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Our purpose here is to present a special case of the forcing with pistes of [1] when pistes

are finite and only three sizes of models ω, ω1, ω2 and ω3 are allowed.

1 Wide pistes.

Assume GCH.

The basic idea behind the structures defined below (Definition 2.1), a finite structure with

pistes over ℵ3 is to stay as close as possible to an elementary chain of models. It cannot be

literally a chain since models of different sizes are involved and models of bigger cardinality

can come before ones of a smaller. The first part (Definition 1.1) describes this “linear”

part of conditions in the main forcing. It is called a wide piste and incorporates together

elementary chains of models of different cardinalities. The main forcing, defined in Section

2.1, will be based on such wide pistes and involves an additional natural but non-linear

component called splitting or reflection.

Definition 1.1 A wide piste1 is a set 〈〈Cτ , Cτlim〉 | τ ∈ {ω, ω1, ω2, ω3}〉 such that the

following hold.

For every τ ∈ s = {ω, ω1, ω2, ω3} and A ∈ Cτ the following holds:

1. A 4 〈H(ω4),∈,≤ 〉, where ≤ is some fixed well ordering of H(ω4),

2. |A| = τ ,

3. A ⊇ τ + 1,

4. A ∩ τ+ is an ordinal,

1It is (ℵ4, ω, ω)−wide piste of [1] and here we deal with such pistes only.
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5. elements of Cτ form a finite ∈ −chain,

6. if X ∈ Cτ , then τ>X ⊆ X,

7. if X, Y ∈ Cτ , then X ∈ Y iff X  Y .

8. (Potentially limit points)

Cτlim ⊆ Cτ .

We refer to its elements as potentially limit points.

The intuition behind this is that it will be possible to add new models unboundedly

often below a potentially limit model in interesting cases, and this way it will be turned

into a limit one.

The next condition prevents unneeded appearances of small models between big ones.

9. If B0, B1 ∈ Cρ, for some ρ ∈ s, B1 is not a potentially limit point and B0 is its

immediate predecessor, then there is no potentially limit point A ∈ Cτ with τ < ρ

such that B0 ∈ A ∈ B1.

The requirement that B1 is not a potentially limit point is important here. Once

dealing with potentially limit points, we would like to allow reflections which may add

small intermediate models.

However, small models which are non-potentially limit points are allowed.

10. Let B0, B1 ∈ Cρ, for some ρ ∈ s, B1 is not a potentially limit point, B0 is its immediate

predecessor and A ∈ Cτ ∩B1, with τ < ρ. If sup(A∩θ+) > sup(B0∩θ+), then B0 ∈ A.

The next condition is of a similar flavor, but deals with smallest models.

11. If B ∈ Cρ, for some ρ ∈ s, is not a potentially limit point and it is the least element of

Cρ, then there is no potentially limit point A ∈ Cτ with τ > ρ such that A ∈ B2.

Both conditions 9 and 11 are designed to allow one to add new models below potentially

limit points, which will be essential for properness of the forcing.

The purpose of the next four conditions is to allow to proceed down the pistes without

interruptions at least before reaching a potentially limit point.

12. Let τ, ρ ∈ s, τ < ρ, A ∈ Cτ , B ∈ Cρ and B ∈ A. Suppose that B is not a potentially

limit point and B′ is its immediate predecessor in Cρ. Then B′ ∈ A.

2If we drop the requirement τ > ρ, then it may be impossible further to add models of sizes > η once a
potentially limit point of size η is around.
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13. Let τ, ρ, ρ∗ ∈ s, τ < ρ < ρ∗, A ∈ Cτ , B ∈ Cρ∗ , D ∈ Cρ and B ∈ A. Suppose that B is

not a potentially limit point and B′ is its immediate predecessor in Cρ∗ .

Then B′ ∈ D ∈ B implies D ∈ A.

14. (Linearity) If τ, ρ ∈ s, τ ≤ ρ, A ∈ Cτ , B ∈ Cρ, then sup(A∩ ω4) < sup(B ∩ ω4) implies

A ∈ B,

Next few conditions deal with what we call covering properties. They are needed in

order to show that the forcing is ω−proper.

Suppose that M ∈ Cξ, for some ξ ∈ s, ξ 6= max(s), D ∈ Cρ, for some ρ ∈ s, ρ > ξ.

If sup(M ∩ ω4) < sup(D ∩ ω4), by the linearity condition, M ∈ D. But suppose that

sup(M ∩ ω4) > sup(D ∩ ω4), i.e., a model of smaller size sits above a model of bigger

size on the piste. The simplest situation then will be that just D ∈ M . However it is

too much to require this, since as a result the properness will break down and cardinals

will collapse, even in the two sizes situation. Weaker requirements should be made.

The requirements will insure an existence of so called covering model D̃ of D for M .

This model should have the following basic properties:

(ℵ) D̃ ∈M ,

(i) D̃ ⊇ D,

(ג) |D̃| = |D|,

(k) M ∩ D̃ = M ∩D.

Note such D̃ is unique, if exists. Thus suppose that D′, D′′, D′ 6= D′′ are two covering

models of D for M .

There is x ∈ D′ \D′′ or x ∈ D′′ \D′. Suppose for example that there is x ∈ D′ \D′′.
By elementarity, then there is x ∈ D′ \ D′′ which belongs to M , but this is clearly

impossible, since D′ ∩M = D ∩M = D′′ ∩M , by Item (k) above.

Also note that D̃ = D, if D ∈M .

If 〈D̃i | i < cof(sup(D̃∩ω4))〉 is an increasing continuous sequence of models of cardinal-

ity ≤ |D̃| with limit D̃, defined from D̃, then it follows that D ⊇ D̃sup(M∩cof(sup(D̃∩ω4)))

and M ∩D = M ∩ D̃ = M ∩ D̃sup(M∩cof(sup(D̃∩ω4)))
.

The set of covering models Covmod(p) for p = 〈〈Cτ , Cτlim〉 | τ ∈ {ω, ω1, ω2, ω3}〉 will

be the union of sets 〈Covmod(p)k | k < n(p)〉, n(p) < ω, where

Covmod(p)0 =
⋃
τ∈{ω1,ω2,ω3}C

τ ,
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Covmod(p)k+1 consists of elements of Covmod(p)k together with the following models:

(a) B ∩ E, for some B,E ∈ Covmod(p)k, |B| < |E| and sup(B ∩ ω4) > sup(E ∩ ω4),

(b) B ∩ E ∩ F , for some B,E, F ∈ Covmod(p)k, |B| < |E| < |F | and sup(B ∩ ω4) >

sup(E ∩ ω4) > F ∩ ω4.

Note that in this case |B| = ℵ1, |E| = ℵ2, |F | = ℵ3.

(c) cl(B ∪ ℵi), where cl(...) is the Skolem Hull, |B| < ωi < ω4 and B ∈ Covmod(p)k

or B is the intersection of models, as in the two previous cases.

Let us state some basic facts that will simplify dealing with relevant models.

The following is a well known:

Fact 1 Let N ≺ 〈H(ω4), < 〉 and ρ is an ordinal in N .

Then sup(cl(N ∪ ω2) ∩ ρ) = sup(N ∩ ρ), if cof(ρ) ≤ |N | or cof(ρ) > ℵ2
and cl(N ∪ ω3) ∩ ω4 = sup(N ∩ ω4).

Proof. Let us deal with the first equality, the second is similar.

If cof(ρ) ≤ |N |, then ρ ∈ N , and so, by elementarity N will contain a cofinal in ρ

sequence. Then sup(N ∩ ρ) = ρ, and we are done.

So assume that cof(ρ) > |N |, and then cof(ρ) > ℵ2.

Let η < ρ be in cl(N ∪ ω2). Then there is a Skolem term t, a ∈ N and α < ω2 such

that η = t(a, α).

Consider γ =
⋃
β<ω2

t(a, β). Then γ ∈ N , by elementarity, and, clearly, γ < ρ and

γ ≥ η.

� of the fact.

Now, the following follows from the previous fact:

Fact 2 Let K0, K1 be models of q of cardinality ℵ1, B0, B1 be models of q of cardinality

ℵ2 and F0, F1 models of q of cardinality ℵ3. Then either

(a) cl((K0 ∩B0 ∩ F0) ∪ ℵ3) = cl((K1 ∩B1 ∩ F1) ∪ ℵ3),
or

(b) cl((K0 ∩B0 ∩ F0) ∪ ℵ3) ∈ cl((K1 ∩B1 ∩ F1) ∪ ℵ3),
or

(c) cl((K1 ∩B1 ∩ F1) ∪ ℵ3) ∈ cl((K0 ∩B0 ∩ F0) ∪ ℵ3).
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Proof. Just compare sup(K0 ∩ B0 ∩ F0 ∩ ω4) with sup(K1 ∩ B1 ∩ F1 ∩ ω4) and apply

the fact above.

� of the fact.

Fact 3 Suppose X, Y are models such that sup(X ∩ℵi) = sup(X ∩ℵi), for every i ≤ 4.

Then X = Y .

Proof. Just proceed by induction on i ≤ 4 and show that X ∩ ℵi = Y ∩ ℵi.

� of the fact.

Fact 4 Suppose X ∈ Y are models, µ′ ≤ µ are cardinals and µ ∈ Y , then

cl((Y ∩ cl(X ∪ µ′)) ∪ µ) = cl((Y ∩X) ∪ µ).

Proof. Clearly, cl((Y ∩ cl(X ∪ µ′)) ∪ µ) ⊇ cl((Y ∩X) ∪ µ). Let us show the opposite

direction.

So, let z ∈ cl((Y ∩ cl(X ∪ µ′))∪ µ). Then there are a ∈ Y ∩ cl(X ∪ µ′) and α < µ such

that z = h(a, α), for some Skolem function h. Using the assumption that X,µ ∈ Y ,

we can find b ∈ Y ∩X and β ∈ Y ∩ µ such that a = g(b, β), for some Skolem function

g.

Then z = h(g(b, β), α). Using the closure of Skolem functions under the composition

and the pairing function on ordinals below µ, we obtain z = f(b, γ), for some γ < µ

which codes (α, β) and a Skolem function f .

So, z ∈ cl((Y ∩X) ∪ µ), and we are done.

� of the fact.

The next fact is a special case of the previous one.

Fact 5 Suppose X is a model, µ′ ≤ µ are cardinals, then

cl((cl(X ∪ µ′)) ∪ µ) = cl(X ∪ µ).

Proof. Just take Y to be big enough to include X and µ+ 1.

� of the fact.

Fact 6 Suppose Y ∈ X are models, µ′ ≤ µ are cardinals and µ′ ≥ |Y |, then

cl((Y ∩ cl(X ∪ µ′)) ∪ µ) = cl(Y ∪ µ).
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Proof. Just Y ∈ X and µ′ ≥ |Y | imply that cl(X ∪µ′) ⊇ Y . Hence Y ∩ cl(X ∪µ′) = Y .

� of the fact.

Note that models in Covmod(p) are completely determined by supremums of their

intersections with ℵ2,ℵ3,ℵ4.
Let us argue that the process terminates after finitely many steps.

Claim 1 Suppose that F ∈ Covmod(p), |F | = ℵ3 and cof(F ∩ ω4) = ω3.

Then F ∈ Cω3.

Proof. We claim that F must be already in Covmod(p)0. Suppose otherwise. Pick

k < ω to be the least such that F ∈ Covmod(p)k+1. Then, by Fact 1, F cannot be of the

form cl(B∪ω3), for some B ∈ Covmod(p)k of cardinality < ℵ3, since cof(F ∩ω4) = ω3.

If such B has cardinality ℵ3, then B ⊇ ω3, and so, B = cl(B ∪ ω3) = F . But then

F ∈ Covmod(p)k, which is impossible by the choice of k.

The cases (a), (b) of the definition of Covmod(p)k+1 are impossible as well by Fact 1

and the assumption cof(F ∩ ω4) = ω3.

Contradiction.

� of the claim.

The next two claims is similar.

Claim 2 Suppose that F ∈ Covmod(p), |F | = ℵ2 and cof(F ∩ ω3) = ω2.

Then there is E ∈ Cω2 such that F ∩ ω3 = E ∩ ω3 and E appears in the process of

constructing F .

Claim 3 Suppose that F ∈ Covmod(p), |F | = ℵ1 and cof(F ∩ ω3) = ω1.

Then there is B ∈ Cω1 such that F ∩ ω2 = B ∩ ω2 and B appears in the process of

constructing F .

Further let us call such E and B the leading models of F .

Claim 4 Suppose that F ∈ Covmod(p), |F | = ℵ3 and cof(F ∩ ω4) = ω2.

Then F ∈ Covmod(p)1, and then F = cl(E ∪ ω3), or F ∈ Covmod(p)2, and then

F = cl((E ∩G) ∪ ω3), for some E ∈ Cω2 , G ∈ Cω3 , sup(E ∩ ω4) > G ∩ ω4.

6



Let us deal for a while with intersection of models to H(ω3). So, only sizes ℵ1,ℵ2 are

relevant.

Consider Covmod(p)1. Its elements of cardinality ℵ1 are of one of the following forms:

• B ∈ Cω1 ,

• B ∩ E, B ∈ Cω1 , E ∈ Cω2 , sup(B ∩ ω3) > E ∩ ω3.

The elements of cardinality ℵ2 are of one of the following forms:

• E ∈ Cω2 ,

• cl(Z ∪ ω2), for some Z ∈ Covmod(p)1 of cardinality ℵ1.

In the second case there is a leading model B ∈ Cω1 such that Z = B or Z = B ∩ E.

Consider now the next stage Covmod(p)2.

Let B′ be a model of cardinality ℵ1 and E ′ of cardinality ℵ2, with sup(B′∩ω3) > E ′∩ω3,

from the previous stage.

For example, B′ = B ∩ E and E ′ = cl(Z ∪ ω2). Then

B′ ∩ E ′ = (B ∩ E) ∩ cl(Z ∪ ω2) = B ∩ (E ∩ cl(Z ∪ ω2)) = B ∩ cl(Z ∪ ω2),

since E ∩ ω3 ≥ sup(B ∩ E ∩ ω3) > E ′ ∩ ω3 = cl(Z ∪ ω2) ∩ ω3.

Also, note that cl((B ∩ cl(Z ∪ ω2)) ∪ ω2) = cl(Z ∪ ω2), if the leading model B′ of

cl(Z ∪ ω2) is below B,

and cl((B ∩ cl(Z ∪ ω2)) ∪ ω2) = cl(B ∩ E ′ ∪ ω2), if the leading model B′ of cl(Z ∪ ω2)

is above B, where Z = B′ ∩ E ′ or if Z = B′, then E ′ = ω3.

This means that no new models of cardinality ℵ2 are produced at the stage 2.

Let Z ∈ Covmod(p) has cardinality ℵ3.
If cof(Z ∩ ω4) = ω3, then Z must be in Cω3 .

If cof(Z ∩ ω4) = ω2, then

Z = cl(E ∪ ω3), for some E ∈ Cω2 , or

Z = cl((E ∩ F ) ∪ ω3), for some E ∈ Cω2 ,F ∈ Cω3 and E above it.

If cof(Z ∩ ω4) = ω1, then

Z = cl((B ∪ ω3), for some B ∈ Cω1 , or

Z = cl(((B ∩ E) ∪ ω3), for some B ∈ Cω1 and E below B of cardinality ℵ2, or
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Z = cl((B ∩ E ∩ F ) ∪ ω3), for some B ∈ Cω1 , F ∈ Cω3 , E above it of cardinality ℵ2
and B above E of cardinality ℵ1.

If Z ∈ Covmod(p) has cardinality ℵ2 and cof(Z ∩ ω3) = ω2, then Z must be of one of

the following forms:

E, for some E ∈ Cω2 ,

or

E ∩ cl((E1 ∩ F1) ∪ ω3),

for some E,E1 ∈ Cω2 , F1 ∈ Cω3 , E1 ⊆ E.

If Z ∈ Covmod(p) has cardinality ℵ2 and cof(Z ∩ ω3) = ω1, then Z must be of the

following form:

cl((B ∩ E ∩ cl((E1 ∩ F1) ∪ ω3)) ∪ ω2),

for some B ∈ Cω1 , E, E1 ∈ Cω2 , F1 ∈ Cω3 , E1 ⊆ E.

If Z ∈ Covmod(p) has cardinality ℵ1, then Z must be of one of the following forms:

B, for some B ∈ Cω1 ,

or

B ∩ cl((B1 ∩ E1 ∩ F1) ∪ ω2) ∩ cl((B2 ∩ E2 ∩ F2) ∪ ω3), for some B,B1, B2 ∈ Cω1 ,

B2 ⊆ B1 ⊆ B.

Note that if D̃ ∈ Covmod(p) and cof(sup(D̃ ∩ ω4)) = ω3, then D̃ ∈ Cω3 , since inter-

sections with models of smaller sizes reduces the cofinality of such sup.

Similar, if D̃ ∈ Covmod(p) and cof(sup(D̃∩ω4)) = ω2, then only models from Cω2∪Cω3

where involved in constructing D̃ by taking intersections and cl, as above.

Let us state now the requirements on covering models.

Start with the simplest one.

15. (Covering 1)

If M ∈ Cω2 , D ∈ Cω3 and sup(M ∩ ω4) > sup(D ∩ ω4), then there is a covering model

D̃ of D for M inside Cω3 .3

This the only requirement, if only two sizes of models are considered.

Already dealing with three sizes, an additional requirement is needed:

3Note that
(a) if D 6∈ M , then such D̃ must be a potentially limit point by Item 12 above. Thus, it cannot be a
successor non-potentially limit point, by Item 12, since its immediate predecessor D̃′ will be in M , and then,
sup(D̃′ ∩ ω4) < sup(D ∩ ω4), and so D ⊇ D̃′.
(b) such D̃ is the least model D′ ∈M ∩ Cω3 such that D′ ⊇ D.
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16. (Covering 2 ) If M ∈ Cτ , D ∈ Cρ,τ < ρ, sup(M ∩ ω4) > sup(D ∩ ω4), then there is

D̃ ∈ Covmod(p) which is a covering model of D for M .

17. (Strong Covering 1 ) If M ∈ Cω1 , D ∈ Cω3 , sup(M ∩ ω4) > sup(D ∩ ω4). Let D̃ ∈ M
be a covering model of D for M . Then either

(a) D̃ ∈ Cω3 ;

or

(b) cof(D̃ ∩ ω4) = ω2
4 .

Let then S ∈ Cω2 ∩M be its leading model.

Then either

i. D ∈ S,5

or

ii. there is a covering model D′ ∈ S ∩Cω3 of D for S such that D ⊇ D′sup(M∩ω3),

where 〈D′i | i < ω3〉 is an increasing continuous sequence of models of cardi-

nality ℵ2 with limit D′, defined from D′.

18. (Strong Covering 2 ) If M ∈ Cω, D ∈ Cω2 , sup(M ∩ ω4) > sup(D ∩ ω4). Let D̃ ∈ M
be a covering model of D for M . Then either

(a) D̃ ∈ Cω2 ;

or

(b) cof(sup(D̃ ∩ ω4)) = ω1.

Let then S ∈ Cω1 ∩M be its leading model.

Then either

i. D ∈ S,6

or

4Note that D ⊇ D̃M∩ω2
, where 〈D̃ν | ν < ω2〉 is an increasing continuous sequence of models of cardinality

ℵ2 with limit D̃, defined from D̃. Just otherwise there will be ν < M ∩ ω2 such that D̃ν 6∈ D, but such
D̃ν ∈M ∩ D̃. Contradiction to covering.

5Note that this implies that D ⊇ cl((SM∩ω2
∩ D̃) ∪ ω3), where 〈Sν | ν < ω2〉 is an increasing continuous

sequence of models of cardinality ℵ1 with limit S, defined from S. Otherwise, there is x ∈ cl((SM∩ω2
∩ D̃)∪

ω3) \ D. Then x = h(a, α), for some a ∈ SM∩ω2 ∩ D̃, α < ω3 and a Skolem term h. Such a 6∈ D, since
D ⊇ ω3. Pick γ ∈ M ∩ ω2 such that a ∈ Sγ . Then Sγ ∩ D̃ 6∈ D, since otherwise, we will have Sγ ∩ D̃ ⊆ D,

and so a ∈ D. But now, Sγ ∩ D̃ ∈M ∩ D̃ = M ∩D, which is impossible. Contradiction.
6As in the previous condition, then D ⊇ SM∩ω1

∩ D̃.

9



ii. there is a covering model ˜̃D ∈ S ∩Cω2 of D for S such that D ⊇ ˜̃Dsup(M∩ω2),

where 〈 ˜̃Di | i < ω2〉 is an increasing continuous sequence of models of cardi-

nality ℵ1 with limit ˜̃D, defined from ˜̃D.

Let us deal with covering properties when the gap between cardinalities of models

involved is at least two. In the present situation - four sizes, it is only ω and ω3.

19. (Strong Covering 3 ) If M ∈ Cω, D ∈ Cω3 , sup(M ∩ ω4) > D ∩ ω4. Let D̃ ∈ M be a

covering model of D for M . Then either

(a) D̃ ∈ Cω3 ;

or

(b) cof(D̃ ∩ ω4) = ω2.

Let then E ∈ Cω2 ∩M be its leading model.

Then either

i. D ∈ E,

or

ii. there is a covering model ˜̃D ∈ Cω3 ofD for E such thatD ⊇ ˜̃Dsup(M∩ω2), where

〈 ˜̃Di | i < ω2〉 is an increasing continuous sequence of models of cardinality ℵ2
with limit ˜̃D, defined from ˜̃D.

Or

(c) cof(D̃ ∩ ω4) = ω1.

Let then S ∈ Cω1 ∩M be its leading model.

Then either

i. D ∈ S,

or

ii. D 6∈ S and let then ˜̃D be a covering model of D for S.

If cof( ˜̃D∩ω4) = ω3, then D ⊇ ˜̃Dsup(M∩ω3), where 〈 ˜̃Di | i < ω3〉 is an increasing

continuous sequence of models of cardinality ℵ2 with limit D̃, defined from

D̃.

If cof( ˜̃D ∩ ω4) = ω2, then let T ∈ S ∩ Cω2 be its leading model.

Reqire that D ⊇ Tsup(M∩ω2), where 〈Ti | i < ω2〉 is an increasing continuous

sequence of models of cardinality ℵ1 with limit T , defined from T , and either
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A. D ∈ T ,

or

B. there is a cover T̃ ∈ T ∩ Cω3 of D such that D ⊇ T̃sup(M∩ω2), where

〈T̃i | i < ω2〉 is an increasing continuous sequence of models of cardinality

ℵ2 with limit T̃ , defined from T̃ .

We will state further in the definition of structures with pistes when such non-trivial

possibilities of coverings may occur.

20. Let τ, ρ, ξ ∈ s, τ < ρ < ξ, A ∈ Cτ ,M ∈ Cρ, D ∈ Cξ, M,D ∈ A and sup(M ∩ ω4) >

sup(D ∩ ω4). Then the covering model D̃ of D for M belongs to A.

2 Structures with pistes - definitions.

Now we are ready to give the main definition.

Definition 2.1 A structure with pistes7 is a set

p = 〈〈A0τ , A1τ , A1τlim, Cτ 〉 | τ ∈ s = {ω, ω1, ω2, ω3}〉 such that the following hold:

1. for every τ ∈ s,

(a) A0τ 4 〈H(ω4),∈,≤ 〉,

(b) |A0τ | = τ ,

(c) A0τ ∈ A1τ ,

(d) A1τ is a finite set of elementary submodels of A0τ ,

(e) each element A of A1τ has cardinality τ , A ⊇ τ + 1 and A ∩ τ+ is an ordinal.

2. (Potentially limit points) Let τ ∈ s.
A1τlim ⊆ A1τ . We refer to its elements as potentially limit points.

The intuition behind this is that once extending it will be possible to add new models

unboundedly often below a potentially limit model, and this way it will be turned into

a limit one.

7It is (ℵ3, ω, ω)−structure with pistes of [1] and here we deal with such structures only.
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3. (Piste function) The idea behind this is to provide a canonical way to move from a

model in the structure to one below.

Let τ ∈ s.
Then, dom(Cτ ) = A1τ and

for every B ∈ dom(Cτ ), Cτ (B) is a finite chain of models in A1τ ∩ (B∪{B}) such that

the following holds:

(a) B ∈ Cτ (B),

(b) if X ∈ Cτ (B), then Cτ (X) = {Y ∈ Cτ (B) | Y ∈ X ∪ {X}},

(c) if B has immediate predecessors in A1τ , then one (and only one) of them is in

Cτ (B),

4. (Wide piste) The set

〈Cτ (A0τ ), Cτ (A0τ ) ∩ A1τlim | τ ∈ s〉

is a wide piste.

The next two condition describe the ways of splittings from wide pistes. This describes

the structure of A1τ and the way pistes allow one to move from one of its models to

an other.

5. (Splitting points) Let τ ∈ s. Let X ∈ A1τ . Then either

(a) X is minimal under ∈ or equivalently under (,

or

(b) X has a unique immediate predecessor in A1τ ,

or

(c) τ < ω3, X has exactly two immediate predecessors X0, X1 in A1τ , and then the

following hold:

i. (Splitting points of type 1) None of X,X0, X1 is a potentially limit point and

X,X0, X1 form a ∆–system triple relative to some F0, F1 ∈ A1τ+lim,

which means the following:

A. F0  F1 and then F0 ∈ Cτ+(F1), or F1  F0 and then F1 ∈ Cτ+(F0),

B. X0 ∈ F1, if F0  F1 and X1 ∈ F0, if F1  F0,

C. F0 ∈ X0 and F1 ∈ X1,

D. X0 ∩X1 = X0 ∩ F0 = X1 ∩ F1,
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E. the structures

〈X0,∈, 〈X0 ∩ A1ρ, X0 ∩ A1ρlim, (Cρ � X0 ∩ A1ρ) ∩X0 | ρ ∈ s〉〉

and

〈X1,∈, 〈X1 ∩ A1ρ, X1 ∩ A1ρlim, (Cρ � X1 ∩ A1ρ) ∩X1 | ρ ∈ s〉〉

are isomorphic over X0 ∩ X1. Denote by πX0,X1 the corresponding iso-

morphism.

F. X ∈ A0τ+ .

Or

ii. (Splitting points of type 2) τ ∈ s ∩ ω2 and there are G,G0, G1 ∈ X ∩ A1µ,

µ ∈ s \ τ + 1, G is a splitting point of types 1 and G0, G1 are its immediate

predecessors, with witnessing models in X, such that

A. X0 ∈ G0,

B. X1 ∈ G1,

C. X1 = πG0G1 [X0].

D. X is not a limit or potentially limit point,

E. X ∈ A0µ,

F. (Pistes go in the same direction) Gi ∈ Cµ(G)⇔ Xi ∈ Cτ (X), i < 2.

Further we will refer to such X, i.e. of types 1 or 2, as splitting points.

6. Let τ, ρ ∈ s, X ∈ A1τ , Y ∈ A1ρ. Suppose that X is a successor point, but not

potentially limit point and X ∈ Y . Then all immediate predecessors of X are in Y , as

well as the witnesses, i.e. F0, F1 if (5(c)i) holds and G0, G1, G if (5(c)ii) holds.

7. Let τ ∈ s. If X ∈ A1τ , Y ∈
⋃
ρ∈sA

1ρ and Y ∈ X, then Y is a piste-reachable from X,

i.e. there is a finite sequence 〈X(i) | i ≤ n〉 of elements of A1τ which we call the piste

leading to Y from X such that

(a) X = X(0),

(b) for every i, 0 < i < n, either

i. X(i−1) has two immediate predecessors X(i−1)0, X(i−1)1 with X(i−1)0 ∈
Cτ (X(i− 1)), X(i) = X(i− 1)1 and Y ∈ X(i− 1)1 \X(i− 1)0,

or
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ii. X(i) ∈ Cτ (X(i− 1)), and then either i = n or

i < n, X(i) has two immediate predecessors X(i)0, X(i)1 with X(i)0 ∈
Cτ (X(i)), X(i+ 1) = X(i)1 and Y ∈ X(i)1 \X(i)0

(c) Y = X(n), if Y ∈ A1τ and if Y ∈ A1ρ, for some ρ 6= τ , then Y ∈ X(n), X(n) is a

successor point and Y is not a member of any element of X(n) ∩ A1τ .

Let us give two examples.

Example 1. Suppose that A1τ consists of three models, Y ∈ Z ∈ X.

Then the piste from X to Y will be 〈X, Y 〉.

Example 2. Suppose that A1τ consists of models X,Z, T, T0, T1, Y0, Y1 such that

Y0 ∈ T0 ∈ T ∈ Z ∈ X is Cτ (X), T is a splitting point with T0, T1 its immediate

predecessors, Y0 ∈ T0, Y1 ∈ T1.
Then the piste from X to Y1 goes like this: From X we go down to T , then at T we

turn to T1 and from T1 we continue to the final destination Y1.

So the piste from X to Y1 is 〈X,T, T1, Y1〉.

The sequence 〈X(i) | i ≤ n〉 is defined uniquely from X and Y .

In particular, every Y ∈ A1τ is piste reachable from A0τ .

In order to formulate further requirements, we will need to describe a simple process

of changing the wide pistes. This leads to equivalent forcing conditions once the order

will be defined.

Let X ∈ A1τ . We will define the X−wide piste. The definition will be by induction

on number of turns (splits) needed in order to reach X by the piste from A0τ .

First, if X ∈ Cτ (A0τ ), then the X−wide piste is just 〈Cξ(A0ξ), Cξ(A0ξ)∩A1ξlim | ξ ∈ s〉,
i.e. the wide piste of the structure.

Second, if X 6∈ Cτ (A0τ ), but it is not an immediate predecessor of a splitting point,

then pick the least splitting point Y above X. Let Y0, Y1 be its immediate predecessors

with Y0 ∈ Cτ (Y ). Then X ∈ Yi for some i < 2. Set the X−wide piste to be the

Yi−wide piste.

So, in order to complete the definition, it remain to deal with the following principal

case:

X ∈ A1τ a splitting point of one of the types 1 or 2.

Let X0, X1 be its immediate predecessors with X0 ∈ Cτ (X). Assume that the X−wide

piste 〈Cξ
X , C

ξlim
X | ξ ∈ s〉 is defined and assume that Cτ (X) is an initial segment of Cτ

X .

Let the X0−wide piste be 〈Cξ
X , C

ξlim
X | ξ ∈ s〉.

14



Let us deal with type of splitting separately.

Case 1. X is a splitting point of type 1.

Define the X1−wide piste 〈Cξ
X1
, Cξlim

X1
| ξ ∈ s〉 as follows:

• Cξ
X1

= Cξ
X , for every ξ > τ .

I.e. no changes for models of cardinality > τ .

• Cξlim
X1

= Cξ
X1
∩ A1ξlim, for every ξ ∈ s.

Models that were potentially limit remain such and no new are added.

• Cτ
X1

= (Cτ
X \X) ∪ Cτ (X1).

Here we switched the piste from X0 to X1.

• Cξ
X1

= {Z ∈ Cξ
X | sup(Z ∩ω4) > max(sup(X0 ∩ω4), sup(X1 ∩ω4))}∪{πX0,X1(Z) |

Z ∈ Cξ
X ∩X0}, for every ξ ∈ s ∩ τ .8

Note that such defined switch from X0 to X1 does not affect at all models of sizes

above τ . Models of sizes ≤ τ are effected only if they are contained in X0 or in X1.

If X is a splitting point of type 2, then we may need to turn some piste for models of

cardinalities > τ into other directions, in order to satisfy the item 5(c)iiF above.

Proceed as follows.

Case 3. X is a splitting point of type 2.

Let G,G0, G1 ∈ X ∩A1µ be models which witness that X is a splitting point of type 2

and X0, X1 are its immediate predecessors. Now using the induction9 we can assume

that the G1−wide piste is already defined.

Define the X1−wide piste to be the G1−wide piste.

Now we require the following:

8. Let τ ∈ s and X ∈ A1τ . Then the X−wide piste is a wide piste, i.e., it satisfies

Definition 1.1.

9. (Maximal models are above all the rest) For every τ ∈ s and

Z ∈
⋃
ρ∈sA

1ρ, if Z 6∈ A0τ , then there is µ ∈ s such that Z = A0µ.

Let us conclude with requirements related to non-trivial cases of covering.

8In particular, due to this, the next condition implies that for ξ ∈ s ∩ τ , if Z ∈ CξX , sup(Z ∩ ω4) >

max(sup(X0 ∩ ω4), sup(X1 ∩ ω4)), then {πX0X1(Z ′) | Z ′ ∈ CξX ∩X0} ⊆ Z.
9The induction is on pairs (n, ζ) ordered lexicographically, where n is the number of turns from the wide

piste and ζ is the rank (the usual one as sets) of the model.
We have G,G0, G1 ∈ X, so the rank of G,G0, G1 is smaller than the rank of X. The number of turns needed
to get to G and to X from the top is the same.
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10. (Covering possibilities) Suppose that X, Y are on the wide piste, |X| < |Y |, X is above

Y and Y 6∈ X. Let Ỹ be a covering model of Y for X. Then the following hold:

(a) if Ỹ ∈ Covmod(p)1 and Ỹ is not on the wide piste, then there is a splitting point

Z on the wide piste between X and Y of cardinality |X| < |Z| < |Y |.
So, Ỹ is of the form cl(Z ∪ |Y |) or cl((Z ∩E) ∪ |Y |) or cl((Z ∩E ∩ F ) ∪ |Y |), for

some E,F on the wide piste, with |Z| < |E| < |F |, Z above E and E above F .

Note that in two last cases, models R ∈ X ∩ Z, |R| = |Z| which are above E or

below E, but above F , in the last case, will either contain models which are on

the wide piste inside Z ∩E ( Z ∩E ∩ F ) of cardinality |Z| or will not be on the

wide piste.

(b) If Ỹ ∈ Covmod(p)n+1 \ Covmod(p)n, for some n, 1 ≤ n < ω, then there is a

splitting point Z on the wide piste between X and Y

of cardinality |X| < |Z| < |Y |. The following hold:

i. Ỹ = cl(Z̃ ∪ |Y |), where Z̃ is a covering model of Z for X and it is in

Covmod(p)n \ Covmod(p)n−1.

or

ii. there is E on the wide piste below Z, |Z| < |E| such that Y ∈ Z ∩ E, and

then, Ỹ = cl((Z̃ ∩ Ẽ) ∪ |Y |), where Z̃ is a covering model of Z for X, Ẽ is

a covering model of E for X, both of them are in Covmod(p)n and at least

one of them is in Covmod(p)n \ Covmod(p)n−1.

Or

iii. there are E,F on the wide piste below Z, |Z| < |E| < |F |, F below E such

that Y ∈ Z ∩ E ∩ F , and then, Ỹ = cl((Z̃ ∩ Ẽ ∩ F̃ ) ∪ |Y |), where Z̃ is a

covering model of Z for X, Ẽ is a covering model of E for X, F̃ is a covering

model of F for X, all of them are in Covmod(p)n and at least one of them is

in Covmod(p)n \ Covmod(p)n−1.

We require that in both of the last cases, if R ∈ X ∩ Z̃, |R| = |Z| which are

above Ẽ or below Ẽ, but above F̃ , in the last case, then R either contain

models which are on the wide piste inside Z ∩E ( Z ∩E ∩ F ) of cardinality

|Z| or R is not on the wide piste.

This completes the definition of a finite structure with pistes.

Denote the set of such defined structures by P (which corresponds to Pω3ωω of [1]).

Define an order on P .
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Definition 2.2 Let

p0 = 〈〈A0τ
0 , A

1τ
0 , A

1τlim
0 , Cτ

0 〉 | τ ∈ s〉, p1 = 〈〈A0τ
1 , A

1τ
1 , A

1τlim
1 , Cτ

1 〉 | τ ∈ s〉 be two elements of

P .

Set p0 ≤ p1 (p1 extends p0) iff

1. A1τ
0 ⊆ A1τ

1 , for every τ ∈ s,

2. let A ∈ A1τ
0 , for some τ ∈ s, then A ∈ A1τlim

0 iff A ∈ A1τlim
1 .

The next item deals with a switching described in Definition 2.1 . It allows to change

piste directions.

3. Let τ ∈ s.
For every A ∈ A1τ

0 , Cτ
0 (A) ⊆ Cτ

1 (A),

or

there are finitely many places below A where pistes change their directions, i.e. there

are splitting points B(0), ..., B(k) ∈ A1τ
0 ∩ (A ∪ {A}) with B(j)′, B(j)′′ the immediate

predecessors of B(j) (j ≤ k) such that

(a) B(j)′ ∈ Cτ
0 (B(j)),

(b) B(j)′′ ∈ Cτ
1 (B(j)).

If B ∈ A1τ
0 ∩ (A∪ {A}) is a splitting point different from B(0), ..., B(k) and B′, B′′ are

its immediate predecessors, then

B′ ∈ Cτ
0 (B) iff B′ ∈ Cτ

1 (B).

4. Let τ ∈ s.
If A ∈ A1τ

0 is a splitting point in p0, then it remains such in p1 with the same immediate

predecessors.

5. Let τ ∈ s.
Let B ∈ A1τ

0 B not in A1τ lim
0 , i.e., it is not a potentially limit, and B a unique immediate

predecessor in p0. Then, in p1, B has the same unique immediate predecessor.

This requirement guarantees intervals without models, even after extending a condi-

tion.

By 2.2(5), potentially limit points are the only places where non-end-extensions can be

made.
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3 Properness.

We would like to show that for every τ ∈ s = {ω, ω1, ω2, ω3} the forcing P is τ−proper.

Let us start with ω3−properness.

Lemma 3.1 The forcing P is ω3−proper.

Proof.

Let p ∈ P . Pick M to be an elementary submodel of H(χ) for some χ large enough such

that

1. |M| = ℵ3,

2. M ⊇ ℵ3,

3. P , p ∈M,

4. ω2M ⊆M.

Set M = M ∩H(ω4).

We claim that p_M is (P ,M)−generic. So, let r ≥ p_M and D̄ ∈M be a dense open

subset of P .

By extending r, if necessary, we can assume that r ∈ D̄.

Let A0 � A1 � A2 � H(ω4) be such that

1. A0 ∈ A1 ∈ A2,

2. |Ai| = ℵi, for every i < 3,

3. r ∈ A0.

In particular, M ∈ Ai, and so Ai ∩M ∈M , for every i < 3. Set q = r_A0
_A1

_A2.

Denote A2 by A.

Let δM = M ∩ ω4 and ηA = sup(A∩ δM). Then ηA has cofinality < ω3, and so, ηA < δM .

Hence ηA ∈M . Reflect now A, q down to M over A ∩M in the language which includes D̄.

Denote the result by A′, q′ and let M ′ be the image of M under this reflection.

Then, A ∩ ηA = A′ ∩ ηA, also,

A ∩M = A′ ∩M ′ and A ∩M ∩ δM = A′ ∩M ′ ∩ δM = A′ ∩M ′ ∩ δM ′ .
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Pick some model Ã of cardinality ℵ2 with A, q, A′, q′ inside. Pick also an ∈ −increasing

sequence of models 〈Ã0, Ã1, Ã2〉 with A, q, A′, q′, Ã ∈ Ã0 and |Ãi| = ℵi.
It is enough to show the following:

Claim 5 q_q′_Ã_〈Ã0, Ã1, Ã2〉 ∈ P .

Proof. We need to check that Definition 1.1 is satisfied by the two pistes

which form q_q′_Ã_〈Ã0, Ã1, Ã2〉, i.e., those which are generated by q and by its reflection

q′.

Note that each of q, q′ is fine. The only problem that may be here - is that new models

of cardinality ℵ3 are added to wide pistes of q, q′. For example, M ′ is added to q and M

to q′. Note that only models of size ℵ3 are added, since we reflected into a model M of

cardinality ℵ3, so models of smaller sizes reflect and did not remain on wide pistes of the

reflected condition.

For example, if there were a model B of cardinality ℵ3 in q on its wide piste with M ∈ B,

then B would be reflected to B′ ∈M and B′ will appear on the wide piste of q′,

and not B.

Basically, we need to check only the covering conditions of Definition 1.1 in the following

situation:

B ∈ q above M on the wide piste of q and D′ is a model of cardinality ℵ3 in q′ which does

not belong to A, i.e., the reflection of some D in A.

But this is easy. Namely, if B = A, then M will be such a cover, since due to the reflection,

A ∩D′ = A ∩M .

Suppose that B 6= A, then B ∈ A.

If B is countable, then B ⊆ A, and again, M will be such a cover, if M ∈ B or a model

M̃ ∈ B which is the cover of M for B.

If |B| = ℵ1 or |B| = ℵ2, then note that sup(B ∩M ∩ ω4) ∈ A ∩M , and so it is below ηA.

Hence, if M ∈ B, then B ∩D′ = B ∩M ∩D′ = B ∩M . If M 6∈ B, then the cover of M for

B will be as desired.

� of the claim.

�

Lemma 3.2 The forcing P is ω1−proper and ω2−proper.

Proof.

19



Let p ∈ P . Pick M to be an elementary submodel of H(χ) for some χ large enough such

that

1. |M| = ℵ1, for ω1−properness, or |M| = ℵ2, for ω2−properness,

2. M ⊇ ℵ1 or M ⊇ ℵ2, respectively,

3. P , p ∈M,

4. ωM ⊆M or ω1M ⊆M.

Set M = M ∩H(ω4).

We claim that p_M is (P ,M)−generic. So, let r ≥ p_M and D̄ ∈M be a dense open

subset of P .

By extending r, if necessary, we can assume that r ∈ D̄.

Let A0 � A1 � H(ω4) be such that

1. A0 ∈ A1,

2. |Ai| = ℵi, for every i < 2,

3. r ∈ A0.

In particular, M ∈ Ai, and so Ai ∩ M ∈ M , for every i < 2. Set q = r_A0
_A1, if

|M | = ℵ2. Denote in this case A1 by A.

If |M | = ℵ1, then set q = r_A0 and denote A0 by A.

Reflect now A, q down to M over A∩M and above ηA in the language which includes D̄.

Denote the result by A′, q′ and let M ′ be the image of M under this reflection.

Then, A ∩M = A′ ∩M ′.

Note that A ∩ ω1 = A′ ∩ ω1, since M ⊇ ω1, and so, A ∩ ω1 = A ∩M ∩ ω1.

Also, if |M | = ℵ2, then A ∩ ω2 = A′ ∩ ω2, since M ⊇ ω2, and so, A ∩ ω2 = A ∩M ∩ ω2.

In addition, if |M | = ℵ1, then A ∩M ∩ ω2 ⊆ A′. However, M ∩ ω2 ∈ A, but M ∩ ω2 6∈ A′,
since A′ ⊆M .

Similar, if |M | = ℵ2, then A ∩M ∩ ω3 ⊆ A′. However, M ∩ ω3 ∈ A, but M ∩ ω3 6∈ A′, since

A′ ⊆M .

Pick some model Ã of cardinality |A| with A, q, A′, q′ inside. Pick also an ∈ −increasing

sequence of models 〈Ã0, Ã1〉 with A, q, A′, q′, Ã ∈ Ã0 and |Ãi| = ℵi.
If |A| = ℵ0, i.e., for ℵ1−properness, then we can proceed without Ã1.
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It is enough to show the following:

Claim q_q′_Ã_〈Ã0, Ã1〉 ∈ P .

Proof. We need to check that Definition 1.1 is satisfied by the two pistes

which form q_q′_Ã_〈Ã0, Ã1, Ã2〉, i.e., those which are generated by q and by its reflection

q′.

Note that each of q, q′ is fine. The only problem that may to appear - is that new models of

cardinalities ℵ1,ℵ2 and ℵ3 are added to wide pistes of q, q′. For example, M ′ is added to q

and M to q′. Note that only models of sizes ℵ1 and ℵ2 are added, since we reflected into a

model M of cardinality ℵ1, so models of countable cardinality reflect and did not remain on

wide pistes of the reflected condition.

For example, A reflects to A′, but A′ is not on the wide piste of A. However, M is on the

wide piste of A′.

Basically, we need to check only the covering conditions of Definition 1.1.

Let us deal with ω1−properness. The argument for ω2−properness is similar and a bit

simpler.

Let us deal first with few typical cases.

Case 1. There is a new model of cardinality ℵ1 above sup(A ∩ M ∩ ω4) which is a

reflection of a model with M inside.

Let B′ be such a model. Then it is a reflection into M of a model B ∈ A with M ∈ B.

Also, M ′ ⊆ B′ ⊆M . We will have A∩B′ = A∩M, since if z ∈ A∩M , then z ∈ A′ ∩M ′ =

A ∩M and M ′ ⊆ B′.

Case 2. There is a new model of cardinality ℵ2 or ℵ3 above sup(A ∩M ∩ ω4).

Let D′ be such a model. Then A ∩D′ = A ∩ cl(M ∪ |D′|).
Namely, D′ ∈M , hence D′ ⊆ cl(M ∪ |D′|).
Let D be the model that reflects to D′. Then D ⊇M , since sup(D′∩ω4) > sup(A∩M∩ω4) =

sup(A′ ∩M ′ ∩ ω4), and so, sup(D ∩ ω4) > sup(A ∩M ∩ ω4). Note that M,D ∈ A, and so, if

sup(D ∩ ω4) < sup(M ∩ ω4), then min((M ∩ ω4) \ sup(D ∩ ω4)) ∈ A ∩M ∩ ω4.

Hence, sup(D ∩ ω4) > sup(M ∩ ω4), and so, D ⊇M .

Suppose that z ∈ A∩ cl(M ∪ |D|). Then there are a term t, a ∈M ∩A and α ∈ A∩ |D|
such that z = t(a, α). But D ⊇ M ⊇ M ∩ A and the reflection does not change M ∩ A, so

a ∈M ∩ A implies a ∈ D′. Then z = t(a, α) ∈ D′, and we are done.

Case 3. There is a new model of cardinality ℵ2 or ℵ3 below sup(A ∩M ∩ ω4).

Let D′ be such a model and D its pre-image under the reflection. Then sup(D ∩ ω4) <

sup(A ∩M ∩ ω4), since elements of A ∩M do not move under the reflection. Also, D 6∈M ,
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so the is E ∈ M which is the cover of D for M . Then E ∈ A ∩M . In particular, E does

not move under the reflection.

Note that D′ ⊂ D. Thus, D′, D ⊆ E, M ∩ E = M ∩D and D′ ∈M ∩ E.

Let us argue that A∩D′ = A∩cl((M ∩E)∪|D|). Clearly, A∩D′ ⊆ A∩cl((M ∩E)∪|D|).
We need to show that A ∩D′ ⊇ A ∩ cl((M ∩ E) ∪ |D|).

Suppose that z ∈ A ∩ cl((M ∩ E) ∪ |D|). Then there are a term t, a ∈ M ∩ E ∩ A and

α ∈ A ∩ |D| such that z = t(a, α). But D ⊇ M ∩ E ⊇ M ∩ E ∩ A and the reflection does

not change M ∩ E ∩ A, so a ∈ M ∩ E ∩ A implies a ∈ D′. Then z = t(a, α) ∈ D′, and we

are done.

Case 4. There is a new model of cardinality ℵ1 below sup(A ∩M ∩ ω4).

Let D′ be such a model and D its pre-image under the reflection. Then sup(D ∩ ω4) <

sup(A ∩M ∩ ω4), since elements of A ∩M do not move under the reflection. Also, D 6∈M ,

so there is E ∈ M of cardinality ℵ2 (or ℵ3) which is a part of a ∆−system that produces

such D. Then E ∈ A ∩M . In particular, E does not move under the reflection.

Let us argue that A ∩D′ = A ∩M ∩ E.

Assume for simplicity that M,D are from a ∆− as witnessed by models E and E0, i.e.

E0 ∈ D and M ∩ E = D ∩ E0.

We have E0 ⊂ E, since D is below M . So, D ∈ E. Then D′ ∈ E and D′ ⊂ E, as well, since

E does not move under the reflection to M .

Hence, A ∩D′ ⊆ A ∩M ∩ E.

Let us show the opposite direction. So let z ∈ A∩M ∩E. Then z ∈ A∩D∩E0 ⊆ A∩D∩E.

So, z ∈ A ∩M ∩D. But elements of A ∩M do not move under the reflection to M . So, z

does not move. However D is moved to D′. Hence, z ∈ D′, and we are done.

Turn now to a general situation. Instead of A let us deal with an arbitrary countable

model H (in q) which is above M .

We proceed by considering the cases above with A replaced by H.

Case 1′. There is a new model of cardinality ℵ1 above sup(A ∩M) which is a reflection

of a model with M inside.

Let B′ be such a model. Then it is a reflection into M of a model B ∈ A with M ∈ B.

Also, M ′ ⊆ B′ ⊆M . We will have H ∩B′ = H ∩M, since if z ∈ H ∩M , then z ∈ H ′∩M ′ =

H ∩M and M ′ ⊆ B′.

If M ∈ H, then we are finished.

Suppose that M 6∈ H. Then there are M∗, D∗ ∈ H which are in q, |M∗| = ℵ1, |D∗| = ℵ2 and

|F ∗| = ℵ3 such that H∩M = H∩M∗ or H∩M = H∩M∗∩D∗ or H∩M = H∩M∗∩D∗∩F ∗.
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So, H ∩B′ = H ∩M = H ∩M∗ or H ∩B′ = H ∩M = H ∩M∗ ∩D∗ or H ∩B′ = H ∩M =

H ∩M∗ ∩D∗ ∩ F ∗.
Case 2′. There is a new model of cardinality ℵ2 or ℵ3 above sup(A ∩M ∩ ω4).

Let D′ be such a model. Then A∩D′ = A∩ cl(M ∪ |D′|), as was shown in Case 2 above.

We have

H ∩D′ = H ∩ A ∩D′ = H ∩ A ∩ cl(M ∪ |D′|) = H ∩ cl(M ∪ |D′|).

If M ∈ H, then we are done.

Suppose that M 6∈ H.

Assume first that there is M∗ ∈ H which is the cover of M , i.e., H ∩M∗ = H ∩M . Let us

argue that then

H ∩D′ = H ∩ cl(M∗ ∪ |D′|).

Clearly,

H ∩D′ ⊆ H ∩ cl(M∗ ∪ |D′|),

since H ∩D′ = H ∩ cl(M ∪ |D′|) and M ⊆M∗.

Let show the opposite inclusion. So, let z ∈ H ∩ cl(M∗ ∪ |D′|). Then there are a term

t, α < |D′| and a ∈ M∗ such that z = t(α, a). We have z,M∗ ∈ H, hence there are

α ∈ H, a ∈ H ∩M∗ such that z = t(α, a).

Recall that H ∩M∗ = H ∩M . Hence, a ∈ H ∩M . So, z = t(α, a) ∈ H ∩ cl(M ∪ |D′|), and

we are done.

The remaining possibility is that there are M∗ ∈ H of cardinality ℵ1 or ℵ2 and F ∗ ∈ H
of cardinality ℵ2 or ℵ3 such that M∗ ∩ F ∗ is the cover of M .

We claim that then

H ∩D′ = H ∩ cl((M∗ ∩ F ∗) ∪ ℵ2).

The argument is as above, only replace M∗ with M∗ ∩ F ∗.
Case 2′′. |M | = ℵ2 and there is a new model of cardinality ℵ3 above sup(A ∩M ∩ ω4).

Let D′ be such a model. Then A ∩D′ = A ∩ cl(M ∪ ℵ3), as was shown in Case 2 above.

We have

H ∩D′ = H ∩ A ∩D′ = H ∩ A ∩ cl(M ∪ ℵ3) = H ∩ cl(M ∪ ℵ3).

If M ∈ H, then we are done.

Suppose that M 6∈ H.

Consider a new possibility here that there is M∗ ∈ H which is the cover of M , i.e., H∩M∗ =

H ∩M , is of a form cl(N ∪ ℵ2), for some N ∈ H of cardinality ℵ1 with M ∈ N .
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We have H ∩D′ = H ∩ cl(M∗ ∪ ℵ3).
Let us argue that

H ∩D′ = H ∩ cl(N ∪ ℵ3).

Clearly, cl(M∗ ∪ ℵ3) ⊆ cl(N ∪ ℵ3), and so, H ∩D′ ⊆ H ∩ cl(N ∪ ℵ3).
Let us show the opposite inclusion.

Thus let z ∈ H ∩ cl(N ∪ ℵ3). Then z = h(a, α), for some a ∈ H ∩ N and α ∈ H. We have

H ∩N ⊆ H ∩ cl(N ∪ ℵ2) = H ∩M . Hence a ∈ H ∩M . So, z ∈ H ∩ cl(M ∪ ℵ3), and we are

done.

Case 3′. There is a new model of cardinality ℵ2 or ℵ3 below sup(A ∩M ∩ ω4).

Let D′ be such a model and D its pre-image under the reflection. Then D ∩ ω4 <

sup(A ∩M ∩ ω4), since elements of A ∩M do not move under the reflection. Also, D 6∈M ,

so the is E ∈M which is the cover of D. Then E ∈ A∩M . In particular, E does not move

under the reflection.

Note that D′ ⊂ D. Thus, D′, D ⊆ E, M ∩ E = M ∩D and D′ ∈M ∩ E.

It was proved in Case 3 above that

A ∩D′ = A ∩ cl((M ∩ E) ∪ |D′|).

This implies that

H ∩D′ = H ∩ A ∩D′ = H ∩ A ∩ cl((M ∩ E) ∪ |D′|) = H ∩ cl((M ∩ E) ∪ |D′|).

Let now M∗ ∈ H be the cover of M and E∗ ∈ H be the cover of E.

We claim that

H ∩D′ = H ∩ cl((M∗ ∩ E∗) ∪ |D′|).

Clearly, H ∩D′ = H ∩ cl((M ∩ E) ∪ |D′|) ⊆ H ∩ cl((M∗ ∩ E∗) ∪ |D′|).
Let us show the opposite direction. So, let z ∈ H ∩ cl((M∗ ∩ E∗) ∪ |D′|). Then there are

a term t, α < |D′| and a ∈ M∗ ∩ E∗ such that z = t(α, a). We have z,M∗, E∗ ∈ H, hence

there are α ∈ H, a ∈ H ∩M∗ ∩ E∗ such that z = t(α, a).

Recall that H ∩ M∗ = H ∩ M and H ∩ E = H ∩ E∗. Hence, a ∈ H ∩ M ∩ E. So,

z = t(α, a) ∈ H ∩ cl((M ∩ E) ∪ |D′|), and we are done.

Case 4′. There is a new model of cardinality ℵ1 below sup(A ∩M ∩ ω4).

Let D′ be such a model and D its pre-image under the reflection. Then sup(D ∩ ω4) <

sup(A ∩M ∩ ω4), since elements of A ∩M do not move under the reflection. Also, D 6∈M ,

so the is E ∈ M of cardinality ℵ2 which is a part of a ∆−system that produces such D.
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Then E ∈ A ∩M . In particular, E does not move under the reflection.

We already proved that A ∩D′ = A ∩M ∩ E.

Then

H ∩D′ = A ∩H ∩D′ = H ∩ A ∩D′ = H ∩ A ∩M ∩ E = (H ∩M) ∩ (H ∩ E).

All the models H,M,E in q. Hence, by Definition 1.1 and the intersection properties,

H ∩M = H ∩N and H ∩E = H ∩L, for some N,L ∈ H. Here we allow N to be of the form

K ∩ cl((S ∩G) ∪ ω2) and L of the form cl((X ∩ Y ) ∪ ω2) with all components K,S,G,X, Y

in H and in q.

We can conclude, applying the claim, that H ∩M = K ∩ cl((S ∩ G) ∪ ω2) or H ∩M =

K ∩ cl((X ∩ Y ) ∪ ω2).

�

Lemma 3.3 The forcing P is ω−proper, i.e., proper.

Proof.

Let p ∈ P . Pick M to be an elementary submodel of H(χ) for some χ large enough such

that

1. |M| = ℵ0,

2. P , p ∈M,

Set M = M ∩H(ω4).

We claim that p_M is (P ,M)−generic. So, let r ≥ p_M and D̄ ∈M be a dense open

subset of P .

By extending r, if necessary, we can assume that r ∈ D̄.

Let r �M be the set of all models of r which belong to M .

Extend then inside M , r �M to a condition s ∈ D̄.

We claim that r and s are compatible.

Moreover r ∪ s is almost a condition. In order to turn it into a condition, new (i.e., those

not in r) models should be mapped through ∆−systems, when this applies.

The issue is with new models of sizes ℵ1,ℵ2 and ℵ3.
Deal first with those of size ℵ3.
So, let D be a model in r which is not in M of cardinality ℵ3 and there is a new model

E in M of cardinality ℵ3.
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Then either the ordinal E ∩ ω4 is above or below D ∩ ω4, which implies D ∈ E or E ∈ D,

and we are done.

Let us turn to models of cardinalities ℵ1,ℵ2.
Consider first the following situation:

D be a model in r which is not in M of cardinality ℵ3 and B is a new model of cardinality

ℵ2 in M .

Assume that we have F ∈ M and in s of cardinality ℵ3 such that M ∩ F = M ∩D, i.e. a

covering model F of D for M is in Covmod(r)0. Also let F ∈ B.

Then F =
⋃
i<ω3

Fi where 〈Fi | i < ω3〉 is increasing continuous sequence of models of

cardinality ℵ2 with limit F , defined from F .

Set sup(M ∩ω3) = η. Then M ∩F = M ∩ cl(Fη ∪ω3). Then D cannot be below cl(Fη ∪ω3),

since M ∩ F = M ∩D. So, D ∩ ω4 ≥ η.

We have, iB = sup(B ∩ ω4) ∈M , and hence, iB < η. Clearly, B ∩ F = FiB . Hence,

B ∩D ⊆ B ∩ F = FiB ⊆ B ∩ cl(FiB ∪ ω3) ⊆ B ∩D.

So, B ∩D = B ∩ F .

Suppose now that a covering model F of D for M is such that cof(F ∩ ω3) = ω2. Let

E ∈M, |E| = ℵ2 be its leading model on the wide piste.

If B is below E, then 2.1(10) applies.

Assume that B is above E, and so, E ⊆ B.

Then by the strong covering property 18 of 1.1, there is D̃ in E and in r which is a cover

of D for E. Note that D̃ not in M . Let 〈D̃i | i < ω3〉 be an increasing continuous sequence

of models of cardinality ℵ2 with limit D̃, defined from D̃. We have, by the strong covering

property 18 of 1.1, D ⊇ D̃sup(M∩ω3).

Now, B ∈M , hence B ∩ ω3 < sup(M ∩ ω3). Then,

B ∩ D̃ = D̃B∩ω3 ⊆ D̃sup(M∩ω3).

Hence,

B ∩D ⊆ B ∩ D̃ = D̃B∩ω3 ⊆ D̃sup(M∩ω3) ⊆ D.

So, B ∩D = B ∩ D̃.

Consider now a new case |B| = ℵ1 and cof(F ∩ ω4) = ω1. Let S ∈ M ∩ Cω1(r) be a

leading model of F . Assume that B ⊇ S, otherwise we apply 2.1(10).

By the strong covering property 19 of 1.1, either D ∈ S, and then we are done, or there is

D̃ in S and in r which is a cover of D for S. Note that D̃ not in M .
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If cof(D̃ ∩ ω4) = ω3, then Let 〈D̃i | i < ω3〉 be an increasing continuous sequence of models

of cardinality ℵ2 with limit D̃, defined from D̃. Then, by 19 of 1.1, D ⊇ D̃sup(M∩ω3) ⊇
D̃sup(B∩ω3), since B ∈M .

Suppose that cof(D̃ ∩ ω4) = ω2, then let T ∈ S ∩ Cω2(r) be its leading model. By 19(ii) of

1.1, D ⊇ Tsup(M∩ω2), where 〈Ti | i < ω3〉 is an increasing continuous sequence of models of

cardinality ℵ1 with limit T , defined from T . We have B ∈M , so sup(M ∩ω2) > B ∩ω2, and

then B ∩ T ⊆ TB∩ω2 ⊆ Tsup(M∩ω2) ⊆ D. So, if D ∈ T , then we are done.

Suppose that D 6∈ T . Apply 19(ii)(B) of 1.1. There is a covering model T̃ ∈ T ∩ Cω3 of D

for T such that D ⊇ T̃sup(M∩ω3), where 〈T̃i | i < ω3〉 be an increasing continuous sequence of

models of cardinality ℵ2 with limit T̃ , defined from T̃ . If T̃ ∈ B, then it will be a covering

model of D for B, since B ∩ T̃ = B ∩ T̃sup(B∩ω3) = B ∩ T̃sup(M∩ω3) = B ∩D.

Suppose that T̃ 6∈ B. We have T̃ ⊇ Tsup(M∩ω2), since D ⊇ Tsup(M∩ω2) and T̃ is a cover of D

for T . But then B ∩ T̃ = B ∩ cl(TB∩ω2 ∪ ω3), since clearly, T̃ ⊆ cl(T ∪ ω3). So,

B ∩D = B ∩T ∩D = B ∩T ∩ T̃ = B ∩ cl(T ∪ω3)∩ T̃ = B ∩ cl(TB∩ω2 ∪ω3) = B ∩ cl(T ∪ω3).

Hence, cl(T ∪ ω3) is a covering model of D for B in the present case, and we are done.

�
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