that

re (AR R (B 0)) top() I g
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for the appropriate interpolant ¢. Note that then for each extension of T top(p* +
(10)) can be extended further to a condition ¢ where an object 7* with o(7*) =
is used. With the fact that i., 5 = 0, we have that t I ¢. By a density argument,
we have that {7 top(p” + (uo)) IF ¢, and this contradicts with the minimality of
n*. (]

This completes the proof of Theorem 7.7. O

We now consider the club introduced by P, and the cardinal arithmetic. By
the Prikry property, all the forcings below P, preserve all cardinals, and ({p €
P,,p is pure, <*) is a-closed, one can show that all cardinals below « are preserved.
Since P, has the at'-chain condition, all cardinals from a** and above are pre-
served. For generality, we consider the case o(a) > 0. Let G be P,-generic. Then for
each v < « such that by letting @), = PV*PBV/V’ we have that G | @, exists. G | @,
is Q,-generic, and it introduces a set C* UCP*/¥ where 8, = 3,[G | P,], C* C v+1
with max(C"), C#/¥ C (v, 3,] such that max(CP /) = B, if B, > v, otherwise,
CP/v = . Let Co = (UpigiQ, exists}(CY U CP/")) U {a}. Since o(a) > 0,
we can perform one-step extension of any condition so that {v | G | Q, exists}
is unbounded in «. Like in the extender-based Magidor-Radin forcing, {v | Q,
exists} has a tail of order-type w°(®_ Hence, in V[G], «a is singularized to have
cofinality cf(w°(®)). From here and the Prikry property, one can show that ot is
preserved. Also, note that for v < v/, with the way we constructed the sets, we
have that C¥ U C#*/¥ is an initial segment of C"', so it is an initial segment of
Co. Thus, im(Ca) = (Ugyc10, exists} (Im(C) U im(CP/¥))) U {a} Fix ¢ € Cq
with € < a. Then £ € C¥ U CP/¥ for some v. Forcing with G can be factored
into G | Q, * G/Q,. We can also form the quotient P,/Q, where the conditions
look similar to the conditions of P,, except that all the components lie above 3,,.
One can verify that kg, “(Po/Qu, <, <*) has the Prikry property and (P,/Q,, <*)
is B;—closed” where Bf,‘ is forced to be the first inaccessible above Bu. Also, G is
isomorphic to Gy * G; where Gy is @,-generic and G is P,/Q,[G]-generic. The
forcing P, /@, does not affect cardinals above §,. Now, note that by Proposition
4.1 items (3) and (6), we have that either 2¢ = ¢T and 2¢ = ¢++ and 2¢ = ¢+ iff
¢ € lim(C¥) Ulim(C?/¥). Hence, the cardinal arithmetic below « satisfies (3) of
Proposition 4.1. Since « € lim(C,), it remains to show that 2* = o,

Work with a pure condition p € G. Enumerate {v | G | P, exists } increasingly
as {v; | i < w®). | Fix v € [, att). By a density argument, let p? < p, p” € G
be such that if top(p?) = (f7, f”, A7, F7), then for every object u which appears
in A7, v € dom(p). Suppose that stem(p?) € Py« Pfé’ﬂ/l’?’ For ¢ < i, define
ty(i) = 0. For i > -, there is an extension p”" € G such that

(1) p» | P, exists.
(2) by writing p” as

<SO7 <P£0/a05q0>)/—\ T /—\(Snfb <P8n71/an717q.n71>),\<f) f>A7 F>7

then (so, (P3, /a,-d0)) "+ " sk € Py, and
e f(v) is a check-name 7y, then vy € f,_1, where f,_;1 is the first
coordinate of s,,_1.
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e by recursion, vg,---,¥—1 is defined for [ < n — k — 1, then v_; €
dom( f,,—;), where f,,_; is the first coordinate of s,,—;, and f,,—;(vi—1)
is a check-name ;.

We define t (i) = fi(Yn—k—1). For v </, there is a condition 7’7" € G such that
if A7 is the tree appearing in top(p%”/, we have that for every p appearing in
A~ ~ € dom(p) and p(v) < p(+'). From this, it can be shown that by <* oy,
which means there is i* such that for i > i*, ¢(¢) < t,/(¢). This gives ot different

functions from w (@) to av. It is easy to show that « is a strong limit cardinal, and
so in V[G], 2° = a*f(®) > a**. Since P, is a**-c.c., 2% = ™+ as desired.

Definition 7.11 (The quotient forcing). Let Pa/a be the P,-name of the trivial
forcing ({0}, <,<*). In VP, let C’a/a be the Pa/a-name of the empty set. Now
assume that 8 < o. Define P, /3 as the following. Let G' be Pg-generic. Define

P.|[G] = P,,3[G] as the forcing consisting of conditions of the form stem(p) ™ top(p),
where

(1) stem(p) is of the form

(PB/ [G]a q/)/\(sm <Pﬁo/a0 [G]7 q.O)A(Sn—la <P5n71/an71 [GL q.n—1>)a

for some n (if n = 0, then stem(p) is only (Ps/[G],¢’)) such that
o Py[G] = Py 5G], and ¢' € Py
o if n >0, then ap < -+ < a1, and for ¢ < n,
— if O(O{Z‘) = O? S = <f’b>7 and if O(ai) > 07 S; = <fi7fi7Ai7Fi>a
where d; = dom(f;) is an a;-domain, d; € V.
— for ¢ € do, IFp,, 6] “fo(¢) < ao” and if i > 0, then for ¢ € d;,
\FPQH[G]*PBi_l/%_l[G] “fi(C) < ;.
— H—pai [a) ‘o < /J’Z < 41”7, where a,, = a.
— e, (61 “di € Py, 0, G,
— if o(e;) > 0,
A; is a d;-tree with respects to F,,(d;) (in the sense of V).
fi={fip | v € Ai(a)).
for each v, dom(f; ) = d;.
for C S di, “_PV[G]*PBV/V[G] “fi,y(C) < Oti”.
forv € Ai(ai)v E(V) = <Pﬂy/u[G]vq>v “_PV[G] ‘v< B <oy’
and ||—py[G] “q e P,(?V/V[G]”'
(2) if o(c) = 0, then top(p) is (f), and if o(a) > 0, then top(p) = (f, f, A, F),
where there is a common domain d, which is an a-domain (in the sense of
V') such that
e If o(a) =0, then dom(f) = d and for ¢ € d, I-p,, () “f(() <.
e Assume o(c) > 0. Then,
— A s a d-tree with respects to Eq(d) (in the sense of V).
— dom(F) = d.and for v € dor.n(F), F(v) = (P, ,,|G],q) where
\FPV[G] “v<pB,<aandqcec PBV/V[G]”'

— dom(f) =d, f=(f, | v € A(a)), and for all v, dom(f,) = d.

* %
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— for ¢ €d, “_P%A[G]*Pﬁ e [G] “f(¢) < & and for v € A(«),

H_PU[G]*PBV/V[G] “fu(C) <a’.

Back in V. If p € P, /8, then by density, the collection of py € Pg such that pg
decides n, ag, -+ ,ap_1, dom(fy), - ,dom(f,—1), the common domain, A;, A, ¢’
(as the equivalent PB’ g-hame, and so on), is open dense. In this case, we say that
po interprets p. All in all, for such py which interprets all the relevant components
of p, let p; be such the interpretation. Assume o(8) > 0 and o(«) > 0 (the other
cases are simpler) write py as ro" (g, d, B, H) and by the interpretation, we may
write

b1 = (<Pﬁ//ﬁa q/)/\(s(h <PBO/QO7 CIO>) o A(S’ﬂ*h <P[3"n,1/an,17q.’ﬂ*1>)ﬂ<f7 fT; A7 F>

There is a natural concatenation pg with p;, written by pg™p1, which is

r=10"((9,, B, H), (Parys,d) "+ (81, (Ps,_ jor_2dn1)) " (F, FL A F).
Then r € P, with r [ Pg = pg exists. Denote r/Pg the term p;. For Pg-names
po and p; in Poé/ﬁ7 we say that py < p; if there is p € G¥# such that p interprets
po and p1, and pTpo <o pp1. Also define py <* p; if there is p € G5 such
that p interprets pp and p;, and p~pg <l p~pi. One can check that the map
¢:{p e P, |p| Psexists} = Ps Pa/B defined by ¢(p) = (p | Ps,p/Ps) is a
dense embedding, where p \ Pg is the obvious component of p which is in P, /8-
Note that if G is Pg-generic and H is P, [G]-generic, there is a generic I for P, such
that V|G * H| = V[I], where I is generated by {p | p | Ps exists, p [ Ps € G and
(p/Ps)[G) € H}. If I is P,-generic and for some p € I, p | Ps exists, we can get G
which is Pg-generic and H which is P, [G]-generic such that V[G* H| = V[I], where
G is gencrated by {p | Ps | p € I and p | Ps exists} and H = {(p/P3)[G] | p € I
and p | Pg exists}.

In VP, let C’a/ﬁ be a Pa/ﬁ—name of the set described as the following. Let G
be Pg-generic. and H be generic over P,[G] = Pa/ﬁ [G]. Then let I = G * H be
P,-generic. I derives the set C, C o+ 1 and G derives the set C3 C 3+ 1. Let
Casp = Ca \ Cp.

Proposition 7.12. o kg “(Pyyp, <) isatt-ce”
o I3 “Pa/ﬁ, <,<*) has the Prikry property.
o I3 “(Pa/ﬂ,g*) is B*-closed”, where 8* is the least inaccessible cardinal

greater than (3.

We conclude that from all the analysis, Proposition 4.1 holds for P, and all
relevant quotients at a.

8. THE MAIN FORCING

We are now defining our main forcing IP. The forcing P = Ufy<x|a is inaccessible} Pa-
For p and p/ in P, define p < p' if p € Py, p' € Py, a > o, p | Py exists, and
p | Py <4 p. The forcing is k¥-c.c. Let G be P-generic. Then if p € G is such
that p | P, exists, then G | P, is P,-generic. We briefly describe P/P, for a < &
inaccessible. Recall that for « < n < &, IFq “{p/Pa | p € P,,p | P, exists} is
densely embedded in P,, /. For a < k inaccessible, let P/P, as the collection

{p/Ps | p € P,p| P, exists}. Note that the notation makes sense, since p € P, for
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some 7. For pg,p1 € P/P,, define py < p; (in V' *) if there is p € P, such that
P po <pp — D1
Remark 8.1. VP for every p € P/P,, there is 1 such that p € Pn/a.

This introduces the set C,. Let C = U,{Cy | G | P, is P,-generic}. Then
C C k is a club. The next theorem shows that the cardinal arithmetic should be
as expected.

Theorem 8.2. Let f be a P-name of a function from B to ordinals such that B < k
and G is P-generic. Then f € V|G | P,] for some a < k.

Proof. We show by a density argument. Let p € P and f be a P-name of functions
from S to ordinals, where § < k. For simplicity, assume p is an empty condition.
Let M < H, for some sufficiently large regular 8, 3 C M, f,p,P € M, Vasne C M,
and o(M Nk) > 8. Say « = M N k. We are going to build p* € P, of the form
p* = <f,f,A,F>. Let f,f, and A be any objects. Fix v < 8 and v € A(a) such
that o(v) = . Let Y, be a maximal antichain of relevant collections in P,. For
each r € Y,, let G, be P,-generic containing r. Since V, C M, M[G]Nk = M N k.
Find ¢ € P/G such that ¢ decides f(7)[G]. By elementarity, we may find such a ¢
in M[G]. Then g € P¢/G for some & < a. Back in M, let ¢ and ¢ be the names for
such ¢ and q. Define F(v) = <P§-/V, ¢). For v with o(v) > B, we assign F(v) to be
any value. This completes the construction of F. By our design, we have that p*
decides f, and hence, p* IFp f € Ve,

O

Corollary 8.3. k is inaccessible in V.

Proof. By Theorem 8.2, if k is collapsed, then the witness function has to be in
VP for some a < k, but & is preserved in P,, a contradiction. The same argument
shows that & is regular. Finally, for every § < k, the value 2° must be determined
in VP for some sufficiently large o because the forcing can be factored so that the
quotient forcing after the stage 3 is 87 -closed under the direct extension, ([l

Corollary 8.4. Every cardinal is preserved in V.
Proof. Similar to the previous corollary. O
Corollary 8.5. For (8 < k the value 2° is determined in Ve for some o € (B, k).

Theorem 8.6. In VP, k is inaccessible, there is a club D C &k such that for 3 € D,
20 = a7t and fora & D, 2° = a™.

Proof. Let C be the club derived from P and D = lim(C'). Then D satisfies the
theorem. 0

9. GETTING DIFFERENT CARDINAL BEHAVIORS ON STATIONARY CLASSES

Assume GCH. Let k be a strongly inaccessible cardinal. For each v < &, let
fy 1 & = k. Assume that for each ~, there is a coherent sequence of extenders E:W
on a set X, C k and o7 : X, — x such that

o b, = (Ey(a,8) | B <o(a)).
e cach £ (a, B) is an (o, o™/ (?)) extender witnesses a being at/~(*)-strong.
o o7(a) < a.
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o for v < k, {a | o7 () > v} is stationary.
Then we can proceed a similar forcing construction, except that the corresponding
Cohen part at o will be C(at, /(). Let PU~7<#) be the corresponded forcing.

Theorem 9.1. In the forcing P17<5)  4ll the cardinals are preserved, the forcing
produces a club C' C Uy« X, such that for each 0 < § < K regular and v < K, the
collection of a with cf(a) > € and 2% = at/(%) s stationary.

Proof Sketch. Fix € > 0 and a P-name of a club subset of x D. Let p be a condi-
tion, D a name of a club subset of k. Let M < Hy where 6 is sufficiently large,
D, p,PUsIF<s) ¢ M, Vigne € M, and oY (M Nk) > €. Let @ = M N k. We are now
extending p to a condition whose top level is . Let p = (f, f,A, F) € P,, where
f f, A can be any sensible components. For each v € A(«), let F(v) be a condition
that decides an element ¢ which is the minimum of the interpretation of D\ (v+1).

By elementarity, f is decided to be below a.. Then the final condition forces that «
is in C' N D, and forces that 2% = o/ (®) | and cf(a) > ¢. O

Example 9.2. Start from GCH, « carrying a (r, s™%)-extender. Then it is possible
that for v < &, there is a sequence coherent sequence of extenders Ey on a stationary
set X, C k where each E,(«, /) witnesses o being at7-strong. Let f, : & — 7.
Then the forcing P{217<%) forces that k is inaccessible, and in V,, and each v < &,
there is a stationary class S, C  such that for « € S, 2* = a™7.
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