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Abstract

We continue the work done in [3],[1]. We prove that for every set A in a Magidor-

Radin generic extension using a coherent sequence such that OU(H) < kK, there is a
subset C” of the Magidor club such that V[A4] = V[C’]. Also we classify all intermediate
ZFC transitive models V.C M C VI[G].

1 Introduction

In this paper we consider the version of Magidor-Radin forcing for O[j(li) < Kk, but prove
results for oV (k) < k. Section (2), will also be relevant to the forcing in Part II.

In [1], we assumed that oY (k) < Jy := min(a | 0 < 0”(a)). When we let oY (k) > &,
we might loss completness for some of the pairs in a condition p. For example, if p =
({00, Ao), (K, A1)), we wont be able to take in account all the measures on k, since there are
0o many of them and only dp-completness. The proof is by induction on x. We will be to

split M[U] to the part below oY (k) and above it, then some but not all of the arguments of
[1] generalizes.

The main result we obtain in this paper is:

Theorem 1.1 Let U be a coherent sequence such that oﬁ(/{) < k. Then for every V -generic
filter G C M[U], and every A € V[G], there is C' C Cq such that V[A] = V[C"].
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In the theorem, Cs denotes the generic Magidor-Radin club derived from G.

Note that the classification we had in [1] for models of the form V[C’], do not extend,
even if oY (k) = do.

Example 1.2 Consider C¢ such that Cg(w) = dy and oﬁ(m) = . Then in V[G] we have
the following sequence C" = (Cg(Cg(n)) | n < w) of points of the generic Ci which is
determine by the first Prikry sequence at 4.

Then I(C",Cq) = (Ca(n) | n < w) ¢ V, where I(X,Y) is the indices of X C Y in the

increasing enumeration of Y.
The forcing M;[U] which was defined in [1], is no longer defined in V since I ¢ V.

In this case, we will add points to C’, which are simply (Cg(n) | n < w), then the
forcing will be a two step iteration. The first will be to add the Prikry sequence (Cg(n) |
n < w), then the second will be a Diagonal Prikry forcing adding point from the measures
(U(k,Ca(n)) | n < w), which is of the form M;[U].

— —

Generally, we will define forcing M¢[U], which are not subforcing of M[U], but are a natural

—

diagonal generalization of M[U] and a bit closer to Magidor’s original formulation in [5].

The classification of models is given by the following theorem:

Theorem 1.3 Assume that for every a < k, oV(a) < a. Then for every V-generic filter

—

G C M[U] and every transitive ZFC' intermediate model V- C M C VG|, there is a closed
subset C'yiy,, € C such that:

1. M =V|[Cji).

2. There is a finite iteration My, [U] My, [U]... * My, [U], and a V-generic H* filter for

— —

My, [U] % My, [U]... % My, [U] such that V[H*] = V[Cyi] = M.

2 Basic Definitions and Preliminaries

We will follow the description of Magidor forcing as presented in [2].

Let U = (Ula,p) |la<k,p< 00(04)> be a coherent sequence. For every a < k, denote

NU(e)= () Ulei)

i<o¥ ()
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—

Definition 2.1 M[U] consist of elements p of the form p = (ty,...,t,, (k, B)). For every
1 <i <, t; is either an ordinal &; if oY(k;) = 0 or a pair (k;, B;) if oY(k;) > 0.

1. BenU(k), min(B) > k,.
2. For every 1 <i <n.

(a) (K1,..., kn) € [K]<¥ (increasing finite sequence below k).
(b) B; € NU (k).
(¢) min(B;) > k-1 (1> 1).

Definition 2.2 For p = (t1,t3,....,t,, (k, B)),q = (51, ..., $m, (K, C)) € M[ﬁ] , define p < ¢
(q extends p) iff:

1. n <m.
2. BDOC.

3. d1 <1 < ... <1, <m such that for every 1 < j < m:

(a) If 31 <r < n such that i, = j then x(t,) = k(s;,) and C(s;,.) C B(t,).
(b) Otherwise 3 1 < r < n+ 1 such that i,_; < j <4, then

i. k(s;) € B(t,).

ii. B(s;) C B(t,) N k(s;j).

iii. 0¥ (s;) < oV(t,).

We also use "p directly extends q”, p <* ¢ if:

Let us add some notation, for a pair t = (a, X) we denote by k(t) =, B(t) = X. If t = «
is an ordinal then k(t) = o and B(t) = ().

For a condition p = (t1,.... t,, (k, BY) € M[U] we denote n = I(p), p; = t;, Bi(p) = B(%;)
and r;(p) = k(t;) for any 1 <@ < I(p), tipy41 = (K, B), to = 0. Also denote

k(p) = {ri(p) | i < U(p)} and B(p) = | J Bilp)

i<l(p)+1



Remark 2.3 Condition 3.b.iii is not essential, since the set

{peMl] | vi <1(p) + 1¥a € Bi(p)-o (a) < o (x:(p) |

—

is a dense subset of M[U] and the order between any two elements of this dense subsets
automatically satisfy 3.b.iii.

Definition 2.4 Let p € M[U]. For every i < I(p)+ 1, and a € B;(p) with o”(a) > 0, define
p{@) = (1, - picrs (@, Bi(p) D), (ki(p), Bi(p) \ (@ + 1)), i, s Pupy 1)
If oﬁ(a) = 0, define
p{a) = (p1, ., pic1, o, (Ri(p), Bi(p) \ (@ + 1)), ..., Digpy+1)
For (ay,...,ap) € [K]<* define recursively,
P, o) = (p7 {an, s 1) (o)

Proposition 2.5 Let p € M[(j] Ifp~a e M[(j], then it is the minimal extension of p with
stem

k(p) U{dy, ..., da}
Moreover, p~a € M[U] iff for every i < |@| there is j < I(p) such that:

1. d@; € (k(p), Kjr1(p))-
2. 0[7(0_22') < Olj(’fj—&-l)'

3. Bj(p)Na; e NU(a;).

Note that if we add a pair of the form (o, B N «a) then in B N « there might be many

ordinals which are irrelevant to the forcing. Namely, ordinals 3 with 0[7(5) > oﬁ(a), such
ordinals cannot be added to the sequence.

Definition 2.6 Let p € M[U], define for every i < I(p)
p I Ki(p) = (pr, - pi) and p | (Ki(p), &) = (Pit1, -, Pipy+1)
Also, for A with 0(7(/\) > 0 define

MUl TA={p | A|peM[U] and X apears in p}

M[U] | (A, k) = {p | (\, &) | p € M[U] and X apears in p}
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— — —

Note that M[U] | A is just Magidor forcing on A and M[U] | (A, k) is a subset of M[U]. The
following decomposition is straight forward.

—

Proposition 2.7 Let p € M[U] and (A, B) a pair in p. Then

M(0]fp = (MIT] 1A)/(p 1A)  (MIO)T O, m))/ (21 (A ))

—

Proposition 2.8 Let p € M[U]| and (\, B) a pair in p. Then the order <* in the forcing
<M[(7] (A, fi))/(p (A, /4;)) is §-directed where 6 = min(v > \ | 0[7(1/) > 0). Meaning that

—

for every X C M[U] | (A, k) such that | X| < § and for every q € X, p <* q, there is an
<*-upper bound for X.

—

Lemma 2.9 M[U] satisfy k*-c.c.

The following is known as the Prikry condition:

—

Lemma 2.10 M[U] satisfy the Prikry condition i.e. for any statement in the forcing lan-
guage o and any p € M[U] there is p <* p* such that p*||o i.e. either p* Ik o orplk —o.

The next lemma can be found in [5]:

—

Lemma 2.11 Let G C M[U] be generic and suppose that A € V|G| is such that A C V.
Let p € G and (A, B) a pair in p such that o < A, then A € V[G | A].

— —

Proof. Consider the decomposition 2.7 p = {(q,r), where ¢ € M[U] [ XA and r € M[U] | (), k)
Work in V[G | A], Let A be a MI[U] | (A, &)-name for A. For every z € V,, use the Prikry
condition 2.10, to find r <* r, such that r, decide the statement r € A. By definition
of A and proposition 2.14, the forcing M[U] | (A, &) is |Va|*-directed with the <* order.
Hence there is r <* r* such that p, <* p* for every = € V,,. By density, we can find such

€ G [ (A k). It follows that A = {z € V, | r* |-z € A} is definable in V[G | \].B

—

Corollary 2.12 MJU| preserves all cardinals.
Definition 2.13 Let G C M[U] be generic, define the Magidor club
Coe={v|3AIJp e G st (vA) cp}
We will abuse notation by sometimes considering C¢ as a the canonical enumeration of the

set Cg. The set Cg is closed and unbounded in x, therefore, the order type of C¢ determines
the cofinality of x in V[G]. The next propositions can be found in [2].



Proposition 2.14 Let G C M[U] be generic. Then G can be reconstructed from Cg as
follows

G = {peM[U] | (k(p) € Cq) A (Ca \ k(p) C B(p))}
In particular V[G] = V[Cq].

Proposition 2.15 Let G C M[U] be generic.

1. Cgq is a club at k.

2. For every 0 € Cg, oﬁ(é) > 0 iff § € Lim(Cg).

3. For every 6 € Lim(Cg), and every A € ﬂ[j(é), there is & < § such that Cg \ £ C A.

4-1f (0; | i < 0) is an_increasing sequence of elements of Cq, let 6° = sup;o0;, then
oY (6*) > limsup,_, 0" (8;) + 1.1

5. Let § € Lim(Cg) and let A be a positive set, A € (NU(6))*. ie. K\ A ¢ NU(k). 2
Then, sup(ANCg) = 6.

6. If ACV,, then A€ V[CqNA|, where A = max(Lim(Cg) N+ 1).

7. For every V-regular cardinal o, if cfVI%(a) < a then a € Lim(Cg).

Proof. (1),(2),(3) can be found in [2].

To see (4), use closure of Cg, and find ¢ € G such that ¢* appears in ¢. Since there are
only finitely many ordinals in g, there is some ¢ < 6 such that for every j > 4, J; does not
appear in g. By 2.2, since every such d, appear in some ¢; € G which is compatible with ¢,
oﬁ(éj) < 0[7(5*). Hence

lim sup oﬁ(éj) + 1 < sup(lim sup oﬁ(dj) +1< 0(7(6*)
j<6 1<j<6
For (5), let p < §. Each condition p, such that § = k;(p) for some i < [(p) + 1, must satisfy
that sup(A N B;(p)) = ¢. Hence we can extend p using an element of AN B;(p) above p. By
density, sup(A N Cg) > p. Since p is general, sup(A N Cg) = 0.

(6) is a direct corollary of 2.11. As for (7), assume that cfVI%(a) < a, and let X C a be
a club such that otp(X) = cfVI%(a). Then X € V[G]\ V. Let A\ = max(Lim(Cg) Na + 1),
then A < a. By (6), X € V[Cs N A]. Toward a contradiction, assume that A < «, The the
forcing M[U] | A is a-c.c., but ¢fVIM(a) < a, contradiction. M

The Mathias-like criteria for Magidor forcing is due to Mitchell [6]:

'For a sequence of ordinals (p; | j < 7), lim SUp, ., pj = Min(sup,;p; [ i < 7).
2Equivalently, if there is some i < oY (k) such that A € U(k,1).
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Theorem 2.16 Let U be a coherent sequence and assume that ¢ : o — Kk is an increasing

—

function. Then c is M[U] generic iff:

1. c 15 continuous.
2. ¢c|pis M[U' I 5] generic for every B € Lim(a).

3. XenUk) iff3B<rc\pBCX.

An equivalent formulation of the Mathias criteria is to require that for every § € Lim(a),

and for every X € NU(c(B)), there is € < 3 such that ¢’(¢,3) C X.

For an additional proof of 2.16, We refer the reader to the last section, where we define

— —

a forcing notion M¢[U], which generalizes M[U], and prove in 5.9 a Mathias-like criteria for
it.

—

Proposition 2.17 Let G C M[U] be V-generic filter and Cg the corresponding Magidor
sequence. Let p € G, then for every i <l(p) + 1

1. [f Oﬁ(m(p)) < Kfi<p)7

otp([#i-1(p), Ki(p)) N C) = w?" :®)

2. If oY (kilp)) > Kilp), then

otp([ki—1(p), ki(p)) N Cq) = Ki(p)

Proof. we prove (1) by induction on x;(p). If k;(p) = 0, then CaNk;—1(p), ki(p)) = {Ki—1(p)}.
Hence

otp(Ce M [i-1(p), Ki(p))) = 1 = W = w?" (5:®)

Assume the lemma holds for any § < x;(p). If oﬁ(mi(p)) = a+ 1 < Ki(p), then the set
X ={B < ri(p) | oY(B) = a} € U(ki(p), a), hence by proposition 2.15,

sup(X N Cq N [ki—1(p), ki(p))) = Ki(p)

We claim that otp(X N Cq N [ki—1(p), ki(p)) = w. Otherwise, let p < k;(p) be such that p is
a limit point of X N Cq N [k;—1(p), ki(p)). Again by proposition 2.15,

o’ (p) > limsup(o” (€) | € € X N Cq N [ki1(p), ki(p))) = a4+ 1



Contradicting 2.2. Let (0, | n < w) be the increasing enumeration of XNCeN[ki—1(p), K:i(p))-
By induction hypothesis, for every n < w, otp(Cg N [y, 6nt1)) = w®. Hence,

oD 0 a1, ) = 0

For limit 0[7</€i(p)), use proposition 2.15.5, to see that the sequence (0, | @ < oﬁ(ﬁi(p)))
where

0 = min(p € Cg N i1 (p), i(p)) | 07 (p) = @)
is well defined. z = sup(d, | @ < ) < k;(p) is an element of Cg, and by proposition 2.15.4,
oﬁ(x) > 0[7<l€i<p)), hence z = k;(p). For every a < Oﬁ(lii(p)), otp(Ca N [ki(p), 0a)) = w?,
since p~(0q) € G and by induction hypothesis. It follows that

e OU Ki
Otp(CGm[’%i—l(p)a ’fz(p)) = Supa<00(,{i(p))(Otp(CG’m[/fi—l(p)a 5(1)) = Supa<ol7(,$i(p))w =w (r4(P))
For (2), use (1), and the limit stage to conclude that if 0(7(/@- (p)) = Ri(p), then

otp(Ca N [Ki—1(p), ki(p)) = Ki(p)

If oﬁ(m(p)) > k;(p), then {a < k;(p)) | oﬁ(a) = a} € U(ki(p), ki(p)), hence by proposition
2.15, there are unboundedly many « € Cg N [k;_1(p), ki(p)) =: Y such that oY(a) = a.
Hence

ri(p) = sup(Y) = sup(otp(Ce N [ri-1(p), @) | € V) < ki(p)
So equality holds.l

Proposition 2.17 suggest a connection between the index in Cg of ordinals appearing in
p and Cantor normal form.

Definition 2.18 Let p € G. For each ¢ < [(p) define
y(p) =" W% (55 ()
j=1

Corollary 2.19 Let G be M[ﬁ]—generie and Cg the corresponding Magidor sequence. Let
p € G, then for every 1 < i <I(p)

plF Ca(vilp)) = K(t:)

Proof. This is directly from 2.17.1
For more details and basic properties of Magidor forcing see [5],[2] or [1].

We are going to handle subsequences of the generic club, the following simple definition
will turn out being usefull.



Definition 2.20 Let X, X’ be sets of ordinals such that X’ C X C On. Let a = otp(X, €)
be the order type of X and ¢ : @ — X be the order isomorphism witnessing it. The indices
of X" in X are

(X' X)=¢7"X' = {B<a|épB) e X'}

In the last part of the proof we will need the definition of quotient forcing.

Definition 2.21 Let ¢’ be a M[U]-name such that C% = C’. Define Pcr, the complete

—

subalgebra of RO(M[U]) generated by the conditions X = {||la € C'|| | « < k}.

By [4, 15.42], V[C'] = V[H] for some V-generic filter H of Pg/. In fact

C'={a<kl||leel||e XNH}

Definition 2.22 Define the function m : M[U] — Po by

It not hard to check that 7 is a projection i.e.

1. 7 is order preserving.
2. Vp € M[UVr(p) < ¢3p' > pr(p)) > q.
3. I'm(r) is dense in Per.
Definition 2.23 Let 7 : P — Q be any projection, let H C Q be V-generic, define

P/H=n"H

We abuse notation by defining M[U]/C" = M[U]/H, where H is some generic for P¢r such
that V[H] = V[C’]. It is known that if G is V[C']-generic for M[U]/C’ then G is V generic

—

for M[U] and 7”G = H, hence V[G] = V[C"][G].

3 Magidor forcing with Oﬁ</{)> <K

—

Proposition 3.1 Assume that 0[7(,%) < k. Let G C M[U] be a V-generic filter, and let
p € G. Then otp(Cq N (ki) (p), k) = w® ¥, Hence, cfVI (k) = cfV1¢ (w?” (),



Corollary 3.2 1. If Oﬁ(fﬁ) < K, then k is singular in V|[G].

2. If oY (k) = &, then cfVI (k) = w.

Proof. (1) is direct from proposition 3.1. For (2), The set E = {a < r | o¥(a) < a} € NU (k).
Hence, by proposition 2.15 find p < & such that Cg \ p C E. In V[G] consider the sequence:
ap = min(Cq \ p), then a1 = Cg(ay,). This is a well defined sequence of ordinals below
k since otp(Cg) = k. Also, since {o < k | w* = a} € NU(k), there is n < w, such that for

—

every m > n, oV (pmi1) = Q.

To see that o* := sup,.,a, = K, assume otherwise, then by closure of Cg, a* € Cq.
U
0

Also o* > p, hence 0" (a*) < a*. By proposition 2.15.4,

oﬁ(a*) > lim sup oﬁ(an) + 1 =sup, . ,0n =«
n<w

*

contradiction.ll
If Oﬁ(l-i) < k. We can decompose every set A € NU (k) in a very canonical way:

Proposition 3.3 Assume that oY (k) < k. Let A € NU (k).

1. For every i < k define A; ={v € A|oY(v) =1i}. Then A= 4§ A; and A; € U(k, 7).

1<K
2. There exists A* C A such that:
(a) A* € NU (k)
(b) For every 0 < j < oY (k) and o € A5, A Na e NU ().

Proof. 1. Note that X; := {v < &
Moreover, every a < k must satisfy o
Q. B

2. For any i < oY(k),

oU(v) =i} € Uk,i) and A; = X; N A € Ulr, i).
)

. «
o) < K, since there are at most 22” < k measures on

|
“(

Ult(vv U(K,,j)) ): A= jU(H,j)(A) Mk € ﬂU(Hv Z)
i<j
Coherency of the sequence imply that A’ := {o < k | AN € NU(a)} € Uk, j), this is for
every j < oﬁ(m).
Define inductively A® = A, A"+D) = A" By definition, Ya € Agnﬂ), A o enl(q).
Define A* = (| A™ ¢ NU (k), this set has the required property. H

n<w
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3.1 Extention Type

Definition 3.4 Let p € M[U]. Define

1. For every ¢ <l(p)+ 1, let B; ;(p) = Bi(p) N X, where X; := {a < & | oV (a) = j} are
the sets defined in 3.3.

2. Ex(p) = Hig“[oﬁ(/{i(p))][@] ( [N]'<¢l is the set of finite, not necessarily increasing

sequences in \).

3. If X € Exz(p), then X is of the form (Xj,..., X,,41). Denote z;;, the j-th element of
X;, for 1 < j < |X;| and me(X) is the last element of X.

4. Let X € FEx(p), then

I(p)+1]| X,

)
a= <0717 "'7041(173+1> € H HBi,mi,j (p) = X(p)

i=1 j=1

call X an extension-type of p and & is of type X, note that @ is an increasing sequence
of ordinals.

The idea of extension types is simply to classify extensions of p according to the measures
from which the ordinals added to the stem of p are chosen. Note that if oV (x) = X\ < x then

there is a bound on the number of extension types, |Ex(p)| < min(rv > A | 0(7(1/) > 0).

—

By proposition 3.3 any p € M[U] can be extended to p <* p* such that for every X €

—

Ex(p) and any @ € X (p), p~@ € M[U]. Let us move to this dense subset of M[U].

— —

Proposition 3.5 Let p € M[U] be any condition and p < q € M[U]|. Then there exists
unique X € Ex(p) and & € X (p) such that p~d <* q. Moreover, for every X € Ex(p) the
set {p~a | ad e X(p)} form a mazimal antichain above p.

Proof. The first part is trivial. We will prove that {p~a | & € X(p)} form a antichain above
p, by induction on |X|. For |X| = 1, we merely have some X (p) = B;¢(p) € U(ki(p),&).
To see it is an antichain, let 51 < [ are in X(p). Toward a contradiction, assume that
p~B1,p" B2 < ¢, then B appear in a pair in ¢ and is added between k;_1(p) and f33, so by
definition 2.2, it must be that £ = oﬁ(ﬁl) <o (62) = & contradiction.

To see it is maximal, fix ¢ > p and let @ be such that p~a <* ¢q. Consider the type of &,

Y € Ex(p)
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, then @ € Y(p). In Y] let j be the minimal such that y; ; > £. If y; ; = € then ¢ > p™(a; ;) €
X(p) and we are done. Otherwise, y; ; > &, then one of the pairs in ¢ is of the form («; ;, B)
where B € ﬂU(am) and B C B;(p). Any o € BN B;¢(p), will satisfy that p™(a) € X(p)
and p~(a),q < ¢ ().

Assume that the claim holds for n, and let X € Ex(p) be such that |X| = n + 1. Let
a8 e X (p) be distinct, if for some > T # mc(X) we have a; ; # B ; apply the induction to
X \me(X) to see that p~a\ a*, p ~3 \ /* are incompatible, hence p~a ,p~ 3 are incompatible.
Ifa\ o = 5\ B*, then a* # * and by the case n = 1 we are done. To see it is maximal,
let ¢ > p apply the induction to X \ me(X) to find & € [X \ me(X)](p) such that p~d is
compatible with ¢ and let ¢’ be a common extension. Again by the case n = 1, there is
(o) € me(X)(p~d) such that p~ad™(a) and ¢ are compatible. B

Definition 3.6 Let Uy, ...,U, be ultrafilters on a x; < ... < K, respectively, define recur-
sively the ultrafilter [;_, U; over [[}_, i, as follows: for B C [[}_, &;

Be[[Ui+ {1 <1 |Ba € [[Ui} €U

i=1 i=2
where B, = BN <{a} x T, /'ii>.

Proposition 3.7 If Uy,...,U, are normal 0-complete ultrafilter, then [[;_, U; is generated
by sets of the form Ay x ... x A, (increasing sequences of the product) such that A; € U;.

Proof. Directly from the definition of normality.ll

Every X € Ex(p) defines an ultrafilter

Note that X(p) € [j(X, p) by the definition of the product. Fix an extension type X of p,
every extension of p of type X correspond to some element in the set X (p) which is just a
product of large sets.

Let us state here some combinatorical properties, the proof can be found in [1].

Lemma 3.8 Let k1 < ko < ... < K, be a non descending finite sequence of measurable

n
3 over them respectively. Assume F : [[ A; —

i=1

cardinals and let Uy, ..., U, be normal measures

3A measure over a measurable cardinal A is a A-complete non trivial ultrafilter over \.
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v where v < Ky and A; € U;. Then there exists H; C A;, H; € U; such that [[H; is
i=1

homogeneous for F i.e. |[Im(F | [[H;)| = 1.
i=1

Let F': [, A; = X be a function, and I C {1,...,n}. Let

n

(HAi>I:{& [ 1|ae HAz}

i=1
For & € ([, Ai)r, define F;(d'") = F(&) where @ | I = &. With no further assumption,
Fr is not a well define function.
Lemma 3.9 Let k1 < Ky < ... < Ky, be a non descending finite sequence of measurable
cardinals and let Uy, ..., U, be normal measures over them respectively. Assume I : ﬁAi —
B where B is any set, and A; € U;. Then there exists H; C A;, H; € U; and set 1 Qz?l, wn}
such that Fr | (ﬁHi)I ; (ﬁHi)I — B is well defined and injective.

i=1

=1

Definition 3.10 Let F : [];_; A; — X be a function. An important coordinate is an index
r € {1,...,n}, such that for every @, 5 € [T, A, F(a) = F(B) — a(r) = B(r).

Proposition 3.9 insures the existence of a set I of important coordinates, such that I is
ideal in the sense that removing any coordinate defect definition of F; as a function, and
any coordinate outside of I is redundant.

We will need here another property that does not appear in [1].

Lemma 3.11 Let k1 < ke < ... < K, and 07 < 05... < 0, be a non descending finite
sequences of measurable cardinals with coresponding normal measures Uy, ....,U,, W1, ..., W,,.
Let

i=1 j=1

be functions such that X is any set, A; € U; and B; € W;. Assume that I C {1,...,n} and
J C{1,...,m} are sets of important coordinates for F, G respectively obtained by lemma 3.9.
Then there exists A} € U; and B; € W;. such that one of the following holds

1o Im(F | [[Z, A) nIm(G T T, BY) = 0.
2. (Ilizi A9 = (1132 Bj)s and Fr [ (T1Z2, A1 = Gu 1 (T2, Bj) -
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Proof. Fix F,G. without loss of generality, assume that k1 < 6. If k1 < 0y shrink the sets
so that min(B;) > k1. By induction on (n,m) € N2.

Case 1: Assume that n =m =1, define
Hl : Al X Bl — {Oa1}7 H(O{,B) =1 <:>>17(C“/) = G(ﬁ)

By 3.8, shrink A;, By to A}, By so that H; are constant with colors ¢;. If ¢; = 1 by fixing
a we see that G is constant on Bj with some value v. It follows that J = (). Also F is
constant since for every o € A| we can take § > « and F(«) = G(f) = . Hence I = () and
Fy 1 (A)o =Gy | (By)p ={()}. Assume that ¢; = 0, then for every a € A}, € Byifa < f3
then Hi(«, 5) = 0, this suffices for the case k; < ;. If k1 = 60, define

Hy: By x Ay —{0,1} Hy(B,a) =1« F(a)=G(p)

Again shrink the sets so that Hy is constantly co € {0,1}. The case ¢ = 1 is similar to
¢; = 1. Assume that ¢y = 0, hence if § < «a then Hy(8,a) = 0, it follows that F'(«) # G(5).
If Uy # W then we are done since we can separate A, B} and conclude that

Im(F | A)NIm(G | By) =10
If U; = W, then define
Hy: AiNnB] —{0,1}, Hi(a)=1<% F(a)=G(a)

Again by 3.8 we can assume that Hj is constant on A*, if that constant is 1 then we have

F A" =G| A* (in particular [ = J = {1} and F; [ (A*); = G; | (A*),) otherwise,
Im(F | A )YNIm(G | A*) =10
Case 2: Assume (n,m) >rpx (1,1) If n =1, define

leAlxﬁBj%{O,l}, Hi(a,f) =14 F(a) = G(F)

j=1

Shrink the sets so that H; is constantly c;. As before, if ¢; = 1 then F, G are constant on
large sets, thus I = J = () and we are done. Assume that ¢; = 0. If n > 1, for a € A; define

the functions .

Fo:[JAi\(@+1) = X, F.(d) = F(a,d)
i=2
By the induction hypothesis applied to F,,G and I \ {1}, J, we obtain

Af e U; for 2 <i <n, B;‘Eijorlgjgm

such that one of the following holds:

14



L (Il AN ngy = (IT5% B s and (Fo)ngy | (ILZs AY)ngy = Go T (TTZ BS) -
2. Im(Fy [ [Iig AY) N Im(G T TTL, BY) = 0.

Denote by i, € {1,2} the relevant case. There is A} C Ay, A € Uy, and i* € {1,2} such
that for every av € AY, i, = *. Let

Al= A A? B.= A B¢ (Since 6; > k; we can take the diagonal intersection)
acAq J acA; J

If i = 1, then (T[[_, AY)npy = (ITj%, Bf)., denote by I\ {1} = {ir, ..., i}, J = {j1, ..., Ju}-
Then necessarily, U;, = W, for every 1 < r < k. Define

Aj =B; = A, NB;

Ifi¢ Iorj¢Jthen keep Af = Aj and B; = Bj. Then ([[[_; A})nqy = (I[}2, Bj)s. Let
a,a' € A}, d e [, A} with min(&) > a, o/, then

Fo(a@) = (Fo)ny(@ [ 1) = Gu(@ [ 1) = (Fa)nuy (@ [ 1) = For (@)

From this it follows that 1 ¢ I and F; = Fpy = Gy Assume " = 2. If 0, = k1, we repeat
the same process, if m = 1 we define H, as above, if ¢c; = 1 again we are done, so we assume
that c; = 0. If m > 1 we use Gg and fix F', denoting jz the relevant case, shrink the sets
so that j* is constant. In case j* = 1 the proof is the same as i* = 1. So we assume that

—

i* = j* = 2, meaning that for every (a, @) € [[;_, A} and every (3,5) € [[]_, B} if a < 3
then (8, f) € [[-, B and by i* =2 (or ¢; = 0 if n = 1)

-,

Fa, @) = Fo(d) # G(B, 5)

Similarly, if < a then (o, a) € [], A’f and by j* = 2 (or ¢; = 0), F(a,d) # G(ﬁ,ﬁ).
Hence we are left with the case a = f.

Case 2a: Assume that U; # W; Then we can just shrink the sets A, B} so that
Al N By = 0. Together with the construction of case 2, conclude that

Im(F | ﬁA;) NIm(G | ﬁB}) —
=1 j

J=1

Case 2b: Assume that U; = WW;, then we shrink the sets so that A] = B]. If n =1
(the case m =1 is similar) let

—

Ty: Ay x [[ B = {01}, Ti(a,f) =14 F(a) = G(a,f)
j=2

15



We shrink A} and B;» so that 77 is constantly d;. If d; = 0 then we have eliminated the

-,

possibility of « = 5 and F(«a) = G(f, 5) and so we are done again we conclude that

Im(F | ﬁA;) nIm(G | [[B) =0
=1

Jj=1

If dy = 1 then F [ A} = Gy [ (4] x [[}Z, Bj)q1y- In particular J C {1}, it follows that
Fr [ (A)r =Gy I (A x [[[, B))s. I n,m > 1, for every a € A7 we apply the induction
hypothesis to the functions F,, G,, this time denot_ipg the cases by r*. If r* = 2, then we

have eliminated the possibility of F'(a,d) = G(«, ), together with i* = 2, 5% = 2 we are
done. Finally, assume r* = 1, namely that for

I'=1\{1} C{2,....,n}, J :=J\ {1} C{2,....,m}

We have
(T4 = ([ B)s and (Fo)p- | (J] ADr+ = (Ga)s- T (I B
=2 J=2 i=2 j=2
Since A} = Bj it follows that
) (T4 = ] B)ervpy and (Fo)roay T ([ ADr = (Ga)s- T (T BY)suiy
i=1 j=1 =2 =2

Since if (o)"d € (], A1,
Fropy(a, @) = (Fo) (@) = (Ga) (@) = Greupy(ev, @)

We claim that 1 € [ if and only if 1 € J. By symmetry, it suffices to prom one implication,

for example, if 1 € I, then I = I* U {1}, take & | I,& [ I € ([T, A}); which differs only at

the first coordinate, therefore F(&) # F(a'). By (x), there are 3,3 € [1:~, B; such that
Brorufiy=alladf|(Jru{l})=a I

It follows that from (x) that G(8) = F(d) # F(d') = G(f'), therefore 1 € J.

In any case, Fy | ([, A)r =G, [ ([1[2, B),. 1

4  The main result

Let us turn to prove the main result (theorem 1.1) for Magidor forcing with oﬁ(/i) < k. The
proof presented here is based on what was done in [1] and before that in [3], it is a proof by
induction of &.

16



4.1 Short Sequences

In this section we prove the theorem for sets A of small cardinality.

—

Proposition 4.1 Let p € M[U]| be any condition, X an extension type of p. For every
a € X(p) let pg >* p~a. Then there exists p <* p* such that for every f € X(p*), every
p B < q is compatible with pg -

Proof. By induction of |X|. X = (€), then U(X,p) = U(x;(p),€) and X(p) = B, ¢(p). For
each 8 € B;¢(p)

P = <<"£1(p)7 Alf>7 ) </€i—1(p)= Aiﬁ—1>u <ﬁ7 Bﬂ)? <’€i(p>’ AZIB>7 s <H7 AB>>

For j >ilet A} = mﬂeBi,g(p)Af. For j < i we can find A} and shrink B, ¢(p) to E¢ so that for
every 3 € E¢ and j < i Af = Aj. For i, first let £ = AaeBiyg(p)A?. By ineffability of x;(p)
we can find A7 C E¢ and a set B* C k;(p) such that for every 8 € A7 B* N 3 = Bs. Claim
that B* € U(k;(p),~) for every v < &,

Ult(‘/a U(Hz(p)vg)) ): B* = .jU(m‘(P)J)(B*) N ’iz(p)

and since .
{<r|B*NBenU(B)} € Ulkrilp)<)
it follows that B* € Njy (. (p)@)((j)(m(p)). By coherency B* € Ny<cU(ki(p),7). Define

i

4= B e At (UE) €0 (si(p))
<1

Let ¢ > p*~ 8 and suppose that ¢ >* (p*~ )" 9. Then every v € 7 such that v > /5 belong
to some A7\ 3 for j > i, and by the definition of these sets v € Af. If v < k;—1 then also
v € Aj for some j < i. Since 8 € E it follows that Af = Ajsoy € Af. For v € (ki_1, ),
by definition of the order we have oﬁ(fy) < OU(B) = ¢ and therefore v € A;, N B for some
n < &, but

A, NBC B NB=Bg

-,

it follows that ¢,pg are compatible. For general X, fix min(3) = 8. Apply the induction
hypothesis to p~ [ and ps to find pj >* p~ . Next apply the case n = 1 to pj and p, find

p* > p. Let ¢ > p* 5 and denote 3 = min(g) then ¢ is compatible with pj thus let ¢' > ¢, pj;.
Since ¢’ > pj and ¢ > p*“g it follows that ¢’ > pjg“g . Therefore there is ¢ > ¢/, pz- A

Lemma 4.2 Let A < &, p € M[U] | (\, k), ¢ € M[U] | A and X € Ex(p). Also. let z be an

—

ordinal M[U]-name. There is p <* p* such that

If3d e X(p*) 3p' =" pd (¢.7)|| z ThenVa € X(p*)(q,p""a)||z
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Proof. Fix p, A\, q, X as in the lemma. Consider the set
={BeX(p)| I =pF st (q.9)lz}

One and only one of By and X (p) \ By is in U(X, P). Denote this set by A’. By proposition
3.7, we can find A}, € U(aqy, ;) such that Hi(:piﬂ H‘J.):‘A'.A C A let p <* p’ be the
condition obtained by shrinking B; ;(p) to A;J so that X (p') = H”+1 HlX i A’

36 e X(p) I =p B (0. ")l &
Then 5 € By N A" and therefore By = A’ , we conclude that

VB e X(p) Ips > B (a,p5)ll &

By proposition 4.1 we can amalgamate all these pz to find p’ <* p* such that for every
B e X(p*), p B decides g, then p* is as wanted. W

Lemma 4.3 Consider the decomposition of 2.7 at some A > 0(7(/1) and let z be a M[U]-

name for an ordinal. Then for every p € M[ﬁ] I (\, k), there exists p <* p* such that for
every X € Exz(p) and g € M[U] | A the following holds:

If 3ad e X(p*) I 2" p*d (q,0)||  Then Va € X(p*) (¢,p" d)||z

Proof. Fix q € M[ﬁ] ' A and and X € Ex(p). Use 4.2, to find p <* p, x such that
If 36 € X(pgx) I 2" (pgx) ™ s.t. {q.0)|| & Then V& € X(pgx) (¢ (Pe.x)”A)|z

By the definition of A, the forcing M[U] | (\, k) is <*-max(|Ez(p)|*, [M[U] | A|T)-directed.
Hence we can find p <* p* so that for every X, q, p,x <" p*. B

Lemma 4.4 Let A € V[G] be a set of ordinals such that |A| < k. Then there exists C" C Cg
such that V[A] = V[C"].

Proof. Assume that |[A] = N < & and let § = maz(N,otp(Cg)) < k. Split M[U] as in
proposition 2.7. Find p € G such that some § < \ appears in p. The generic G also splits
to G = G X G5 where G is the generic for Magidor forcing below A\ and G above it. Let
(a; | i < N) be a M[U]-name for A in V and p € M[U] | (A, «). For every i < X find p <* p;
as in lemma 4.3, such that for every ¢ € M[U] | A and X € Ex(p) we have:

If3d e X(p;) Ip;a <" p' (q,0) || @i Then ¥Ya € X(p;) (q,p; @) || a; (%)

Since we have X-closure for <* we can find p; <* p,. Next, for every i < )\, fix a maximal
anti chain Z; C M[U] [ A such that for every ¢ € Z; there is an extension type X, ; for which
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Va € p;X,i (¢.po @) || @i, these anti chains can be found using (*) and Zorn’s lemma.
Recall the sets X, ;(ps) is a product of large sets. Define F|; : X, ;(p.) — On by

Foad) =~ & A{¢pid)lFai=75
By lemma 3.9 we can assume that there are important coordinates

I,: CA{1,...,dom(X,:(p.))}

Fix i < X, for every ¢,¢" € Z; we apply lemma 3.11 to the functions F,;, F,; and find
Ps <* g, for which one of the following holds:

L. Im(Fq,i ) A(Xqﬁiquﬁq’» NIm(Fy; | A(Xq’,iapq,q’)) =0

2. (FQ7i)Iq,i ) (A(XQ7i’vaql))]q,i = (Fq’,i)lq/,i ) (A(Xq’,ﬂpq,q’))lq/,i

Finally find p* such that for every q,¢’, p, o <* p*. By density, there is such p* € G5. We
use [,; to translate information from Cg to A and vice versa, distinguishing from [1] this
translation is made in V[G4] rather then V: For every i < X', G1NZ; = {¢;}. Use lemma 3.5,
to find D; € X, ;(p*) be such that p*~D; € Gy, define C; = D; [ I, and let C" = |J C;.

i<oV (k)
Define as in 2.20, I(C;,C") € [otp(kr)]<¥, since otp(C’) < otp(Cy) < A and V[Gy] does not
add sequences to A we have that (I(C;,C") | i < X') € V[Gy]. It follows that

(VIGI)IA] = (VIGIC i < X)] = (VG ])[C']
In fact let us prove that (C; | i < X') € V[A]. Indeed, define in V[A] the sets
M;={q€ Zi|a€Im(F,;)}
then, for any ¢,¢ € M; a; € Im(F,,) N Im(F, ;) # (. Hence 2 must hold for F,;, F; i.e.

(Fgi) 1, 1 (XgiP N1y = Fg ), , 1 (Xg (@)1,

q
This means that no matter how we pick ¢; € M;, we will end up with the same function
(Fyi)r,, [ (Xq (™)1, - In V[A], choose any ¢; € M; and let D; € F{ﬁ(ai), Cl=D; [ Iy,

Since ¢;, g, € M; we have C; = C!, hence (C; | i < X') € V[A]. We still have to determine
what information A uses in the part of Gy, namely, {q¢, | i < X'}, (I(C;,C") | i < XN) € VI]A].
This sets can be coded as a subset of ordinals below (2*)*, therefore,

{g; 11 <X} (I(C;, C7) i < X) € V[GY]
By the induction hypothesis, we can find C” C C¢, such that
Vg [ <N} (I(C, ") [ i < X)) = V[C"]
Since all the information needed to restore A is coded in C' W C”, it is clear that V[A] =

ViC"wC].
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4.2 General Subsets of &

Assume that A € V|G| such that A C k. For some A’s, the proof is similar to the one in [1]
works. This proof relays on the following lemma:

Lemma 4.5 Assume that 0(7(/4) < k andlet A € V]G], sup(A) = k. Assume that 3C* C Cg
such that

1. C* e VI[A] andVa <k ANa € V[C*]

2. cfVU(k) <k

Then 3C" C Cg such that V[A] = V[C].

Proof. Let {a; | i < \) € V[A] be cofinal in k. Since |C*| < k, by 4.4, we can find C” C Cqg
such that

In V[C"] choose for every i, a bijection 7; : 2% — PYI?l(qy). Since AN a; € V[C”] there is
9; such that m;(9;) = AN ;. Finally let C" C Cg such that

VICT=VIC", {6 |1 < N)]
We claim that V[A] = V[C’]. Obviously, C" € V[A], for the other direction,
(ANa; | i< A) = (m(d) |i < \) € V[C]
Thus A e V[C']. &
Definition 4.6 We say that A N « stabilizes, if

Jo* < k.Va< k. ANa e V[ANa'

First we deal with A’s such that A N a does not stabilize.

—

Lemma 4.7 Assume oY (k) < k, A C k unbounded in r such that AN« does not stabilizes,
then there is C" C Cq such that V][C'] = V]A].

Proof. Work in V[A], define the sequence (¢ | £ < 6):

ap=min(a | V[ANa] 2V)
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Assume that (ag | € < A) has been defined and for every £, ag < k. If A = £ + 1 then set
ay=min(a | V[ANa] D VAN )
If oy = K , then «, satisfies that
Va <k ANa e VAN ag]
Thus A N « stabilizes which by our assumption is a contradiction. If \ is limit, define
ay =sup(ag | £ < A)

if ay = k define § = X and stop. The sequence (ag¢ | £ < 6) € V[A] is a continues, increasing
unbounded sequence in . Therefore, cfVI4 (k) = cfVI4(0). Let us argue that 6 < k. Work
in V[G], for every { < 6 pick C¢ C Cg such that VAN ag] = V[C¢]. The map £ — C¢ is

injective from 6 to P(Cg), by the definition of ag’s. Since oV (k) < k, |Cg| < K, and k stays
strong limit in the genenic extension. Therefore

0 <|P(Cq)| = 2%l < &

Hence k changes cofinality in V[A], according to lemma 4.5, it remains to find C*. Denote
A = |C¢| and work in V[A], for every £ < 6, C¢ € V[A] (Although the sequence (Cg¢ | £ < 6)
may not be in V[A]). C¢ witnesses that

Jde C k. |de] < X and VAN ag] = V[de]

Fix d = (d¢|€ < 0) € V]A]. It follows that d can be coded as a subset of x of cardinality
< A0 < k. Finally, by 4.4, there exists C* C Cg such that V[C*] = V[d] C V[A4] so

Va < k. ANa € Vidg] C V[C7]
|

Next we assume that AN« stabilizes on some o < k. By lemma 4.4 There exists C* C Cg
such that V[A N a*] = V[C*], if A € V[C*] then we are done, assume that A ¢ V[C*]. To
apply 4.5, it remains to prove that c¢f"4 (k) < k. The subsequence C* must be bounded,
denote k1 = sup(C*) < k and k* = max(ky,0tp(Cg)). Find p € G that decides the value of
k* and assume that x* appear in p (otherwise take some ordinal above it). As in lemma 2.7
we split

MI0]fp = (MIO] 1)/ (p 1) x (MIOT 1 (%)) /(2 1 (57, ))
There is a subforcing PP of RO((M[&] I /<a*>/<p I m*) such that V[C*] is a generic for P. Let
Q= [ (Ml 1)/ (p1#)]/C”

be the quotient forcing completing P to <I\\/JI[(7] I m*) / (p i I<L*>. Finally note that G is

generic over V[C*| for
S=Qx (MT] 1 (%)) /(p I ("))
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Lemma 4.8 cfV(k) < x

Proof. Let G = G x G be the decomposition such that Gy is generic for Q above V[C*|
and Gy is M[U] | (k*, k) generic over V[C*][Gy]. Let A be a S-name for A in V[C*]. and
<C]0,po> € G such that

{(qo,po) IF "Va <k ANais old” (i.e. in V][C])

Proceed by a density argument in M[U] | (k*,k))/p | (k% k), let py < p, as in 4.4 find
p <* p* such that for all ¢gg < ¢ € Q and X € Ez(p*):

Ja7(a) € X(p)I' =" pd ™ (@) (¢,0) || AN = Va™(a) € X(p)(g,p"" @ () [| ANa

Denote the consequent by (x)x 4, since AN« is forced to be old, we will find Many ¢, X for
which (), x holds. For such ¢, X, for every @™ (a) € X(p*) define the value forced for ANa by
a(q, d, a). Fix ¢, X such that (x), x holds. Assume that the maximal measure which appears
in X is U(ki(p), me(X)) and fix @ € (X \ {mc(X)})(p*). For every a € B jne(x)(p )\max(o?)
the set a(q, @, o) C « is defined. By ineffability, we can shrink B; ..cx)(p) to A} ) and

find a set A(q,d) C k;(p) such that for every a € Afic ¥y Alg, @) Na = a(q, a) deﬁne

Al AAq A

i,mc(X) G Hme(X)

Let p* <* p’ be the condition obtained by shrinking to those sets. p’ has the property
that whenever (%), x holds for some ¢ € Q and X € Eux(p’), there exists sets A(g, @) for
a € X\ {mc(X)} such that for every @~ (a) € X(p'), A(q,d) N = a(q, &, «). By density
there is such p’ € Gs.

Work V[4], for every @ and g, if A(q, @) is defined, let
1(g, @) = min(AAA(g, @)
otherwise n(q, @) = 0. n(q, @) is well defined since A ¢ V[C*] and A € V[C*]. Also let
n(a) = sup(n(g,d) [ ¢ € Q)

If n(@) = k then we are done (since |Q| < k). Define a sequence in V[A]: ay = k*. Fix
¢ < otp(Cg) and assume that (a; | i < ) is defined. At limit stages take

ag =sup(a; |1 <) +1
Assume that £ = XA+ 1 and let

ag = sup(n(d@) + 1| a € [on]™)
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If at some point we reach x we are done. If not, let us prove by induction on & that
Ce(€) < ag which will indicate that the sequence a¢ is unbounded in x. At limit £ we have
Ci(&) = sup(Ce(p) | B < &) since the Magidor sequence is a club. By the definition of the
sequence ¢ and the induction hypothesis, ag > C(§). If £ = A + 1, use corollary 2.19 to
find @, o and ¢ such that

(0,0 @ (@) I @ = Ca(€)
Fix any ¢’ > ¢, and split the forcing at « so that (¢/,p'~a, a) = (¢/,r1,72) where r; € M[ﬁ] |

—

(k*,a) and 79 € M[U] | (o, k). Let Hy be some generic up to a with (g, r1) € H; and work

—

in V[C*|[H;], the name A has a natural interpretation in V[C*|[H;]| as a M[U] | (a, k)-name,

—

(A)m,. Use the fact that M[U] | « is <*-closed and the prikry condition to find ry <* r}, and
X such that
75 P e (Aa Na =X

since it is forced that A is old, X € V[C*| and therefore we can find (¢, 1) > (¢’,r1) such
that
(" r) I IFANa=X" = (", r;,r) FANa=X

and @, « such that
(@, p""a () [l Ana

but then (r},75) is of the form p’“g, a <* p” for some 5 Let X be the extension type of
B, a, by definition of p/, (%), x holds. Use density to find a ¢* in the generic of Q such that
for some X that decides the th element of Cg, (*)x 4+ holds. The set {p"~7 | v € X} is

a maximal antichain according to proposition 3.5, so let é, Cq (&) be the extension of p' of
type X in Cg. By the construction of ¢* and p** we have that

(@0 (C,Cal&)) Ik AN Ca(€) = Alg", C) N Cu(€)

Since (A)g = A, A(q*,C) N Ca(€) = AN Ceu(€) (otherwise we would've found compatible
conditions forcing contradictory information). This imply that

n(q*,C) = Cal(é)
By the induction hypothesis ay, > C(\) and C C Ce()) thus C € [oy]<“ thus
ag > sup(n(d@) | @ € [an]™) 2 0(C) = n(q", C) = Co(§)
This proves that (ae | € < otp(Cg) < k) € V[A] is cofinal in & indicating cfV (k) < k. B
Thus we have proven the result for any subset of x.

Corollary 4.9 Let A € V[G] be a set of ordinals, such that |A| = k then there is C' C Cg
such that V[A] = V[C"].

Proof. By kt-c.c. of M[U], thereis B €V, |B| = k such that AC B. FixinV ¢:xk — B a
bijection and let B' = ¢~'" A. then B’ C k. By the theorem for subsets of « there is C’ C Cg
such that V[C'] = V[B'] = V[A]. &
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4.3 general sets of ordinals

—

In [1], we gave an explicit formulation of subforcings of M[[U] using the indices of subsequences
of Cq. In the larger framework of this paper, these indices might not be in V. By example
1.2, subforcing of the Magidor forcing can be an iteration of Magidor type forcing.

Lemma 4.10 Let A € V[G] be such that A C k*. Then there is C* C Cq closed such that

1. Ja* < kT such that C* € V[ANn o] C V[A].
2. Va <kt Ana e V[C].

Proof. Work in V[G], for every o < k™ find subsequences C, C Cg such that

VIO =V]ANd]

using corollary 4.9. The function o — C,, has range P(Cg) and domain x* which is regular
in V[G], and since o” (k) < & then |P(Cg)| < x+. Therefore there exist E C £ unbounded
in k7 and o* < k* such that for every a € E, C, = Cy-. Set C* = C,+, By lemma 4.12 we
may assume that C* is closed. Note that for every o < k there is f € F such that § > «

therefore

ANna=(ANnp)Nna e VAN =VI[C
[

Lemma 4.11 Let C* be as in the last lemma. If there is a < k such that A € V[CgNal[C*]
then V[A] = V[C*].

Proof. Consider the quotient forcing M[U/]/C* € M[U] completing V[C*] to V[C*]|G]. Then
the forcing .

Q= MUJ/CY) |«
completes V[C*] to V[C*][CeNal and |Q| < k. By the assumption, A € V[C*][Cs Nal, and
for every o < kT, ANa € V[C*]. Let A € V[C*] be a Q-name for A and ¢ € G | a be any

condition such that
qFVa <kt Ana e V[CY

In V[C*], for every a < k™ find ¢, > ¢ such that ¢,||pA4 N «, there is ¢* > ¢ and E C k™ of
cardinality x* such that for very o € E, g, = ¢*. By density, find such ¢* € G | « in the
generic. In v[C*], consider the set

B={XCk'|Jaqg FX=ANna=X}
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Let us argue that UB = A. Let X € B then there is « < k7 such that ¢* F X = AN«
then X = ANa C A, thus, UB C A. Let v € A, there is a € E such that v < «, by
the definition of E there is X C « such that ¢* IF AN a = X it must be that X = AN«
otherwise would have found compatible conditions forcing contradictory information. but
the y € ANa =X C UB. We conclude that A =UB € V[C*]. &

Eventually we will prove that there is & < k such that A € V[Cg N «][C*] and by the
last lemma we will be done.

We would like to change C* so that it is closed. We can do that above g := otp(C):

Lemma 4.12 V[Cq N ap)[C1(C*)] = V[Cq N o] [C*] .4

Proof. Consider I(C*, C1(C*)) C otp(Cg), by proposition 2.15.5, I(C*, Cl(C*)) € V[CeNay).
Thus V[Ce N ap][C*] = V[Ce N ] [CL(C)]. A

Work in V[Cq N ), since C* Nag € V[Cq N g, we can assume min(C*) > ap. Since
I =1(C*,Cq\ ap) Cotp(Cq), it follows that I € V[CeNayl. Let N = V[Cq N ayl, consider

the coherent sequence
W =0" | (ag, k] = (U*(3,6) | 6 < oY (B), a0 < § < K)

where U*(3, ) is the ultrafilter generated by U(f,d) in N. Also denote G* = G | (o, k).

-

Proposition 4.13 N[G*| is a M[W] generic extension of N.

Proof. Let us argue that the Mathias criteria holds. Let X € NW (8) where § € Lim(Cg-).
By definition of W, for every i < OW((S), there is X; € U(9,1), such that X; C X. The choice
of X;’s is done in N and the sequence (X; | i < 06(5)) might not be in V. Fortunately,
M[ﬁ] g is ag-c.c. and af < 4§, soin V, we can find sets

B, ={X; i <o} CU®,)

such that X; € E; By d-completness of U(d,14), the set X/ :=NE; € U(J,i) and X7 C X; C
X. Note that X* := U,_ 5.5 X] € 0(7(5) and therefore by genericity of G there is £ < §
such that

CGﬂ(gv(S) QX* QX

Hence Cg+ N (max(ap,§),0) € X.A

4For a set of ordinals X, Cl(X) = X ULim(X){¢| € X Vsup(X N¢) =¢
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Note that OW(K) < min(v | OW(V) = 1) and I(C*,C) € N, which is the situation dealt
with in [1]. We state here the main results and definitions and refer the reader to [1] for the
proofs:

We will define a Magidor type forcing that produces the sequence C* above N. Thinking
of C* as a function with domain 7, we would like to have a function similar to (¢;, p) which
tells us the coordinate we unveil. Given any sequence of pairs, p = (t1, ..., tn, tny1), define®

I(ty,p) = min(j € I | or(j) = 0" (;))

then recursively,

-

I(t;,p) =min(j € I\ I(ti1,p) +1 | or(j) = 0" (t:))

It is tacitly assumed that {j € I\ I(t;_1,p) + 1 | 00(j) = 0" (t;)} # 0. If at some point of
the inductive definition we obtain (), leave I(t;, p) undefined, we will ignore such conditions
p anyway.

Definition 4.14 The conditions of MI[W] are of the form p = (t1,...,t,11) such that:

1. I is defined on p.
2. k(t) < ... <K(ty) < k(tht1) =k
3. Fori=1,...,n+1

(a) If I(t;,p) € Succ(])
ii. I(t;—1,p) is the predecessor of I(t;,p) in I

m
iii. I(t;—1,p) + Y w" = I(t;,p) is the Cantor normal form difference, then
i=1

Y(71) X oo X Y (Ym-1) ﬂ[('f(tz‘—l)a K(t:))] # 0

where Y(7) = {a < k| 0% (a) =~}
(b) If I(t, p) € Lim(1)
i ti=(k(t:), B(t:)) , Bty e N Ut
E<oW (t;)

. I(ti—1,p) + wo' () — I(t;,p). (i.e. there are no elements of higher order then

>

o (t;) to add in the interval (k(t;_1), k(t;)).

°For an ordinal «, denote by o (a) = 7 if the cantor normal form of a = Yo wYim; and ¥ = ,.
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-

Definition 4.15 Let p = (t1, ..., tn, tar1), ¢ = (S1, -, Sms Sma1) € M;[W] be two conditions.
Define (t1,....tn, tns1) <y (81, .es Smy Sma1) iff 31 <47 < ... <4y <M < Gy = m+ 1 such
that

1. For every 1 <r <mn k(t,) = k(s;,) and B(s;,) C B(t,)
2. For 1, < 7 < iga1

(a) r(s;) € B(tr+1)

(b) If I(s;,q) € Succ([) then

[(5(55-1), /(5))) 1 Bltks, 1) X oo X Bltisr, 1) # 0

k
where I(s;_1,q) + > w" = I(s;,q) (Cantor normal form difference)
=1

(c) If I(sj,q) € Lim(I; then B(s;) C B(tit+1) N K(s))

-

Lemma 4.16 Let G; C M;[W] be N-generic , define

Cr=J{r)li=1,...n} | (tr, . tus tus) € Gr}

Then N[G[] = N[C[]

-

Lemma 4.17 There is a projection m : M[W] — M, [W].

Corollary 4.18 Let C C Cgq be closed, Assume that I = I(C,Cg) € N and consider

-

71, M;[W], then N[G;] = N[C] where G; = n"G C M;[W].

Lemma 4.19 Let G* C M[W] be N-generic filter. Then the forcing M[W]/G; satisfies
kT —c.c. in N[G*].

Theorem 4.20 A € N[C*].

Proof. Let I = I(Cl(C*),C¢). Then

-

I,M[[W],ﬂ'[ eN

Let G be the generic induced for M;[W] from G, it follows that M[IW]/G; is defined in
N. Toward a contradiction, assume that A ¢ N[C*]. By lemma 4.12, N[C*] = N[CI(C")],
hence A ¢ N[CI(C*)]. Let A be a name for A in M[U]/G; where /G = G;. Work in N[G/],
by corollary 4.18, N[G;] = N[CI(C*)]. For every a < k™ define

Xo={BCal[ldna= B[ #0}
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where the truth value is taken in RO(M[W] /Gr)- the complete boolean algebra of regular
open sets for M[W]/G;. Different B’s in X, yield incompatible conditions of M[W]/G and
we have k*-c.c by lemma 4.19 thus

Va <kt [ X, <k

For every B € X, define
b(B) = [[ANa = B

Assume that B’ € X3 and a < f then B = B'Na € X,. Moreover b(B') <p b(B) (we
Switch to boolean algebra notation p <p ¢ means p extends ¢). Note that for such B, B’ if
b(B') <p b(B), then there is

0<p<p (b(B)\b(B)) <p b(B)

Therefore
pNb(B) <p (b(B)\ b(B) Nb(B') =0

meaning p Lb(B’). Work in N|[G*], denote A, = AN «a. Recall that
Va <kt A, € N[CI(C*)] = N[G/]

thus A, € X,. Consider the <p-non-increasing sequence (b(A,) | « < k™). If there exists
some v* < kT on which the sequence stabilizes, define

A = B C k" |3ab(A.) Ik Ana = B} € N[CI(C")]
Claim that A’ = A, notice that if B, B’, a, ¢/ are such that
b(A ) ANa =B, b(A.)IFAnd =B

WLOG a < o then we must have B'Na = B otherwise, the non zero condition b(A,~) would
force contradictory information. Consequently, for every & < s there exists £ < v < k™
such that

b(Ay)IFANy=ANxy

hence A’N~y = AN~. This is a contradiction to A ¢ N[CI(C*)]. We conclude that he
sequence (b(A,) | @ < k) does not stabilize. By regularity of x*, there exists a subsequence

(b(A;) | a < k™)

which is strictly decreasing. Use the observation we made to find p, <p b(4;,) such that
PaLb(A;,,,). Since b(A;,) are decreasing, for any 3 > a paLb(A;,) thus p,Lps. This shows
that (p, | @« < k™) € N[G*] is an antichain of size k* which contradicts Lemma 4.19. B

Sets of ordinals above x*: By induction on sup(A) = A > k. It suffices to assume
that A is a cardinal.
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casel: cfVI?l(\) > k, the arguments for x* works.

case2: ¢fVI6)(\) < k and since & is singular in V[G] then ¢fVI€}(\) < k. Since M[U]
satisfies kT — c.c. we must have that v := cfV(\) < k. Fix

(vili<v)yeV

cofinal in A. Work in V[A], for every i < v find d; C & such that V[d;] = V[AN~,]. By
induction, there exists C* C C¢ such that V[(d; | i < v)] = V[C*], therefore

1. Vi<v AN~ € V[CH]
2. C* e V[A]

Work in V[C*], for i < v fix
(Xio |6 <27) = P(v)
then we can code A N~; by some §; such that X;5, = AN~;. By 4.9, we can find C” C Cq

such that
VIC" = V[(di | i <v)]

Finally we can find C' C Cg such that V[C'] = V[C*, C"], it follows that V[A] = V[C']. B

5 Classification of Intermediate Models

— —

Let G C M[U] be a V-generic filter. Assume that for every a < &, oY(a) < a. Let M be
a transitive ZFC model such that V' C M C V[G]. We would like to prove it is a generic
extension of a "Magidor-like” forcing which we will define shortly. First, by [4], there is
a set A € V[G] such that V[A] = M. By the results so far, there is C' C Cg such that
M =VI[A] =V[C].

Proposition 5.1 Let C, D C Cg, then there is E, such that CUD C E C CgNsup(CUD).
such that V[C, D] = V[E].

Proof. By induction on sup(C U D). If sup(C' U D) < Cg(w) then |C|,|D| < Xy, we can take
E=CUD, and
I(C,CuD),I(D,CUD) Cuw

and there fore in V. In the general case, consider I(C,C U D), I(D,C U D). Since

oﬁ(sup(C UD)) <sup(CUD)
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it follows that
otp(C'U D) < otp(Cg Nsup(C' U D)) < sup(C' U D)

Denote by A = otp(Ce Nsup(C U D)). By theorem 1.1, there is F C Cg N A, such that
VII(C,CUD),I(D,CUD)| = V[F]
We apply the induction hypothesis to F, (C'U D) N A and find E, C X such that
VIE,] = V[F,(CUD)nJ

Let E=E,U(DUC)\ A, then E € V[C, D] as the union of two sets in V[C, D]. In V[E]
we can find

E.=FEnNXand (DUC)\A=E\ A
Thus F, (C U D) N\ € V[E] and therefore also

DUC,I(C,CU D), [(D,CUD) € VI[E]
It follows that C, D € V[E]|.R

Corollary 5.2 For every C' C Cg there is C* C Cg Nsup(C’), such that C* is closed and
ViC' =VICH.

Proof. Again we go by induction on sup(C”). If sup(C’) = Cg(w) then C* = C’ is already
closed. For general C’, consider C' C CI(C")®, then I(C’,CI(C")) is bounded by some
v < sup(C’). So there is D C C¢ N v such that V[D] = V[I(C',CIl(C"))]. By the last
proposition, we can find £ such that

DUCI(CYNv CECCgNu

and V[E] = V[D,CI(C")]. By the induction hypothesis there is a closed FE, such that
E C E* C Cg Nv such that V[E] = V[E,]. Finally, let

C* = E,U{sup(E,)}UCI(C") \ v

Then C* € V[C'], and also CI(C") and I(C’,CI(C")) can be constructed in V[C*] so C" €
V[C*]. Obviously, C* is closed, hence, C* is as desired.l

Definition 5.3 Let A < k be any ordinal. A function f : A\ — k is said to be suitable for x,
if for every limit 67

limsup f(a) +1 < f(9)

a<d
6For A C On, Cl(A) = {a|sup(ANa)=a}UA
"For a sequence of ordinals (z; | i < p), define limsup;_, z; = min({sup,;,z; | @ < p})
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Proposition 5.4 If C* C Cg is a closed subset, let A+ 1 = otp(C* U {sup(C*)}), and
(cf |1 < A) be the increasing continuous enumeration of C*, then then function f : A+1 — &,
defined by f(i) = oY (c}) is suitable.

7

Proof. Let 6 < A+ 1 be limit, then ¢ € Lim(Cs U {x}) and therefore, there is £ < ¢ such
that for every x € Co N (€, ¢}), oY (z) < oY(c}). Let p < § be such that £ < ¢} < ¢} for every
p <i <4, then sup,; 50" (c;) + 1 < oY(¢;). Thus also

min({sup,.;50" (¢}) + 1| a < 6}) < 07 (c})

—

We would like to define M¢[U] for some suitable f, to be the forcing which construct a
continuous sequence with orders as prescribed by f.

Definition 5.5 Let f : A+ 1 — & be suitable for x, define the forcing Mf[ﬁ], the conditions
are functions F', such that:
1. F is finite partial function, with Dom(F') C A 4 1. such that A € Dom/(F).

2. For every i € Dom(F) N Lim(\ + 1):

(F)

4. The map ¢ — k; ' is increasing.

—

Definition 5.6 The order of M[U] is defined as follows F' < G iff

1. Dom(F) C Dom(G).

2. For every i € Dom(G), let j = min(Dom(F') \ 7).

31



(a) If i € Dom(F), then &
(b) If i ¢ Dom(F'), then KD e A

A straight forward verification shows that

—

Proposition 5.7 M¢[U] is a forcing notion.
Note that if f : kK + 1 — &k, defined by f(a) = or(«) (see footnote 5). Then Mf[(j] is
isomorphic to M[U].®

Similar to M[U], we have a decomposition AEF) = |5 AZ(-?). Also we have the
j<ol ()
notation F~&@ which we generalize from M[U].

—

Proposition 5.8 Let H C M¢[U] be a V-generic filter. Let
i = {x\") | i € Dom(F),F € H}

Then

1. otp(Cy) = A+ 1 and Cj; is continuous.
2. For every i < A, oﬁ(C;I(i)) = f(7).
3. VICy] = VIH].

For every ¢ € Lim(\), and every A € ﬂ[j(é), there is & < § such that C* N (£,9) C A.

AR

For everyp <X\, H | p:={F | p|F € H} is V-generic for Mfrp[[j].

Proof. To see (1), let us argue by induction on ¢ < A The set
E; = {F e M;[U] | i € Dom(F)}
is dense. Let F' € I\\/[[f[(j], if 1 € Dom(F') we are done. Otherwise, let
Ju = min(Dom(F) \ i) > i > max(Dom(F) Ni) =: jm,

By condition 3, jy; € Lim(A + 1). Split into two cases. First, if ¢ is successor, then we can
find F < G such that i — 1 € Dom(G) by induction hypothesis. by condition 2.d and 2.b,

8Compare with proposition 2.19
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£(i) < 07 (k!")). By condition 2.c, we can find o € Ag»i[) such that a > &' , oY(a) = f(i)

M

and A" Na € NU(a). Then

IM

G'=GU{i (o, A7 na))}

IM

is as wanted. If 7 is limit, since f is suitable, there is ¢’ < 4, such that for every i’ < k < 1,
f(k) < f(i). Again by induction, find F' < G such that i/ € Dom(G). Then the desired
G’ is construct as in successor step. Denote by Fpy, the function with domain A + 1, and
Fy (i) = =, be the unique ~ such that for some F' € H, i € Dom(F') and HZ(F) = . Then it
is clear that Fy is order preserving and 1 — 1 from A To C};. By the same argument as for

—

MJU], we conclude also that Fj is continuous.

For (2), note that C,(i) = Fy (i), thus there is a condition F' € H such that F(i) = C};(4).
Hence o7 (C3,(i)) = f(i) by the definition of condition in M [U].

—

For (3), as for M[U], we note that H can be defined in terms of C} as the filter Hes of
all the conditions F' € M[U] such that for every i < A,

1. If i € Dom(F), then REF) = Cy(3).

2. If i ¢ Dom(F), then C(i) e U AP

i€Dom(F) ¢

(4) is again the standard density argument given for M[U].

As for (5), note that the restriction function ¢ : M[U] — Mf[p[[j] is a projection of
forcings which suffices o conclude (5).H

The following theorem is a Mathias criteria for M ¢[U].

Theorem 5.9 Let f: X — k be suitable, and let C' C k be such that:

1. otp(C) = X and C' is continuous.
2. For every i < A, oﬁ(C’i) = f(i).
3. For every § € Lim()\), and every A € NU(Cy), there is € < § such that C'N (€,6) C A.

Then There is a generic H for My [U] such that C}, = C.

Proof.

Define H¢ to consist of all the conditions (F, A) such that for every i € Dom(F):
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1. F(i) = (O),.

2. C\{s\" |ie Dom(F)yc | A

i€ Dom(F)

We prove by induction on sup(C) = k that H¢ is V-generic. Assume for every p < x and
any suitable function g : A — p, every C’ satisfying (1) — (3) the definition of H¢r is generic.
Let f,C as in the theorem. For every ¢ < &, by definition, He [ 6 = H¢ps. Hence by the
induction hypothesis H¢ [ 0 is generic. Obviously condition (1) insures that Cj;, = C. Also
it is a straight forward verification that Hc is a filter. Let D be a dense open subset of
M [U].

Claim 1 For every F' € Mf[ﬁ], there is ' < G such that

1. max(Dom(F) N X)) = max(Dom(Gg) N A).

2. There is are igF) <. < il(CF) such that every (aq,...,ax) € Hle Agﬁ), Grlag,..,ap) €

D.

Proof. For every iy < ... < iy < oﬁ(m) and every F' < G such that
max(Dom(F) N A) = max(Dom(G) N A and G(\) = F(A)

consider the set

k
B={ae][A\) |3RG @< Re D}
j=1

Then
k k k
Bel[Uki) v J[AGN\Be]]U(ki))
j=1 j=1 j=1
Denote this set by B’. Find B;, € U(k,i;) such that H?Zl B;, C B'. Let Ay,

set obtained by shrinking AE\Q to B;,. Since ol (k) < K the possibilities for G and iy, ..., i,
is less than k. So by x-completness

2 be the

yees?

ATEIZ)

Let F' <* F™* be the condition obtained by shrinking A&F) to A*. By density, there is G > F
such that G € D. So there is @ € [A*]<“ such that

(G T max(Dom(F)NA) U{(\ (k,A*'})"a <" G

34



Hence for every 5 from the mesures of @, there is
Gz >" (G I max(Dom(F) N A)U{(\, (5, A"})"B
in D. Amalgamate all the GE’S to a single G*. Then G* is as wanted.ll

For every F', pick Gp and Ap. Let A* = ApAp. There is £ < k such that CN (&, k) C A*.
Let F be a function in He such that for some i € Dom(F), F(i) > £. To see that there is
such a condition, pick any § € C'\ €. Use the induction hypothesis, and find F' € X such
that F' [ 6 € Heo | 6.

By the claim, The set

k
E= {F € Mpel0] | 3y < .. <i. Va € [[4;. Gra D}
j=1

is dense. Find G* € Ho | €N E. We can find in the upper part ¢; < ¢o,... < ¢, € CNA*
such that ¢; € A7 . Thus

(G* UL\ (k, ANV (er oy cn) € HoN D

And H¢ is generic.

Theorem 5.10 Let G C M[U] be generic and let C* C Cg be any closed subset. Let f be

—

the suitable function derived from C*. If f € V, then there is a generic H for M¢[U] such
that Cy; = C*.

Proof. since Cg satisfy the Mathias criteria, also does C*.1

We will now prove that any transitive ZFC' intermediate model V- C M C VIG] is a
generic extension of a finite iteration of the form

— — —

We start with M = V[C'], then find a closed C* such that V[C'] = V[C*]. Let Ay = &,
recursively define ;11 = otp(Ce N A;) < A;. After finitely man steps we reach A\, < Cg(w),
denote x; = \,,—;. Consider

—

(0" (x) | x € CxN(Kn_1,kn))

This is added by a generic E C Cg N k,—1 Find a closed Cf_; € V[C*] such that V[C!_|] =
V[E,C* N Kp_1]. Now consider

(07 (z) | 2 € CF_, N (Kn_s, in_1))
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There is a closed generic C*_, € V[C_,] such that

VICral = VIC 1. (" (@) | 2 € Cry 1 (e )
In a similar fashion we find after finitely many steps, (0¥ (z) | 2 € CZ) € V. Define
Crin = Co U (C7 \ Ko) U (C3 \ K1)...(C7\ Fina)
Then C7%,, is a closed, and have the property that for every ¢ < n,
(07(@) | ¢ € Cfiy N ki1, 1)) € VIC, N ki

Also V[C3,] = VI[C*] = M.
Theorem 5.11 Let f; be the derived suitable function from 07" [Cti N (Kic1, ki)]. Then:

—

1. fi € V[C};,, N ki), Therefore My, [U] is defined in V[C3;, N k1]
2. There is a V[C%;, N ki_1]-generic filter H C My, [U] such that
VICin N Ria][H] = VICFi, N kia][Chipy N [Kic, )] = VI[CFy, N0 ]

8. Let fi be a (My, [U] % M, [U]... * My, | [U])-name for f;, then there is a V-generic H*
for My, [U] % My, [U]... «* My, [U] such that V[H*] = VIC},] = M.

"

Proof. (1) is clear by the construction of C'y;,,, and the fact that f; is definable from oV [CFinN
(Ki-1, i)l

For (2), we use theorem 5.10.

(3) follows by (2) and by the definition of iteration.H
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