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Abstract
Our aim is to show that it is impossible to find a bound for the power of the first
fixed point of the aleph function.

0 Introduction

N, is called a fixed point of the N-function if R, = a. It is called the first fixed point if
« is the least ordinal such that X, = «. More constructive, the first repeat point of the

N-function is the limit of the following sequence
No, Ry, Ry, 5 NNNNO e

The following are corner stones results of cardinal arithmetic:

Galvin-Hajnal [Gal-Hajl:

Suppose that § < N5 and cfd > Rg. If Vi < Rs(2# < R;) then 2% < N g1y

Shelah [Shel]:
(a) The same is true also for d’s of cofinality w.
(b) It is possible to replace (21)* by |54,

Now suppose that Ng = ¢ and it is a singular cardinal.

The classical results of Prikry and Silver (see [Jech]) show that there are no bounds on
the power of a fixed point Ns provided that § is very big (there are a lot of inaccessibles
below it, etc.). But are there bounds for small fixed points? For uncountable cofinality the

following provides an answer:



Shelah [Shel]:

Let X, be the wi-th fixed point of the R-function. If Vu < N5 (2# < N;) then 2% < min
((21)*-fixed point, wy-th fixed point).

For countable cofinality Shelah ([She2]) showed the following:

The power of the first point of order w is unbounded below the first inaccessible,

where fixed points of order w are elements of the class C,, =, Cn, with

Co = {k|r is a cardinal}

C1={k| |Conk| =k}

Crpr = {K] [Co N K| = K}

A remaining natural question, explicitly asked in [Shel,14.7(7)] was about a bound of
the first fixed point.
Our aim here will be to show that there are no bounds. More precisely the following

holds.

Theorem Suppose that k is a cardinal of cofinality w such that for every 7 < k the set
{a < k| o(a) > a™} is unbounded in k. Then for every A\ > k there is a forcing extension

satisfying the following:
(1) K is the first fixed point of the R-function
(2) GCH holds below
(3) all the cardinals > k are preserved
(4) 28 > A

By [Git4], the initial assumptions are sharp. However, we do not know what the right
initial assumptions are if one removes “GCH below x” from the conclusion of the theorem.
The ideas and techniques used in the proof spread through various papers, but we tried

to make the presentation largely self-contained. Sections 1 to 4 contain the proof of the



theorem. Readers familiar with [Git2] and [Git3] may skip some of the material here (like
for example Sec. 1).
In the last section (Section 5) a construction of the same (as those of the theorem) flavour

is presented. We show the following;:

Theorem 5.21 The following is consistent.
(a) K is a strong limit of cofinality W,
(b) I — fi+3
(c) {0 <K|0T € bera} Nbere =0

where by, denote pcf-generator corresponding to A (A = kT or A = k).

This somewhat clarifies the situation with pcf-generators, since in all previous construc-
tions satisfying (a) and (b) the condition (c) fails. Also for uncountable cofinality the theorem
fails by [Shel].

At the end of Section 5 we outline a similar construction related to the study of the
strength of various gaps between a singular of cofinality 8, and its power. The result is the

following:

Theorem 5.22 Suppose that k is a cardinal of cofinality w, Ry < § < Kk, v < Xy and the
set {a < klo(a) > a™®*! + 1} is unbounded in k. Then there is cofinalities preserving, not

adding new bounded subsets to k extension satisfying 2% > kHoV+1,
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1 Preliminary Results

Let k be a limit of an increasing sequence (k, | n < w) and each k, carries an extender
E,. For a cardinal A\ > k™ we would like to add to K A w-sequences. Measures of the
extender F,, are usually used in order to supply n’s elements of such sequences, for every
n < w. Thus, if the length of each F), is at least A\, then we pick a,, C X\ of cardinality
less than k, and having maximal element in the extender order. Denote it by mc(a,). Now
we can use the basic Prikry tree forcing with measures with index mc(a,) of E,(n < w)

(ie. X € Une(ay) iff me(a,) € ju(X), where j,, : V. — M, ~ Ult(V, E,) is the canonical
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embedding into the ultrapower by E,,) to add an w-sequence. It will project easily to all the
measures in a,’s producing this way more Prikry sequences. Thus for every o € |, an,
assuming that ag C ay C --- C a, C ---, we will have a Prikry sequence. Moreover they
will be ordered under eventual dominance according to their indexes. One can argue that
the number of sequences added this way is at most x. But the sets a, need not be frozen.
We can allow to increase them. This way, generically all A will be covered. So we will be
done provided that the cardinals are preserved. Unfortunately they do collapse. In order
to overcome this the “true” initial segments of the Prikry sequences are hidden by mixing
them with A Cohen subsets of £ added simultaneously. We refer for details to [Git3, Sec. 1]
where the scheme above is realized. The main advantage of this construction is its simplicity.
There however are at least two drawbacks. The first, and a less important for us here — is
the consistency strength. Thus existence of extenders of the length A over each k,, (n < w) is
too strong. In [Git-Mag| only one extender of length A was used and in [Git3,4] no extenders
of length A were used, but instead over each k, an extender of a length below x,.,;. The
second drawback, and it is crucial here, is the impossibility to move down to relatively small
cardinals like the first fixed point of the N-function. The problem is that elements of Prikry
sequences, or indiscernibles as they are referred in the inner model considerations, resist

collapsings. Namely, if k™ < 7 < u < X\ are regular cardinals and
(tu(n) [n<w), ((n)|n<w)

are corresponding Prikry sequences then making ¢,(n),t.(n)(n < w) of the same cardinality

will collapse necessary u to 7. Basically, since p = cf | ] tu(n) / ﬁnite) and once cft,(n) =
n<w
cft-(n) for every n < w then also

cf <H t#(n)/ﬁnite> =cf (H tT(n)/ﬁnite)

Usually, collapses are made in indiscernibles free areas in order to move a configuration
achieved over a singular (or a former regular) down. Thus, for example, in [Git-Mag, Sec.
3], in order to make 2% = 8,5 an extender of the length §** was used over § to produce
6T Prikry sequences (changing cofinality of 0 to ®y) and simultaneously the Levy collapses
in intervals [p3, p,41) were applied, where (p, | n < w) denotes the Prikry sequence of
the normal measure of the extender (which is usually the guide sequence for these type of
constructions as well as crucial in analyses of indiscernibles). Here all indiscernibles are inside

intervals [p,, p3) (n < w) and hence are not effected by the Levy collapses. In the present
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situation extenders of the length A are used over each k,, (n < w). This creates indiscernibles
for p, unboundedly often below p,, 1 thus preventing the use of collapses, where (p, | n < w)
is the Prikry sequence for the normal measures of the extenders.

One can try instead of using extenders of the length A\ over x,’s and then a, C A,
to use for each n < w extenders of the length x/*, k"2 k19 (for some fixed § < ko),
g b1 gt the least Mahlo above wn ote - Instead of a, as a subset of A just require that a, is an
order preserving function from A to the length of the extender over x,. Doing this naively
will ruin cardinals between x and A. Analyses of indiscernibles in a fashion of [Git-Mit]
provides good reasons for this. Thus, in general, the Mitchell Covering Lemma provides
a connection called assignment function between indiscernibles and measures of extenders.
The Mitchell Covering Lemma applies locally. Namely to sets of less than x of Prikry
sequences. This in turn provides assignment functions which are also local. Once such
functions agree, they can be combined together into total assignment functions. This last
one can be used in calculating (or bounding) of the power of singular cardinals, see [Git-
Mit] for such applications. In the case under consideration, the total assignment function
exists which in turn will bound the power of k by ™, since, basically, in the ground model
the number of possibilities for selecting w-sequences of measures from extenders over &,,’s is
kT (certainly we assume GCH in the ground model). Hence A will be collapsed. By [Git-
Mit], the existence of total assignment function is a common phenomena. Thus, it is true
for uncountable cofinality assuming there is no overlapping extenders or for countable one
assuming that for some n < w {a < k| o(a) > o™} is bounded in k. It is still unknown
for uncountable cofinality if it is possible to have a situation without a total assignment
function. We think that this should be the case and models realizing such a situation may
throw light on basic problems of cardinal arithmetic. For cofinality Ny, a model without
a total assignment function was constructed in [Gitl]. Further development of the basic
idea of [Gitl] was made in [Git2,3,4] in order to blow power of k using short extenders
over k,’s. Let us sketch a construction of [Git 3, Sec. 2]. It contains basic blocks that
will be crucial further for the main construction here. Thus we assume that x = [ J,_, #n,
Ko < K1 <+ < Kp < -+, A > kT be a regular cardinal and for every n < w E, is an
extender over k,, of the length ™2, Let (Upo | @ < k/™"2) be the sequence of measures
(ultrafilters) of E,, i.e. X € Uy, iff a € j,(X), where j, : V — M, ~ Ult(V, E,) is the

canonical embedding.

Definition 1.1 Let P be the set of sequences p = (p, | n < w) so that for some ¢(p) < w

for every n < w the following holds:



(1) if n < {(p) then p, is a partial function from A to , of cardinality at most x (i.e. its

just a condition in the Cohen forcing for adding A subsets to k™).
(2) if n > £(p), then p, is a triple of the form (a,, A,, f,) so that

(a) f. is a partial function from A to k, of cardinality at most x
(b) a, is a partial order preserving function from A to "2 such that
(i) |an| < Kn
(ii) doma, N domf, = ()
(iii) rnga, has a maximal element and it is above all its elements in the Rudin-

Kiesler order (RK- order), i.e. for every 3 € rnga\{max(rnga)}
Z/{nﬁ <RK Z/{n,max(rnga)

(iv) doma,, C doma, 1

(C) An € Z/{n max(rnga)
(d) for every «, ﬁa Y € rngany if unoc ZRK unﬁ ZRK un'y then

Ty (P) = T, (M)

"

for every p € Tmax(mgan),a‘in

(e) for every a > 3 in rnga, and v € A,

7-[-max(rngan),oz(V) > Wmax(rnga),ﬁ(y)

where 7, ,’s are the canonical projections of U,,,,’s to U,,,’s derived from j,, : V —
M, ~ UV, E,).

Cohen parts of conditions p,’s for n < £(p) and f,,’s for n > ¢(p) desired to “hide” initial
segments of the Prikry sequences. Sets of measures ones (A4, | n > {(p)) are playing the
same role as in the usual tree Prikry forcing. The condition (d) above allows to project freely
the Prikry sequence from bigger coordinate to smaller one. For those familiar with extender
based Prikry forcing of [Git-Mag], notice that the support of a condition rnga,, is small. It is
of cardinality < k,, and not k,, as in this paper. This allows us to use the full commutativity
in (d). The last condition is (e) is responsible for the right order between Prikry sequences
that are added by P.



Definition 1.2 Let p = (p, | n <w), ¢ = (¢, | n < w) € P. We define p > ¢ iff

(1) £p) = £q)

(2) for every n < £(q) pn 2 g

(3) for every n > £(p) the following holds, where p,, = (an, Ay, f) and ¢, = (b,, By, gn)
() fo 2 gn
(b) a, 2 b,
(C) 7T:Illzm(rngan),max(’rngbn)14“ C By

(4) for every n, {(p) > n > {(q) the following holds, where ¢, = (b,, By, gn)

(a) pn

(b) domp,, O domb,

(¢) pn(maxb,) € B,

(d) for every 8 € domb,  pn(8B) = Tmax(rngba),s(Pn(maxby)).

Definition 1.3 Let p,q € P. We define p >* ¢ iff

(1) p=q

Crucial in Definitions 1.2, 1.3 is 1.2(4) which links together Prikry and Cohen parts of
conditions.

Forp=(p, | n<w)ePletp|n= (p,|m<n)and p\n = (p,, | m > n). Set
Pln=A{pln|peP}and P\n={p\n|peP}

The proofs next to the lemmas are quite straightforward. We refer to [Git3, Sec. 1-2] for
details.

Lemma 1.4 (P, <, <*) satisfies the Prikry condition.
Lemma 1.5 P~ P [ n x P\n for every n < w.

Lemma 1.6 (P\n, <*) is k,-closed for every n < w.



Let G C P be (P, <)-generic. For every n < w define a function F), : A — k&, as follows:
F,(a) = v if for some p = (p,, | m < w) € G we have £(p) > n and p,(«) = v. Now for
every a < A set t, = (F(a) | n < w).

Lemma 1.7 For every 3 < X there is a, 3 < oo < X such that t, is different from every t,
with v < 3.

Combining this lemmas we obtain the following

Proposition 1.8 The forcing (P, <) does not add new bounded subsets to x and it adds A

new w-sequences to k.

Unfortunately, the total assignment function exists here. This causes the cardinals in the
interval (k*, A] to collapse to x*. In order to overcome this the set P was shrunken to P*

¢

and an equivalence relation “«—" was defined on P*. The first change is a light one but
the second is quite drastic.
Fix n < w. For every k < n we consider a language L, containing two relation symbols,

a function symbol, a constant ¢, for every @ < k. and constants c,,, c. Consider a structure
+n+2
K

anr = (H(x*%), €, E,, the enumeration of [/if{"”] ’ L0, 1, a ke, X | a < KSFY in
this language, where x is a regular cardinal large enough. For an ordinal £ < y we denote
by tpnk(€) the L, k-type realized by & in a,, .

Let L7, ;. be the language obtained from L, ;, by adding a new constant ¢’. For § < x let
An ks be the L | -structure obtained from a,, ), by interpreting ¢’ as 0. The type tp,x(9,§) is
defined in an obvious fashion. Further, we shall identify types with ordinals corresponding

to them in some fixed well-ordering of the power sets of x,T*’s.

Definition 1.9 Let £ < n and 3 < \,. ( is called k-good iff
(1) for every v < 3 tpni(7, 3) is realized unboundedly many times below r,"*2

(2) for every a C (3 if |a| < K, then there is a < 3 corresponding to a in the enumeration

H+n+2
of [/ﬁ:””}

n

[ is called good if it is k-good for some k < n.

Further we will be interested mainly in k-good ordinals for & > 2. If o, 3 < k"2 realize

the same k-type for k > 2, then U,, = U,s. Since the number of different U,,’s is k.

The following two lemmas are easy, see [Git3, Sec. 2]



Lemma 1.10 The set {5 < k"2 | B is n-good} U{S < k/™? | cfB < Kk, contains a club.

Lemma 1.11 Suppose that n > k > 0 and (8 is k-good. Then there are arbitrarily large
k — 1-good ordinals below (3.

Definition 1.12 The set P* is a subset of P consisting of sequences p = (p,, | n < w) so
that for every n, {(p) < n < w and § € dom a, there is a nondecreasing converging to
infinity sequence of natural numbers (k,, | n < m < w} so that for every m > n a,,(5) is
km-good, where p,, = (am, Am, fin)-

The orders on P* are just the restrictions of < and <* of P.

Lemmas 1.4-1.8 are valid for (P*, <, <*) as well as the fact that A collapses to x™.

Let us now define an equivalence relation on P*.

Definition 1.13 Let p = (p, | n < w), ¢ = (¢, | n < w) € P*. We call p and ¢ equivalent
and denote this by p < ¢ iff

(2) for every n < £(p) pn = ¢n

(3) there is a nondecreasing sequence (k, | ¢(p) < n < w) with lim, .k, = oo and

ki) > 2 such that for every n, £(p) < n < w the following holds:

(a) fn = Gn
(b) doma,, = domb,

(¢) rnga, and rngb, are realize the same k,-type, (i.e. the least ordinals coding rnga,

and rngb,, are such)
(d) A, = B,.
Notice that, in particular the following is also true:

(e) for every ¢ € doma,, = domb,, a,(0) and b,(d) are realizing the same k,-type
(f) for every § € doma,, = domb,, and ¢ < k,, a,,(0) is ¢-good if b(d) is ¢-good

(g) for every § € doma, = domb, max(rnga,) projects to a,(d) the same way as

max(rngb,) projects to b, (9).

Let us also define a preordering — on P*.



Definition 1.14 Let p,q € P*.

Set p — ¢ iff there is a sequence of conditions (rg | k < m < w) so that
(1) ro =p
<2> Tm-1=(

(3) for every k <m — 1

Tk < The1 O Th < Thyq .
The next two lemmas show that (P*, —) is a nice subforcing of (P*, <).

Lemma 1.15 Let p,q,s € P*. Suppose that p < q and s > p. Then there are s > s and
t > q such that s' < t.

Lemma 1.16 For every p,q € P* such that p — q there is s > p so that ¢ — s.

We refer to [Git3, Sec. 2] for the proofs. Now using the A-system argument one can

show the following;:

Lemma 1.17 (P*, —) satisfies A-c.c.

Again, we refer to [Git3, Sec. 2] for the detailed proof.

So, the forcing (P*,—) preserves A. However, it is not hard to see that the rest of
cardinals (if any) in the interval (xk*, A] are collapsed to . But suppose that we like to
preserve cardinals between x and A. The problem with straightforward generalization of the
forcing (P*,—) (even for A = k771) is that the A-system argument of 1.17 breaks down.
In [Git3], a preparation forcing was introduced to reduce gradually the number of possible
connections between ordinals above and below x. This worked for A’s below £ with § < x.
In [Git4], generalizations dealing with large \’s were suggested. But they do not fit our
aim to make eventually x into the first fixed point of the N-function. The problem with
the approach of [Git4] is that the extenders used over k,’s are relatively long. This in turn
produces a lot of indiscernibles resisting collapses for turning  into the first fixed point.

Let us now explain the basic idea of the present construction. Thus, let x = J,,, fn,
kg < K1 < --+ < K, < ---, each Kk, for n > 1 carries an extender FE, of the length x,_;
and rq carries extender of the length rj. Let A be an inaccessible above k. Let py denote
the one element Prikry sequence for the normal measure of Ey. Then pi will correspond

+ ! K1+po++1.

to k. Now over x; we force with £} Denote by p; the one element Prikry
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+od 4+l . +pg+1
sequence for the normal measure of E;. Then p, will correspond to x; . At level 3

+og
we will use Fy | 13" " and so on. It will be arranged that A = tcf( I p:/finite) where

n<w

Py = pﬁ*“ and pf = p¢. The rest of the cardinals between x and A will be connected

+P:L—1)

generically to those of the intervals [p;, p, . The main difficulty here compared with

[Git3,4] is that we need to link between k, and k,,1 for every n < w. Thus, in order to
determine pj;,; we need to know p; in addition to p,41. This requires dealing with names

which complicates the arguments.

2 The Basic Forcing

We define here a forcing notion similar to P* of Section 1 but with some additions needed
for our further purposes. Our main forcing will be a carefully chosen subset of this forcing
notion.

Fix an ordinal ¢ > 1.

Definition 2.1 P* consists of sequences p = (p, | n < £(p))(pn | £(p) < n < w) so that

(1) lp) <w
(2) for every n < {(p) p, is of the form (p,, hep, hsn, fn) such that

(i) pn is the n + 1-th member of the increasing sequence of inaccessible cardinals
PO, P1s - -5 Pepy—1 and po < Ko < p1 < -0 < Pyp)—1 < Kig(p)—1

(il) hey € Col(pf{"“"*“, < /in> where k_; = 1

(iii) hsn € Col(kp, < pns1) if n+1 < (p) and hs,, € Col(ky, < kpt1) if n+1={(p)

iv) f, is a partial function of cardinality at most x form k™92 to k.
P Yy

The meaning of the condition (2) is as follows: (po, ..., pep)—1) is the initial segment of
the Prikry sequence for the normal measures of extenders E,’s over k,’s. h<y,, h~, are
desired to preserve only about k,_; — many cardinals between p,, and p, 1. Collapsing
finally pg to Xy this will turn x into the first fixed point of the R-function. f, is like p,
below £(p) of Section 1 and its role is to hide the connection between measures of E,

and the corresponding one element Prikry sequences.

(3) if n = £(p), then p, is of the form (e,, a,, An, Sn, hsn, fn) Where
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(a) f, is a partial function from x*9*2 to k, of cardinality at most x and domf, N

doma,, = ()
(b) hsp € Col(kp, < Kpi1)

(c) e, is an order preserving function between less than r,_; cardinals < x*9*2 and

cardinals inside [k, kfn=1] so that

(i) k™°*2 € dome,, and e, <m+5+2> = won-1+1 for a regular 6,1 + 1 < Kp_1.

(ii) every T € rnge,\{r°"-1*1} is a regular cardinal between ;" and o1,

The purpose of e, is to provide a link between values for cardinals determined at

level n — 1 and the level n. Usually, d,—; will be p},_;, where p;,, = pZﬁH and

pr’s are from the Prikry sequence of the normal measure.

Also we use £79%2 only in order to make the notation more homogeneous. One

can use instead some regular A > x as well.

(d) a, is a function so that

(i) |an| < kn

(ii) doma, C k™2 U{A | |A| € dom(e,) and A < (H(k™*8), €, K, (km | m <
W), (Em [ m <w))}

(ili) @, | Onis order preserving partial map from £+ into the interval (o1, 5, 0-171)

(iv) mng(a,\On) C {B|B < (H(k}°"1*%) € k,, E, | k1) for some k,2 <
k <w and B>B C B}

(v) if A € (doma,)\On then |a,(A)| = e,(|A|)

(vi) if A, B € doma,\On then A C B iff a,(A) C a,(B)

(vii) if A € (doma,)\On and « € (doma,) N On then a € A iff a,(a) € a,(A)

(viii) doma, Ndomf, =

(ix) rng(a, | On) has a maximal element and it is above all the rest of the
elements of rng(a, [ On) in the Rudin-Kiesler order, i.e. for every f €
rng(an, [ On)\{max(rnga,)} Uns <rx Unmax(rnga)-

(x) rng(a,\O,) has a maximal under the inclusion model. Denote it further by

max’(p,) or max'(a,).

The purpose of a,, as in the corresponding definition of P* in Section 1, is to
connect between ordinals above xk and those at level n. We added here submodels

to a,. The role of them will be crucial for proving chain conditions of the main
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forcing. Notice that in [Git3] submodels does not appear at stage of P* explicitly
but rather implicitly via coding by ordinals. The conditions (iii) and (v) are

technical and will allow further an interplay between levels n — 1 and n.

(e) An € Upmax(rng(an ony) and min A > sup(rnghs,_1) if n > 0, where A is element

by element projection of A, to the normal measure of E,,, U, i.e.
A% = {VO | IS An} y VO = Tmax(rng(an On)),O(V) .

(f) S, is function on A? so that for every p € AY S, (p) € Col(pT 171 < k), where
K_1=1.
Here, as usual, in such matters S,, provides information about potential collapses.
Thus, once one element Prikry sequence p, for the normal measure is picked,
Sn(pn) turns into condition of the actual collapse used below k,,. Notice also that
S, depends only on the normal measure and no indiscernibles are collapsed. This
allows to use S,’s freely without restrictions of the type [Syly, . is in a certain
generic set in the Ult(V, U, ).

(g) for every a, 57 Y € rgay if una ZRK un,@ ZRK un7 then

Ty (9) = 7, (M)

"

for every p € 71-max(rngan On),a*™n

(h) for every a > 3 in rnga, and v € A,

Tmax(rngan On),a(y> > Tmax(rngan On),ﬂ(V) .
(4) if n > ¢(p) then

pn == <67L7 a’nu An; STL7 h>n7 fn>

~Y

is so that

(a) f, is a partial function from A to s, of cardinality at most x.

(b) hspn € Col(kn, < Knt1)-

Once a,_1 [ On and one element Prikry sequence v € A,,_; are decided, e,, a,, A,, and

S, are also determined and satisfy the following:
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(c) the same as (3)(c) but with the following addition:

(iii) 6,1 = (¥°)TPn—21 where p* | = 1 and if n—2 > 0 then p¥_, = p:fg’?’ﬂ which is defined

by induction using elements of the Prikry sequence for normal measures py,. .., p,_o.

(iv) dome, = (doma?_,) N Card U {x™*%} and for every a € doma’_, N Card

en(a) = /@:a;’l(a)ﬂ

were a;_, is the function with domain as those of a,_; [ On

and @) (@) = Tmax(rngan_1 On),an_1(a) (V) for every a € doma,_; | On.

. +pl_o+1 .
Notice that E,_; [ x, 7> 1is used over k,_;. Hence each af

n—1 * () will be below
(VO)+'D:;*2+1 —

n—1-
The rest of the requirements are exactly as (3)(d)-(h).

Let n = {(p). For every t € doma,, (either an ordinal or a submodel) there is a sequence

(km | m < w) nondecreasing and converging to infinity so that the following holds:

(i) For every m > {(p) once (p;|i < m) are decided (and does not matter either way)

t € doma,, and a,,(t) realizes k,-good type.

This is a reformulation of conditions on monotonicity of doma,’s of Section 1. Only

here we have names instead of actual sets in Section 1.
Definition 2.2 Let p,q € P*. Set p > ¢ iff

(1) £(p) > 4(q)

(2) for every n < £(q) let p, = {pn, hsn, hen, fn) and ¢, = (&, tsn,ten, gn). Then the
following holds:

(3) if n = £(q) < {(p) then the following holds, where p, = (pn, hen, hsn, fn) and g, =
<€n, Qn, A'm Snu t>n7 gn>

(a) fn 2 gn
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(b) domf,, 2 doma, [ On

(¢) fn(max(dom(a, [ On)) € A,.
Denote this ordinal by p.

(d) for every 8 € doma,, | On

fn(ﬁ) = Tmax(rng(an On)),an(B) (P)

(e) Pn = ,00
(f) hen 2 Sn(po)
(g) h>n 2 t>n

if /(q) < n < £(p) then the following holds where p, = (pn, hepn, hsn, fn) and g, =
<€n, Qs An7 Snu t>n7 gn>
(a) fn 2 gn and h>n 2 t>n

(b) (px | k < n) decides e, a,, A, and S,
(c) the condition (3)(b)-(d) hold for (e, an, Ay, Sn, fn) and p,.

ifn > £(p) > £(q) or n > £(p) then the following holds, where ¢, = (e, apn, Apn, Sns hsn, fn)

and Pn = <dn, bn; Bn7 Tn7 t>n7 gn>

~ o~ Y

(a) fn g gn and h>n g t>n

(b) it is forced in the simple fashion by only deciding p,,’s (m < n) that

(iii) 7 L C A

max(rng% On),max(rng% On)" " o

S

(iv) for every v € BY



(6) if n = £(p) = {(q) then the following holds, where ¢, = (e, an, Ay, Sn, hsn, fn) and
Pn = <dn7 bn7 an Tnv t>n7 gn>

(a) fn g gn and h>n g t>n

(b) e, =d,
Here is where it differs from the previous case. We are not allowed to change e,, once

we got to the level n = {(q).
(©) by 2 an
(d) =" B, C A,

max(rngb, On)max(rnga, On)

(e) for every v € B?
T.(v) 2 Su(v)

Definition 2.3 Let p,q € P*. Set p >* ¢ iff

ift

(2) for every n < 4(p) pn = qn

(3) there is a nondecreasing sequence (k, | £(p) < n < w) with lim,_,. k, = oo and

Kupy > 2 such that the following holds for every n, ¢(p) < n < w where p, =

~Y

<€n7anaAn7 Sna h>n7 fn> and Qn = <dnabnaBnaTnat>n>gn>

(a) if n = ¢(p), then

(
(
(i) hop = ton
(

iv) doma, = domb,

16



(v) rnga, and rngb, are realizing the same k,-type
(vi) A, = B,
(vil) S, =T,

(b) if n > £(p), then every common extension (r,, | m < n) of (p,, | m < n) and (g, | m < n)

which decides the first n elements of the Prikry sequence for the normal measures

decides e, an, Ay, S, and d,,, b, B,,, T, so that they satisfy the conditions (i)-(vii) of

(a) above.

Definition 2.5 Let p,q € P* we set p — ¢ iff there is a sequence (r; | k < m < w) of

elements of P* so that
(1) ro=p
(2) "m—1 =4¢

(3) for every k <m —1

T < Tyl OF T <= Tpyq -

As in Section 1, the following two lemmas showing that (P*, —) is a nice subforcing of
(P*, <) are valid.

Lemma 2.6 Let p,q,s € P*. Suppose that p «—— q and s > p. Then there are s’ > s and
t > q such that s’ «—— t.

Lemma 2.7 For every p,q € P* such that p — q there is s > p so that ¢ — s.

3 The Preparation Forcing

We define first a part of the preparation forcing above k. The definition follows the lines of
[Git4]. It is desired to reduce the number of possible choices gradually to 7.

Fix an ordinal 6 > 1.
Definition 3.1 The set P’ consists of pairs ({(A%, A7) | 7 < §) so that the following holds:

(1) for every 7 < & A’ is an elementary submodel of (H(k%°%2), ¢, (k** | i < § + 2)) such
that
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(a) |AY| = k™™t and A" D k™71 unless for some n < w and an inaccessible 7/, 7 = 7 +n

and then [A%| = k™™ and A°" D k1™
(b) |A°T[>407 C A0
(2) for every 7 < 7/ < 6, A C A
(3) for every 7 < §, A7 is a set of at most KT+ elementary submodels of A" so that
(a) A0 € A
(b) if B,C'€ A" and B S C then B € C

(c) if B € A' is a successor point of A'™ then B has at most two immediate predecessors

under the inclusion and is closed under x™"-sequences.

(d) let B € A' then either B is a successor point of A'™ or B is a limit element and then

there is a closed chain of elements of BN A!'™ unbounded in BN A and with limit B.

(e) for every 7,7 < 7/ < 6, A€ A and B € A'™ cither B D A or there are ¢ < w and
T T T< T < <7/ <5, By € ANAY ... B, € AN A such that

BNA=B,N---NB,NA,

if 7 = 7', then we can pick 7{ (and hence all the rest) above .

(f) let A be an elementary submodel of H(x%°*2) of cardinality |A°7|, closed under < |A°7|-
sequences, |[A°T| € A and including ((A°", A') | 7/ < §) as an element, for some
7 < 4. Then for every 7/, 7 < 7/ < § and B € A7 either B D A or there are Tiy s Ty
T<17 < <71,<9, B e ANAY, ... By, € AN A such that

BNA=BnNn---NB,NA.

Let for 7 < § A7 be the set {BNB;N---NB, | B€ A", n <w and B; € A for some
pi, T < p; < 0§ for every i,1 <i < n}.

Definition 3.2 Let ((A°, A'") | 7 < §) and ((B°", B'") | 7 < §) be elements of P’. Then
(A7 A7) | 7 < 6) > (B, B') | 7 < 8) iff for every 7 < §

(1) AlT 2 BIT
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(2) for every A € A'T either

(a) AD B

or

(b) A C B’ and then A € B'7

or

(c) A2 B, B 2 A and then AN B € B!".

Definition 3.3 Let 7 < 6. Set PL_ = {{((A%, A") | 7 < p < 0) | J(A™, AY) | v < 1)
(A% A™) | v < 1) (A% AP) | 7 < p < 4) e P'}.

Let G(P.,) € P, be generic. Define PL_ = {((A", A") | v < 1) | 3((A%, A) | 7 <
p <6) € G(PL,) ((A™, A%) [v <7) (A%, A) |7 < p < 6) € P'}.

The following lemma is obvious
Lemma 3.4 P'~PL «P'_ (7 <9).

Now we are ready to define the main preparation forcing. There is a clear structural

parallel between this forcing and the main preparation forcings of [Git3, Sec. 4] and [Git4].

Definition 3.5 The set P consists of sequences of triples ((A7, A F7) | 7 < §) so that
the following holds:

(0) (A%, A7) |7 <) € P’

(1) for every 14 <15 <4
F™ C F™ C P* (P* of the previous section)

(2) for every 7 < 4, F7 is as follows:
(a) [F7]=]A"]

(b) for every p = (p, | n < L(p))(pn | w >n > {(p)) € F'" the following holds:

(i) each ordinal mentioned in p, for n < £(p) is in (A% N KkH+2) N {]A°7|}

(ii) for every n > £(p), for every extension (r,, | m < n) of (p,, | m < €(p)>m<j?z1 | m < n)

deciding first n elements of the Prikry sequence for the normal measure
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(iii);

every ordinal appearing in p,, as it is decided by (r,, | m < n), is in (A" N KkH+2) U

{147}

(iii) every submodel in the domain of correspondence function a,, of p,, as it is decided by

rm | m < n) belongs to one of the following sets:
(rm | ) g g
{AC AT | w* <Al < |A],

A is an elementary submodel, and for every 7/, 7 < 7/ < and B € A either BD A
orthereare { <wand7},..., 7,7 <7 <--- <7/ <8 B € ANA7 ... B, € ANA'
such that

BNnA=BnN---NBNA},
A and AT
such that the picked elements of the last two sets are required to be closed under

< |A%|-sequences of its elements. If 7 = 0, then the first set is empty.

if p € F7 and ¢ € P* is equivalent to p (i.e. p < ¢) with witnessing sequence
(kn | n < w) starting with kg > 4 then ¢ € F7. This condition as well as the next one

provide a closure of F'7 under certain changes of its elements.
ifp= (| n <L) (pn|w>n=>Lp)) P and g=(gn|n <q))(gn|w>n=
E(Q» € FT, DPn = <€n>an>An7Sn7 h>n>fn> and dn = <dnabm Bn7Tn7t>n>gn> for n 2 f(p)

or n > ((q) respectively, then p € F'™ provided

(i) p > q (in the order of P*)

for every n < £(p) every ordinal appearing in p, is in A%
ae(p) = bup)
for every n > {(p) for every (r,, | m < n — 1) extending (p,, | m < n — 1) and

deciding first n — 1 elements of the Prikry sequence for the normal measures and so

also (e, an, A, Sy) and (d,, b, By, T,) we require that a,, = b,.

for every n > {(p) every ordinal appearing in f,, is in A"7.
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The meaning is that we are free to make changes in all the components of an element of
F7 except a,’s (and hence also e,’s). There we should be more careful.

The next two condition allow adding ordinals and submodels.

(e) for every ¢ € F™ and a € A" thereis p € F™" p= (p, | n < f(p))r‘(}f)\? | n > €(p)>,117} =
<‘ff}7 i, 43”“ %, h,i"’ ]:7}> (n > ¢(p)) such that p >* ¢ and starting with some ng > ¢(p)
for every extension of <an | m < n) deciding elements of the Prikry sequence for the
normal measures (and so also %) we have that a € doma,,.

(f) for every g € F™ and B € A" U AlT 1BI>B C B, there is p € F™ p = (p, | n < {(p))"
(1?\,} | w >n > Up)), pn = (%,%,%,%,hzn,@> (n > {(p)) such that p >* ¢ and
starting with some ng > ¢(p) for every extension of (pﬂ | m < n) deciding n elements

of the Prikry sequence for the normal measures we have B € doma,. We require also
that p is obtained from ¢ by adding only B and probably the intersections of it with
other models appearing in ¢ and needed to be added after adding B.

The next condition allows us to put together certain elements of F'” remaining inside F'7.

(g) Let p,q € F™ be so that

(i) pn = gn for every n < {(p)

(iii) fn,gn are compatible (i.e. fUg is a function) and also hs,, t-, are compatible for every
n > g(p)a where Pn = <€n> Qs An: Sm h>n> fn) and n = <dn: bn: Bna Tm tsn, gn>

(iv) max'(gep)) € domayy) and agp [ max'(qgep)) € bep), where max'(gy)) denotes the

maximal model of domby, and

a, | B={{tNB,sNay(B)) | (t,s) € a,}

(V) eep) = du)

(vi) Sip) and Ty are compatible via obvious projection.
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(vii) for every n > {(p) there is a common extension of (p,, | m < n) and (¢, | m < n)

deciding first n elements of the Prikry sequence for the normal measures.

(viii) for every n > ¢(p) and every common extension as in (vii) the decided values (e, a,, A,, Sp)

of p, and (d,,, b,, By, T,) of ¢, satisfy the following
(viil); max'(a,) = max'(ayy)) and max'(b,) = max' (b))
(viii); max'(b,) € doma,
(viii)3 a, | max'(b,) C b,
(viii)g e, = d,

(viii); S, and T,, are compatible via the obvious projection
then the union of p and ¢ is in F'", where the union is defined in obvious fashion taking
at each n > {(p), a, Ub,, f,Uq, etc.

(h) there is F™* C F7 such that
(i) F™ is <*-dense in F7, i.e. for every p € F" there is ¢ € F™* with ¢ >* p

(ii) F™ is closed under unions of <*-increasing sequences of its elements, i.e. every <*-

increasing sequence of elements of F* having union in P* has it also in F™*
(iii) F™ is closed under the equivalence relation ”«—"

(iv) for every p € F™ A’ appears in every p, (n > {(p))

(v) for every p € F™, p = (pn [ n < L(p))™pn | @ > 1> U(p)) if ¢ = (gm | m < £(¢))"(gn |

w > m)l(q)) > p satisfies the conditions (a), (3) below then ¢ € F™*

() (gm | m < £(q)) forces (or decides) du(q) = Pe(q)

(B) for every k,0(q) < k <w
(qm | m < L(q))qm | £(q) < m < k) decides that ¢, = px.
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(vi) for every p € F™*,

p=(pn|n <L(p))(n |>n> L)), pn = (en, an, An, Tny hon, fn)
if g="{qn | n<0q) g, | w>n>4L(q)) is such that

() g€ F™

(B) a>p

then p’ € F™ where
P = (g [0 < U(p))"(p), | @ >n = {(p))

is such that

() p'g(p) is as py(y) the last coordinate (i.e. fyp)) is replaced by
fetw) U qep) 1 (On\domay,)) -

(B) for every n > {(p) the following holds:

(B)1 the last coordinate of p, is replaced in p!, by those of g,

()2 for every A € (UTSPS5 Alf’) U{A C A" | Ais as it was reqired in (b)(ii), } N domayy),

for every (r,, | m < n) extending (g, [ A | m <n)

(rm | m < n) decides that p/, [ A and g, [ A are the same.

The existence of such F™*’s will be crucial for the proof of the Prikry condition of the

final forcing.

The additional (relatively to [Git3]) complication here due to the use of names. During

a proof of the Prikry condition different choices from set of measure one should be put

together. In order to satisfy the requirement (f) above (which is in turn crucial for the chain

condition) we need to do it gently. Thus models should by addable and restrictions to them

need to be in F7. So we cannot allow extensions of original condition p which have the same

Prikry sequence at level ¢(p) for measures in some A € dom(ay))\On but disagree about

elements of A at further levels.

The next condition allows us to restrict or to extend conditions remaining inside F'".
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(1) Let p = (pn | 0 < L(p)™pn | €(p) < n < w) € F7, pn = (en, tn, Ap, Spy hsny fu) (0 >

((p)), |B] = k7t or B € A for some 7' < 7. Suppose that for every n > £(p) every

extension of (p,, | m < n) deciding the first n elements of the Prikry sequence for the

normal measures we have B € (doma,)\On. Then p | B € F™, where p | B = (p, |
B|n <{lp)Np, | B|w>n=>{p))),for every n < £(p) p, | B is just the usual

restriction of the functions of p, to B; if n = {(p) then p, | B = (e, | B, a, | B,
Tmaxan,B Ans Sns Psn, fn | B), where a,, [ B is defined as in (g)(iv); if n > ¢(p) then

pn | B is defined as above only dealing with names.

() let p = (pn | 0 < L)Npn | Lp) < n < w) € F7, pu = (en,an, An, S, hisn, f)
(n > {(p)) and for every n > {(p) every extension of (p,, | m < n) deciding the first n

elements of the Prikry sequence for the normal measures we have A" ¢ doma,,. Let
(0, | w>mn > {(p)) be so that

(a) o < Ay, and |oy,| is k, good for every n > {(p)

(B) (kn | n>{(p)) is increasing

(v) ko =5

(0) lnl>5, C o, for every n > £(p)

(&) for every n > {(p) every extension (r,, | m < n) of <an | m < n) deciding the first
n elements of the Prikry sequence for the normal measures, and hence also at Q, We
have rnga,, C o,.

Then the condition obtained from p by adding (A°",0,) to each a, with n > {(p) belongs
to F7.

(k) if A is an elementary submodel of H(kT°%2) of a regular cardinality x**, closed under
< K'P-sequences and with ((A°7 A7) | 7/ < §) € A, for some p < 7, then A is
addable to any p € F™ N A with the maximal element of doma,’s A", i.e. AN A’ can

be added to p remaining inside F'". Also we allowed to correspond A to any sequence
of submodels as in (j) only replacing rnga, C o, in (j)(£) by rnga, € o, and keeping

o, of the cardinality corresponding to x*°.
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Definition 3.6 Let ((A° A F7) | 7 <§) and ((B°", BI", F™) | 7 < §) be in P. We define
(A A FT) | T <6) > (B, BY,G7) | 7 <)
ifft
(1) ((A°7 ATy |7 <6) > (B, B'7) |7 <) in P
(2) for every 7 < ¢
(a) FT 2O G

(b) for every p € F™ and B € B'"U B]T if for every n > {(p) once a,, is decided B € doma,,,
then p | B € G7, where the restriction is defined as in 3.5 (2g(iv)) and, as usual,

p={pn|n<Lp)pn | Lp) <1 <w),

Pn = <€n7anaAn78m!\LJ fn>

>n v

for n > £(p).

Definition 3.7 Let 7 < §. Set P, = {({A% Al Fr |1 < p<d)|3I((A% A F") |
v<T1)y ((A% A Fv)y v <7 >0 ((A% AP FP) |7 <p<§) e P}

Let G(Ps,) C P>, be generic. Define P, = {{((A™, A" F") | v < 1) | I((A%, AP Fr) |
T < p<8) €GP, (A% A FY) | v < 1) (A% Al FP)y | 7 < p <J) € P}

The following lemma is obvious:

Lemma 3.8 P >~ P>, x P, for every 7 <.

Let 1 be a cardinal. Consider the following game G,,:

I s S3 0 S2041

I1 S92 52042
where o < p and the players are picking an increasing sequence of elements of P i.e. s1 <
S <83 < o < St < Soat2 < ---. The second player plays at even stages (including the
limit ones) and the first at odd stages. The first player wins if at some stage ov < p there is
no legal move for II. Otherwise II wins.

P is called p-strategically closed if there is a winning strategy for II in the game G,,.
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Lemma 3.9 For every 7 < §. P, is k™ -strategically closed. Moreover, if there is no

+7+2

inaccessible 7' < T and n < w such that T = 7' 4+ n, then P>, is Kk -strategically closed.

Proof. Fix 7 < 8. Let ((AY, Aj”, FF) | 7 < p <6) | i < i*) be an increasing sequence of
conditions in P>, already generated by playing the game and we need to define the move
(A% Al FP) |7 < p <) of Player I at stage i*. Define it by induction on p. Thus suppose
that ((A% AY' FCY |7 < p < p)is already defined. We define the triple (A% A FZ).
First deal with (A, AJ*).

If i* is a limit ordinal and cfi* = k(7), where k(p) = k™7, if p = p/+n for an inaccessible p’
and n < w and k(p) = k! otherwise. Then we set A = J,_,. A and A, = J,_,. A;" U
{AY} whenever p = 7. Now let 7 < p < 6. Define AY to be the closure under the Skolem
functions and < k(p)-sequences of ((A%' | i < i*) |7 < p <8) (j € 2), (A¥ |7 < p < p),
(FF' |7 < p < 6i <), (FFr | 7 <p <é6i<i), (FFr|7<p <6i<i),
(FEOFE | 1< o/ < p). Weset A =J,_. AU {A%}).

If i* is not limit ordinal or it is a limit ordinal but ¢fi* < k(7), then we define (A%

i<

LAY
T < p <6) as above and (A%, AI7) is defined the same way as (A%, Al?) was defined above
for p > 1.

Let us show now that such defined ((AY, A)) | 7 < p < §) is in P’. Basically, we need
to check the conditions (e) and (f) of Definition 3.1.

We start with (e). Let 7 < p< p/ <6, A€ A and B A’ If A€ A and B € AYf for
some i, i’ < i*, then we use (f) for ((A% Al) | 7 < v < §) where i = max(i, ). It provides
p<T << <8 Bie ANAT . Bye ANAT such that BNA = BiN---N BN A.
Now, since A;T’/“ - Ailf i for every 1 < k < ¢ we are done.

If A e A for some i < i* and B € A}f/\UKi* AY then B D U<+
B2 AY 2 A” 1t A e A\U,_,. Al and B € A} for some i’ < *, then we can use 3.1(f)
for A, B and (A9, AY'Y | 7/ < 8) € P It A€ AP\U,.. A and B € AX\,_,. AV,
then either B D A or B C A and in the last case p’ = p and B € A.

Now let us check the condition (f). Thus let A be an elementary submodel of H(k*9*2)
, closed under < |AY € A and including ((A%" ALY |
7' < 6) as an element, for some p < §. Let 7/ € [p,6] and B € AX'. Suppose first that
B e AY' for some i’ < i*. Then, ((A%, A¥) | v < §) € A, since AY C AY¥ C A and the
sequence ((A% Al) | v < &) € A%. So (f) of 3.1 applies to A, B and ((AV, Al¥) | v < §)
and we are done. Assume now that B € A\ J;,_;- Ai™. Then by the definition of AT,
B = Al If 7' = p, then B € A since A D |AY| = k(p). Hence AY € A and, also AY C A.
Suppose now that 7 ¢ A. Set 7 = min((A\7’) N On). Then 7 < § and AY € A. But

AY ". In particular,

0
-sequences, |A.7

of cardinality |AY
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AN B = AN A% since the chain (AY" | 77 < §) € A.

Now we turn to the definitions of F}. and its dense closed subset F2". We concentrate on
Ff*. FY then is defined in a direct fashion satisfying conditions of 3.5.

Suppose first that ¢* is a successor ordinal. Then ¢* > 2, since the first player makes the
first move. We denote by p"A for p and A as in 3.5(k) a condition obtained by adding A
to p. Notice that varying images of A we can have a lot of different conditions. If some B
appears in p then we denote by p\B the result of removing all appearances of B inside p.
Define F?" to be the set including F{f_Q (if i* = 2, then just ignore everything with index

i* — 2) and all conditions of the form ¢"AY so that either
(1) g€ F*  nAY
(2) A% , appearsin ¢ and q | AY , € F*,
(3) AY_, appears in ¢ and ¢ | AY , € F¥*,

or

there are r and ¢ such that
(4) r € F N AY
(5) AY_, appears in r and r | AY , € F*
(6) AY_, appears in r and r | AY , € F2*,

(7) te A?f nPpP* A?f _, appears in ¢ and each model appearing in ¢ which does not belong
to AY | is of cardinality less than (p)

(8) r>*t [A?f_l
(9) ¢ =rut.

Let us show that the limitations (2),(3) and (5),(6) above are not very restrictive. Thus above
every 1’ € FS_| with A% , and A , inside we find r >* ' in F2* | with r | A® , € F*,
and r | AY , € F”°,. Thus first extend 7 to 79 € FS . Then consider 15, = 119 | A% ,,.
Extend it to ro in F2*,. Let rhy = ro0 | A ,. Extend it to rs € FS,. Now consider
My = 110 U UTsg. It belongs to FY_; by 3.5(g). Extend it to r1; € F2" . Again consider
rh =111 | A%, and extend it to ro; € F2*,. Let 15 = 791 | A?*’LQ and r3; be its extension
in F",. Continue by induction and define rj;, for every j = 1,2,3 and k¥ < w. Then

: : : 0
7=, r1k will be as desired, i.e. v € F2*(, r | A® , € F2*,and r | A;F , € FI7,,.

27



Let us show that such defined set F" is closed. Thus suppose that (p? | 3 < a) is
a <*-increasing sequence of elements of F2* with union p* € P*. We need to check that
p* € F2°. Consider ((p° [ A%®_)\(A%_, N AY) | B < a) it will be a <*-increasing sequence
of elements of F&* | with union (p® | A% \(A% N AY). We take t = p*\AY and
r=(p* | A% I\ (A% N AY). Then (r Ut) A% = p, and it is in F¥ by the definition of
the last set.

Suppose now that ¢* is a limit ordinal. We first include |J F/" into F£".

i<i*
i is even

Assume by induction for every even i < i* for every p € F/* the following holds:

(1) A?p appears in every component p,, of p with n > ¢(p)

(2) if i’ < i is even and A?,p appears in every component of p, of p with n > £(p) then A}

appears as well and
(0 I AONAY NAY) € Fy7 .

A typical element of FZ" is obtained now in following two fashions. Start with the first
one. Let (pP | B < a < k) be a <* — increasing sequence with union p® in P*, p? € Fz%*
for every f < a and (ig | f < a) is an increasing sequence of even ordinals with i, = i*.
Extend p* by adding A?f and put the resulting condition into F£". Notice that (p° | 3 < «)

as above can be always reorganized as follows. Set p” = | p? | A?g. By (2) above
a>p'>p

el 0§ 0Op 0§ 5% / / Op ; G’
(p” | A )\(Aiﬁl N Aj;) € Fpr for every 3, a > ' > (. By (1) Aﬁ appears in p”, so

13/

Agg N AY” will appear in p®*! and hence in every p?" for a > 5" > 3. So,

ZB/
P= U P ran= U (07 1aB)\arnaY) .

Zﬁ’ 1’5/
a>p'>6 a>p'>p

The last union is the union of elements of Fi‘;*. Hence p” is in Fi‘;*. This way we obtain
a new sequence (p” | f < a) with the same limit but in addition p* | Agg = p? for every
B< B <a,as well as p* | A® (ASf N AQ;j) — e .

Now describe a second way of generating elements of F.". Let a < i* be an even ordinal.
We include the following set into F2".

Se = {q"AY | g € F2* N AY or there are t € AY N'P* and r € AY¥ N F** such that

(a) A% and A% are in t and each model appearing in ¢ and not in A% is of cardinality
< k(p)
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(b) r>*t ] A®
(c) r | A € FY*
(d) g=rut}

Notice that every ' € F? with A% and A% inside can be extended (<*-extension) to
r € F% with r | A% € Fr*. We just repeat the argument given for the same matter in the
case of successor i*. Thus the requirement (c) above is not really restrictive.

Let us check (2) of the inductive assumption above. Thus, let i/ < i* be even and AY

appears in every component p, with n > £(p) of p € S,. Then i/ < a. If i/ = «, then AY

appears in p since p € F2*. Also (p | Agf)\(Agf N A%) € F% by the choice of S,. Now let
i’ < a.p| A% € FP* hence, by induction, AY appearsinp | A% <* (p | Agé)\<A?fmAg‘5> €
Fo%,

Apply the induction to F2*. We obtain then that

(o 1 ADY\(AY N AD)) | AP € Fi?

since AP C AD. Now, ((p | AW)\(A% 1 A%)) [ AY = (p | A¥)\(A¥ N A%), again since
AP c A®.
This completes the definition of F7".
The rest of the proof is just straightforward checking the Definition 3.5. We refer to
[Git3, 3.14] for details.
O
The following lemma is a variation of 3.9 having the same proof. It will be used for

showing the Prikry condition of the final forcing.

Lemma 3.10 Let N < H(x) with x big enough. Suppose that N is of cardinality k"
and is closed under rk-sequences of its elements. Then there are an increasing sequence
((A% Al Fry | p < d,a < KT of elements of P and an increasing under inclusion sequence
(F> | a < k) so that

(a) {((A% AlP Fr)y|p <) |a<kT} is N-generic.
(b) for every a < k™ Fo* C F? is a dense and closed subset satisfying 3.5(2(h))

(c) F%* € N for every a < k.
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Lemma 3.11 For every 7 < § P, satisfies 7 2-c.c. in VF>r.

Proof. Suppose otherwise. Let us assume that

0 <<(<A2V,A}X”,Fa | v < 7) |< kT7?) is an antichain in 77<T) .
PZ"’ ~ ~ ~/ ~

We use the winning strategy of the player II defined in 3.9 in order to decide the names of
the elements of the antichain. Thus let ((AP, A FP) | p <6, a < k*72) be an increasing

sequence of elements of P~ so that

(1) for every a < k72
(AL AL FLa) | T < p <O (V! Sa+ 1 (A AV FY v <)
7)27' ~ ~Y ~

- <<A377A377Fay’ | V< 7—>)

(2) for every a < k1772 of cofinality £+

A7 =AY

B<a

(3) for every o < k72 and v < 7 ((AY A F7) |7 <7 <6, f<a)e A%,

Now using A-system argument we may assume that the following conditions hold for
every a, 3 < k7772 of cofinality k™! and for every v < 7:

(1) Agf:q nuU AT = A%VH A UB AST = Agf:q N A%VH
<

y<a

(2) models AY,, and A%}, are isomorphic over AY,; N AY,,

(3) the isomorphic between A%, and Aj;, induces (in obvious fashion) isomorphisms

between A, Ay, and Y, Fj,,.

Now suppose that o < 3 < k77+2 have cofinality x*7!. We like to show that <<A2f+1, A(lx'ip
AY

p < 6) and <<Ag’fH, gr1:Ffy1) | p < 6) are compatible. Clearly, there is no problem with

Fo) |

p’s above 7. Define a stronger condition ((A%, A F?) | p < 4). Let p < 7 and suppose
that for every p’' < p (A%, AV Fr' Fr'*) is already defined. Define (A%, AP Fr Fr*).

Set A% to be the closure inside AY, | of (A%, A" F¥' PP} | o < pYO{(A¥, 1, ALy FL, ) }U
{((AF L AR FR) T < v <0)bU {(Ag’jrl,A;ﬁrl, Fj, 1)} under the Skolem functions and

k+P-sequences. Define A = A/, UAS, U{A%}.
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Now we turn to definitions of F* and F#*. Let F”, a1 and FﬂJrl be subsets of Fy,; and Fj,
respectively, satisfying 3.5(2(h)). We include first both of them into F**. Let us describe

how to generate new elements of F'7*.
Let p° = (py, | n < L))" (P | w > n > L(p°)) € F7,y and p' = (py [ n < £(p")) " (py, |

~

w>n>((p')) € FY | be such that

B+1

(2) for every n < £(p°) p¥ and p} are compatible
(3) for every n > £(po)

(a) AY, A,y appear in pj,
(b) AY, AﬁJrl appear in pn

(c) apg I AY = a, | AY, where, as usual, aj, is the correspondence function of pf,(i € 2)
(4) p® and p! are compatible in P*, i.e.
they can be combined together without destroying the preservation of order (both “€”
and ugn).

Now, F¥,, C F[,, C Fj C Fj,, and Fy, C Fj,,. Hence, p°, p' € Fj,, C Fj,,. Let
us combine them together into condition ¢ € Fj,, with A%, as the maximal set. Thus, we
add A} to p° as the maximal element, using p° € F7 and 3.5(2(j)). Let p° be the resulting
condition. Let p' be obtained from p' by adding AY,, as the maximal element. By (3(c))
above and 3.5(2(g)) the combination of p° and p' is in Fj,,. Notice that for every model
B € A,6+1 appearing in p!, either B D AOT or there are 7{,...,7, 7 < 7 < - < 7 <4,
By e ATNAS NAY,,... B e AT mA;W NAY,, such that BNAY = Bin---NB,NAY.
By, ..., By can be found inside Aﬁﬂ, since B, (A}{ | 7 < 7 < §) are in Ag’il- By the
requirement (1) on the A-system, then By, ..., B, will be in A% N AY,,.

Finally let ¢ be this combination with addition of A%, as the maximal element.

Let F[,, Fjy, and Fji, be the fixed dense closed (in the sense of 3.5(2h))) of FY, |,
F ﬁp 1 and Fj§., respectively. For each ¢ as constructed above we find ¢* € Fj3}, such that
qg <*q*, q° | AOJrl € F, and ¢* | AOJrl € Fjg,,. Thus, let o € Fji, be a <*-extension
of g. Consider ¢} = qo | ABJr1 Let ¢, € F/BJrl be a <*-extension of ¢j. Consider ¢}, = ¢q; |
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(A%il N AJ). By 3.5(2(g)), the combination g, of ¢y with ¢; | A» | is'in F?, . Recall that

AY NAY =AY, N AY. Hence, ¢} is in F/,,. Let ¢ € F{i; be a <*-extension of .
Using 3.5(2(g)), as in the construction of ¢, ¢ and ¢; can be combined together. Let ¢ be
the combination. Again, using 3.5(2(g)) we combine ¢ with ¢o into a condition g5 € F7 ;.
At the next stage we pick some g3 € Fj}, a <*-extension of gj. Consider q; = g3 | Agil
and <* - extend it to ¢4 € Ffy,. Let ¢5 = qu | (Ag’_’H N AY) and g; be the combination of
qs | Agfjrl with ¢,. Find g5 € F.}, a <*-extension of ¢;. Continue in the same fashion and

define (g, | n < w) so that for every n < w
(a) gsn € FEY4

(b) gant1 € ngil

(¢) qsnt2 € FYLy

(d) g3n+3"> G3nt1, Gan+2

(€) @an+1">1 qan [A%il

() Gans2*> qsn | AV

(8) @3nt2"> Q3ns1 | (A%ﬁh N AY)

(h) @3(n+1)+5"> @3ny, for every j <3

Now let ¢* be the union of (g, | n < w). By closure properties of F7,, Fgfrl and F77, it
will be as desired, i.e. ¢* € Fji,, ¢* | A¥ € F | and ¢* [Ag’jrl € I, A typical element
of FP* is obtained from such ¢*’s by adding A% as the maximal element. F” is obtained
from F?* adding everything necessary in order to satisfy the requirement of 3.5. We need
to check that such defined F” satisfies 3.5(2). Most of the conditions are straightforward.
Let us check only 3.5(2(g)). Thus, let p € F* include both A%, and A%’_’H. Suppose that
T>p| A‘j{;l is in F?, ;. We need to show that then the combination of p and ¢ is in F”.
A%T is in p, by the choice of F** and then F?. Then, the choice of the A-system implies that
p I AY with A removed is exactly p | AY . Since everything inside Ag’jrl intersected with
A%T is already inside the kernel, i.e. Agp . Let ¢ be obtained from ¢ by adding A%T as the
maximal element. Then, g € Fj C Fj,,. Now both g and p are in Fj,, and p | AOﬂT <*q.
So, by 3.5(2(g)) for Fj,,, the combination of p and g is in Fj, . Clearly, it is the same as

the combination of p and ¢. So the combination of p and ¢ is in Fj,, and hence also in F”.
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This completes the inductive definition of (A% A7 F*) and as well as those of ({A% AP Fr) |

p<T).

Finally, for p, 7 < p < § we pick A% to be the closure of (A%, Ag,, Fy, | 7 <
v < 68), (A% AY FFY | o < p) under the Skolem functions and (p)-sequences. Let
Al = A;’il U{A%} and let F” be defined as it was done at a successor stage in the proof of

Lemma 3.9.

Now, ({A% AP F?) | 7 < p < §) is a condition in P, stronger than <(A%’i1, Aglﬁp Fy) |

7 < p < 6). It forces that “((A% A [F?) | p < 1) € P, and is stronger than both

(A1, ALy ERL) | p < ) and <<Ag"+1;f1§+1a F§+1> [ p<T)"
Which contradicts our initial assumptions.
OJ
If 7 = 7" 4+n for some inaccessible 7/ < 7 and 0 < n < w, then repeating the proof of 3.10
we obtain that P_. satisfies k77! — c.c. The difference here is due entirely to our choice of
indexing.

Combining 3.9 and 3.10 together we obtain the following:

Lemma 3.12 The forcing P preserves all the cardinals except probably the successors of

inaccessibles.

If one likes to preserve all the cardinals, then instead of the full support taken here,
Easton type of support should be used. Thus fix some ((A", A" F") | v <) € P. Let P

consist of elements having Easton support over this fixed condition, i.e.
(B" BY . G") |v<4§) willbein P
iff for every inaccessible A < 9,

{v < A(B™,B"™,G") # (A", A", F")}| < \.

4 The Main Forcing

Let G C P be generic. We define our main forcing notion P** to be
U{F? | A% A (A AT FTY 10 <7 <0) ((A" AY FY)|v<6)eG}.
The proof of the next lemma is very similar to those of 3.10.

Lemma 4.1 In V?, (P* — ) satisfies k™" -c.c.
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Proof. Suppose otherwise. Let us work in V' and let (p, | @« < k™*) be a name of an

antichain of the length x™*. Using the strategy of Player II defined in 3.9 we find an
increasing sequence
(AL AL FE) [ p < 6,0 < K7F)

of elements of P and a sequence (p, | @ < k¥1) so that for every a < k™" the following
holds:

(1) (AL Adyy, FLoa) [ p < 8) (Ve Sa+1 py = pu)

(2) pa € FF

(3) if ¢fa = Kkt then
AOO o U AOO
a = B

B<a

(4) (AY, AL, Ff) [ p <6, B < a) € AY,

(5) A% and A%, appear in every Pan With 1 > {(ps) where po = (pan | n < €(pa)>m(pgn |
n > 4(pa))-

Now we use the A-system argument to insure for every «, 5 < k*1 of cofinality x* the

following:
(1) Lpa+1) = L(ps+1)
(2) for every n < {(pa) Pa+1n and pgi1, are compatible.
(3) Pat1 [ AY with AY removed is the same as pgyq [ AR with A% removed.

This means that for every B (ordinal or submodel)
B € AY and appears in pay iff B € A} and appears in pg1.
Also p, and pg agrees about such B’s.

(4) the values of AY in payy [ AY and AY in pgyy | AY are decided always to be the

salne.

(5) if n = g(pa—‘rl)a Pa+1in = <eo¢+1,n> Qo410 Aa—i—l,ru Sa+1,n7 fa+1,n> and

Pa+1m = (€8+1,m AB+1,m Ag41m, Se+1.m, [o+1,n) then the following holds:
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. 0 _ 00 _
(1) €arin | Aan = €sr1m | AghsTNgCat1n = TRGEs11 0 aNd €qy1p, €511, are order
isomorphic over the common part €441, [ A%,

- 0 _ 00 _ :
(i) dayin [ Aan = asrin [ Az, TG00 10 = TG00t 1, AN i1, G511, aT€ iSOMOT-

phic over the common part de41, [ Ay, in the language {€, <, C}
(111) AOH’L“ — Aﬂ+1’n
(iv) Sa+in = Sp+1n

(V) fa+1,n f Ag(,)n = f,6+l,n f A%?m Tngfa-i—l,n = Tngfﬁ-l—l,n and fa-i—l,n?fﬂ-i-l,n are order

isomorphic over the common part foy1, | Ag?n

(6) if n =4(pat1)+1, ry,_1 is an extension of p, ,_1 by picking an element of A, ,,_; only,
v € {a+1, f+1} and the picked element is the same for a+1 and 41 (which is possible
by (5)(iii)) then (5) above holds for the decided by (pasim | m < n — 1) (raj1n1)

d m|m<n-—1 n—1) values of d
and (pgi1m | m <n—1)"rgi1,_1) values o po,adp

(7) if n > l(pa+1) + 1, (ryk | {(Pat1) < k < n) is defined level by level as in (6) by picking
elements of A, ;’s ({(pat1) <k <n)only (v € {a+ 1,5+ 1}) the same way for a + 1
and 3+ 1, then (5) holds for the decided by (Par1m | M < £(Pai1)) (Tatik | £(Pat1) <
k< n) and (pgiim | m < L(pasi)) a1k | £(pas1) < k < n) values of p and

~a+1,n

rgﬂ—l—l,n'

The conditions (5)-(7) insure that we always can extend trunks of p,.; and psg;; the same
(compatible) way any finite number of times.

Let a < f < k™ be ordinals of cofinality ™. We claim that it is possible to find p},
equivalent to p,y1 which is forced by <<Ag€rl,Aé’fH, Fg.1) | p < 6) to be compatible with
ppr1 in (P, <* ). Consider pgiy [ AR It is an element of F§ C Fj,,. Also note that
AP C AR, C AP, € AP are all in A%, So pgi1 | AR can be extended by adding A%, to it
using 3.5(2(f)). Let (pgs1 [ AF)"AY,, denotes the resulting condition. By the requirement
(3) on the A-system, A%, is added alone without producing additional submodels, i.e.
(ps1 | AP)AY,, with A, and A} removed is the same as poi1 [ AY with A2 removed.

Again, use 3.5(2(j)) and extend (ng | AP)NAD, by adding A, . Let
q=((pg+1 1 AOO)QAgTzAg(Ll) ngOH :

Then ¢ € F),, and if we remove A2, from it then it will be the same as poi1 [ A% with
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A® removed. Let ¢ = (g, | n < €(q)) N (g, | w > n > {(q)) and for every n > {(q)

Gn = {(€n, an, Ap, Sy fr). Find n* > £(q) to be large enough such that for every n > n*

~Y

(a) A% € doma,,
is an elementary submodel of a,; with k, > 5.
b qurl 1 bmodel of a,, x, h &

Now extend the trunk of ¢ in order to make it of the length n*. Let r be the resulting
condition. By 3.5(2(c)), r € F2.,. Extend also the trunk of p,i; to the same length by
adding to it (r, | n < n*). Denote the result by p},_,. Let

Parr = (P | n <), [ 0> n)

andpn—<e a A* S*f>forn>n

n? 7’L7

For every n > n*, we consider a,(A% ) and a}(A%, ) as they decided by common
extension of trunks to the level n. Pick some o, < d,y,—1 inside a,(A%,) realizing the
same k, — 1 — type over rng(a,)\{a,(A% )} as those of aX(AY ), where k, is as in the
requirement (b) above. Let b, be a function with the same domain as a! and satisfying the

following:
(1) bn(Ah) = 0w
(i) bn I (domap\{AQY,}) = an | ((doma,)\{AZY,}) = a;, | ((doma,)\{AZ,})

(iii) rngb, realizes the same k, — 1-type over rnga}, | ((doma,)\{A%,}) inside o, as those

of rngay,.
Define t, = (e, b,, A%, S*, f). Finally let t = (p* | n < n*)"(t, | n > n*). By its

definition, ¢ < p%,,. Hence t € F?,,

Now using 3.5(2(j)), we add to ¢ the set AY 5 at the same places as in (pgy1 [ AY) AN .
It is possible by the construction of ¢. Denote the result by t" A%, ,. Finally, we use 3.5(2(g))
to put (pge1 | AF)"AY,, and t7AY,, together (extending if necessary the trunk of the first
condition using the requirements (5)-(7) on the A-system) and then the resulting condition
with pgi;. Thus we obtain an element of Fg 1 above t and pgy; in the <-ordering but

t < p* > pat1. Hence p,11 and pgi; are compatible. Contradiction.
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The next lemma is almost standard. We concentrate only on a few points.

Lemma 4.2 (P*, < <*) satisfies the Prikry condition.

Proof. Let o be a statement of the forcing language and p € P**. We work in V. Find
an elementary submodel N of H(y), with y big enough, of cardinality ", closed under
r-sequences of its elements and including P — names for ¢ and p. By 3.10, there are an
increasing sequence ((A% AP FP) | p < 6, a < k™) of elements of P and an increasing

under inclusion sequence (F* | o < 1) so that

(a) {({(A% AlP Fry|p<d)|a <k} is N-generic for the forcing P.

(b) for every a < k™ F2* C F? is dense and the closed subset satisfying 3.5(2(h)).
(c) for every a < kT F2* € N.

;From here let us work inside N* = N[((A% Al FP) | p <4, a < k).
We need to construct p* >* p deciding 0. The construction is rather standard. We extend
every condition generated in the process to an element of |J,_,+ Fy* (recall that each FJ*

has cardinality ™ and belongs to N, so |J F% C N). We use the closure properties of

a<kt
F9%’s 3.5(2(h)) to insure that the conditions generated at intermediate stages as well as the

final one p* are in FY*. Let us concentrate here only on one new point due to 2.2(6).

a<kt
The typical situation is as follows: p* >* p is constructed, there is some ¢ > p*, ¢|——0¢
and ((q) = l(p) + 1. Assume for simplicity that ¢(p) = 0. The problem is with e;(q),
where ¢1 = (e1(q), a1(q), A1(q), S1(q), h=1(q), f1(q)). Thus e;(q) may be bigger than e;(p*),

as decided by qo, where pi = (e1(p*), a1(p*), A1(p*), S1(p*), f1(p*)). So, formally, such ¢ was

P S N e

not considered during the construction. But let us show that implicitly it actually was. We
extend first poy by replacing it by ¢o. Then we extend ay(p*) | On to a;1(q) | On. Note that
only models of cardinalities in e;(q)\e; (p*) cannot be added to a1 (p*), in contrast to ordinals.
Also the maximal cardinality x*°*! and the minimal x* are always inside e,’s. Now, the
above extension will make ey’s the same. We extend (A;(p*), S1(p*), h-1(p*), f1(p*)) and
then p? for n > 2 according to (A;(q), S1(q), f1(q)) and I for n > 2. Denote the result by

p**. The difference between p** and ¢ is only in e;(p**), which is the same as e;(p*), and in
a1 (p*™*)\On. We claim that still p** |[-———0o. Otherwise, there will be r > p** with £(r) > 1
forcing the negation. But by the definition of the order, r > ¢, which is impossible. Thus,

37



p** |F——o0. But p*™* was explicitly considered during the construction of p*. Hence, also

P ——o0.
0

Lemma 4.3 « is the first fived point of the R-function in (VF*P:=))Collwro),

Proof. Let G be a generic subset of (P**, < ).

Let (pn, | n < w) denotes the generic Prikry sequence for the normal measures of the
extenders produced by G, i.e. for every n < w p, is so that for some p € G with {(p) > n
there are (h.y,, h~y, fn) such that p, = (pn, hcn, hsn, fo)-

Fix m < w. Consider
H_,, = U{hoy | Ip € G L(p) > m and for some {(py, h~m, fin) Pm = {Pms P<my Psm, fm) } and

Hepm = {h>m | dJpeG E(p) > m and for some <pm7 hcrm, fm> Pm = <Pm, hcm, h>m7fm>}
Then H_,, will be a generic over V subset of the Levy collapse Col(p/Fm=171 < k) and

H-,, will be a generic over V subset of the Levy collapse Col(kp, < pm+1). S0, in 745
the only cardinals between p,, and p,,+1 will be pi* (i < k,,,_1 + 1) and k,,,. Then the total
number of cardinals between p,, and p,, 1 will be k,,_1 4+ 2 which is clearly below p,,. Hence
Pm—1 < N, which is in turn below p,,;2 since we keep p;fH as cardinal for every i < k,, +1

and p,, < K. So, by induction,
Po <Ny <pr <N, <ove < pp <R, <

Then, obviously, collapsing ko > po to Xy we obtain that x = J,,_, p» Will be the first repeat
point. O

Notice that we used only elements of p,, for p’s in G with n < ¢(p). Such elements does
not change under the equivalence relation «<». Hence, the analog of 4.3 will be true with

(P**, <) replaced by (P**, — ).

Lemma 4.4  is the first fized point of the N-function in (VPP =) Collw:ro),

Let G be a generic subset of (P**, < ). For every n < w define a function F), : k™t — &,
as follows:
F,(a) = v, if for some p € G with ¢(p) > n f,(a) = v, where

Pn = <pnah<nah>na.fn> .

Now for every a < k9% set t, = (F,(a) | n < w). Let us show that the set {t,|a <
ko1 has cardinality 0! in VP[G/ «]. As it was pointed out before 4.4, t,’s does not
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change by < and so they are in V7*P™=) Also, by 4.1, kT%*! as well as every cardinal

above & is preserved in VP*P™=),

Lemma 4.5 For every 3 < k™% there is a, 3 < a < k™% such that for every v < 3
ta(k) is different from t,(k) for all but finitely many k’s.

Proof. Suppose otherwise. Then there are p € G and 3 < k72! such that

plF— Va(f<a<wP Iy < Bty =t)

Y
(P**,<) ~

K/—Hs—l-l K,+6+1

Pick some a € which is above every ordinal less than mentioned in p. Using
a simple density argument on (P, < ) and then 3.5(2(e)) we can find ¢ so that ¢ >* p and for

every n large enough «a always appears in ¢,, i.e. does not matter what is the decided value
of ¢, « is inside dom(a,(q)), where a,(q), as usual, is the second coordinate of g,. Then ¢

will force

(+) (Vy#£a)  (Gko < wVk > ko to(k) # ty(K)) .

This leads to the contradiction. Thus, let v < a and assume that ¢ belongs to a generic
subset of P**. Then either t, € V or it is a new w-sequence. If ¢, € V' then () is clear. If

t, is new then for some r > ¢ in the generic set v appears in dom(a,(r)) for all n > £(r)

where, again a,(r)) is the second coordinate of r,. But also « is there and a,(r) is order

preserving. Hence F,,(a) # F,(7y) for every n > £(r) and (x) holds as well. O
The proof of 4.5 provides more. Thus let (p, | n < w) be the Prikry sequence of the
normal measures of the extenders in V7[G/ «]. Again, < has no influence on it by its

. RS I
definition. Set p*; = 1 and p} = p:{p"’ﬁ if n > 0. For every a < ™% and k < w we

define
to(k), if to(k i
t?;(k): () 1 <)<pk
0, otherwise

Consider S = (¢! | a < k™1 and t, ¢ V). By the proof of 4.5 the following holds:
Lemma 4.6 VFP*P™"=) satisfies the following:
(a) |S| = rto+t

(b) S witness tcf( I1 pZ/ﬁnite) = xHotL

n<w
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5 A Note on PCF Generators

In this section we construct a model satisfying the following
(a) K is a strong limit cofinality N,
(b) oK — I<&+3

() {0 < Kk |0F € be+s} Nber+ = O where by denotes the pef generator corresponding to

A= kT or k).

In all the previous constructions satisfying (a) and (b) the condition (c) fails. So, this
suggested that may be in ZFC (a) + (b) — = (c).

Our aim will be to show that it is not the case. At the end of the section we outline
extensions build on same ideas that can be used to show that the results of [Git4] an ordinal

gaps are sharp. Suppose that x, (k, | n < w) and (A, | n < w) are so that

(1) &= Upew #n

(2) for every n < w

(1) An < B < App1 < Bnga

(i) A, carries an extender E), of the length A\*"+2,

(iii) ks, carries an extender E, of the length "2,

We will use E),’s to generate Prikry sequences witnessing tcf < IT pt*2/ ﬁnite) =rtT,

n<w
where (p, | n < w) denotes the Prikry sequence for the normal measures of E,,’s. E,,’s will

generate Prikry sequences witnessing

tcf( H {:{"”/ﬁnite) = gt
n<w

where (£, | n < w) denotes the Prikry sequence for the normal measures of E, ’s. The
Prikry sequences for ™2 (n < w) will depend essentially on choices that were made for
pit 25 Thus as in the previous construction and in contrast [Git2,3] we shall work with
names.

Let P'(0) denote P’ of 3.1 with 0 = 0 and P’(1) denotes PL, of 3.3. with § = 1. For
such §’s P’ is actually very simple. Thus P’(0) produces a chain of submodels of the length
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kTt of H(k™) each of cardinality x*. P’(1) adds a chain of the length k™ of submodels
of H(k™™) each of cardinality xt7. We combine P’(1) with the forcing for adding O,++
by initial segments. Denote this forcing by Box (k7). Every p € Box(k*") is of the form
(o | @ < 0) such that

(1) 06 < r™*T
(2) for every a < 9
(a) ¢ C a is closed unbounded
(b) otpcy, < k™t and if cfa < k™1, then otpe, < kT
(c) if £ is a limit point of ¢, then c¢g = ¢, N .
(d) if B is a successor point of ¢, then c¢fff = x*T.

For p,q € Box(k™") p > ¢ iff ¢ is an initial segment of p.
This forcing was introduced by R. Jensen [Dev-Jen| and it is k™ "-strategically closed.
We shall use the following variation Box'(k%") of Box(x*") which forces a club into T+

and a box sequence on it simultaneously.

Definition 5.1 p = (¢, (¢, | & € lim(c))) € Box'(x*") iff
(1) ¢ C kTt is a closed subset of kT of cardinality £+
(2) for every « € lim(c) the following holds:

(a) co € aNcis closed unbounded

(b) otpcy, < kTt and if cfa < KT then otpe, < Kt

(c) if £ is a limit point of ¢, then ¢g =c, NG

(d) if B is a successor point of ¢, then c¢ff = x*T.

We implement Box'(x*") into P’(1) as follows:

Definition 5.2 P”(1) consists of ({(A% A" (¢, | a € im({BN k™t | B € A'%})) such
that

(1) (A%, AT) € P'(1)
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(2) {co | @ €elim({BNkT | Be Al%})) € Box/(k).

Define the ordering in the obvious fashion.
Denote further the set lim({ BNx*™"+ | B € A'°}) by lim(A'Y). We shall use P”(1) xP’(0).
Note that P’(0) is of cardinality k™" and P”(1) is k™ *-strategically closed.

We will need certain simple and likely known facts about Todorcevic walks [Tod] between
ordinals using a fixed box sequence.

Thus let 7 be a cardinal and (C, | v < 77, v limit) a [J.-box sequence.

Definition 5.3 Let 77 > o > (3. The Todorcevic walk w(«, ) from a to 8 via (C, | v < 7T

and v limit) is defined as follows by induction on a:
(a) if @ = [ then it is just w(a, B) = {a}

(b) if & > 8 and « is a successor ordinal, then let a = a* 4+ n* for a limit o* and 0 < n* < w.
If B =a*+ k* for some k* < n* then set w(a, 5) = {a*+ ] <n*}

(c) if @« > @ and « is a limit ordinal then consider C,.

(cl) if 8 € C, then pick B* to be the largest limit element of C, N (8 + 1) if it exists or 0
otherwise. Set w(a, ) = {a, 6} U {y € Ca | B* < < 6

(c2) if 8 & C, then let a” () = min(C,\f). If CoNB =0 (i.e. o™ () is the least element of
Cy) then set w(a, B) = {a}Uw(a”(F), ). Otherwise define a<() to be max(C, N G).
Let a<(5)* be the largest limit element of C, N (a<(F) + 1) if it exists or 0 otherwise.

Set w(a, B) = {a} Uw(a”(8),8) U{y € Ca | a=(B8)" <7 < a~(8)}.
Definition 5.4 A set E C 77 is called walks closed iff
(a) E is a closed set of ordinals
(b) if a, 8 € E and [ is a successor point of C,, then it predecessor in C, is in £

(c) if a, 8 € E and « > 3 then the walk from « to [ is contained in E, i.e. all the ordinals

appearing in the walk from « to § via the box sequence (C, | v < 77) are in FE.

Notation 5.5 For E C 71 we denote by clw (E) the least walks closed set including F.

Clearly such a set exists since an intersection of walk closed sets is walk closed.
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Lemma 5.6 Suppose that E C 71 is walk closed. Let a C 7% be finite. Then

lclw(EUa)\E| <X .

Proof. We prove the statement by induction on sup E. Let 6 = sup E. Suppose that for
every walks closed set D with sup D < ¢ and every finite a C 77" the set clw(D U a)\D is
finite.

Now let @ C 7 be finite. We like to show that clw(E U a)\E is finite as well. Assume
as an inductive assumption that for every finite @’ C 77 with maxa’ < maxa the statement
is true.

Using induction on size of a we can assume without loss of generality that a = {a} for

some o < 7.

Case 1. a > 6.

Consider C,. let a=(d) be the least element of C, > ¢ and a<(d) be the last element of
C, below §. If minC, > § then we just replace a by minC, < « and use induction. If
there are elements of E below a=(d) then let §; = max(E N a~(5). We then define a=(d;)
and a<(d;) in the same way replacing § by 0; and a by a<(d). Again we check if there
are elements of E below a<(d;) and if this is the case we define dy, a=(dy), a<(dy). After
finitely many steps there will be dy, for some k < w, so that a<(d;) N E = . Now we
consider a = {a=(8;),a~(8;) | i < k}. Clearly, maxa = a=(d) < a. So we can apply an
inductive assumption. Hence, the set clw(FUa)\E is finite. But notice that clw(EFU{a}) =
(clw(E Ua))U{a}. Thus we are done.

Case 2. a < 6.
Let 0* = min(E\«) and " = max(E N «a). First notice that if §; < do are two successive
elements of E then for any p € E\d2 and & € (61, 2] the walk from p to £ necessary passes
through ds, since E is walks closed.

Consider E N (6™ + 1). It is clearly walks closed. By induction,

w((EN (0™ + 1) U{a)\(EN (6™ +1)) |< X .

Let {ag,...,ar_1} be the increasing enumeration of this set. For every ¢ < k we pick
0f = min(E\«q;) and 0 = max(F N ;). As it was remarked above for every ¢ < k and
p € E\d; the walk from p to a; passes via 7. But the walk from §} to «; is finite and
depends only on 0] and «;. Hence clw(EU{a}) = (E\0** 4+ 1)U (clw((E N (§*+1))U{a}))

and we are done. O
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Lemma 5.7 Let E C 7* be walks closed set and a C 7" finite. Then there is a finite E' C E
such that for any p € cw(E Ua) and o € clw(E U a)\(E U p) the following holds, where

w(a, p) is Todorcevic walk from « to p:
(a) if p ¢ E then w(a, p) C E'U (cdlw(E Ua)\E)

(b) if p € E then there is T € w(a,p) N E'\p so that w(a,7) C E'U (clw(E U a)\E) and
(w(er, p\w(e, 7)) U{T} = w(T, p).

Proof. Let us use induction on max(clw(E Ua)). Then we can assume that max(clw(E U
a)) = max(clw(E Ua)\E). Let a = max(clw(E Ua)\E).

First note that the set clw(EUa)Na is bounded in «, since otherwise £ will be unbounded
in o (by Lemma 5.6, clw(E U a)\FE is finite) and then o € E since E is closed.

Denote by «; the maximum of clw(E Ua) Na. Let A = w(o, o) and let B = clw(A).
Then, by 5.6, B is finite, since A is such. Consider EN(a; +1) and (BUa)N (a; +1). Now
we can apply inductive assumption. Let £ C E'Na be a finite set satisfying the conclusion
of the lemma for ENa=EN(a;+1) and (BUa) N (ag +1). It is easy to check that E' is
as required.

U

Lemma 5.8 Let E be walks closed bounded subset of 7+ which is an increasing union of
walks closed sets E, (n < w) and a C 71 be finite. Then there is ng < w such that for every
n > ng

cdw(EUa)\E = cw(E, Ua)\E, .

Proof. First note that it is enough to prove the lemma for a set a with max(a) > max F.
Thus for arbitrary a we can just add an ordinal above max E to it. Let b be such a set.

Applying the lemma to b we find nj, < w such that for every n > ny,
cw(EUbL\E = clw(E, Ub)\E, .
Now we pick ng > ny so that
cdw(EUa)\E = clw(E,, Ua)\E .
This is possible by 5.6. Then for every n > ng
cw(EUa)\E = cw(E, Ua)\E C clw(E, Ua)\E, .
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Let p € clw(E, Ua)\E,. We need only to show that p ¢ E. But p € clw(E, Ub)\E,, since
b D a. Then p € clw(E Ub)\E. In particular p ¢ E.

Hence we can assume without loss of generality that a\ max F # (). Consider now the
set clw(E U a)\E. By 5.6 it is finite. For every « in (clw(E U a)\E) N max E we set
& = min(E\a) and & = max(E Na), if ENa # 0. Define A= {@,a | a € clw(E Na)\E}.
Clearly A is finite. Let E’ be a finite subset of E given by 5.7. Set ny < w to be such that
E'U(ENncw(a))JAC E,, and clw(E U a)\E = cdw(E,, Ua)\E.

Suppose now that n > ng. Clearly, clw(E U a)\E = clw(E, Ua)\E C clw(E, Ua)\E,.
Let p € clw(E,Ua)\E,. We need to show that p € clw(EUa)\E. Suppose otherwise. Then
p € E\E,.

Let us show that clw(E, U a) cannot contain such ordinals. Thus, suppose that «, 5 €
E, U (cdw(EUa)\E) 2 E,Ua, a > and we walk from « to .

Case 1. o, € E,,.

Then, the walk is included in FE,,, since F,, is walks closed.
Case 2. a € E,, B € clw(EUa)\E.

Then B ,; are defined. By the choice of ny, 5 and ;, if defined, are in E,,. The walk from «

to @ must first get to B remaining completely in E,, (again E, is walks closed). After this
the walk from 3 to 3 will be inside clw(E U a)\E.

Case 3. o, € clw(EUa)\E.
Then by 5.7(a) the walk from « to [ is contained in £’ U (clw(E Ua)\E). Again leaving no
space for p € E\ E,. Remember that E' C FE,,.

Case 4 a € dlw(EUa)\E, § € E,.
Then 5.7(b) applies. There will be 7 € w(«, ) N E'\B so that the walk from « to 7 is
contained in E' U (clw(E Ua)\E) and the rest of the walk is the Todorcevic walk from 7 to
G. But both 7 and § are in E,,. Hence the walk from 7 to ( is contained in F,. So, once
again there is no place for p € F\E,.

Contradiction. 0J

The following is an easy consequence of 5.6 and 5.8.

Lemma 5.9 Let E,(E, | n <w) and a be as in 5.8. Then there is a finite set a* O a and

ng < w such that for every n > ng E,, Ua* is walks closed and EUa* is walks closed as well.

Now we return to the forcing construction. Define the main preparation forcing P.
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Definition 5.10 The set P consists of sequences
((A™(0), A™(0), F*(0)) , (A" (1), A®(1)), (e | v € lim AY(1)), F)

so that

(1) (A%(0), A(0), F°(0)) € P(0).

(2) ((A%(1), A(1)), (e, |€ lim AT(1))) € P"(1).

(3) F consists of all pairs p = (px,p’?) of sequences p* = <p§ | n < w) and pf = <£5 | n <w)

so that

(a) p* € FO(0)
(b) £(pY) = (") = L)

reV

(c) for every n < {(p) p

~Y

(d) if n > £(p), then pf = (af, A%, fF) is so that

i) 7 is a function of cardinality at most s from x** to x,
n Yy

(ii) domaf € V is as in 2.1(d) but of cardinality < A, instead of £,

(i) (af, A%) are names depending on p;g only and in the following way: in order to decide
( a K éf:) it is enough to get a value of the one element Prikry sequence of the maximal

coordinate of pi and the projections of it onto the support of pi{. Moreover, if A €

(domaf)\On is a limit element of A'°(1) and cf <csup(Am+s)) = k** then for some

kn, 2 < k, < w the k,-type of a%(A) depends only on the value of one element Prikry
sequence corresponding to the normal measure of a)). Also, as usual, we require that

lim,, . k, = 00.

The above will allow us further to generate equivalent conditions which in turn will be
crucial for proving k**-c.c. of the final forcing.
We now continue to describe the correspondence function af. Our main attention will

be to A’s as above, i.e. limit models. Dealing with non-limit models is much easier. For
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every p < A, a potential element of the Prikry sequence for the normal measure over A,
i.e. for example p € (A,A:)O, we reserve a Box (k™*1)-generic box sequence U,4n+1 and deal
with box sequences (C” | a < k"2 cfa < p™*2) defined from it so that otpC? < ptn+2
for every a in its domain. Let (B, | @ < k/™"2) be an increasing continuous sequence of
submodels of a, x(k < w) of cardinality "™, with (Bs | 8 < a) € Bay for every a and
(C™ | a < k™2) € By. Denote by C' the club consisting of sup B, N 5" (o < k"72).
Now consider

(C"NC'| ais a limit point of C, cfa < p™™+?) .

Clearly,
(a) C"NC is a club in « of order type < p™+?
(B) if ~v is a limit point of C™ N C then v is a limit point of C, cfy < p™*2 and
CINnC=CynCnNy.
Further we shall use different k’s as well as different model sequences B, ’s.

(e) There is the maximal (under inclusion) model A in dom(af). It is a limit element of

A™(1) and its intersection with £ has cofinality x*.

We require the following, once the elements of one element Prikry sequences for the
support of a) are decided, where p denotes the one for the normal measure and for

v E dornaf‘:, ~v* denotes the corresponding to v value of the Prikry sequence then

(el) af(A) is a submodel of a,, depending only on the value of p (where, as usual, 2 <

k, < w, k,’s are nondecreasing with limit oo) such that cf(af(A) N k}f"+2) = ptnt?

(e2) for every limit point B of A'°(1) which is in doma® we fix the element C , of

n‘l
az(

E(B)NkTn+t
some box sequence C" = (C" N C' | a is a limit point of C and cfa < p™ %) where

C™ is as described above.

Here we mean that only Cgﬁ(s)mwnH’S are fixed for B’s as above, but the rest of Cn
can be further changed. Recall that we have a generic box sequence U, +n+2 so there are
a lot of possibilities for choosing C™’s. Denote further Co (B)rwtnre DY C™"(B). C"(B)
depends on the elements of one element Prikry sequence for the support of a}. It is

decided once these elements are decided.
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(e3) for every B as in (e2) if ¢f(B N k™) < kTF then otp(cprur++) € doma?.

n

Let & =

ai(Otp(CBmH+++)). Then we require that
otp(C™(B)) = &" .
(e4) for every B as in (e3) there is B € doma® such that
(i) ef(BNrtTT) =kt
(ii) BN kT is a limit point of cg, 4+

Hence cpnpt++ = cgrrir N BN KT We require that the same holds below at f,,.

Namely, the following should be true.

(iii) C"(B) = C"(B) Na%(B) N kT2,

(e5) let B, B’ be limit points of A'(1) so that

(i) e¢f(BNKT) =cf(B'NKT) =rTt

(ii) (B'N k™) € cpnets (and hence by (i) it is a nonlimit point of cgn,+s).

Let vp < k™' be so that B’ N k™ is yp + 1-th element of cpn.+s. Suppose that
B, B’ € domaF. Then the following holds:

(@) vpr,yp + 1€ domag

() C™(B') depends only on one element Prikry sequences for A, needed in order to decide
C™(B) and also those for ai(yB/), a;\:('yB/ +1).

doma® may contain only elements of cq.+++, but in general it should not. We would
like still to be able to read most of information from A N kT and parameters from x**
only. For this purpose let us use Todorcevic walks via box sequences in order to go down
from A N k™" to smaller ordinals. Thus let « = AN k™" and 8 = BN k™" for some
B € domd”. Set ag (3) = min(cq N B). If a5 (3) > § then define af (3) = sup(c, N B) and
o7 (B) = min(cag (3 NP). Continue by induction to define a;_,(3), ai (B) until 3 is reached.
We shall also use elements of A'°(1) instead of ordinals. Denote by Ay |(B) and A7 (B) the
models in A'°(1) so that a_,(8) = A, (B)Nw+t++ and o (8) = AZ(B) Nkt

The next condition requires that the process can be simulated over &,,.

48



(f) for every limit model B of A°(1) which is in doma” the following holds:

(f1) for every k < w such that A7 (B) and hence also A7 | (B) are defined we require that

these models are in doma” and the image by a” of the walk from A to B is exactly the

walk from a”(A) to af(B), where at k,, we use the fixed in (c2) sequences.

(g) if some D, E € doma® and D C E then all the models of the walk from E to D are in
doma® as well and the image by a” of the walk from E to D is exactly the walk from

af(E) to a®(D).

n

(h) Let g,r be two extensions of p;\; (i.e. at level \,) deciding the value of the one element
Prikry sequence of the maximal coordinate of p,xl together with its projections onto
the support of pf‘:. Suppose that v < kT is an element of the support of pf‘: and
qlv=r]n ie qand r agree about the values of one element Prikry sequences
corresponding to ordinals below « (in particularly, the one for the normal measure).
Then for every B € doma” with the walks closure of the maximal model of doma” and
B involving only models with distances between them which are ordinals below ~ the
following holds:

q and r forcing the same value for a £(B).

(i) Suppose that B € doma” and cf(B N k*+*) = k*+. Then there are ¢ = (qx,q’_{> eFr
and a nondecreasing converging to oo sequence (k, | n < w) of natural numbers with
ko > 4 so that the following holds:

(i)(b) for every n > £(p) (or more precisely, starting with n s.t. B € doma¥)

() B is the maximal model of af(q) (i.e. the assignment function of ¢%)
(B8) doma%(q) = {C € domd’ | C C B}
() pg forces that a7 | B and afi(q) are k, — equivalent.

The intuitive meaning of the condition (i) is that we are able for any B as above turn

it into the maximal model.

The order on P is defined in usual fashion.
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Definition 5.11 Let ((A%(0), A°(0), F°(0)), (A(1), A™(1)), (¢, | v € lim(A°(1))), F)
and ((B%(0), B1°(0), G°(0)), (BY(1), B'°(1)), (d, | v € lim(B'¥(1))), G) be in P. We
define

((A%(0), A™(0), F°(0)), (A™(1), A(1)), (¢, | v € lim(A(1)), F) >

((B*(0), B'(0),G°(0)) , (B™(1), B*(1)), (d, | v € lim(B"(1)), G)
iff
(1) (A%(0), A™(0), F°(0)) > (B™(0), B'*(0), F''(0)) in P(0).

(2) ((A%(1), A1), {ev | v € im(AT(1)))) > ((B*(1), B(1)), (dy | v € lim(B™(1))))
in P"(1).

(3) let p = (p*, p*) € F with p* = (p}/ | n <w), p* = (p | n <w),

pi=(an A% f) for w > n > {(p), and B € B(1).

Suppose that for every n, w > n > {(p), a £(B) depends only on the value of one element

Prikry sequence for the normal measure over \,. Define then p [ B in the obvious fashion
taking B to play the maximal model. Now we require the following: if p [ B € F then
p| BeQG.

We shall check now few basic properties of the forcing P which in the present context

require some arguments.

Lemma 5.12 Let ((A%(0), A°(0), F°(0)), (A%(1), A(1)), (c, | v € lim(A°(1))), F) €
P,p= (px,p’%) € F, B € A°(1) is inside the mazimal model of p. Then B is addable to p.

Proof. For every n > {(p) let E, = domaf(p), where as usual, a®(p) is the assignment
function of p. Set £ = Unse() En- Then by 5.10(g) En’s and E are walks closed. Apply
5.9 to E,(E, | {(p) <n < w) and {B}. There will be a finite set of models D and ny < w
such that for every n > ng E, U D and F U D are walks closed. Now we will extend p by
adding to it the elements of D. Note that such extension need not be a direct extension (i.e.
<*) and {(p) may increase as a result. But important thing is that D is finite and the same
at each level. So climbing high enough we will be able to add all its members.

Now we turn to a complication due to working with names in the range of a®(p). The

conditions (h) and (i) should be satisfied after adding elements of D to p.
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Fix n,ng <n < w. Let qf‘: be an extension of pi deciding pf and so that all the ordinals
< k1 needed for walks in F,, U D appear in the domain of the assignment function of qg.
Below we will use induction on such q;f. Assume so that we pick them one by one using
some enumeration. We assume that n is large enough in order to be able to add to p;\: the

missing finite set of ordinals. Let {A; | @ < k} be the increasing enumeration of D. For

every 1 < k pick A; to be the least model of E, including A; and Zl the last model of FE,

included in A;. By induction we define for every i < k an extension b’f;i of the assignment

function af(p) of p% including the elements of D of the interval (ZZ, A;). Notice that there

~ ~

may be i’ # 7" < k such that Ay = A (and then also Ay = Ajn). In this case, we will have
b% i = bf . Let i < k and suppose for every i < i bf , is defined. If there is i’ < i such that

~ ~
~ ~

Ay = A; then set bii = bf:ﬂ-,. Assume that for every ¢ < i /TZ-/ + gi, i.e. we deal with new

intervals. First consider limit points of cg s (i.e. the element of the box sequence forced

over kT corresponding to £3 N A4;) between A; and A; which are in D, if there are such.
Note, that by the choice of A; and A;, A; is a successor point and 4; Nx+++ € C i34, SINCE

E,, is walk closed there is no elements of E,, between ;lz and ;L We correspond them to
the limit points of the box sequence Cag( &) over k"2 according to the values prescribed

by a¥. Now we turn to the successor points. Let B be the smallest successor element of D

between A; and A;. We consider its box sequence c,+3n5. Then A; N kT3 € ¢,+34p since, B

is the smallest successor point of D and D U E,, is walk closed. Let B* be the largest limit
point (if it exists) of crsnp < K3 N Ai and let Bf C B C---C B} C A%Z(f < w) be all the

successor points of ¢u+snp between B* and A;, if there any. Notice, that (B | 1 < m < /)

~
=~

and B* are exactly the elements needed for walks from B to elements of P(A;) N (D U E).
We now define b7 ;(B), (i.e. the value of the extended assignment function on B) to be a

model so that

(1) its type is the same as the type of every successor model (with limit points of its box

sequence taken into account in the type)

(2) it is above aﬁl(fh) as well as all the images of limit points of D (if any) which are
below B
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(3) it is included into the image of A; as well as all the images of limit points of D above B

(4) the distances from it to the images of B*, B;, ..., B}, A; and the limit models of D
between A; and B are the same as the images under aé (the assignment function for
kTt to A,) of the distances from B to B*, By,..., By}, A; and the limit models of D

between A; and B respectively.

Our next requirement is needed in order to insure (h) of 5.10 once B is used as a
maximal model as in 5.10(i). First fix B** € E,, to be the element of the walk from
Bj to B* if B} is defined or else from max(FE,,) to B* such that cf(k™ N B*) = k™
and B* N k13 € cgesnp+s. There is such B** since F,, is walks closed (just consider the
walk from max(FE,) to B*. We will reach such B** one stage before getting to B*).
Let 8% = otpcpgnyts.

(5) Split into two cases.

Case 1. In the inductive process before q,’i there is no condition which agree with q;\: up to
g
Then we require b} ;(B) to realize the same type over {a%(S) | S € E,, S C B*} as

ak(B**) realizes over this set.

Case 2. In the inductive process before q;\: there are conditions that agree with q;\: up to 3*.

It B* = Zi, then we proceed as in Case 1. Otherwise set B}, = ZZ Consider the images
of the walks between B*, BY, ..., Bj, . Find the largest ¢ < £+1 so that there is a condition
q”i appearing before qg in the inductive process which agrees with qg up to * and also
about the distances of the images of the walks between B*, B}, ..., B;. We now require that
b% ;(B) realizes the same type over aset T' = {ai(S) | S € E,, S C B*or S € {B},...,B;}}
as the type of b ;(B) over the same set but with af and b% ;(B) defined according to q”i.

Note that 5.10(h),(i), applied to B; as a maximal model, imply that the type of T is the
same under both qg and q”}b.

In both cases we require in addition the following:

If there is some q”i appearing before qjg so that q”i and qﬁ: agree about all the distances
appearing in clw({max E,}, {B}), then let b} ;(B) be the same (and not only its type) as
the model corresponding to B under q”;.

Note that here necessary B*,Bj,...,B; € clw({max E,}, {B}) and so the distances

between them are taken into account.
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This completes the definition for the model B. We deal with the rest of successor elements

of D between A; and EZ in the same fashion. Thus if B’ is such an element, then we assume

below it everything is already defined. Now we treat B’ exactly as B above only replacing

E, by E,U{B" €D | ZZ € B” C B’ and B” is a successor model} .

The rest of the induction now follows.

The next lemma generalizes 5.12 but actually easily follows from it.

Lemma 5.13 Let t = ((A"(0), A°(0) F°(0)), (A%(1),A™(1)), (¢, | v € Lim(A¥™(1))),
F)eP,p= (px,p*j”> € F, Be A°(1). Then B is addable to p.

Proof. We first extend t to s = ((B%(0), B°(0), H°(0)), (B®(1), B°(1)), {(d, | v €

lim(B'°(1))), H) € P such that there is a limit A € B'%(1) with A D B, otp cane+s = kT

and the first element of ds~.+3 is the maximal model of p. Now we add this to p as the

maximal model. It is easy because of the triviality of the walk from A to the maximal model
of p. Now we use 5.12 in order to add B to the resulting condition.

O

Let us turn now to the closure properties. First we consider (P, < ). In contrast to

previous constructions (the one of Section 3 or those of [Git3]) once we have
((A™(0), A™(0), F7(0) , (A™(1), A(1)) , (e, | v € lim A(1)))

the last component F' is determined completely. It just includes everything satisfying 5.10(3).
Hence, for the forcing P itself we can just ignore this last component F'. Then P, actually
splits into P”(1) x P(0). P"(1) is kT+ 4 1-strategically closed and P(0) is < k™ t-strategically

closed forcing of cardinality ™. Hence we have the following:

Lemma 5.14 (P, <) preserves all the cardinals and does not add new k™ — sequences of

ordinals.

Let G C P be generic. Define P* to be the set of all p’s such that for some
((A®(0), A™(0), F(0)) , (A™(1), A™(1)) ,{c, | v € lim A™(1)) ,F) € G

we have p € F.
We would like to now show that P* has reasonably nice closure properties. This is needed

mainly for proving Prikry condition of P*. We consider first a simpler case.
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Lemma 5.15 Let (p(i) | i < d) be a <*-increasing sequence of elements of P* with § <
Ae(p(0))- Suppose that

(a) for every i < & p*(i) is in (FO(0))*, i.e. in a closed dense subset of F°(0) with F°(0) a

part of a condition in G

(b) p®(i)’s have the same mazimal model, where p(i) = (px(i), P~ (i)).
Then there is p € P* p >* p(i) for everyi < 0.

Proof. There is no problem px(z’)’s since they are in (F°(0))* in which <* — unions behave

nicely. Now, p®(i)’s have the same maximal model. This by 5.10(e) implies that each element

of dom ( a(p*(7)) ) with n > ¢(p(0)), as well as its image is controlled by the box sequences
n\D p g y q

~Y

from the maximal model and its images, where a(p(i)) is the first coordinate of pZ(i) i.e.

~ ~

the correspondence function at the n level. But then nothing new can happen at the limit

of (p(4) | j < i) for a limit i < J. Since the box sequences (both at x and r,) are already

specified. 0
The situation is a bit different if we remove the restriction (b) and allow p®(i)’s with
different maximal model.

Let for n < w P%,, denotes all the elements p of P* with £(p) > n.

Lemma 5.16 For every n <w, P (P%,, <" ) is < A\, — strategically closed.

Proof. Let 6 < \,. We describe a winning strategy for Player I playing at even stages.
Thus let (tg, po) be his first move such that the set A%(1) of ¢, is the maximal model of py.
Denote this set by Ag. Let (t1,p1) be an answer of Player II. If A; =4 A%(1) of ¢; is equal
to Ag then let Player I play (t;,p1). Suppose otherwise. Then A; D Ay, by the definition of
P(1). Let A}, Ay O A} D Ap be the maximal model of p;. We extend ¢; to t2 so that:

(1) Az =4 A"(1) of t5 has the intersection with £ of cofinality x** and
(i) A} N k™3 is the first element of ¢ ,n+s.

Now extend p; to ps by adding As to p; as the maximal model and extending the assign-

ment functions a],’s in the obvious fashion.

Y
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We proceed the same way at successor stages. At limit stage a < § we define

¢S (Agnrt3) = { Apram N kT3 m < w, Blimit, B+2m < al.

B<a

Let A, be a limit model with A, N x** of cofinality k™ and {Ag | 3 < a} € A,. Pick now
a club ca,nxts such that (Jg_,(Ag N w™?) is its limit point and

CA,Nit3 M U (Aﬁ N ,{*‘3) =cS (AgNr+3) -
B<a o
Now define ¢, in the obvious way extending all t5’s (8 < «), having A”(1) = A, and
including c4,~.+3. Let p, be extension of pg’s obtained by adding U6<a Ap, adding A, as

the maximal model and extending the assignment functions af ’s then in the obvious fashion.

O
The straightforward application of 5.16 is the Prikry property of P x P* which in turn

insures that no new bounded subsets of s are added.

Lemma 5.17 Let (t,p) € P xP* and o is a statement of the forcing language. Then there
is (t*,p*) > (t,p) such that p* >* p and ({t*,p*)||o.

Lemma 5.18 The forcing P+ P* does not add new bounded subsets to k.

Now, as usual, the problem is a chain condition. Working in V', we define a partial
order — on P* extending the order < of P*. Then it will be shown that (P*,— ) is
a nice subforcing of (P* < ) and that (P*,— ) satisfies k7"-c.c. The new point in the
present situation will be the absence of the equivalent relation «—. Such relations were
used in all previous constructions. But here the special role played by the maximal model
of a condition cases major difficulties. Thus, if p,q € P* have different maximal sets A(p)
and A(q) respectively. Say, for example, A(p) € A(q) but the connection between A(q) and
A(p) via box sequences requires ordinals above k. It may be impossible to find ¢’ < ¢ with

maximal model A(p), since in the images of A(p) under the assignment functions a%’s of ¢ are

likely to be names depending on values of one element Prikry sequences for \,’s. Naturally,

a condition equivalent to p is supposed to have the same maximal model, i.e. A(p).

Definition 5.19 Let p,q € P* p = <px, p*) and ¢ = (¢, ¢F). We set p — ¢ iff

(1) p<gq
or
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(2) there is a nondecreasing converging to oo sequence (k, | n < w) of natural numbers

with kg > 4 such that the following holds for every n < w:

(a) p} —p, @), ic. in P(0) plis sy, equivalent to some ¢’ < g}

(b) L(p) < L(q)

(c) for every n < £(q)

(P 1) < (a0 y)

~Y

Suppose now that n > ¢(q) then we require the following:
(d) the maximal model A(p) of p* appears in ¢°, i.e. in the domain of the assignment

function a%(q).

(e) Let 7’5 be a common nondirect extension of pi and q,’S deciding the values of one element
Prikry sequences for \,. Such ) decides completely both p and ¢%. We require then

that pf is k, — equivalent to some ¢/, < ¢~ with A(p) as a maximal model.

The next lemma insures that (P*, — ) is a nice subforcing of (P*, <), i.e. every dense

open set in (P*, — ) generates such a set in (P*, < ).

Lemma 5.20 Suppose that p — q < ¢ then there is p' > p such that ¢ — p', where
p.q.p.q €P.

Proof. Denote the maximal models of p, ¢ and ¢’ by A(p), A(q) and A(q') respectively. Pick

a model A such that for some element
((A™(0), A(0), F(0)), (A™(1) , A™(1)), {(ey | v € lim(AT(1))), F)
of a generic subset G of P
(a) A= A%(1)
(b) {A(p), A(g), A(¢)} € A
(c) Ais a limit point of A™(1)
(d) cf(AN K =t
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Al

O+1

(e) A(p) N kT*T is the first element of cap,+3

(f) the walk from A to A(q') proceeds as follows:
first we go down to the model A D A(q’) which is the second on cgn.+s. Then
A(¢')N k™3 is the § + 1-th element of c4n,.+s. Its 6-th element and all the rest are the
same as those of cq()nets, where § < %" is a limit ordinal above all the distances

appearing in the walks between models of ¢'.

See the diagram on page 55.

Using the density argument, it is easy to find such A and A’. It is obvious that for every
B D A(p) in ¢ the walk from A to B goes via A" and then A(q"). Hence distances above § are
required. If B C A(p) is in ¢’ then the walk from A to B goes via A(p). The walk from A’ to
A(p) goes via A(q') since A(q') N kT3 is the least member of cq/e+s above A(p) N kT3, Again
the distance d + 1 is involved here. The model A will be the maximal model of the condition
p’ > p that we shall define below. We need to satisfy ¢ — p/. In particular A(g) and
A(q") should appear in p’. For every n < w let E,(¢’) denotes the domain of the assignment
function af(q') of the condition ¢’. By the choice of A and A’ the set E,(¢') U{A, A’, A°(p)}
is walks closed, where A°(p) is the §-th model of ¢ (y)n.+3. Denote it by E,(p’). We define
the condition p’ with E,(p') the domain of the assignment of its function aZ(p').

Let us apply 5.10(i) to ¢’ and A(p). We will obtain a condition ¢* with A(p) as a maximal
set basically agreeing with ¢’ below A(p) or in other words ¢* is the restriction of ¢’ to A(p).
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More precisely (i)(a) and (i)(b) of 5.10(i) hold for ¢" and ¢*. Now, clearly, p — ¢*. Also
they have the same maximal model A(p). It is routine to find p* >* p such that p* «— ¢*.
We like to extend p* to p’ by adding to it A as the maximal coordinate, A" and all the models
of ¢ between A(¢') and A(p). Notice that walks from A(¢') and A’ to models of ¢’ are the
same except for the starting points. Define the p’ level by level. Thus fix n < w and define
pl. or, basically, af(p'). Set doma”(p') = E,(p') = E.(¢') U{A, A, A°(p)}. Let pg >* q’i be
an extension including § in the domain of ag (p"). We will use induction on extensions of p;‘i;

deciding the values of one element Prikry sequences for measures in domai (p'). Suppose that

) is such an extension and for a smaller one af(p’) is already defined. Define af(p') for r,’E.

Let af(p') | A(p) = a”(p*). If there is some r appearing before 7“5 and deciding a”(p)(A(p))
the same way as 7’5 does, then let a%(p')(A) be the same as the value of a” (p')(A) defined with
r. Otherwise, we set a”(p')(A) to be a submodel of a big enough model such that af(p)(A(p))
is the first element of its fixed box sequence. We require also that its w-th element of the box
sequence (recall that once af(p')(A) is fixed also all limit members of some box sequence are
fixed as well) includes a(¢')(B) for every B € E,(¢') and is a submodel of a large enough
model as well. This will leave enough room for elements of E,(¢') that should be added to
doma?” (p').

X about the values of

Now, if there is some r appearing before r which agrees with r

X
ordinals below 0+ 1, then we define af(p')(A’), af(p')(A(q")) and aF (p')(B), for every B € E,,
exactly as they are defined according to r.

This will take care of 5.10(h). Now assume that every r appearing before 7‘5 disagree with
7“7):‘ about ordinals below 0+1. Here we are free of the restriction of 5.10(h). Consider the type

realized by rng (aﬁ(q/)> above rng (aﬁ(q’) I A(p)) (where a”(q') is as decided by 7‘;\:) Let
rng (aﬁ(p’ )) I E,(¢') be realizing the same type over rng <a§(p*)> inside the model which is
the w-th element of the fixed box sequence for a®(p’)(A). Finally, we define a”(p')(A4’) to be a
model below the w-th element of the fixed box sequence for a* (p’)(A) including af(p')(A(¢')),
with r;g(é—k 1)-th element of its fixed box sequence equal to a® (p')(A(q")) Nk ™2 and rf‘:(é)—th
element equal to af(p')(A°%(p)) N k™2 This completes the definition of af and then also
those of p’. By the choice of p’ we have p’ >* p. Also, by its definition ¢’ — p'. O

Now we turn to the crucial observation.

Lemma 5.21 In V7”, (P* — ) satisfies k™ F-c.c.
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Proof. Suppose otherwise. Work in V. Let (p, | @« < k™1) be a name of an antichain of the

length x™*. Using strategic closure of the forcing P we define by induction an increasing
sequence (t, | @ < k) of elements of P and a sequence (p, | & < k*T) so that for every

a < kT

ta|F444723 ::ﬁa-

Let to and py be arbitrary such that to |——po = po.

Now suppose that o < k1T and for every 8 < a tg and ps are already defined. Let
ts = ((A5(0), AF(0),F5(0)) , (AF(1), AF (D)), (e, | v € im AP (1)) , Fp) ,

Py = (P, 07, 5 = (Pon | m <w) and p7 = (p" |n<w).

Nﬁn

If « = o + 1, then we pick
ta = ((Aa'(0), A.(0), F5(0)) , (A(1), A'(1)) , (e | v € lim AJ(1)) , Fu)
to be an extension of ¢, deciding p, so that ((A3°(0), A’(0), F5(0)) | 8 < o') € AP(0) and

(tg | B < o) € AD(1).

If « is a limit ordinal, then we use the strategic closure of P. This way we can obtain ¢,
stronger than each t5 with 3 < a, deciding pa and so that ((AF(0), AP(0), F3(0)) | B < a) €
AR(0),Usq AF(0) € AL(0) N AL(0), (ts | 8 < a) € AP(1), Upea AF'(1) € AP (1) N AL(L)
and C(Sﬂ<a A0 (1))R+E = {AP() Nk | B < a}.

This completes the inductive definition of (t, | @« < k™) and (p, | @ < KTT).

Now we use kT + 1 — strategic closure of P”(1) in order to extend the part of ¢,’s over
KT e,

{{((A(1), AP (D), (e | v € im AL(1)) | @ < w77}
Thus we set A1) = |, _,.. AP(1), A1) = |J AN(1)U{A®(1)} and

a<wktt

canynets = {AX (L) NET | a < T}
We extend each t, to t,, by replacing in it

(A (1), A (1)), {ev [ v € lim A(1)))
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by
(A1), A®(1)) , (e | v € lim A(1)))

and F,, by the set F! which includes everything satisfying 5.10(3) (it is determined completely
once we have all the rest of the components).

Let o < 7 be a limit ordinal. Pick a limit a*,a < o* < ™ such that (J A (1)
B<a*

includes the models appearing in p~.

Now we like to extend each of p,’s, for a limit a, by adding |J A%(0), AY(0) to p* and
[B<a

59 AW (1), U oo AP(1)A%(1), A%(1) to pf. The addition of |, A%(0) and A®(0) to p)
does not cause problems. But in order to add to p% models, we probably need to first pass

from ¢, to t, for some @, a* < a < k', since such additions may introduce new walks and
in turn new distances. It means ordinals below k™t that may not be in A%(0). Thus we
need to first move to a larger A%(0) which includes such ordinals and then extend inside .
Denote the resulting extension of p, by q,. As usual, ¢, = <q§, q%) and q§ = (qin | n < w),
a5 = (4, | n <w).

Now we shall use A-system arguments. For every limit a < x** let S, C s be the set
consisting of all the ordinals appearing in q§ and all the distances of walks between the models
appearing in ¢~. Then, clearly, |S,| < k. Find a stationary T C {a < k™ | ¢fa =k} and
S C k™ such that for every a € T' S,Na = S. Shrinking T" a bit more we may assume that
(Sq | a € T) is a A-system with kernel S. Notice that o € S, since the distance from A%(1)

to [J AR (1) is exactly a. In other words (J AR (1) Ns*? is a-th element of ¢00(1)n.+s and
B<a B<a

both models are in ¢. Let v be the least limit ordinal bigger or equal than every element

of S. In removing if necessary the initial segment from 7T let us assume that min7T" > ~.

Consider |J AY(1).

B<y

Claim 5.21.1 For every a € T there are no models appearing in ¢% strictly between

U AP(1) and ﬁg A%(1),

B<y
Proof. Suppose otherwise.
Consider then the walk form A% (1) to a model B such that |J AY(1) € B ¢ |J AY(1).

B<y B<a
Already the first step in this walk should produce a distance strictly between v and «, since

both Uz, AP (D)Nk*? and (4., AP (1)Nw*? are limit points of the box sequence ¢ 400(1)n+3.
Recall that ¢% is walks closed. Hence we should have in S, an ordinal between v and .

This is impossible by the choice of ~.
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O of the claim.

The following claim is similar to the previous one.

Claim 5.21.2 Let @ € T and B be a model such that 5L<J AP(1)C BC ﬁL<J AR (1) (which
0% «
is not in ¢% by 5.20.1). Then for every model C' O B appearing in ¢% the walk from C to B

is the same as the walk from C' to 5L<J AR (1) and then the walk from 5L<J AP (1) to B.

Proof. If |J AY(1) N ™ is an element of the box sequence for C'N x*?, then it is clear.
B<a
Suppose that |z, A3’ (1) N &2 is not an element of the box sequence of C'N«*3. There are

no elements of conets between |J AY(1) and |J AR(1), since otherwise the walk from C'
B<y B<a
to 5L<J A%(1) will necessarily produce models between BL<J AP(1) and 5L<J AR (1). But this is
a % a
impossible by 5.20.1, since both C' and [ J A%O(l) appear in ¢% and ¢~ is walks closed. Hence
[B<a
the first element of ccn.+s above B N k'3 will be actually the first element of con,t+s above

U A (1) as well. The same is true about the last element of ccn.rs below BN x*. Let D

B<y

denote the model with D N ™3 being the least element of con,ts above |J AR (1). Then D
B<a

appears in ¢~ since ¢ is walks closed. Now we can deal with D exactly the same as we did
with C' or we can use an appropriate inductive assumption.
(1 of the claim.

Now let r, = (ri,ri) be obtained from ¢, by adding ﬁU AP(1) to gf, where o € T.
<y
By Claim 5.20.2, this can be done without adding any further models, since models of ¢%

together with (J A%(1) will still form a walks closed set. We also add ~y to S but denote the
<

result by the saI;Yle letter S. By shrinking 7" more, if necessary, we can assume without loss
of generality that models of % , and 7“52 with aq,as € T have the same configuration with
respect inclusions and walks over S. This is possible, since the number of models in each %
is at most x and the cardinality of S is as well at most «. Shrinking more, if necessary, we
insure that the assignment functions, sets of measure one, etc. of 7%’s behave the same.

Now let ay < ap € T. We like to show that r,, and r,, are compatible in the order —.
First we deal with r§1 and 7°§2. By standard arguments (see [Gitl] or [Git2 Sec. 2] there is

‘X

T4, equivalent to 7“52 so that

(a) 7"/0;2 and 7“2‘:2 agree about ordinals < ~y

(b) r§ , and 7“;;; can be combined together into one condition (probably by the cost of in-

creasing their trunks).
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Let 7 be the combination of r . with 7’ . Then all three conditions ré iy 22 and 1 agree
about ordinals < 7. Now we like to use thls property and 5.10(3(h)) in order to combine

N
K

rf and r% together. Thus we consider conditions r; = (r*, r* ) and ry = (r*, 7% ). In
1 az ~aj ~az
1,79, as far as we are concerned, with r* | r% nothing has changed. Fix n < w. Let t)

Nal NCMQ

be an extension of r;\: deciding the values of one element Prikry sequences for the ordinals
of the domain of the assignment function a}(r}) of r). We now pick the extension s}

of X obtained by switching for every § € domax( A ,) the value tx(é) to tx(é' ), where

a2mn

S dom( ( 51)) is the element correspondlng to d under the order 1somorphlsm between
doma?) (7"32) and doma) (rAl). Such defined s will be the extension of 77, since rA and
‘X

X (X
T4, are equivalent. Also, for every { < 7 we have £ € doma? (T ) N domay,(r;,) and

th(€) = sh(€).

azn

7. a1 Q2 domain over k
X
tTL
corresponding
Tn Q1n Q2n Prikry sequences
over A\,
7. Q2 domain over k
X
S'I’L
corresponding
Yn A1n 1
K . Prikry sequences
over A\,

See the diagram on p. 60.
By 5.10(3(h)), then t’\ and 3 will force the same value of afb(ro@)(B) for every B €

domaZ (r,,) with the walks closure of B and A%(1) involving only models with distances
between them at most 7, where as usual af(ry,) is the assignment function of 7% . In
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particular, the values of A”(1), |J A(1), all the models of c,+ar S A%0(1) 88 well as the
:3<’Y By
models at distances at most v from the above mentioned models do not change if we switch

between tg and s;g. Now recall that by the choice of 7, and 7,, a®(r,,)(B) as forced by ti
will be the same as a”(r,,)(B’) forced by sg, where B € doma”(r,,) and B’ € domaF (r,,)

corresponds to it under the order isomorphism. Hence, ¢ forces the same values of af(r,,)

and af}(ra,) applied to A®(1), Ug., AP (1), all the models of cusn S 4,y as well as all
By
the models of common domain at distances at most v from the above mentioned models.

Also, every common model B € domaZ(r,,) N domaf(r,,) can be reached from A%(1) by
the walk in which all the distances are at most «, since v was picked this way. Thus, t;\:
forces that a®(ry,)(B) = a%(ra,)(B). Now we can just define af = af(r,,) U a”(r,,). Tt will
be an assignment function since af(r,,) and a”(r,,) move walks at level x to walks at level
K, preserving “C”. by 5.10(3(g)) and doma” will be walks closed by Claim 5.21.2. Since
n < w and ¢} were arbitrary it is easy now to define TR = <Ij | n < w) with rc\zj being the

assignment function of 7*. Thus, we finish with r = (rx, 7 ®) which is stronger than both
~n ~Y

Ta, and r,,. Contradiction.
O
Let V; be a generic extension of V7 by (P*, — ). Then, by Lemmas above, V and
V) agree about cofinalities of ordinals and have the same bounded subsets of k. Denote by
(&n | n < w) the Prikry sequences for the normal measure of extenders E,, over k,’s and let
(pn | n < w) be the Prikry sequences for normal measure of extenders E,, over \,’s. Now it

is routine to deduce the desired result:

Theorem 5.21.

() te f( 11 5;;n+2/ﬁmte) _—

n<w

(b) tcf( IT p,f”“/ﬁnite) =K.
n<w

(€) bet+ = {p™ 2 | n < w}.

(d) be+++ = {fﬁwﬂ | n < w}.

(e) {0 <k|dT €bers}Nbers =10

We would like to now sketch the applications of the forcing technique developed above
to wider gaps. Thus in the model just constructed, 2 = k3. By [Git3 Sec. 4]it is possible
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to handle any § < s producing a model with 2% > x*9*1. The initial assumption their is
“Ya < Kk | ola) > o™t 4+ 1} is unbounded in x”. Combining both techniques together
it is possible to produce wider gaps starting with the same initial assumptions. Thus the

following holds:

Theorem 5.21 Suppose that k is a cardinal of cofinality w, § < k,v < N; and the set
{a < K | o(a) > a**! 4+ 1} is unbounded in . Then there is cofinalities preserving, not

adding new bounded subsets to k extension satisfying 2% > k+ov+1,

Remark. The simplest new case is a model of 2% > k™12 starting from {a < & | o(a) >
a1l + 1} unbounded in k.

This result almost completes (at least assuming GCH below) the study of the strength of
various gaps between a singular of cofinality Rg and its power. We refer to [Git4] for detailed

discussion of the matter.

Outline of the Construction

Let us deal with v = 2. The general case of any countable v is just standard once one can
handle v = 2.
We pick sequences (k, | n <w) and (A, | n < w) so that

(1) &= Upew #n

(2) for every n < w

(1) ) < )\n < Kp < )\n+1 < Knp41
(ii) \, carries an extender E), of the length \fno+!

(iii) &, carries an extender E,, of the length m+o+L,

The extenders E) ’s will generate Prikry sequences so that tcf ( [T pirtwett /ﬁnite) =

n<w
kT for every p < 6, where (p, | n < w) denotes the Prikry sequence for the normal

measures of F) ’s. The extenders FE, ’s will generate Prikry sequences witnessing

tcf( H {:”Jr““/ﬁnite) _ i

n<w

for every p, 1 < p < 6, where (&, | n < w) denotes the Prikry sequence for normal measures
of E,,’s. The preparation forcing P of 5.10 was combined from two blocks P(0) and P”(1).
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Here we can use their analogs P(d) and P”(6 + 1). P(0) was explicitly defined in [Git3,
Sec. 4]. The definition of P”(d + 1) is very similar to those of P”(1) but replacing P(0) by
P(5). The connection between these two blocks is via models of cardinality xT0+!. They are
the smallest models of P”(§). The models of P(§) (or more precisely) ordinal parts of them
are contained in kT°*!. The cofinality of af (A N /<¢+5+5+1> will be pf"+o+! for every limit
model A of cardinality x*°*1 in P”(4).

Further construction is parallel to one developed above. The proof of k™"-c.c. of the
final forcing is a bit more involved and requires redoing of the proof of k™ *-c.c. from [Git3,
Sec. 4] of the forcing derived from P(0).
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