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Abstract
Ronald Jensen asked whether it is possible to change cofinality of every regular

cardinal between ℵ1 and an inaccessible λ to ω preserving λ (and of course ℵ1). We
show that it is possible assuming large cardinals.

1 Introduction.

Let λ be a cardinal above ℵ1. It is not hard to change cofinality of every regular cardinal in

the interval (ℵ1, λ) to ω and to preserve ℵ1 using Namba forcing (see [1] or [4]). For example

we can use subtrees of Pℵ2(λ) with splitting unbounded in Pℵ2(λ). If λ was a regular then it

will change its cofinality to ω and by Shelah [3], 4.9 p.304 λ+ will not be a cardinal in the

extension (actually it will change its cofinality to ℵ1.

Ronald Jensen asked the following question:

Is it possible to change cofinality of every regular cardinal between ℵ1 and an inaccessible

λ to ω preserving λ (and of course ℵ1).

Our purpose will be to prove the following:

Theorem 1.1 1 Assume GCH. Suppose that κ is a λ-supercompact cardinal for a Mahlo

cardinal λ. Then in V Col(ω1,<κ) there is a forcing that does not add reals, changes cofinality

of every regular cardinal δ,ℵ1 < δ < λ to ω and preserves λ.

∗The author would like to thank R. Jensen for asking the question and to C. Merimovich for helpful
discussions on the subject.

1Menachem Magidor found a simpler proof using a weaker assumption. He pointed out that Woodin’s
Stationary Tower Forcing can be used to give the result.
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Notation. For finite sequences t, t′ t E t′ means that t is an initial (probably not proper)

segment of t′. Trees here will be subtrees of ω>(λ×λ). If t ∈ T , for a tree T , then Tt denotes

the set {t′ ∈ T | t E t′} and SucT (t) denotes the set of all immediate successors of t in T .

Denote by Levn(T ) the set of all the points of T from the level n, i.e. Levn(T ) = {t ∈ T |
|t| = n}. Let lim(T ) denotes the set of all maximal branches of T .

2 The main construction.

Let κ is a λ-supercompact cardinal for a Mahlo cardinal λ. Work in V Col(ω1,<κ). For each

regular δ,ℵ1 < δ < λ let Uδ be a uniform ℵ2-complete filter over δ such that U+
δ has a dense

σ-closed subset.

Definition 2.1 A subtree T of ω>(λ× λ) is called a good tree iff

1. if ta〈ν1, ν2〉 ∈ T , then ν1 is a regular cardinal in the interval (ℵ1, λ) and ν2 is an ordinal

below ν1.

Intuition here is that ν2 will be an element of an ω-sequence for ν1.

2. For each t ∈ T , if 〈ν1, µ1〉, 〈ν2, µ2〉 ∈ SucT (t), then ν1 = ν2.

3. If t ∈ T , 〈ν, µ1〉, 〈ν, µ2〉 appear in t and 〈ν, µ1〉 appears in t below 〈ν, µ2〉 then µ1 < µ2.

If t ∈ T and there is a regular cardinal ν,ℵ1 < ν < λ, such that the set

{µ | 〈ν, µ〉 ∈ SucT (t)} ∈ U+
ν ,

then let us call t a ν-splitting point.

4. If for some ν, µ and t we have ta〈ν, µ〉 ∈ T , then for each f ∈ lim(Tta〈ν,µ〉) the set

{n < ω | f(n) is a ν-splitting point of Tta〈ν,µ〉}

is infinite.

Note that if f ∈ lim(T ) and for some n we have f(n) = 〈ν, µ〉, then ν appears infinitely

many times in rng(f) as a splitting point- just take t = f ¹ n + 1.

Definition 2.2 Let T be a good tree and ν,ℵ1 < ν < λ be a regular cardinal. We call T a

ν-splitting tree iff for every f ∈ lim(T ) the set

{n < ω | f(n) is a ν-splitting point of T}

is infinite.
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Note that for a good tree T the set

{ν | T is ν-splitting tree}

is at most countable.

The next lemma allows us to shrink positive sets in a good tree.

Lemma 2.3 Let T be a good tree and T ′ is a subtree of T such that for every t ∈ T ′ if t was a

ν-splitting point of T , for some ν then t remains a ν-splitting point of T ′ (i.e. SucT ′(t) ∈ U+
ν ,

but it may be smaller than SucT (t)). Then T ′ is a good tree.

Proof. We need to check only the last condition of Definition 2.1. So let ta〈ν, µ〉 ∈ T ′ and

f ∈ lim(T ′
ta〈ν,µ〉). Then, clearly, f ∈ lim(Tta〈ν,µ〉). But T is a good tree, hence the set

S = {n < ω | f(n) is a ν-splitting point of Tta〈ν,µ〉}

is infinite. Now, for each n ∈ S, f(n) ∈ T ′ and so it remains a ν-splitting point in T ′.

¤
We will use few partial orders over the set of good trees. The first one below is just the

usual Namba forcing order.

Definition 2.4 Let T, T ′ be good trees. Define T ≤1 T ′ iff T ′ is a subtree of T .

The next lemma is obvious.

Lemma 2.5 Let T be a good tree. Then there is T ′ ≥1 T such that for every t ∈ T ′ either

|SucT ′(t)| = 1 or t is a ν-splitting point in T ′ for some regular cardinal ν,ℵ1 < ν < λ.

Lemma 2.6 Let T be a good tree. Then there is T ′ ≥1 T such that for every n < ω and

t1, t2 ∈ Levn(T ′) t1 is a splitting point of T ′ iff t2 is a splitting point of T ′.

Proof. By Lemma 2.5, we can assume that for every t ∈ T either |SucT (t)| = 1 or t is a

ν-splitting point in T for some regular cardinal ν,ℵ1 < ν < λ.

Let t0 be the trunk of T . Then t0 is a ν0-splitting point of T . Denote the set {µ < ν0 |
〈ν0, µ〉 ∈ SucT (t)} by A0. Consider a function

F : A0 → ω, F (µ) = min(|s| | s D t and s is a splitting point ).

Shrink A0 to a positive set A00 on which F has a constant value n0. Let T00 be the tree

obtained from T by the shrinking the first splitting level to A00. Clearly T00 is a good tree.
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Now each t ∈ Levn0(T00) is a splitting point of T00. We repeat the process with every such

t. Thus let

At = {µ < νt | 〈νt, µ〉 ∈ SucT00(t)}.
Define Ft : At → ω by setting Ft(µ) = min(|s| | s D t and s is a splitting point ). Shrink At

to a positive set At0 on which Ft has a constant value nt.

Return to A00. Shrink it in order to stabilize nt’s. Let A1 be the result and n1 be the

stabilized value of nt. Shrink T00 to the tree T1 by shrinking the first splitting level to A1

and for each t at the second splitting level n0 shrink the set At to At0. By Lemma 2.3 T1 is

a good tree.

Continue in a similar fashion and define T2,n2,....,Tk, nk,....(k < ω).

Set T ′ =
⋂

k<ω Tk.

By the σ-completeness of U+
α ’s and Lemma 2.3, the tree T ′ is a good tree.

¤

Lemma 2.7 Let T ′ be good tree. Then there is T ≥1 T ′ such that for every t ∈ T either

there is ν such that for every 〈η, ξ〉 ∈ SucT (t) there is µ with 〈ν, µ〉 ∈ SucT (ta〈η, ξ〉)
or

for some η∗,ℵ2 ≤ η∗ ≤ η there are an increasing sequence of regular cardinals 〈ρi | i < η∗〉
and a partition 〈Ai | i < η∗〉 of the set

{ζ < η | 〈η, ζ〉 ∈ SucT (t)}

such that

1. for every j < η∗, the set
⋃

i<j Ai is in the dual to Uη ideal,

2. for every i < η∗, ζ ∈ Ai, the immediate successors of ta〈η, ζ〉 are of the form 〈ρi, µ〉,
for some µ < ρi.

Further let us denote η by sp(t) and
⋃

i<η∗ ρi by sp(t, 2).

Proof. Easy.

¤

Lemma 2.8 Let T̃ be a tree as in the conclusion of the previous lemma. Then there is

T ≥1 T̃ such that for every 〈η, ξ〉, 〈η, ξ′〉 ∈ SucT (t), either sp(ta〈η, ξ〉, 2) = sp(ta〈η, ξ′〉, 2)

or
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for some η∗,ℵ2 ≤ η∗ ≤ η there are an increasing sequence of regular cardinals 〈ρi | i < η∗〉
and a partition 〈Ai | i < η∗〉 of the set

{ζ < η | 〈η, ζ〉 ∈ SucT (t)}

such that

1. for every j < η∗, the set
⋃

i<j Ai is in the dual to Uη ideal,

2. for every i < η∗, ζ ∈ Ai, sp(ta〈η, ζ〉, 2) = ρi.

Further denote
⋃

i<η∗ ρi by sp(t, 3).

Similar we can define sp(t, n) for each n > 3. Now using σ-completeness of U+
α , we can

conclude the following:

Lemma 2.9 Let T̃ be a tree as in the conclusion of the previous lemma. Then there is

T ≥1 T̃ such that for every n, 1 < n < ω, sp(〈〉, n) is defined.

Definition 2.10 A good tree T is called a very good tree iff it satisfies the conclusions of

2.5-2.9.

The next lemma follows from 2.5-2.9.

Lemma 2.11 Let T̃ be a good tree. Then there is a very good tree T ≥1 T̃ .

Our next tusk will be to provide a way of adding new cardinals to trees.

Definition 2.12 Let A be a set of cardinals and 〈〈η1, ξ1〉, ..., 〈ηn, ξn〉〉 ∈ ω(λ× λ). Set

projA(〈〈η1, ξ1〉, ..., 〈ηn, ξn〉〉) = {〈ηi, ξi〉 | 1 ≤ i ≤ n, ηi ∈ A}.

Definition 2.13 Let A be a set of cardinals and T be a good tree. Set

projA(T ) = {projA(t) | t ∈ T}.

Let us denote for a good tree T by supp(T ) the set

{η < λ | ∃t ∈ T, ξ < η 〈η, ξ〉 ∈ t}.

Definition 2.14 Let T1, T2 be good trees. Set T1 ≡ T2 iff

1. T1, T2 are the same above their trunks,
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2. the trunks of T1 and T2 have the same length,

3. the trunk of T1 is obtained by a permutation of the trunk of T2.

Definition 2.15 Let T1, T2 be good trees. Set T1 ≤ T2 iff there is a good trees T ′
1 such that

1. T ′
1 ≥1 T1,

2. T ′
1 ≡ projsupp(T ′1)(T2).

In particular projsupp(T ′1)(T2) is a good tree.

3. For every f ∈ lim(T2), projsupp(T ′1)[f ] ∈ lim(T ′
1).

This condition insures that if T1 was a ν-splitting tree then a stronger tree T2 will

be ν-splitting as well.

Let us check the transitivity of the relation ≤ defined above. Split the proof into few

lemmas.

Lemma 2.16 Suppose that T1 ≤ T2 ≤1 T3. Then T1 ≤ T3.

Proof. Let T ′
1 ≥1 T1 be as in Definition 2.15. Consider projsupp(T ′1)(T3). By using a permuta-

tion of its trunk if necessary we obtain an equivalent condition T ′′
1 such that T ′

1 ≤1 T ′′
1 . Then

T ′′
1 witnesses T1 ≤ T3.

¤

Lemma 2.17 Suppose that T1 ≤ T2 ≡ T3. Then T1 ≤ T3.

Proof. Let T ′
1 ≥1 T1 be as in Definition 2.15. Note that projsupp(T ′1)(T2) ≡ projsupp(T ′1)(T3).

Hence T ′
1 witnesses T1 ≤ T3.

¤

Lemma 2.18 Suppose that T1 ≤ T2 ≤ T3. Then T1 ≤ T3.

Proof. Let T ′
2 ≥1 T2 witnesses T2 ≤ T3. Then T ′

2 is equivalent to projsupp(T ′2)(T3). By previous

lemmas then T1 ≤ projsupp(T ′2)(T3). Let T ′
1 ≥1 T1 witnesses this. Then

T ′
1 ≡ projsupp(T ′1)(projsupp(T ′2)(T3)).
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But

projsupp(T ′1)(projsupp(T ′2)(T3)) = projsupp(T ′1)(T3),

since supp(T ′
1) ⊆ supp(T ′

2). Hence T ′
1 witnesses T1 ≤ T3.

¤
Let P = 〈 the set of all good trees ,≤ 〉. By Lemma 2.11, the set of very good trees is

dense in P .

Lemma 2.19 Let T be a good tree and f∼ a name of a function from ω to V . Then there is

T ∗ ≥ T such that for every n < ω and t ∈ T ∗ which passes through n many splitting in T ∗,

T ∗
t decides f∼ ¹ n.

Proof. The proof is standard, but only note passing to a stronger tree (in sense of Definition

??) may turn splitting points into non-splitting ones. So after ω stages we may loose a

goodness. In order to prevent this let us make some bookkeeping and if a tree T in the

process if it is a ν-splitting (see Definition 2.2) for some ν, then unboundedly many times

we preserve splitting into ν. Note that for each T there are at most countably many such

ν’s, so this can be done.

¤

Lemma 2.20 The forcing P does not add reals.

Proof. Let T be a good tree and f∼ : ω → ω a name of a real. Pick T ∗ ≥ T as Lemma

2.19. Shrink the first splitting level of T ∗ in order to decide f∼(0). Note that there only ℵ0

possible values and all the filters involved are ℵ2-complete, hence this is possible. Now above

each point t of the first splitting level consider the next splitting level. Again shrink and

decide a value of f∼(1). Shrink the first splitting level once more in order to obtain the same

decision. Continue further in the same fashion. Finally, σ-completeness of positive sets is

used to intersect all the trees that were constructed.

¤
Now we can to conclude the following:

Theorem 2.21 The forcing with good trees does not add reals (and so preserves ℵ1). Each

regular cardinal δ,ℵ1 < δ < λ changes its cofinality to ω.

Lemma 2.22 The forcing with good trees satisfies λ-c.c.
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Proof. Let 〈Tα | α < λ, α inaccessible 〉 be a sequence of very good trees.

For each α, let Aα be at most countable set of cardinals in (ℵ1, λ) which are splitting cardinals

of Tα or are as in Lemma 2.9, i.e. spTα(〈〉, n), for n < ω.

Form a ∆-system of 〈Aα | α < λ, α inaccessible 〉. Let 〈Aα | α ∈ S〉 be a ∆-system with S

stationary subset of λ and a kernel A ⊆ min(S).

Denote the least inaccessible ≥ max(A) by η. Clearly we can assume that min(S) > η.

By shrinking more if necessary, we can assume that for each α < β in S all the ordinals that

appear in Tα are below β. Denote by α∗ the sup of all the ordinals that appear in Tα. Then

α∗ < β.

Let α ∈ S. Pick Mα to be an elementary submodel of cardinality η so that Mα ⊇ η and

Tα ∈ Mα. Let M̄α be the transitive collapse of Mα and πα : Mα → M̄ the collapsing map.

Set T̄α = πα(Tα).

By shrinking if necessary, we can assume that for some 〈M̄, T̄ 〉 for every α ∈ S 〈M̄α, T̄α〉 =

〈M̄, T̄ 〉.
We claim now that for any α, β ∈ S the trees Tα and Tβ are compatible. Let α < β be

in S. We will combine them (actually their subtrees) together into one good tree.

Suppose for simplicity the trees have empty trunks. Otherwise we just put one above or

equivalently inside an other.

Consider η1 := spTβ
(〈〉). If it is below η, then do nothing. Otherwise, we remove the set

{〈η1, µ〉 | µ < α∗} from SucTβ
(〈〉). Note that all the filters are uniform, hence the set in ideal

dual to Uη1 is removed.

Repeat this splitting t ∈ Tβ instead of just 〈〉.
Proceed now to the next splitting level of Tβ, it exists and does not depend on particular

points, since Tβ is a very good tree. Denote this level by n2. Let η2 := spTβ
(〈〉, 2). One of

the two possibilities may occur: every t ∈ Tβ of the length n2 − 1 is η2-splitting point or for

some η∗2,ℵ2 ≤ η∗2 ≤ η2, there are an increasing sequence of regular cardinals 〈ρi | i < η∗2〉
with η2 =

⋃
i<η∗2

ρi and a partition 〈Ai | i < η∗2〉 of the set

{ζ < η1 | 〈η1, ζ〉 ∈ SucTβ
(〈〉)}

such that

1. for every j < η∗2, the set
⋃

i<j Ai is in the dual to Uη1 ideal,

2. for every i < η, ζ ∈ Ai, the immediate successors of ta〈η1, ζ〉 are of the form 〈ρi, µ〉,
for some µ < ρi.
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If the first possibility occurs then we do nothing (just all the ordinals below α∗ were

already removed at the previous stage). Assume that the second possibility occurs. In this

case we remove from SucTβ
(〈〉) the set

⋃
i<j Ai where j is the least with ρj > α∗.

Continue further in the same fashion. Finally we use σ-completeness of positive sets to

take intersections. Denote the final tree still by Tβ. Let Tα be a corresponding shrink of the

original Tα.

Now we put Tα and Tβ together into a good tree T .

Suppose that the first level of Tα splits into Uζ-positive set for some ζ > η. Then ζ ≥ α

and the first level of Tβ splits into Uρ-positive for some ρ ≥ β.

Let 〈ζ, µ〉 ∈ SucTα(〈〉) and Σ〈ζ,µ〉 be the type of this point over M̄ , i.e. we pick first a pair in

Mα which realizes the type as those of 〈ζ, µ〉 and then take its image under πα.

Now we put as an immediate successor of 〈ζ, µ〉 every point of SucT ∗β (〈〉) which realizes Σ〈ζ,µ〉.

Note that this may turn the first level of Tβ into a non-splitting level of T . So we will need

to compensate it further up by just switching and putting elements of Tα above those of Tβ

which form a ρ-splitting.

Continue further up in the same fashion and switching all the time between putting

elements of Tβ as immediate successors to those of Tα and those of Tα as immediate successors

of Tβ. This process constructs a good tree T which is stronger than both Tα and Tβ.

¤

3 Preserving successors of singulars of uncountable

cofinality

Similar, but a simpler argument may be used to show the following:

Theorem 3.1 2 Assume GCH. Suppose that κ is a < κ+ω1-supercompact cardinal for a

Mahlo cardinal λ. Then in V Col(ω1,<κ) there is a forcing that does not add reals, changes

cofinality of every regular cardinal δ,ℵ1 < δ < ℵω1 to ω and preserves ℵω1+1.

Proof. We would like to limit the number of cardinals that appear in condition T to ℵ0. The

only obstacle to this in the previous construction is the argument of Lemma 1.14. It may

require adding many new cardinals to a initial tree T . The crucial observation here is that

2Jensen showed that no large cardinals are needed for this result using a different construction. Magi-
dor pointed out that it is possible to modify a bit the Namba forcing (again without any large cardinals
assumptions) in order to obtain the result.
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the total number of cardinals is now ω1 (our target is ℵω1 and not an inaccessible λ ), so we

have enough completeness ( each Uδ is ℵ2-complete) to shrink to one.

It is possible to use a simpler trees from the beginning here. Just for a fixed at most countable

set supp(T ) of regular cardinals in the interval [ℵ2,ℵω1) we require that T splits always above

its trunk and at each level accordingly to a cardinal from supp(T ). The forcing will satisfy

the Prikry condition.

¤
If one likes to replace ℵω1 by say ℵω2 , then it is already problematic. Thus, ω2 changes

its cofinality to ω and so (ℵω2)
V will have cofinality ω in the extension which is different

from its cardinality there which is ℵ1. Under mild assumptions, by Shelah [3], 4.9 p.304 ,

this implies that (ℵω2+1)
V cannot be a cardinal in the extension.

If we allow to preserve ℵ2 or to change its cofinality to ω1, then it is possible to change

cofinalities of all regular cardinals in the interval [ℵ3,ℵω2) to ω and to preserve ℵω2+1. What is

needed then is just a bit more completeness-namely ℵ2-completeness. So instead of Col(ω1, <

κ) we force with Col(ω2, < κ). The rest of the argument is the same.

Let us conclude with the following related questions:

Question 1. Are large cardinals really needed? Is it possible to force over L and change

cofinality of every regular cardinal between ℵ1 and an inaccessible λ to ω preserving λ and

ℵ1?

Question 2.3 What if we replace ℵ1 by ℵ2, i.e. is it possible to change cofinality of every

regular cardinal between ℵ2 and an inaccessible λ to ω preserving λ, ℵ2 and ℵ1?

For this large cardinals are needed by the Jensen Covering Lemma and its generalizations.

An attempt to generalize the construction above to higher cardinals breaks down due to the

luck of completeness in the argument of Lemma 2.19.

An other approach which seems natural is to try to use variations of Supercompact Extender

Based Prikry forcing of Merimovich [2]. The problem with this is that a supercompact

cardinal itself is collapsed (say is an ordinal of cardinality ℵ1 or ℵ2) too many Prikry sequences

reflect down below κ and so new reals are added.

An additional way may be to arrange at each regular δ ∈ (ℵ1, λ) a δ-complete filter Uδ over

δ such that U+
δ has ℵ2-closed dense subset. Unfortunately we do not know how to do this

over the successor of a singular. The following probably is the simplest case:

Question 3. Let δ be the successor of a singular cardinal of cofinality ω. Is it possible

to have a δ-complete filter Uδ over δ such that U+
δ has ℵ2-closed dense subset?

3Magidor’s argument with Woodin’s Stationary Tower Forcing provides an affirmative answer
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