
Intermediate Models of Magidor-Radin Forcing-Part I

Tom Benhamou and Moti Gitik∗

October 12, 2020

Abstract

We continue the work done in [3],[1]. We prove that for every set A in a Magidor-

Radin generic extension using a coherent sequence such that o
~U (κ) < κ, there is a

subset C ′ of the Magidor club such that V [A] = V [C ′]. Also we classify all intermediate
ZFC transitive models V ⊆M ⊆ V [G].

1 Introduction

In this paper we consider the version of Magidor-Radin forcing for o
~U(κ) ≤ κ, but prove

results for o
~U(κ) < κ. Section (2), will also be relevant to the forcing in Part II.

In [1], we assumed that o
~U(κ) < δ0 := min(α | 0 < o

~U(α)). When we let o
~U(κ) ≥ δ0,

we might loss completness for some of the pairs in a condition p. For example, if p =
〈〈δ0, A0〉, 〈κ,A1〉〉, we wont be able to take in account all the measures on κ, since there are
δ0 many of them and only δ0-completness. The proof is by induction on κ. We will be to
split M[~U ] to the part below o

~U(κ) and above it, then some but not all of the arguments of
[1] generalizes.

The main result we obtain in this paper is:

Theorem 1.1 Let ~U be a coherent sequence such that o
~U(κ) < κ. Then for every V -generic

filter G ⊆M[~U ], and every A ∈ V [G], there is C ′ ⊆ CG such that V [A] = V [C ′].

∗The work of the second author was partially supported by ISF grant No.1216/18.
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In the theorem, CG denotes the generic Magidor-Radin club derived from G.

Note that the classification we had in [1] for models of the form V [C ′], do not extend,

even if o
~U(κ) = δ0.

Example 1.2 Consider CG such that CG(ω) = δ0 and o
~U(κ) = δ0. Then in V [G] we have

the following sequence C ′ = 〈CG(CG(n)) | n < ω〉 of points of the generic CG which is
determine by the first Prikry sequence at δ0.

Then I(C ′, CG) = 〈CG(n) | n < ω〉 /∈ V , where I(X, Y ) is the indices of X ⊆ Y in the
increasing enumeration of Y .

The forcing MI [~U ] which was defined in [1], is no longer defined in V since I /∈ V .

In this case, we will add points to C ′, which are simply 〈CG(n) | n < ω〉, then the
forcing will be a two step iteration. The first will be to add the Prikry sequence 〈CG(n) |
n < ω〉, then the second will be a Diagonal Prikry forcing adding point from the measures

〈U(κ,CG(n)) | n < ω〉, which is of the form MI [~U ].

Generally, we will define forcing Mf [~U ], which are not subforcing of M[~U ], but are a natural

diagonal generalization of M[~U ] and a bit closer to Magidor’s original formulation in [5].

The classification of models is given by the following theorem:

Theorem 1.3 Assume that for every α < κ, o
~U(α) < α. Then for every V -generic filter

G ⊆ M[~U ] and every transitive ZFC intermediate model V ⊆ M ⊆ V [G], there is a closed
subset Cfin ⊆ CG such that:

1. M = V [Cfin].

2. There is a finite iteration Mf1 [~U ] ∗M
∼
f2 [~U ]... ∗M

∼
fn [~U ], and a V -generic H∗ filter for

Mf1 [~U ] ∗M
∼
f2 [~U ]... ∗M

∼
fn [~U ] such that V [H∗] = V [Cfin] = M .

2 Basic Definitions and Preliminaries

We will follow the description of Magidor forcing as presented in [2].

Let ~U = 〈U(α, β) | α ≤ κ , β < o
~U(α)〉 be a coherent sequence. For every α ≤ κ, denote

∩~U(α) =
⋂

i<o~U (α)

U(α, i)
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Definition 2.1 M[~U ] consist of elements p of the form p = 〈t1, ..., tn, 〈κ,B〉〉. For every

1 ≤ i ≤ n, ti is either an ordinal κi if o
~U(κi) = 0 or a pair 〈κi, Bi〉 if o

~U(κi) > 0.

1. B ∈ ∩~U(κ), min(B) > κn.

2. For every 1 ≤ i ≤ n.

(a) 〈κ1, ..., κn〉 ∈ [κ]<ω (increasing finite sequence below κ).

(b) Bi ∈ ∩~U(κi).

(c) min(Bi) > κi−1 (i > 1).

Definition 2.2 For p = 〈t1, t2, ..., tn, 〈κ,B〉〉, q = 〈s1, ..., sm, 〈κ,C〉〉 ∈ M[~U ] , define p ≤ q
(q extends p) iff:

1. n ≤ m.

2. B ⊇ C.

3. ∃1 ≤ i1 < ... < in ≤ m such that for every 1 ≤ j ≤ m:

(a) If ∃1 ≤ r ≤ n such that ir = j then κ(tr) = κ(sir) and C(sir) ⊆ B(tr).

(b) Otherwise ∃ 1 ≤ r ≤ n+ 1 such that ir−1 < j < ir then

i. κ(sj) ∈ B(tr).

ii. B(sj) ⊆ B(tr) ∩ κ(sj).

iii. o
~U(sj) < o

~U(tr).

We also use ”p directly extends q”, p ≤∗ q if:

1. p ≤ q

2. n = m

Let us add some notation, for a pair t = 〈α,X〉 we denote by κ(t) = α, B(t) = X. If t = α
is an ordinal then κ(t) = α and B(t) = ∅.

For a condition p = 〈t1, ..., tn, 〈κ,B〉〉 ∈ M[~U ] we denote n = l(p), pi = ti, Bi(p) = B(ti)
and κi(p) = κ(ti) for any 1 ≤ i ≤ l(p), tl(p)+1 = 〈κ,B〉, t0 = 0. Also denote

κ(p) = {κi(p) | i ≤ l(p)} and B(p) =
⋃

i≤l(p)+1

Bi(p)
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Remark 2.3 Condition 3.b.iii is not essential, since the set{
p ∈M[~U ] | ∀i ≤ l(p) + 1.∀α ∈ Bi(p).o

~U(α) < o
~U(κi(p))

}
is a dense subset of M[~U ] and the order between any two elements of this dense subsets
automatically satisfy 3.b.iii.

Definition 2.4 Let p ∈M[~U ]. For every i ≤ l(p) + 1, and α ∈ Bi(p) with o
~U(α) > 0, define

p_〈α〉 = 〈p1, ..., pi−1, 〈α,Bi(p) ∩ α〉, 〈κi(p), Bi(p) \ (α + 1)〉, pi+1, ..., pl(p)+1〉

If o
~U(α) = 0, define

p_〈α〉 = 〈p1, ..., pi−1, α, 〈κi(p), Bi(p) \ (α + 1)〉, ..., pl(p)+1〉

For 〈α1, ..., αn〉 ∈ [κ]<ω define recursively,

p_〈α1, ..., αn〉 = (p_〈α1, ..., αn−1〉)_〈αn〉

Proposition 2.5 Let p ∈M[~U ]. If p_~α ∈M[~U ], then it is the minimal extension of p with
stem

κ(p) ∪ {~α1, ..., ~α|~α|}

Moreover, p_~α ∈M[~U ] iff for every i ≤ |~α| there is j ≤ l(p) such that:

1. ~αi ∈ (κj(p), κj+1(p)).

2. o
~U(~αi) < o

~U(κj+1).

3. Bj+1(p) ∩ ~αi ∈ ∩~U(~αi).

�

Note that if we add a pair of the form 〈α,B ∩ α〉 then in B ∩ α there might be many

ordinals which are irrelevant to the forcing. Namely, ordinals β with o
~U(β) ≥ o

~U(α), such
ordinals cannot be added to the sequence.

Definition 2.6 Let p ∈M[~U ], define for every i ≤ l(p)

p � κi(p) = 〈p1, ..., pi〉 and p � (κi(p), κ) = 〈pi+1, ..., pl(p)+1〉

Also, for λ with o
~U(λ) > 0 define

M[~U ] � λ = {p � λ | p ∈M[~U ] and λ apears in p}

M[~U ] � (λ, κ) = {p � (λ, κ) | p ∈M[~U ] and λ apears in p}
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Note that M[~U ] � λ is just Magidor forcing on λ and M[~U ] � (λ, κ) is a subset of M[~U ]. The
following decomposition is straight forward.

Proposition 2.7 Let p ∈M[~U ] and 〈λ,B〉 a pair in p. Then

M[~U ]/p '
(
M[~U ] � λ

)
/
(
p � λ

)
×
(
M[~U ] � (λ, κ)

)
/
(
p � (λ, κ)

)
Proposition 2.8 Let p ∈ M[~U ] and 〈λ,B〉 a pair in p. Then the order ≤∗ in the forcing(
M[~U ] � (λ, κ)

)
/
(
p � (λ, κ)

)
is δ-directed where δ = min(ν > λ | o~U(ν) > 0). Meaning that

for every X ⊆ M[~U ] � (λ, κ) such that |X| < δ and for every q ∈ X, p ≤∗ q, there is an
≤∗-upper bound for X.

Lemma 2.9 M[~U ] satisfy k+-c.c.

The following is known as the Prikry condition:

Lemma 2.10 M[~U ] satisfy the Prikry condition i.e. for any statement in the forcing lan-

guage σ and any p ∈M[~U ] there is p ≤∗ p∗ such that p∗||σ i.e. either p∗ 
 σ or p 
 ¬σ.

The next lemma can be found in [5]:

Lemma 2.11 Let G ⊆ M[~U ] be generic and suppose that A ∈ V [G] is such that A ⊆ Vα.
Let p ∈ G and 〈λ,B〉 a pair in p such that α < λ, then A ∈ V [G � λ].

Proof. Consider the decomposition 2.7 p = 〈q, r〉, where q ∈M[~U ] � λ and r ∈M[~U ] � (λ, κ)

Work in V [G � λ], Let A∼ be a M[~U ] � (λ, κ)-name for A. For every x ∈ Vα use the Prikry
condition 2.10, to find r ≤∗ rx such that rx decide the statement r ∈ A∼. By definition
of λ and proposition 2.14, the forcing M[~U ] � (λ, κ) is |Vα|+-directed with the ≤∗ order.
Hence there is r ≤∗ r∗ such that px ≤∗ p∗ for every x ∈ Vα. By density, we can find such
r∗ ∈ G � (λ, κ). It follows that A = {x ∈ Vα | r∗ 
 x ∈ A∼} is definable in V [G � λ].�

Corollary 2.12 M[~U ] preserves all cardinals.

Definition 2.13 Let G ⊆M[~U ] be generic, define the Magidor club

CG = {ν | ∃ A∃p ∈ G s.t. 〈ν,A〉 ∈ p}

We will abuse notation by sometimes considering CG as a the canonical enumeration of the
set CG. The set CG is closed and unbounded in κ, therefore, the order type of CG determines
the cofinality of κ in V [G]. The next propositions can be found in [2].
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Proposition 2.14 Let G ⊆ M[~U ] be generic. Then G can be reconstructed from CG as
follows

G = {p ∈M[~U ] | (κ(p) ⊆ CG) ∧ (CG \ κ(p) ⊆ B(p))}
In particular V [G] = V [CG].

Proposition 2.15 Let G ⊆M[~U ] be generic.

1. CG is a club at κ.

2. For every δ ∈ CG, o
~U(δ) > 0 iff δ ∈ Lim(CG).

3. For every δ ∈ Lim(CG), and every A ∈ ∩~U(δ), there is ξ < δ such that CG \ ξ ⊆ A.

4. If 〈δi | i < θ〉 is an increasing sequence of elements of CG, let δ∗ = supi<θδi, then

o
~U(δ∗) ≥ lim supi<θ o

~U(δi) + 1.1

5. Let δ ∈ Lim(CG) and let A be a positive set, A ∈ (∩~U(δ))+. i.e. κ \ A /∈ ∩~U(κ). 2

Then, sup(A ∩ CG) = δ.

6. If A ⊆ Vα, then A ∈ V [CG ∩ λ], where λ = max(Lim(CG) ∩ α + 1).

7. For every V -regular cardinal α, if cfV [G](α) < α then α ∈ Lim(CG).

Proof. (1), (2), (3) can be found in [2].

To see (4), use closure of CG, and find q ∈ G such that δ∗ appears in q. Since there are
only finitely many ordinals in q, there is some i < θ such that for every j > i, δj does not
appear in q. By 2.2, since every such δj appear in some qj ∈ G which is compatible with q,

o
~U(δj) < o

~U(δ∗). Hence

lim sup
j<θ

o
~U(δj) + 1 ≤ sup(lim sup

i<j<θ
o
~U(δj) + 1 ≤ o

~U(δ∗)

For (5), let ρ < δ. Each condition p, such that δ = κi(p) for some i ≤ l(p) + 1, must satisfy
that sup(A∩Bi(p)) = δ. Hence we can extend p using an element of A∩Bi(p) above ρ. By
density, sup(A ∩ CG) ≥ ρ. Since ρ is general, sup(A ∩ CG) = δ.

(6) is a direct corollary of 2.11. As for (7), assume that cfV [G](α) < α, and let X ⊆ α be
a club such that otp(X) = cfV [G](α). Then X ∈ V [G] \ V . Let λ = max(Lim(CG)∩ α+ 1),
then λ ≤ α. By (6), X ∈ V [CG ∩ λ]. Toward a contradiction, assume that λ < α, The the

forcing M[~U ] � λ is α-c.c., but cfV [CG∩λ](α) < α, contradiction. �

The Mathias-like criteria for Magidor forcing is due to Mitchell [6]:

1For a sequence of ordinals 〈ρj | j < γ〉, lim supj<γ ρj = min(supi<j<γρj | i < γ).
2Equivalently, if there is some i < o

~U (κ) such that A ∈ U(κ, i).
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Theorem 2.16 Let U be a coherent sequence and assume that c : α → κ is an increasing
function. Then c is M[~U ] generic iff:

1. c is continuous.

2. c � β is M[~U � β] generic for every β ∈ Lim(α).

3. X ∈ ∩~U(κ) iff ∃β < κ c \ β ⊆ X.

An equivalent formulation of the Mathias criteria is to require that for every β ∈ Lim(α),

and for every X ∈ ∩~U(c(β)), there is ξ < β such that c′′(ξ, β) ⊆ X.

For an additional proof of 2.16, We refer the reader to the last section, where we define
a forcing notion Mf [~U ], which generalizes M[~U ], and prove in 5.9 a Mathias-like criteria for
it.

Proposition 2.17 Let G ⊆ M[~U ] be V -generic filter and CG the corresponding Magidor
sequence. Let p ∈ G, then for every i ≤ l(p) + 1

1. If o
~U(κi(p)) ≤ κi(p),

otp([κi−1(p), κi(p)) ∩ CG) = ωo
~U (κi(p))

2. If o
~U(κi(p)) ≥ κi(p), then

otp([κi−1(p), κi(p)) ∩ CG) = κi(p)

Proof. we prove (1) by induction on κi(p). If κi(p) = 0, then CG∩[κi−1(p), κi(p)) = {κi−1(p)}.
Hence

otp(CG ∩ [κi−1(p), κi(p))) = 1 = ω0 = ωo
~U (κi(p))

Assume the lemma holds for any δ < κi(p). If o
~U(κi(p)) = α + 1 ≤ κi(p), then the set

X = {β < κi(p) | o~U(β) = α} ∈ U(κi(p), α), hence by proposition 2.15,

sup(X ∩ CG ∩ [κi−1(p), κi(p))) = κi(p)

We claim that otp(X ∩ CG ∩ [κi−1(p), κi(p)) = ω. Otherwise, let ρ < κi(p) be such that ρ is
a limit point of X ∩ CG ∩ [κi−1(p), κi(p)). Again by proposition 2.15,

o
~U(ρ) ≥ lim sup(o

~U(ξ) | ξ ∈ X ∩ CG ∩ [κi−1(p), κi(p))) = α + 1
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Contradicting 2.2. Let 〈δn | n < ω〉 be the increasing enumeration of X∩CG∩[κi−1(p), κi(p)).
By induction hypothesis, for every n < ω, otp(CG ∩ [δn, δn+1)) = ωα. Hence,

otp(CG ∩ [κi−1(p), κi(p)) = ωα+1

For limit o
~U(κi(p)), use proposition 2.15.5, to see that the sequence 〈δα | α < o

~U(κi(p))〉
where

δα = min(ρ ∈ CG ∩ [κi−1(p), κi(p)) | o
~U(ρ) = α)

is well defined. x = sup(δα | α < θ) ≤ κi(p) is an element of CG, and by proposition 2.15.4,

o
~U(x) ≥ o

~U(κi(p)), hence x = κi(p). For every α < o
~U(κi(p)), otp(CG ∩ [κi(p), δα)) = ωα,

since pa〈δα〉 ∈ G and by induction hypothesis. It follows that

otp(CG∩[κi−1(p), κi(p)) = supα<o~U (κi(p))(otp(CG∩[κi−1(p), δα)) = supα<o~U (κi(p))ω
α = ωo

~U (κi(p))

For (2), use (1), and the limit stage to conclude that if o
~U(κi(p)) = κi(p), then

otp(CG ∩ [κi−1(p), κi(p)) = κi(p)

If o
~U(κi(p)) > κi(p), then {α < κi(p)) | o~U(α) = α} ∈ U(κi(p), κi(p)), hence by proposition

2.15, there are unboundedly many α ∈ CG ∩ [κi−1(p), κi(p)) =: Y such that o
~U(α) = α.

Hence
κi(p) = sup(Y ) = sup(otp(CG ∩ [κi−1(p), α) | α ∈ Y ) ≤ κi(p)

So equality holds.�

Proposition 2.17 suggest a connection between the index in CG of ordinals appearing in
p and Cantor normal form.

Definition 2.18 Let p ∈ G. For each i ≤ l(p) define

γi(p) =
i∑

j=1

ωo
~U (κj(p))

Corollary 2.19 Let G be M[~U ]-generic and CG the corresponding Magidor sequence. Let
p ∈ G, then for every 1 ≤ i ≤ l(p)

p 
 ∼CG(γi(p)) = κ(ti)

Proof. This is directly from 2.17.�

For more details and basic properties of Magidor forcing see [5],[2] or [1].

We are going to handle subsequences of the generic club, the following simple definition
will turn out being usefull.
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Definition 2.20 Let X,X ′ be sets of ordinals such that X ′ ⊆ X ⊆ On. Let α = otp(X,∈)
be the order type of X and φ : α→ X be the order isomorphism witnessing it. The indices
of X ′ in X are

I(X ′, X) = φ−1
′′
X ′ = {β < α | φ(β) ∈ X ′}

In the last part of the proof we will need the definition of quotient forcing.

Definition 2.21 Let ∼C
′ be a M[~U ]-name such that ∼C

′
G = C ′. Define P

∼C
′ , the complete

subalgebra of RO(M[~U ]) generated by the conditions X = {||α ∈ ∼C
′|| | α < κ}.

By [4, 15.42], V [C ′] = V [H] for some V -generic filter H of P
∼C
′ . In fact

C ′ = {α < κ | ||α ∈ ∼C
′|| ∈ X ∩H}

Definition 2.22 Define the function π : M[~U ]→ P
∼C
′ by

π(p) = inf(b ∈ P
∼C
′ | b ≥ p)

It not hard to check that π is a projection i.e.

1. π is order preserving.

2. ∀p ∈M[~U ]∀π(p) ≤ q∃p′ ≥ p.π(p′) ≥ q.

3. Im(π) is dense in P
∼C
′ .

Definition 2.23 Let π : P→ Q be any projection, let H ⊆ Q be V -generic, define

P/H = π−1
′′
H

We abuse notation by defining M[~U ]/C ′ = M[~U ]/H, where H is some generic for P
∼C
′ such

that V [H] = V [C ′]. It is known that if G is V [C ′]-generic for M[~U ]/C ′ then G is V generic

for M[~U ] and ¯π′′G = H, hence V [G] = V [C ′][G].

3 Magidor forcing with o
~U(κ) ≤ κ

Proposition 3.1 Assume that o
~U(κ) ≤ κ. Let G ⊆ M[~U ] be a V -generic filter, and let

p ∈ G. Then otp(CG ∩ (κl(p)(p), κ)) = ωo
~U (κ). Hence, cfV [G](κ) = cfV [G](ωo

~U (κ)).
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Corollary 3.2 1. If o
~U(κ) < κ, then κ is singular in V [G].

2. If o
~U(κ) = κ, then cfV [G](κ) = ω.

Proof. (1) is direct from proposition 3.1. For (2), The set E = {α < κ | o~U(α) < α} ∈ ∩~U(κ).
Hence, by proposition 2.15 find ρ < κ such that CG \ ρ ⊆ E. In V [G] consider the sequence:
α0 = min(CG \ ρ), then αn+1 = CG(αn). This is a well defined sequence of ordinals below

κ since otp(CG) = κ. Also, since {α < κ | ωα = α} ∈ ∩~U(κ), there is n < ω, such that for

every m ≥ n, o
~U(αm+1) = αm.

To see that α∗ := supn<ωαn = κ, assume otherwise, then by closure of CG, α∗ ∈ CG.

Also α∗ > ρ, hence o
~U(α∗) < α∗. By proposition 2.15.4,

o
~U(α∗) ≥ lim sup

n<ω
o
~U(αn) + 1 = supn<ωαn = α∗

contradiction.�

If o
~U(κ) ≤ κ. We can decompose every set A ∈ ∩~U(κ) in a very canonical way:

Proposition 3.3 Assume that o
~U(κ) ≤ κ. Let A ∈ ∩~U(κ).

1. For every i < κ define Ai = {ν ∈ A | o~U(ν) = i}. Then A =
⊎
i<κ

Ai and Ai ∈ U(κ, i).

2. There exists A∗ ⊆ A such that:

(a) A∗ ∈ ∩~U(κ)

(b) For every 0 < j < o
~U(κ) and α ∈ A∗j , A∗ ∩ α ∈ ∩~U(α).

Proof. 1. Note that Xi := {ν < κ | o~U(ν) = i} ∈ U(κ, i) and Ai = Xi ∩ A ∈ U(κ, i).

Moreover, every α < κ must satisfy o
~U(α) < κ, since there are at most 22α < κ measures on

α.
2. For any i < o

~U(κ),

Ult(V, U(κ, j)) |= A = jU(κ,j)(A) ∩ κ ∈
⋂
i<j

U(κ, i)

Coherency of the sequence imply that A′ := {α < κ | A ∩ α ∈ ∩~U(α)} ∈ U(κ, j), this is for

every j < o
~U(κ).

Define inductively A(0) = A, A(n+1) = A
′(n). By definition, ∀α ∈ A(n+1)

j , A(n) ∩ α ∈ ∩~U(α).

Define A∗ =
⋂
n<ω

A(n) ∈ ∩~U(κ), this set has the required property. �
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3.1 Extention Type

Definition 3.4 Let p ∈M[~U ]. Define

1. For every i ≤ l(p) + 1, let Bi,j(p) = Bi(p) ∩Xj, where Xj := {α < κ | o~U(α) = j} are
the sets defined in 3.3.

2. Ex(p) =
∏l(p)+1

i=1 [o
~U(κi(p))]

[<ω] ( [λ][<ω] is the set of finite, not necessarily increasing
sequences in λ).

3. If X ∈ Ex(p), then X is of the form 〈X1, ..., Xn+1〉. Denote xi,j, the j-th element of
Xi, for 1 ≤ j ≤ |Xi| and mc(X) is the last element of X.

4. Let X ∈ Ex(p), then

~α = 〈 ~α1, ..., ~αl(p)+1〉 ∈
l(p)+1∏
i=1

|Xi|∏
j=1

Bi,xi,j(p) =: X(p)

call X an extension-type of p and ~α is of type X, note that ~α is an increasing sequence
of ordinals.

The idea of extension types is simply to classify extensions of p according to the measures
from which the ordinals added to the stem of p are chosen. Note that if o

~U(κ) = λ < κ then

there is a bound on the number of extension types, |Ex(p)| < min(ν > λ | o~U(ν) > 0).

By proposition 3.3 any p ∈ M[~U ] can be extended to p ≤∗ p∗ such that for every X ∈
Ex(p) and any ~α ∈ X(p), p_~α ∈M[~U ]. Let us move to this dense subset of M[~U ].

Proposition 3.5 Let p ∈ M[~U ] be any condition and p ≤ q ∈ M[~U ]. Then there exists
unique X ∈ Ex(p) and ~α ∈ X(p) such that p_~α ≤∗ q. Moreover, for every X ∈ Ex(p) the
set {p_~α | ~α ∈ X(p)} form a maximal antichain above p.

Proof. The first part is trivial. We will prove that {pa~α | ~α ∈ X(p)} form a antichain above
p, by induction on |X|. For |X| = 1, we merely have some X(p) = Bi,ξ(p) ∈ U(κi(p), ξ).
To see it is an antichain, let β1 < β2 are in X(p). Toward a contradiction, assume that
paβ1, p

aβ2 ≤ q, then β1 appear in a pair in q and is added between κi−1(p) and β2, so by

definition 2.2, it must be that ξ = o
~U(β1) < o

~U(β2) = ξ contradiction.

To see it is maximal, fix q ≥ p and let ~α be such that p_~α ≤∗ q. Consider the type of ~α,

Y ∈ Ex(p)
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, then ~α ∈ Y (p). In Yi let j be the minimal such that yi,j ≥ ξ. If yi,j = ξ then q ≥ p_〈αi,j〉 ∈
X(p) and we are done. Otherwise, yi,j > ξ, then one of the pairs in q is of the form 〈αi,j, B〉
where B ∈ ∩~U(αi,j) and B ⊆ Bi(p). Any α ∈ B ∩ Bi,ξ(p), will satisfy that p_〈α〉 ∈ X(p)
and p_〈α〉, q ≤ q_〈α〉.

Assume that the claim holds for n, and let X ∈ Ex(p) be such that |X| = n + 1. Let

~α, ~β ∈ X(p) be distinct, if for some xi,j 6= mc(X) we have αi,j 6= βi,j apply the induction to

X \mc(X) to see that p_~α\α∗, p_~β\β∗ are incompatible, hence p_~α, p_~β are incompatible.

If ~α \ α∗ = ~β \ β∗, then α∗ 6= β∗ and by the case n = 1 we are done. To see it is maximal,
let q ≥ p apply the induction to X \mc(X) to find ~α ∈ [X \mc(X)](p) such that p_~α is
compatible with q and let q′ be a common extension. Again by the case n = 1, there is
〈α〉 ∈ mc(X)(p_~α) such that p_~α_〈α〉 and q′ are compatible. �

Definition 3.6 Let U1, ..., Un be ultrafilters on a κ1 ≤ ... ≤ κn respectively, define recur-
sively the ultrafilter

∏n
i=1 Ui over

∏n
i=1 κi, as follows: for B ⊆

∏n
i=1 κi

B ∈
n∏
i=1

Ui ↔ {α1 < κ1 | Bα1 ∈
n∏
i=2

Ui} ∈ U1

where Bα = B ∩
(
{α} ×

∏n
i=2 κi

)
.

Proposition 3.7 If U1, ..., Un are normal θ-complete ultrafilter, then
∏n

i=1 Ui is generated
by sets of the form A1 × ...× An (increasing sequences of the product) such that Ai ∈ Ui.

Proof. Directly from the definition of normality.�

Every X ∈ Ex(p) defines an ultrafilter

~U(X, p) =
n+1∏
i=1

|Xi|∏
j=1

U(κi(p), xi,j)

Note that X(p) ∈ ~U(X, p) by the definition of the product. Fix an extension type X of p,
every extension of p of type X correspond to some element in the set X(p) which is just a
product of large sets.

Let us state here some combinatorical properties, the proof can be found in [1].

Lemma 3.8 Let κ1 ≤ κ2 ≤ ... ≤ κn be a non descending finite sequence of measurable

cardinals and let U1, ..., Un be normal measures3 over them respectively. Assume F :
n∏
i=1

Ai −→

3A measure over a measurable cardinal λ is a λ-complete non trivial ultrafilter over λ.
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ν where ν < κ1 and Ai ∈ Ui. Then there exists Hi ⊆ Ai, Hi ∈ Ui such that
n∏
i=1

Hi is

homogeneous for F i.e. |Im(F �
n∏
i=1

Hi)| = 1.

�

Let F :
∏n

i=1Ai → X be a function, and I ⊆ {1, ..., n}. Let

(
n∏
i=1

Ai)I = {~α � I | ~α ∈
n∏
i=1

Ai}

For ~α′ ∈ (
∏n

i=1Ai)I , define FI(~α
′) = F (~α) where ~α � I = ~α′. With no further assumption,

FI is not a well define function.

Lemma 3.9 Let κ1 ≤ κ2 ≤ ... ≤ κn be a non descending finite sequence of measurable

cardinals and let U1, ..., Un be normal measures over them respectively. Assume F :
n∏
i=1

Ai −→

B where B is any set, and Ai ∈ Ui. Then there exists Hi ⊆ Ai, Hi ∈ Ui and set I ⊆ {1, ..., n}
such that FI � (

n∏
i=1

Hi)I : (
n∏
i=1

Hi)I → B is well defined and injective.

Definition 3.10 Let F :
∏n

i=1Ai → X be a function. An important coordinate is an index

r ∈ {1, ..., n}, such that for every ~α, ~β ∈
∏n

i=1Ai, F (~α) = F (~β)→ ~α(r) = ~β(r).

Proposition 3.9 insures the existence of a set I of important coordinates, such that I is
ideal in the sense that removing any coordinate defect definition of FI as a function, and
any coordinate outside of I is redundant.

We will need here another property that does not appear in [1].

Lemma 3.11 Let κ1 ≤ κ2 ≤ ... ≤ κn and θ1 ≤ θ2... ≤ θm be a non descending finite
sequences of measurable cardinals with coresponding normal measures U1, ...., Un,W1, ...,Wm.
Let

F :
n∏
i=1

Ai → X, G :
m∏
j=1

Bj → X

be functions such that X is any set, Ai ∈ Ui and Bj ∈ Wj. Assume that I ⊆ {1, ..., n} and
J ⊆ {1, ...,m} are sets of important coordinates for F,G respectively obtained by lemma 3.9.
Then there exists A′i ∈ Ui and B′j ∈ Wj. such that one of the following holds

1. Im(F �
∏n

i=1A
′
i) ∩ Im(G �

∏m
j=1B

′
j) = ∅.

2. (
∏n

i=1A
′
j)I = (

∏m
j=1B

′
j)J and FI � (

∏n
i=1A

′
i)I = GJ � (

∏m
j=1B

′
j)J .
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Proof. Fix F,G. without loss of generality, assume that κ1 ≤ θ1. If κ1 < θ1 shrink the sets
so that min(B1) > κ1. By induction on 〈n,m〉 ∈ N2

+.

Case 1: Assume that n = m = 1, define

H1 : A1 ×B1 → {0, 1}, H(α, β) = 1⇔ F (α) = G(β)

By 3.8, shrink A1, B1 to A′1, B
′
1 so that H1 are constant with colors c1. If c1 = 1 by fixing

α we see that G is constant on B′1 with some value γ. It follows that J = ∅. Also F is
constant since for every α ∈ A′1 we can take β > α and F (α) = G(β) = γ. Hence I = ∅ and
F∅ � (A′1)∅ = G∅ � (B′1)∅ = {〈〉}. Assume that c1 = 0, then for every α ∈ A1, β ∈ B1 if α < β
then H1(α, β) = 0, this suffices for the case κ1 < θ1. If κ1 = θ1, define

H2 : B1 × A1 → {0, 1} H2(β, α) = 1⇔ F (α) = G(β)

Again shrink the sets so that H2 is constantly c2 ∈ {0, 1}. The case c2 = 1 is similar to
c1 = 1. Assume that c2 = 0, hence if β < α then H2(β, α) = 0, it follows that F (α) 6= G(β).
If U1 6= W1 then we are done since we can separate A′1, B

′
1 and conclude that

Im(F � A′1) ∩ Im(G � B′1) = ∅

If U1 = W1 then define

H3 : A′1 ∩B′1 → {0, 1}, H3(α) = 1⇔ F (α) = G(α)

Again by 3.8 we can assume that H3 is constant on A∗, if that constant is 1 then we have
F � A∗ = G � A∗ (in particular I = J = {1} and FI � (A∗)I = GJ � (A∗)J) otherwise,

Im(F � A∗) ∩ Im(G � A∗) = ∅

Case 2: Assume 〈n,m〉 >LEX 〈1, 1〉 If n = 1, define

H1 : A1 ×
m∏
j=1

Bj → {0, 1}, H1(α, ~β) = 1⇔ F (α) = G(~β)

Shrink the sets so that H1 is constantly c1. As before, if c1 = 1 then F,G are constant on
large sets, thus I = J = ∅ and we are done. Assume that c1 = 0. If n > 1, for α ∈ A1 define
the functions

Fα :
n∏
i=2

Ai \ (α + 1)→ X, Fα(~α) = F (α, ~α)

By the induction hypothesis applied to Fα, G and I \ {1}, J , we obtain

Aαi ∈ Ui for 2 ≤ i ≤ n, Bα
j ∈ Wj for 1 ≤ j ≤ m

such that one of the following holds:
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1. (
∏n

i=2A
α
i )I\{1} = (

∏m
j=1B

α
j )J , and (Fα)I\{1} � (

∏n
i=2A

α
i )I\{1} = GJ � (

∏m
j=1B

α
j )J .

2. Im(Fα �
∏n

i=2A
α
i ) ∩ Im(G �

∏m
j=1B

α
j ) = ∅.

Denote by iα ∈ {1, 2} the relevant case. There is A′1 ⊆ A1, A
′
1 ∈ U1, and i∗ ∈ {1, 2} such

that for every α ∈ A′1, iα = i∗. Let

A′i = ∆
α∈A1

Aαi , B
′
j = ∆

α∈A1

Bα
j (Since θ1 ≥ κ1 we can take the diagonal intersection)

If i∗ = 1, then (
∏n

i=2A
α
i )I\{1} = (

∏m
j=1B

α
j )J , denote by I \ {1} = {i1, ..., ik}, J = {j1, ..., jk}.

Then necessarily, Uir = Wjr for every 1 ≤ r ≤ k. Define

A∗ir = B∗jr := A′ir ∩B
′
jr

If i /∈ I or j /∈ J then keep A∗i = A′i and B∗j = B′j. Then (
∏n

i=1A
∗
i )I\{1} = (

∏m
j=1B

′
j)J . Let

α, α′ ∈ A′1, ~α ∈
∏n

i=2A
′
i with min(~α) > α, α′, then

Fα(~α) = (Fα)I\{1}(~α � I) = GJ(~α � I) = (Fα′)I\{1}(~α � I) = Fα′(~α)

From this it follows that 1 /∈ I and FI = FI\{1} = GJ . Assume i∗ = 2. If θ1 = κ1, we repeat
the same process, if m = 1 we define H2 as above, if c2 = 1 again we are done, so we assume
that c2 = 0. If m > 1 we use Gβ and fix F , denoting jβ the relevant case, shrink the sets
so that j∗ is constant. In case j∗ = 1 the proof is the same as i∗ = 1. So we assume that
i∗ = j∗ = 2, meaning that for every 〈α, ~α〉 ∈

∏n
i=1A

′
i and every 〈β, ~β〉 ∈

∏m
j=1B

′
j if α < β

then 〈β, ~β〉 ∈
∏m

j=1B
α
j and by i∗ = 2 (or c1 = 0 if n = 1)

F (α, ~α) = Fα(~α) 6= G(β, ~β)

Similarly, if β < α then 〈α, ~α〉 ∈
∏n

i=1A
β
i and by j∗ = 2 (or c2 = 0), F (α, ~α) 6= G(β, ~β).

Hence we are left with the case α = β.

Case 2a: Assume that U1 6= W1 Then we can just shrink the sets A′1, B
′
1 so that

A′1 ∩B′1 = ∅. Together with the construction of case 2, conclude that

Im(F �
n∏
i=1

A′i) ∩ Im(G �
m∏
j=1

B′j) = ∅

Case 2b: Assume that U1 = W1, then we shrink the sets so that A′1 = B′1. If n = 1
(the case m = 1 is similar) let

T1 : A′1 ×
m∏
j=2

B′j → {0, 1}, T1(α, ~β) = 1⇔ F (α) = G(α, ~β)
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We shrink A′1 and B′j so that T1 is constantly d1. If d1 = 0 then we have eliminated the

possibility of α = β and F (α) = G(β, ~β) and so we are done again we conclude that

Im(F �
n∏
i=1

A′i) ∩ Im(G �
m∏
j=1

B′j) = ∅

If d1 = 1 then F � A′1 = G{1} � (A′1 ×
∏m

j=2B
′
j){1}. In particular J ⊆ {1}, it follows that

FI � (A′1)I = GJ � (A′1 ×
∏m

j=2B
′
j)J . If n,m > 1, for every α ∈ A′1 we apply the induction

hypothesis to the functions Fα, Gα, this time denoting the cases by r∗. If r∗ = 2, then we
have eliminated the possibility of F (α, ~α) = G(α, ~β), together with i∗ = 2, j∗ = 2 we are
done. Finally, assume r∗ = 1, namely that for

I∗ := I \ {1} ⊆ {2, ..., n}, J∗ := J \ {1} ⊆ {2, ...,m}

We have

(
n∏
i=2

A′i)I∗ = (
m∏
j=2

B′j)J∗ and (Fα)I∗ � (
n∏
i=2

A′i)I∗ = (Gα)J∗ � (
m∏
j=2

B′j)J∗

Since A′1 = B′1 it follows that

(∗) (
n∏
i=1

A′i)I∗∪{1} = (
m∏
j=1

B′j)∈J∗∪{1} and (Fα)I∗∪{1} � (
n∏
i=2

A′i)I∗ = (Gα)J∗ � (
m∏
j=2

B′j)J∗∪{1}

Since if 〈α〉a~α ∈ (
∏n

i=1A
′
i)I ,

FI∗∪{1}(α, ~α) = (Fα)I∗(~α) = (Gα)J∗(~α) = GJ∗∪{1}(α, ~α)

We claim that 1 ∈ I if and only if 1 ∈ J . By symmetry, it suffices to prom one implication,
for example, if 1 ∈ I, then I = I∗ ∪ {1}, take ~α � I, ~α′ � I ∈ (

∏n
i=1A

′
i)I which differs only at

the first coordinate, therefore F (~α) 6= F (~α′). By (∗), there are ~β, ~β′ ∈
∏m

i=1B
′
i such that

~β � (J∗ ∪ {1}) = ~α � I and ~β′ � (J∗ ∪ {1}) = ~α′ � I

It follows that from (∗) that G(~β) = F (~α) 6= F (~α′) = G(~β′), therefore 1 ∈ J .

In any case, FI � (
∏n

i=1A
′
i)I = GJ � (

∏m
i=1B

′
i)J . �

4 The main result

Let us turn to prove the main result (theorem 1.1) for Magidor forcing with o
~U(κ) < κ. The

proof presented here is based on what was done in [1] and before that in [3], it is a proof by
induction of κ.
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4.1 Short Sequences

In this section we prove the theorem for sets A of small cardinality.

Proposition 4.1 Let p ∈ M[~U ] be any condition, X an extension type of p. For every

~α ∈ X(p) let p~α ≥∗ p_~α. Then there exists p ≤∗ p∗ such that for every ~β ∈ X(p∗), every

p∗_~β ≤ q is compatible with p~β .

Proof. By induction of |X|. X = 〈ξ〉, then ~U(X, p) = U(κi(p), ξ) and X(p) = Bi,ξ(p). For
each β ∈ Bi,ξ(p)

pβ = 〈〈κ1(p), Aβ1 〉, ..., 〈κi−1(p), A
β
i−1〉, 〈β,Bβ〉, 〈κi(p), Aβi 〉, ..., 〈κ,Aβ〉〉

For j > i let A∗j = ∩β∈Bi,ξ(p)A
β
j . For j < i we can find A∗j and shrink Bi,ξ(p) to Eξ so that for

every β ∈ Eξ and j < i Aβj = A∗j . For i, first let E = ∆α∈Bi,ξ(p)A
β
i . By ineffability of κi(p)

we can find A∗ξ ⊆ Eξ and a set B∗ ⊆ κi(p) such that for every β ∈ A∗ξ B∗ ∩ β = Bβ. Claim
that B∗ ∈ U(κi(p), γ) for every γ < ξ,

Ult(V, U(κi(p), ξ)) |= B∗ = jU(κi(p),j)(B
∗) ∩ κi(p)

and since
{β < κ | B∗ ∩ β ∈ ∩~U(β)} ∈ U(κi(p), ξ)

it follows that B∗ ∈ ∩jU(κi(p),ξ)(
~U)(κi(p)). By coherency B∗ ∈ ∩γ<ξU(κi(p), γ). Define

A∗i = B∗ ] A∗ξ ] ( ∪
ξ<i
Ei) ∈ ∩~U(κi(p))

Let q ≥ p∗_β and suppose that q ≥∗ (p∗_β)_~γ. Then every γ ∈ ~γ such that γ > β belong
to some A∗j \ β for j ≥ i, and by the definition of these sets γ ∈ Aβj . If γ < κi−1 then also

γ ∈ A∗j for some j < i. Since β ∈ Eξ it follows that Aβj = A∗j so γ ∈ Aβj . For γ ∈ (κi−1, β),

by definition of the order we have o
~U(γ) < o

~U(β) = ξ and therefore γ ∈ A∗i,η ∩ β for some
η < ξ, but

A∗i,η ∩ β ⊆ B∗ ∩ β = Bβ

it follows that q, pβ are compatible. For general X, fix min(~β) = β. Apply the induction
hypothesis to p_β and p~β to find p∗β ≥∗ p_β. Next apply the case n = 1 to p∗β and p, find

p∗ ≥ p. Let q ≥ p∗_~β and denote β = min(~β) then q is compatible with p∗β thus let q′ ≥ q, p∗β.

Since q′ ≥ p∗β and q′ ≥ p∗_~β it follows that q′ ≥ p∗_β
~β. Therefore there is q′′ ≥ q′, p~β. �

Lemma 4.2 Let λ < κ, p ∈ M[~U ] � (λ, κ), q ∈ M[~U ] � λ and X ∈ Ex(p). Also. let ∼x be an

ordinal M[~U ]-name. There is p ≤∗ p∗ such that

If ∃~α ∈ X(p∗) ∃p′ ≥∗ p∗_~α 〈q, p′〉|| ∼x Then ∀~α ∈ X(p∗)〈q, p∗_~α〉||∼x
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Proof. Fix p, λ, q,X as in the lemma. Consider the set

B0 = {~β ∈ X(p) | ∃p′ ∗≥p_~β s.t. 〈q, p′〉||∼x}

One and only one of B0 and X(p) \B0 is in ~U(X,P ). Denote this set by A′. By proposition

3.7, we can find A′i,j ∈ U(αi, xi,j) such that
∏l(p)+1

i=1

∏|Xi|
j=1A

′
i,j ⊆ A′, let p ≤∗ p′ be the

condition obtained by shrinking Bi,j(p) to A′i,j so that X(p′) =
∏n+1

i=1

∏|Xi|
j=1A

′
i,j. If

∃~β ∈ X(p′) ∃p′′ ∗≥p′_~β 〈q, p′′〉|| ∼x

Then ~β ∈ B0 ∩ A′ and therefore B0 = A′ , we conclude that

∀~β ∈ X(p′) ∃p~β
∗≥p′_~β 〈q, p~β〉|| ∼x

By proposition 4.1 we can amalgamate all these p~β to find p′ ≤∗ p∗ such that for every
~β ∈ X(p∗), p∗_~β decides ∼x, then p∗ is as wanted. �

Lemma 4.3 Consider the decomposition of 2.7 at some λ ≥ o
~U(κ) and let ∼x be a M[~U ]-

name for an ordinal. Then for every p ∈ M[~U ] � (λ, κ), there exists p ≤∗ p∗ such that for

every X ∈ Ex(p) and q ∈M[~U ] � λ the following holds:

If ∃~α ∈ X(p∗) ∃p′ ≥∗ p∗_~α 〈q, p′〉|| ∼x Then ∀~α ∈ X(p∗) 〈q, p∗_~α〉||∼x

Proof. Fix q ∈M[~U ] � λ and and X ∈ Ex(p). Use 4.2, to find p ≤∗ pq,X such that

If ∃~α ∈ X(pq,X) ∃p′ ≥∗ (pq,X)_~α s.t. 〈q, p′〉|| ∼x Then ∀~α ∈ X(pq,X) 〈q, (pq,X)_~α〉||∼x

By the definition of λ, the forcing M[~U ] � (λ, κ) is ≤∗-max(|Ex(p)|+, |M[~U ] � λ|+)-directed.
Hence we can find p ≤∗ p∗ so that for every X, q, pq,X ≤∗ p∗. �

Lemma 4.4 Let A ∈ V [G] be a set of ordinals such that |A| < κ. Then there exists C ′ ⊆ CG
such that V [A] = V [C ′].

Proof. Assume that |A| = λ′ < κ and let δ = max(λ′, otp(CG)) < κ. Split M[~U ] as in
proposition 2.7. Find p ∈ G such that some δ ≤ λ appears in p. The generic G also splits
to G = G1 × G2 where G1 is the generic for Magidor forcing below λ and G2 above it. Let
〈∼ai | i < λ′〉 be a M[~U ]-name for A in V and p ∈M[~U ] � (λ, κ). For every i < λ′ find p ≤∗ pi
as in lemma 4.3, such that for every q ∈M[~U ] � λ and X ∈ Ex(p) we have:

If ∃~α ∈ X(pi) ∃p_i ~α ≤∗ p′ 〈q, p′〉 || ∼ai Then ∀~α ∈ X(pi) 〈q, p_i ~α〉 || ∼ai (∗)

Since we have λ′-closure for ≤∗ we can find pi ≤∗ p∗. Next, for every i < λ′, fix a maximal
anti chain Zi ⊆M[~U ] � λ such that for every q ∈ Zi there is an extension type Xq,i for which

18



∀~α ∈ p_∗ Xq,i 〈q, p_∗ ~α〉 || ∼ai, these anti chains can be found using (*) and Zorn’s lemma.
Recall the sets Xq,i(p∗) is a product of large sets. Define Fq,i : Xq,i(p∗)→ On by

Fq,i(~α) = γ ⇔ 〈q, p_∗ ~α〉 
 ∼ai = γ̌

By lemma 3.9 we can assume that there are important coordinates

Iq,i ⊆ {1, ..., dom(Xq,i(p∗))}

Fix i < λ′, for every q, q′ ∈ Zi we apply lemma 3.11 to the functions Fq,i, Fq,i′ and find
p∗ ≤∗ pq,q′ for which one of the following holds:

1. Im(Fq,i � A(Xq,i, pq,q′)) ∩ Im(Fq′,i � A(Xq′,i, pq,q′)) = ∅

2. (Fq,i)Iq,i � (A(Xq,i, pq,q′))Iq,i = (Fq′,i)Iq′,i � (A(Xq′,i, pq,q′))Iq′,i

Finally find p∗ such that for every q, q′, pq,q′ ≤∗ p∗. By density, there is such p∗ ∈ G2. We
use Fq,i to translate information from CG to A and vice versa, distinguishing from [1] this
translation is made in V [G1] rather then V : For every i < λ′, G1∩Zi = {qi}. Use lemma 3.5,
to find Di ∈ Xqi,i(p

∗) be such that p∗_Di ∈ G2, define Ci = Di � Iqi,i and let C ′ =
⋃

i<o~U (κ)

Ci.

Define as in 2.20, I(Ci, C
′) ∈ [otp(κ)]<ω, since otp(C ′) ≤ otp(CG) ≤ λ and V [G2] does not

add sequences to λ we have that 〈I(Ci, C
′) | i < λ′〉 ∈ V [G1]. It follows that

(V [G1])[A] = (V [G1])[〈Ci | i < λ′〉] = (V [G1])[C
′]

In fact let us prove that 〈Ci | i < λ′〉 ∈ V [A]. Indeed, define in V [A] the sets

Mi = {q ∈ Zi | ai ∈ Im(Fq,i)}

then, for any q, q′ ∈Mi ai ∈ Im(Fqi) ∩ Im(Fq′,i) 6= ∅. Hence 2 must hold for Fq,i, Fq′,i i.e.

(Fq,i)Iq,i � (Xq,i(p
∗))Iq,i = (Fq′,i)Iq′,i � (Xq′,i(p

∗))Iq′,i

This means that no matter how we pick q′i ∈ Mi, we will end up with the same function
(Fq′i,i)Iq′i,i

� (Xq′i,i
(p∗))Iq′

i
,i
. In V [A], choose any q′i ∈Mi and let D′i ∈ F−1q′i,i

(ai), C
′
i = Di � Iq′i,i.

Since qi, q
′
i ∈ Mi we have Ci = C ′i, hence 〈Ci | i < λ′〉 ∈ V [A]. We still have to determine

what information A uses in the part of G1, namely, {q′i | i < λ′}, 〈I(Ci, C
′) | i < λ′〉 ∈ V [A].

This sets can be coded as a subset of ordinals below (2λ)+, therefore,

{q′i | i < λ′}, 〈I(Ci, C
′) | i < λ′〉 ∈ V [G1]

By the induction hypothesis, we can find C ′′ ⊆ CG1 such that

V [{q′i | i < λ′}, 〈I(Ci, C
′) | i < λ′〉] = V [C ′′]

Since all the information needed to restore A is coded in C ′ ] C ′′, it is clear that V [A] =
V [C ′′ ] C ′]. �
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4.2 General Subsets of κ

Assume that A ∈ V [G] such that A ⊆ κ. For some A’s, the proof is similar to the one in [1]
works. This proof relays on the following lemma:

Lemma 4.5 Assume that o
~U(κ) < κ and let A ∈ V [G], sup(A) = κ. Assume that ∃C∗ ⊆ CG

such that

1. C∗ ∈ V [A] and ∀α < κ A ∩ α ∈ V [C∗]

2. cfV [A](κ) < κ

Then ∃C ′ ⊆ CG such that V [A] = V [C ′].

Proof. Let 〈αi | i < λ〉 ∈ V [A] be cofinal in κ. Since |C∗| < κ, by 4.4, we can find C ′′ ⊆ CG
such that

V [C ′′] = V [C ′, 〈αi | i < λ〉] ⊆ V [A]

In V [C ′′] choose for every i, a bijection πi : 2αi → P V [C′′](αi). Since A ∩ αi ∈ V [C ′′] there is
δi such that πi(δi) = A ∩ αi. Finally let C ′ ⊆ CG such that

V [C ′] = V [C ′′, 〈δi | i < λ〉]

We claim that V [A] = V [C ′]. Obviously, C ′ ∈ V [A], for the other direction,

〈A ∩ αi | i < λ〉 = 〈πi(δi) | i < λ〉 ∈ V [C ′]

Thus A ∈ V [C ′]. �

Definition 4.6 We say that A ∩ α stabilizes, if

∃α∗ < κ. ∀α < κ. A ∩ α ∈ V [A ∩ α∗]

First we deal with A’s such that A ∩ α does not stabilize.

Lemma 4.7 Assume o
~U(κ) < κ, A ⊆ κ unbounded in κ such that A∩ α does not stabilizes,

then there is C ′ ⊆ CG such that V [C ′] = V [A].

Proof. Work in V [A], define the sequence 〈αξ | ξ < θ〉:

α0 = min(α | V [A ∩ α] ) V )
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Assume that 〈αξ | ξ < λ〉 has been defined and for every ξ, αξ < κ. If λ = ξ + 1 then set

αλ = min(α | V [A ∩ α] ) V [A ∩ αξ])

If αλ = κ , then αλ satisfies that

∀α < κ A ∩ α ∈ V [A ∩ αξ]

Thus A ∩ α stabilizes which by our assumption is a contradiction. If λ is limit, define

αλ = sup(αξ | ξ < λ)

if αλ = κ define θ = λ and stop. The sequence 〈αξ | ξ < θ〉 ∈ V [A] is a continues, increasing
unbounded sequence in κ. Therefore, cfV [A](κ) = cfV [A](θ). Let us argue that θ < κ. Work
in V [G], for every ξ < θ pick Cξ ⊆ CG such that V [A ∩ αξ] = V [Cξ]. The map ξ 7→ Cξ is

injective from θ to P (CG), by the definition of αξ’s. Since o
~U(κ) < κ, |CG| < κ, and κ stays

strong limit in the genenic extension. Therefore

θ ≤ |P (CG)| = 2|CG| < κ

Hence κ changes cofinality in V [A], according to lemma 4.5, it remains to find C∗. Denote
λ = |CG| and work in V [A], for every ξ < θ, Cξ ∈ V [A] (Although the sequence 〈Cξ | ξ < θ〉
may not be in V [A]). Cξ witnesses that

∃dξ ⊆ κ. |dξ| ≤ λ and V [A ∩ αξ] = V [dξ]

Fix d = 〈dξ|ξ < θ〉 ∈ V [A]. It follows that d can be coded as a subset of κ of cardinality
≤ λ · θ < κ. Finally, by 4.4, there exists C∗ ⊆ CG such that V [C∗] = V [d] ⊆ V [A] so

∀α < κ. A ∩ α ∈ V [dξ] ⊆ V [C∗]

�

Next we assume that A∩α stabilizes on some α∗ < κ. By lemma 4.4 There exists C∗ ⊆ CG
such that V [A ∩ α∗] = V [C∗], if A ∈ V [C∗] then we are done, assume that A /∈ V [C∗]. To
apply 4.5, it remains to prove that cfV [A](κ) < κ. The subsequence C∗ must be bounded,
denote κ1 = sup(C∗) < κ and κ∗ = max(κ1, otp(CG)). Find p ∈ G that decides the value of
κ∗ and assume that κ∗ appear in p (otherwise take some ordinal above it). As in lemma 2.7
we split

M[~U ]/p '
(
M[~U ] � κ∗

)
/
(
p � κ∗

)
×
(
M[~U ] � (κ∗, κ)

)
/
(
p � (κ∗, κ)

)
There is a subforcing P of RO(

(
M[~U ] � κ∗

)
/
(
p � κ∗

)
such that V [C∗] is a generic for P. Let

Q =
[(

M[~U ] � κ∗
)
/
(
p � κ∗

)]
/C∗

be the quotient forcing completing P to
(
M[~U ] � κ∗

)
/
(
p � κ∗

)
. Finally note that G is

generic over V [C∗] for

S = Q×
(
M[~U ] � (κ∗, κ)

)
/
(
p � (κ∗, κ)

)
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Lemma 4.8 cfV [A](κ) < κ

Proof. Let G = G1 × G2 be the decomposition such that G1 is generic for Q above V [C∗]

and G2 is M[~U ] � (κ∗, κ) generic over V [C∗][G1]. Let ∼A be a S-name for A in V [C∗]. and
〈q0, p0〉 ∈ G such that

〈q0, p0〉 
 ”∀α < κ ∼A ∩ α is old” (i.e. in V [C∗])

Proceed by a density argument in M[~U ] � (κ∗, κ))/p � (κ∗, κ), let p0 ≤ p, as in 4.4 find
p ≤∗ p∗ such that for all q0 ≤ q ∈ Q and X ∈ Ex(p∗):

∃~αa〈α〉 ∈ X(p∗)∃p′ ≥∗ p∗_~αa〈α〉 〈q, p′〉 || ∼A ∩ α⇒ ∀~α
a〈α〉 ∈ X(p∗)〈q, p∗_~αa〈α〉 || ∼A ∩ α

Denote the consequent by (∗)X,q, since ∼A ∩ α is forced to be old, we will find Many q,X for
which (∗)q,X holds. For such q,X, for every ~αa〈α〉 ∈ X(p∗) define the value forced for ∼A∩α by
a(q, ~α, α). Fix q,X such that (∗)q,X holds. Assume that the maximal measure which appears
in X is U(κi(p),mc(X)) and fix ~α ∈ (X \ {mc(X)})(p∗). For every α ∈ Bi,mc(X)(p) \max(~α)

the set a(q, ~α, α) ⊆ α is defined. By ineffability, we can shrink Bi,mc(X)(p) to Aq,~αi,mc(X) and

find a set A(q, ~α) ⊆ κi(p) such that for every α ∈ Aq,~αi,mc(X), A(q, ~α) ∩ α = a(q, ~α, α) define

A′i,mc(X) = ∆
~α,q
Aq,~αi,mc(X)

Let p∗ ≤∗ p′ be the condition obtained by shrinking to those sets. p′ has the property
that whenever (∗)q,X holds for some q ∈ Q and X ∈ Ex(p′), there exists sets A(q, ~α) for
~α ∈ X \ {mc(X)} such that for every ~αa〈α〉 ∈ X(p′), A(q, ~α) ∩ α = a(q, ~α, α). By density
there is such p′ ∈ G2.

Work V [A], for every ~α and q, if A(q, ~α) is defined, let

η(q, ~α) = min(A∆A(q, ~α))

otherwise η(q, ~α) = 0. η(q, ~α) is well defined since A /∈ V [C∗] and A ∈ V [C∗]. Also let

η(~α) = sup(η(q, ~α) | q ∈ Q)

If η(~α) = κ then we are done (since |Q| < κ). Define a sequence in V [A]: α0 = κ∗. Fix
ξ < otp(CG) and assume that 〈αi | i < ξ〉 is defined. At limit stages take

αξ = sup(αi | i < ξ) + 1

Assume that ξ = λ+ 1 and let

αξ = sup(η(~α) + 1 | ~α ∈ [αλ]
<ω)
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If at some point we reach κ we are done. If not, let us prove by induction on ξ that
CG(ξ) < αξ which will indicate that the sequence αξ is unbounded in κ. At limit ξ we have
CG(ξ) = sup(CG(β) | β < ξ) since the Magidor sequence is a club. By the definition of the
sequence αξ and the induction hypothesis, αξ > CG(ξ). If ξ = λ + 1, use corollary 2.19 to
find ~α, α and q such that

〈q, p′_~αa〈α〉〉 
 α̌ = ∼CG(ξ̌)

Fix any q′ ≥ q, and split the forcing at α so that 〈q′, p′_~α, α〉 = 〈q′, r1, r2〉 where r1 ∈M[~U ] �
(k∗, α) and r2 ∈ M[~U ] � (α, κ). Let H1 be some generic up to α with 〈q, r1〉 ∈ H1 and work

in V [C∗][H1], the name ∼A has a natural interpretation in V [C∗][H1] as a M[~U ] � (α, κ)-name,

(∼A)H1 . Use the fact that M[~U ] � α is ≤∗-closed and the prikry condition to find r2 ≤∗ r′2 and
X such that

r′2 
M[~U ]�(α,κ) (∼A)G1 ∩ α = X

since it is forced that
sim
A is old, X ∈ V [C∗] and therefore we can find 〈q′′, r′1〉 ≥ 〈q′, r1〉 such

that
〈q′′, r′1〉 
 ”r′2 
 ∼A ∩ α = X”⇒ 〈q′′, r′1, r′2〉 
 ∼A ∩ α = X

and ~α, α such that
〈q′, p∗∗_~αa〈α〉〉 || ∼A ∩ α̌

but then 〈r′1, r′2〉 is of the form p′_~β, α ≤∗ p′′ for some ~β. Let X be the extension type of
~β, α, by definition of p′, (∗)q′′,X holds. Use density to find a q∗ in the generic of Q such that
for some X that decides the ξth element of CG, (∗)X,q∗ holds. The set {p′_~γ | γ ∈ X} is

a maximal antichain according to proposition 3.5, so let ~C,CG(ξ) be the extension of p′ of
type X in CG. By the construction of q∗ and p∗∗ we have that

〈q∗, p′_〈~C,CG(ξ)〉 
 ∼A ∩ ˇCG(ξ) = A(q∗, ~C) ∩ ˇCG(ξ)

Since (∼A)G = A, A(q∗, ~C) ∩ CG(ξ) = A ∩ CG(ξ) (otherwise we would’ve found compatible
conditions forcing contradictory information). This imply that

η(q∗, ~C) ≥ CG(ξ)

By the induction hypothesis αλ > CG(λ) and ~C ⊆ CG(λ) thus ~C ∈ [αλ]
<ω thus

αξ > sup(η(~α) | ~α ∈ [αλ]
<ω) ≥ η(~C) ≥ η(q∗, ~C) ≥ CG(ξ)

This proves that 〈αξ | ξ < otp(CG) < κ〉 ∈ V [A] is cofinal in κ indicating cfV [A](κ) < κ. �

Thus we have proven the result for any subset of κ.

Corollary 4.9 Let A ∈ V [G] be a set of ordinals, such that |A| = κ then there is C ′ ⊆ CG
such that V [A] = V [C ′].

Proof. By κ+-c.c. of M[~U ], there is B ∈ V , |B| = k such that A ⊆ B. Fix in V φ : κ→ B a
bijection and let B′ = φ−1

′′
A. then B′ ⊆ κ. By the theorem for subsets of κ there is C ′ ⊆ CG

such that V [C ′] = V [B′] = V [A]. �
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4.3 general sets of ordinals

In [1], we gave an explicit formulation of subforcings of M[~U ] using the indices of subsequences
of CG. In the larger framework of this paper, these indices might not be in V . By example
1.2, subforcing of the Magidor forcing can be an iteration of Magidor type forcing.

Lemma 4.10 Let A ∈ V [G] be such that A ⊆ κ+. Then there is C∗ ⊆ CG closed such that

1. ∃α∗ < κ+ such that C∗ ∈ V [A ∩ α∗] ⊆ V [A].

2. ∀α < κ+ A ∩ α ∈ V [C∗].

Proof. Work in V [G], for every α < κ+ find subsequences Cα ⊆ CG such that

V [Cα] = V [A ∩ α]

using corollary 4.9. The function α 7→ Cα has range P (CG) and domain κ+ which is regular

in V [G], and since o
~U(κ) < κ then |P (CG)| < κ+. Therefore there exist E ⊆ κ+ unbounded

in κ+ and α∗ < κ+ such that for every α ∈ E, Cα = Cα∗ . Set C∗ = Cα∗ , By lemma 4.12 we
may assume that C∗ is closed. Note that for every α < κ there is β ∈ E such that β > α
therefore

A ∩ α = (A ∩ β) ∩ α ∈ V [A ∩ β] = V [C∗]

�

Lemma 4.11 Let C∗ be as in the last lemma. If there is α < κ such that A ∈ V [CG∩α][C∗]
then V [A] = V [C∗].

Proof. Consider the quotient forcing M[~U ]/C∗ ⊆M[~U ] completing V [C∗] to V [C∗][G]. Then
the forcing

Q = (M[~U ]/C∗) � α

completes V [C∗] to V [C∗][CG ∩α] and |Q| < κ. By the assumption, A ∈ V [C∗][CG ∩α], and
for every α < κ+, A ∩ α ∈ V [C∗]. Let ∼A ∈ V [C∗] be a Q-name for A and q ∈ G � α be any
condition such that

q 
 ∀α < κ+, ∼A ∩ α ∈ V [C∗]

In V [C∗], for every α < κ+ find qα ≥ q such that qα||Q∼A ∩ α, there is q∗ ≥ q and E ⊆ κ+ of
cardinality κ+ such that for very α ∈ E, qα = q∗. By density, find such q∗ ∈ G � α in the
generic. In v[C∗], consider the set

B = {X ⊆ κ+ | ∃α q∗ 
 X = ∼A ∩ α = X}
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Let us argue that ∪B = A. Let X ∈ B then there is α < κ+ such that q∗ 
 X = ∼A ∩ α
then X = A ∩ α ⊆ A, thus, ∪B ⊆ A. Let γ ∈ A, there is α ∈ E such that γ < α, by
the definition of E there is X ⊆ α such that q∗ 
 ∼A ∩ α = X it must be that X = A ∩ α
otherwise would have found compatible conditions forcing contradictory information. but
the γ ∈ A ∩ α = X ⊆ ∪B. We conclude that A = ∪B ∈ V [C∗]. �

Eventually we will prove that there is α < κ such that A ∈ V [CG ∩ α][C∗] and by the
last lemma we will be done.

We would like to change C∗ so that it is closed. We can do that above α0 := otp(CG):

Lemma 4.12 V [CG ∩ α0][Cl(C
∗)] = V [CG ∩ α0][C

∗].4

Proof. Consider I(C∗, Cl(C∗)) ⊆ otp(CG), by proposition 2.15.5, I(C∗, Cl(C∗)) ∈ V [CG∩α0].
Thus V [CG ∩ α0][C

∗] = V [CG ∩ α0][Cl(C
∗)]. �

Work in V [CG ∩ α0], since C∗ ∩ α0 ∈ V [CG ∩ α0], we can assume min(C∗) > α0. Since
I = I(C∗, CG \α0) ⊆ otp(CG), it follows that I ∈ V [CG ∩α0]. Let N = V [CG ∩α0], consider
the coherent sequence

~W = ~U∗ � (α0, κ] = 〈U∗(β, δ) | δ < o
~U(β), α0 < δ < κ〉

where U∗(β, δ) is the ultrafilter generated by U(β, δ) in N . Also denote G∗ = G � (α0, κ).

Proposition 4.13 N [G∗] is a M[ ~W ] generic extension of N .

Proof. Let us argue that the Mathias criteria holds. Let X ∈ ∩ ~W (δ) where δ ∈ Lim(CG∗).

By definition of ~W , for every i < o
~W (δ), there is Xi ∈ U(δ, i), such that Xi ⊆ X. The choice

of Xi’s is done in N and the sequence 〈Xi | i < o
~U(δ)〉 might not be in V . Fortunately,

M[~U ] � α0 is α+
0 -c.c. and α+

0 < δ, so in V , we can find sets

Ei := {Xi,j | j ≤ α0} ⊆ U(δ, i)

such that Xi ∈ Ei By δ-completness of U(δ, i), the set X∗i := ∩Ei ∈ U(δ, i) and X∗i ⊆ Xi ⊆
X. Note that X∗ := ∪i<o~U (δ)X

∗
i ∈ ∩~U(δ) and therefore by genericity of G there is ξ < δ

such that
CG ∩ (ξ, δ) ⊆ X∗ ⊆ X

Hence CG∗ ∩ (max(α0, ξ), δ) ⊆ X.�

4For a set of ordinals X, Cl(X) = X ∪ Lim(X){ξ | ξ ∈ X ∨ sup(X ∩ ξ) = ξ
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Note that o
~W (κ) < min(ν | o ~W (ν) = 1) and I(C∗, C) ∈ N , which is the situation dealt

with in [1]. We state here the main results and definitions and refer the reader to [1] for the
proofs:

We will define a Magidor type forcing that produces the sequence C∗ above N . Thinking
of C∗ as a function with domain I, we would like to have a function similar to γ(ti, p) which
tells us the coordinate we unveil. Given any sequence of pairs, p = 〈t1, ..., tn, tn+1〉, define5

I(t1, p) = min(j ∈ I | oL(j) = o
~W (ti))

then recursively,

I(ti, p) = min(j ∈ I \ I(ti−1, p) + 1 | oL(j) = o
~W (ti))

It is tacitly assumed that {j ∈ I \ I(ti−1, p) + 1 | oL(j) = o
~W (ti)} 6= ∅. If at some point of

the inductive definition we obtain ∅, leave I(ti, p) undefined, we will ignore such conditions
p anyway.

Definition 4.14 The conditions of MI [ ~W ] are of the form p = 〈t1, ..., tn+1〉 such that:

1. I is defined on p.

2. κ(t1) < ... < κ(tn) < κ(tn+1) = κ

3. For i = 1, ..., n+ 1

(a) If I(ti, p) ∈ Succ(I)

i. ti = κ(ti)

ii. I(ti−1, p) is the predecessor of I(ti, p) in I

iii. I(ti−1, p) +
m∑
i=1

ωγi = I(ti, p) is the Cantor normal form difference, then

Y (γ1)× ...× Y (γm−1)
⋂

[(κ(ti−1), κ(ti))]
<ω 6= ∅

where Y (γ) = {α < κ | o~U(α) = γ}
(b) If I(ti, p) ∈ Lim(I)

i. ti = 〈κ(ti), B(ti)〉 , B(ti) ∈
⋂

ξ<o ~W (ti)

U(ti, ξ)

ii. I(ti−1, p) + ωo
~W (ti) = I(ti, p). (i.e. there are no elements of higher order then

o
~W (ti) to add in the interval (κ(ti−1), κ(ti)).

iii. min(B(ti)) > κ(ti−1)

5For an ordinal α, denote by oL(α) = γ if the cantor normal form of α =
∑n
i=1 ω

γimi and γ = γn.
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Definition 4.15 Let p = 〈t1, ..., tn, tn+1〉, q = 〈s1, ..., sm, sm+1〉 ∈ MI [ ~W ] be two conditions.
Define 〈t1, ..., tn, tn+1〉 ≤I 〈s1, ..., sm, sm+1〉 iff ∃1 ≤ i1 < ... < in ≤ m < in+1 = m + 1 such
that

1. For every 1 ≤ r ≤ n κ(tr) = κ(sir) and B(sir) ⊆ B(tr)

2. For ik < j < ik+1

(a) κ(sj) ∈ B(tk+1)

(b) If I(sj, q) ∈ Succ(I) then

[(κ(sj−1), κ(sj))]
<ω ∩B(tk+1, γ1)× ...×B(tk+1, γk−1) 6= ∅

where I(si−1, q) +
k∑
i=1

ωγi = I(si, q) (Cantor normal form difference)

(c) If I(sj, q) ∈ Lim(I) then B(sj) ⊆ B(tk+1) ∩ κ(sj)

Lemma 4.16 Let GI ⊆MI [ ~W ] be N-generic , define

CI =
⋃
{{κ(ti)|i = 1, ..., n} | 〈t1, ..., tn, tn+1〉 ∈ GI}

Then N [GI ] = N [CI ]

Lemma 4.17 There is a projection π : M[ ~W ]→MI [ ~W ].

Corollary 4.18 Let C ⊆ CG be closed, Assume that I = I(C,CG) ∈ N and consider

πI ,MI [ ~W ], then N [GI ] = N [C] where GI = π′′G ⊆MI [ ~W ].

Lemma 4.19 Let G∗ ⊆ M[ ~W ] be N-generic filter. Then the forcing M[ ~W ]/GI satisfies
κ+ − c.c. in N [G∗].

Theorem 4.20 A ∈ N [C∗].

Proof. Let I = I(Cl(C∗), CG). Then

I,MI [ ~W ], πI ∈ N

Let GI be the generic induced for MI [ ~W ] from G, it follows that M[ ~W ]/GI is defined in
N . Toward a contradiction, assume that A /∈ N [C∗]. By lemma 4.12, N [C∗] = N [Cl(C∗)],

hence A /∈ N [Cl(C∗)]. Let ∼A be a name for A in M[~U ]/GI where π′′IG = GI . Work in N [GI ],
by corollary 4.18, N [GI ] = N [Cl(C∗)]. For every α < κ+ define

Xα = {B ⊆ α | ||∼A ∩ α = B|| 6= 0}
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where the truth value is taken in RO(M[ ~W ]/GI)- the complete boolean algebra of regular

open sets for M[ ~W ]/GI . Different B’s in Xα yield incompatible conditions of M[ ~W ]/GI and
we have κ+-c.c by lemma 4.19 thus

∀α < κ+ |Xα| ≤ κ

For every B ∈ Xα define
b(B) = ||∼A ∩ α = B||

Assume that B′ ∈ Xβ and α ≤ β then B = B′ ∩ α ∈ Xα. Moreover b(B′) ≤B b(B) (we
Switch to boolean algebra notation p ≤B q means p extends q). Note that for such B,B′ if
b(B′) <B b(B), then there is

0 < p ≤B (b(B) \ b(B′)) ≤B b(B)

Therefore
p ∩ b(B′) ≤B (b(B) \ b(B′)) ∩ b(B′) = 0

meaning p⊥b(B′). Work in N [G∗], denote Aα = A ∩ α. Recall that

∀α < κ+ Aα ∈ N [Cl(C∗)] = N [GI ]

thus Aα ∈ Xα. Consider the ≤B-non-increasing sequence 〈b(Aα) | α < κ+〉. If there exists
some γ∗ < κ+ on which the sequence stabilizes, define

A′ =
⋃
{B ⊆ κ+ | ∃α b(Aγ∗) 
 ∼A ∩ α = B} ∈ N [Cl(C∗)]

Claim that A′ = A, notice that if B,B′, α, α′ are such that

b(Aγ∗) 
 ∼A ∩ α = B, b(Aγ∗) 
 ∼A ∩ α
′ = B′

WLOG α ≤ α′ then we must have B′∩α = B otherwise, the non zero condition b(Aγ∗) would
force contradictory information. Consequently, for every ξ < κ+ there exists ξ < γ < κ+

such that
b(Aγ∗) 
 ∼A ∩ γ = A ∩ γ

hence A′ ∩ γ = A ∩ γ. This is a contradiction to A /∈ N [Cl(C∗)]. We conclude that he
sequence 〈b(Aα) | α < κ+〉 does not stabilize. By regularity of κ+, there exists a subsequence

〈b(Aiα) | α < κ+〉

which is strictly decreasing. Use the observation we made to find pα ≤B b(Aiα) such that
pα⊥b(Aiα+1). Since b(Aiα) are decreasing, for any β > α pα⊥b(Aiβ) thus pα⊥pβ. This shows
that 〈pα | α < κ+〉 ∈ N [G∗] is an antichain of size κ+ which contradicts Lemma 4.19. �

Sets of ordinals above κ+: By induction on sup(A) = λ > κ+. It suffices to assume
that λ is a cardinal.
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case1: cfV [G](λ) > κ, the arguments for κ+ works.

case2: cfV [G](λ) ≤ κ and since κ is singular in V [G] then cfV [G](λ) < κ. Since M[~U ]
satisfies κ+ − c.c. we must have that ν := cfV (λ) ≤ κ. Fix

〈γi| i < ν〉 ∈ V

cofinal in λ. Work in V [A], for every i < ν find di ⊆ κ such that V [di] = V [A ∩ γi]. By
induction, there exists C∗ ⊆ CG such that V [〈di | i < ν〉] = V [C∗], therefore

1. ∀i < ν A ∩ γi ∈ V [C∗]

2. C∗ ∈ V [A]

Work in V [C∗], for i < ν fix
〈Xi,δ | δ < 2γi〉 = P (γi)

then we can code A ∩ γi by some δi such that Xi,δi = A ∩ γi. By 4.9, we can find C ′′ ⊆ CG
such that

V [C ′′] = V [〈δi | i < ν〉]

Finally we can find C ′ ⊆ CG such that V [C ′] = V [C∗, C ′′], it follows that V [A] = V [C ′]. �

5 Classification of Intermediate Models

Let G ⊆ M[~U ] be a V -generic filter. Assume that for every α ≤ κ, o
~U(α) < α. Let M be

a transitive ZFC model such that V ⊆ M ⊆ V [G]. We would like to prove it is a generic
extension of a ”Magidor-like” forcing which we will define shortly. First, by [4], there is
a set A ∈ V [G] such that V [A] = M . By the results so far, there is C ′ ⊆ CG such that
M = V [A] = V [C ′].

Proposition 5.1 Let C,D ⊆ CG, then there is E, such that C∪D ⊆ E ⊆ CG∩ sup(C∪D).
such that V [C,D] = V [E].

Proof. By induction on sup(C ∪D). If sup(C ∪D) ≤ CG(ω) then |C|, |D| ≤ ℵ0, we can take
E = C ∪D, and

I(C,C ∪D), I(D,C ∪D) ⊆ ω1

and there fore in V . In the general case, consider I(C,C ∪D), I(D,C ∪D). Since

o
~U(sup(C ∪D)) < sup(C ∪D)
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it follows that
otp(C ∪D) ≤ otp(CG ∩ sup(C ∪D)) < sup(C ∪D)

Denote by λ = otp(CG ∩ sup(C ∪D)). By theorem 1.1, there is F ⊆ CG ∩ λ , such that

V [I(C,C ∪D), I(D,C ∪D)] = V [F ]

We apply the induction hypothesis to F, (C ∪D) ∩ λ and find E∗ ⊆ λ such that

V [E∗] = V [F, (C ∪D) ∩ λ]

Let E = E∗ ∪ (D ∪ C) \ λ, then E ∈ V [C,D] as the union of two sets in V [C,D]. In V [E]
we can find

E∗ = E ∩ λ and (D ∪ C) \ λ = E \ λ

Thus F, (C ∪D) ∩ λ ∈ V [E] and therefore also

D ∪ C, I(C,C ∪D), I(D,C ∪D) ∈ V [E]

It follows that C,D ∈ V [E].�

Corollary 5.2 For every C ′ ⊆ CG there is C∗ ⊆ CG ∩ sup(C ′), such that C∗ is closed and
V [C ′] = V [C∗].

Proof. Again we go by induction on sup(C ′). If sup(C ′) = CG(ω) then C∗ = C ′ is already
closed. For general C ′, consider C ′ ⊆ Cl(C ′)6, then I(C ′, Cl(C ′)) is bounded by some
ν < sup(C ′). So there is D ⊆ CG ∩ ν such that V [D] = V [I(C ′, Cl(C ′))]. By the last
proposition, we can find E such that

D ∪ Cl(C ′) ∩ ν ⊆ E ⊆ CG ∩ ν

and V [E] = V [D,Cl(C ′)]. By the induction hypothesis there is a closed E∗, such that
E ⊆ E∗ ⊆ CG ∩ ν such that V [E] = V [E∗]. Finally, let

C∗ = E∗ ∪ {sup(E∗)} ∪ Cl(C ′) \ ν

Then C∗ ∈ V [C ′], and also Cl(C ′) and I(C ′, Cl(C ′)) can be constructed in V [C∗] so C ′ ∈
V [C∗]. Obviously, C∗ is closed, hence, C∗ is as desired.�

Definition 5.3 Let λ < κ be any ordinal. A function f : λ→ κ is said to be suitable for κ,
if for every limit δ7

lim sup
α<δ

f(α) + 1 ≤ f(δ)

6For A ⊆ On, Cl(A) = {α | sup(A ∩ α) = α} ∪A
7For a sequence of ordinals 〈xi | i < ρ〉, define lim supi<ρ xi = min({supα<i<ρxi | α < ρ})
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Proposition 5.4 If C∗ ⊆ CG is a closed subset, let λ + 1 = otp(C∗ ∪ {sup(C∗)}), and
〈c∗i | i ≤ λ〉 be the increasing continuous enumeration of C∗, then then function f : λ+1→ κ,

defined by f(i) = o
~U(c∗i ) is suitable.

Proof. Let δ < λ + 1 be limit, then c∗δ ∈ Lim(CG ∪ {κ}) and therefore, there is ξ < c∗δ such

that for every x ∈ CG ∩ (ξ, c∗δ), o
~U(x) < o

~U(c∗δ). Let ρ < δ be such that ξ < c∗i < c∗δ for every

ρ < i < δ, then supρ<i<δo
~U(c∗i ) + 1 ≤ o

~U(c∗δ). Thus also

min({supα<i<δo
~U(c∗i ) + 1 | α < δ}) ≤ o

~U(c∗δ)

�

We would like to define Mf [~U ] for some suitable f , to be the forcing which construct a
continuous sequence with orders as prescribed by f .

Definition 5.5 Let f : λ+1→ κ be suitable for κ, define the forcing Mf [~U ], the conditions
are functions F , such that:

1. F is finite partial function, with Dom(F ) ⊆ λ+ 1. such that λ ∈ Dom(F ).

2. For every i ∈ Dom(F ) ∩ Lim(λ+ 1):

(a) F (i) = 〈κ(F )
i , A

(F )
i 〉.

(b) o
~U(κ

(F )
i ) = f(i).

(c) A
(F )
i ∈ ∩~U(κi).

(d) Let j = max(Dom(F ) ∩ i) or j = −1 if i = min(Dom(F )), then for every
j < k < i, f(k) < f(i).

3. For every i ∈ Dom(F ) \ Lim(λ)

(a) F (i) = κ
(F )
i .

(b) o
~U(κ

(F )
i ) = f(i).

(c) i− 1 ∈ Dom(F ).

4. The map i 7→ κ
(F )
i is increasing.

Definition 5.6 The order of Mf [~U ] is defined as follows F ≤ G iff

1. Dom(F ) ⊆ Dom(G).

2. For every i ∈ Dom(G), let j = min(Dom(F ) \ i).
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(a) If i ∈ Dom(F ), then κ
(F )
i = κ

(G)
i , and A

(G)
i ⊆ A

(F )
i .

(b) If i /∈ Dom(F ), then κ
(G)
i ∈ A(F )

j , and A
(G)
i ⊆ A

(F )
j .

A straight forward verification shows that

Proposition 5.7 Mf [~U ] is a forcing notion.

Note that if f : κ + 1 → κ, defined by f(α) = oL(α) (see footnote 5). Then Mf [~U ] is

isomorphic to M[~U ].8

Similar to M[~U ], we have a decomposition A
(F )
i =

⊎
j<o~U (κ

(F )
i )

A
(F )
i,j . Also we have the

notation Fa~α which we generalize from M[~U ].

Proposition 5.8 Let H ⊆Mf [~U ] be a V -generic filter. Let

C∗H = {κ(F )
i | i ∈ Dom(F ), F ∈ H}

Then

1. otp(C∗H) = λ+ 1 and C∗H is continuous.

2. For every i < λ, o
~U(C∗H(i)) = f(i).

3. V [C∗H ] = V [H].

4. For every δ ∈ Lim(λ), and every A ∈ ∩~U(δ), there is ξ < δ such that C∗ ∩ (ξ, δ) ⊆ A.

5. For every ρ < λ, H � ρ := {F � ρ | F ∈ H} is V -generic for Mf�ρ[~U ].

Proof. To see (1), let us argue by induction on i < λ The set

Ei = {F ∈Mf [~U ] | i ∈ Dom(F )}

is dense. Let F ∈Mf [~U ], if i ∈ Dom(F ) we are done. Otherwise, let

jM := min(Dom(F ) \ i) > i > max(Dom(F ) ∩ i) =: jm

By condition 3, jM ∈ Lim(λ + 1). Split into two cases. First, if i is successor, then we can
find F ≤ G such that i − 1 ∈ Dom(G) by induction hypothesis. by condition 2.d and 2.b,

8Compare with proposition 2.19
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f(i) < o
~U(κ

(F )
jM

). By condition 2.c, we can find α ∈ A(F )
jM

such that α > κijm , o
~U(α) = f(i)

and A
(F )
jM
∩ α ∈ ∩~U(α). Then

G′ = G ∪ {〈i, 〈α,A(F )
jM
∩ α〉〉}

is as wanted. If i is limit, since f is suitable, there is i′ < i, such that for every i′ < k < i,
f(k) < f(i). Again by induction, find F ≤ G such that i′ ∈ Dom(G). Then the desired
G′ is construct as in successor step. Denote by FH , the function with domain λ + 1, and
FH(i) = γ, be the unique γ such that for some F ∈ H, i ∈ Dom(F ) and κ

(F )
i = γ. Then it

is clear that FH is order preserving and 1− 1 from λ To C∗H . By the same argument as for

M[~U ], we conclude also that FH is continuous.

For (2), note that C∗H(i) = FH(i), thus there is a condition F ∈ H such that F (i) = C∗H(i).

Hence o
~U(C∗H(i)) = f(i) by the definition of condition in Mf [~U ].

For (3), as for M[~U ], we note that H can be defined in terms of C∗H as the filter HC∗H
of

all the conditions F ∈Mf [~U ] such that for every i ≤ λ,

1. If i ∈ Dom(F ), then κ
(F )
i = C∗H(i).

2. If i /∈ Dom(F ), then C∗H(i) ∈ ∪
i∈Dom(F )

A
(F )
i .

(4) is again the standard density argument given for M[~U ].

As for (5), note that the restriction function φ : Mf [~U ] → Mf�ρ[~U ] is a projection of
forcings which suffices o conclude (5).�

The following theorem is a Mathias criteria for Mf [~U ].

Theorem 5.9 Let f : λ→ κ be suitable, and let C ⊆ κ be such that:

1. otp(C) = λ and C is continuous.

2. For every i < λ, o
~U(Ci) = f(i).

3. For every δ ∈ Lim(λ), and every A ∈ ∩~U(Cδ), there is ξ < δ such that C ∩ (ξ, δ) ⊆ A.

Then There is a generic H for Mf [~U ] such that C∗H = C.

Proof.

Define HC to consist of all the conditions 〈F,A〉 such that for every i ∈ Dom(F ):

33



1. F (i) = (C)i.

2. C \ {κ(F )
i | i ∈ Dom(F )} ⊆

⋃
i∈Dom(F )

A
(F )
i .

We prove by induction on sup(C) = κ that HC is V -generic. Assume for every ρ < κ and
any suitable function g : λ→ ρ, every C ′ satisfying (1)− (3) the definition of HC′ is generic.
Let f, C as in the theorem. For every δ < κ, by definition, HC � δ = HC�δ. Hence by the
induction hypothesis HC � δ is generic. Obviously condition (1) insures that C∗HC = C. Also
it is a straight forward verification that HC is a filter. Let D be a dense open subset of
Mf [~U ].

Claim 1 For every F ∈Mf [~U ], there is F ≤ GF such that

1. max(Dom(F ) ∩ λ)) = max(Dom(GF ) ∩ λ).

2. There is are i
(F )
1 < ... < i

(F )
k such that every 〈α1, ..., αk〉 ∈

∏k
i=1A

(F )
λ,i , GaF 〈α1, .., αn〉 ∈

D.

Proof. For every i1 < ... < ik < o
~U(κ) and every F ≤ G such that

max(Dom(F ) ∩ λ) = max(Dom(G) ∩ λ and G(λ) = F (λ)

consider the set

B = {~α ∈
k∏
j=1

A
(F )
λ,ij
| ∃R.Ga~α ≤∗ R ∈ D}

Then

B ∈
k∏
j=1

U(κ, ij) ∨
k∏
j=1

A
(F )
λ,ij
\B ∈

k∏
j=1

U(κ, ij)

Denote this set by B′. Find Bij ∈ U(κ, ij) such that
∏k

j=1Bij ⊆ B′. Let A∗G,i1,..,in be the

set obtained by shrinking A
(F )
λ,ij

to Bij . Since o
~U(κ) < κ the possibilities for G and i1, ..., in

is less than κ. So by κ-completness

A∗ = ∩G,i1,..,inA∗G,i1,...,in ∈ ∩~U(κ)

Let F ≤∗ F ∗ be the condition obtained by shrinking A
(F )
λ to A∗. By density, there is G ≥ F

such that G ∈ D. So there is ~α ∈ [A∗]<ω such that

(G � max(Dom(F ) ∩ λ) ∪ {〈λ, 〈κ,A∗})a~α ≤∗ G
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Hence for every ~β from the mesures of ~α, there is

G~β ≥
∗ (G � max(Dom(F ) ∩ λ) ∪ {〈λ, 〈κ,A∗})a~β

in D. Amalgamate all the G~β’s to a single G∗. Then G∗ is as wanted.�

For every F , pick GF and AF . Let A∗ = ∆FAF . There is ξ < κ such that C∩(ξ, κ) ⊆ A∗.
Let F be a function in HC such that for some i ∈ Dom(F ), F (i) > ξ. To see that there is
such a condition, pick any δ ∈ C \ ξ. Use the induction hypothesis, and find F ∈ XC such
that F � δ ∈ HC � δ.

By the claim, The set

E =
{
F ∈Mf�ξ[~U ] | ∃i1 < ... < ik. ∀~α ∈

k∏
j=1

A∗ij . G
a
F ~α ∈ D

}
is dense. Find G∗ ∈ HC � ξ ∩ E. We can find in the upper part c1 < c2, ... < cn ∈ C ∩ A∗
such that cj ∈ A∗ij . Thus

(G∗ ∪ {〈λ, 〈κ,A∗〉〉})a〈c1, .., cn〉 ∈ HC ∩D

And HC is generic.

Theorem 5.10 Let G ⊆ M[~U ] be generic and let C∗ ⊆ CG be any closed subset. Let f be

the suitable function derived from C∗. If f ∈ V , then there is a generic H for Mf [~U ] such
that C∗H = C∗.

Proof. since CG satisfy the Mathias criteria, also does C∗.�

We will now prove that any transitive ZFC intermediate model V ⊆ M ⊆ V [G] is a
generic extension of a finite iteration of the form

Mf1 [~U ] ∗M
∼
f2 [~U ]... ∗M

∼
fn [~U ]

We start with M = V [C ′], then find a closed C∗ such that V [C ′] = V [C∗]. Let λ0 = κ,
recursively define λi+1 = otp(CG ∩ λi) < λi. After finitely man steps we reach λn ≤ CG(ω),
denote κi = λn−i. Consider

〈o~U(x) | x ∈ C ∗ ∩(κn−1, κn)〉

This is added by a generic E ⊆ CG ∩ κn−1 Find a closed C∗n−1 ∈ V [C∗] such that V [C∗n−1] =
V [E,C∗ ∩ κn−1]. Now consider

〈o~U(x) | x ∈ C∗n−1 ∩ (κn−2, κn−1)〉
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There is a closed generic C∗n−2 ∈ V [C∗n−1] such that

V [C∗n−2] = V [C∗n−1, 〈o
~U(x) | x ∈ C∗n−1 ∩ (κn−2, κn−1)〉]

In a similar fashion we find after finitely many steps, 〈o~U(x) | x ∈ C∗0〉 ∈ V . Define

Cfin = C∗0 ∪ (C∗1 \ κ0) ∪ (C∗2 \ κ1)....(C∗ \ κn−1)

Then C∗fin is a closed, and have the property that for every i ≤ n,

〈o~U(x) | x ∈ C∗fin ∩ [κi−1, κi)〉 ∈ V [C∗fin ∩ κi−1]

Also V [C∗fin] = V [C∗] = M .

Theorem 5.11 Let fi be the derived suitable function from o
~U ′′ [C∗fin ∩ (κi−1, κi)]. Then:

1. fi ∈ V [C∗fin ∩ κi−1]. Therefore Mfi [
~U ] is defined in V [C∗fin ∩ κi−1]

2. There is a V [C∗fin ∩ κi−1]-generic filter H ⊆Mfi [
~U ] such that

V [C∗fin ∩ κi−1][H] = V [C∗fin ∩ κi−1][C∗fin ∩ [κi−1, κi)] = V [C∗fin ∩ κi]

3. Let
∼
fi be a (Mf1 [~U ] ∗M

∼
f2 [~U ]... ∗M

∼
fi−1

[~U ])-name for fi, then there is a V -generic H∗

for Mf1 [~U ] ∗M
∼
f2 [~U ]... ∗M

∼
fn [~U ] such that V [H∗] = V [C∗fin] = M .

Proof. (1) is clear by the construction of Cfin, and the fact that fi is definable from o
~U ′′ [C∗fin∩

(κi−1, κi)].

For (2), we use theorem 5.10.

(3) follows by (2) and by the definition of iteration.�
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