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1 The Preparation Forcing

We assume GCH.

A condition in the preparation forcing P ′, which we define below, will consists

basically of an elementary chain of models of cardinality κ++ and a directed

system elementary submodels of cardinality κ+. Inside this directed system a

crucial role will be played by a certain elementary chain which will be called

central line . Let us give first a definition of both elementary chains.

Definition 1.1 The set P ′′ consists of elements of the form

〈B1κ+

, A1κ++〉

so that the following hold:

1. A1κ++
is a continuous closed chain of length less than κ+3 of elementary

submodels of 〈H(κ+3),∈, <,⊆, κ〉 each of cardinality κ++.

2. For each X ∈ A1κ++
, we have X∩κ+3 ∈ On. So, X ⊇ κ++. Further we

shall frequently identify such model X with the ordinal X ∩ κ+3 and

also view A1κ++
as a closed set of ordinals.

3. If X is a non-limit element of the chain A1κ++
then

(a) A1κ++ ¹ X := {Y | Y ⊂ X,Y ∈ A1κ++} ∈ X,
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(b) κ+
X ⊆ X.

4. B1κ+
is a continuous closed chain of length less than κ++ of elementary

submodels of 〈H(κ+3),∈, <,⊆, κ〉, each of cardinality κ+. B1κ+
has the

last element which we denote by max(B1κ+
).

5. For each X ∈ B1κ+
, we have X ∩ κ++ ∈ On. Hence X ⊇ κ+.

6. If X is a non-limit element of the chain B1κ+
then

(a) B1κ+ ¹ X := 〈Y | Y ⊂ X, Y ∈ B1κ+〉 ∈ X,

(b) κX ⊆ X,

(c) If δ < sup(X) for some δ ∈ A1κ++
(we identify here an element of

A1κ++
with an ordinal), then min(X \ δ) ∈ A1κ++

.

The following technical notion will be needed in order to define P ′ (and

will be used further as well).

Definition 1.2 Suppose that 〈B1κ+
, A1κ++〉 ∈ P ′′, F ∈ B1κ+

and F0, F1 ∈
F . We say that the triple F0, F1, F is of ∆-system type iff

1. F0 is the immediate predecessor of F in the chain B1κ+
,

2. F1 ≺ F ,

3. ?(it looks like it is possible also without this) κF1 ⊆ F1,

4. ?A1κ++ ¹ sup(F1) ∈ F1. Replacement:

5. If δ < sup(F1∩On) for some δ ∈ A1κ++
, then min((F1∩On)\δ) ∈ A1κ++

.

6. There are α0, α1 ∈ A1κ++
such that

(a) cof(α0) = cof(α1) = κ++,

(b) α0 ∈ F0 and α1 ∈ F1,
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(c) F0 ∩ F1 ∩On = F0 ∩ α0 = F1 ∩ α1,

(d) either α0 > sup(F1 ∩On) or α1 > sup(F0 ∩On).

Intuitively, this means that F0, F1 behave as in a ∆-system with the

common part below min α0, α1.

Further let us call α0, α1 the witnessing ordinals for F0, F1, F .

The next condition will require more similarity:

7. (isomorphism condition)

the structures

〈F0,∈, <,⊆, κ, A1κ++ ∩ F0, fF0〉
and

〈F1,∈, <,⊆, κ, A1κ++ ∩ F1, fF1〉
are isomorphic over F0 ∩ F1, i.e. the isomorphism πF0F1 between them

is the identity on F0 ∩ F1, where ? (it seems unnecessary for gap 3

to have this fFi
) fF0 : κ+ ←→ F0, fF1 : κ+ ←→ F1 are some fixed in

advance bijections.

Note that, in particular, we will have that otp(F0) = otp(F1) and

F0 ∩ κ++ = F1 ∩ κ++.

Definition 1.3 The set P ′ consists of elements of the form

〈〈A0κ+

, A1κ+

, Cκ+〉, A1κ++〉

so that the following hold:

1. A0κ+ ∈ A1κ+
,

2. every X ∈ A1κ+
is either equal to A0κ+

or belongs to it,

3. Cκ+
: A1κ+ → P (A1κ+

),

3



4. for every X ∈ A1κ+
, 〈Cκ+

(X), A1κ++〉 ∈ P ′′ and X is the maximal

model of Cκ+
(X). In particular, each Cκ+

(X) is an increasing contin-

uous chain of models of cardinality κ+.

5. (Coherence) If X,Y ∈ A1κ+
and X ∈ Cκ+

(Y ), then Cκ+
(X) is an initial

segment of Cκ+
(Y ) with X being the largest element of it.

We call Cκ+
(A0κ+

) central line of 〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉. The

following conditions describe a special way in which A1κ+
is generated

from the central line.

6. Let B ∈ A1κ+
. Then B ∈ Cκ+

(A0κ+
) (i.e., it is on the central line) or

there are n < ω and sequences 〈A1, ..., An〉, 〈B1, ..., Bn〉 of elements of

A1κ+
such that

(a) A1 ∈ Cκ+
(A0κ+

) is the least model of the central line Cκ+
(A0κ+

)

that contains B.

(b) A1 is a successor model in Cκ+
(A0κ+

). Let A−
1 denotes its imme-

diate predecessor in Cκ+
(A0κ+

).

(c) The triple A−
1 , B1, A1 is of a ∆-system type with respect to A1κ++

.

(d) For each m, 1 < m ≤ n,

i. Am ∈ Cκ+
(Bm−1) (i.e. it is on the central line of Bm−1) is the

least model in Cκ+
(Bm−1) that contains B.

ii. Am is a successor model in Cκ+
(Bm−1). Let A−

m denotes its

immediate predecessor in Cκ+
(Bm−1).

iii. The triple A−
m, Bm, Am is of a ∆-system type with respect to

A1κ++
.

(e) B ∈ Cκ+
(Bn).

We refer to the sequence 〈A1, A
−
1 , B1, ..., An−1, A

−
n−1, Bn−1, An, A

−
n , Bn〉

as the walk from A0κ+
(or from the central line) to B. Denote it by

wk(A0κ++
, B).
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Let us call n distance of B from the central line, denote it by dcl(B).

If it is on the central line, then set dcl(B) = 0.

The next condition strengthens a bit the isomorphism condition (7) of

Definition 1.2.

7. (isomorphism condition) Let F0, F1, F ∈ A1κ+
be of a ∆-system type

and X ∈ A1κ+
. Then X ∈ F0 iff πF0F1 [X] ∈ F1∩A1κ+

. This means that

the structures of 1.2(7) remain isomorphic even if we add F0 ∩A1κ+
to

the first and F1 ∩ A1κ+
to the second.

8. (uniqueness) Let F0, F1, F
′
1, F ∈ A1κ+

. If both triples F0, F1, F and

F0, F
′
1, F are of a ∆-system type, then F1 = F ′

1.

Note that both conditions 7, 8 can be stated equivalently only in the

case when F is on the central line.

Let us define also a walk to an ordinal.

Definition 1.4 Let 〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉 ∈ P ′ and α ∈ A1κ++ ∩ A0κ+
.

The sequence 〈A1, A
−
1 , B1, ..., An−1, A

−
n−1, Bn−1, An, A−

n , An1〉 of elements of

A1κ+
is called a walk from A0κ+

to α iff

1. A1 ∈ Cκ+
(A0κ+

) is the least model of Cκ+
(A0κ+

) with α ∈ A1,

2. either

• A1 is the least model of Cκ+
(A0κ+

) and then A−
n = A1,i.e. the

walk consists of A1 alone,

or

• A−
1 exists, it is the immediate predecessor of A1 on Cκ+

(A0κ+
). If

A−
1 is the unique immediate predecessor of A1, or there is an other

one but α does belong to it, then the walk consists of 〈A1, A
−
1 〉.

Otherwise, A−
1 , B1, A1 are of ∆-system type, α ∈ B1 and the walk

continues.
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3. For each m, 1 < m ≤ n,

(a) Am ∈ Cκ+
(Bm−1) (i.e. it is on the central line of Bm−1) is the

least model in Cκ+
(Bm−1) with α ∈ Am, either

• Am is the least model of Cκ+
(Bm−1) and then B−

n = Am,

or

• A−
m exists, it is the immediate predecessor of Am on Cκ+

(Bm−1).

If A−
m is the unique immediate predecessor of Am, or there is

an other one but α does belong to it, then A−
n = A−

m. Oth-

erwise, A−
m, Bm, Am are of ∆-system type, α ∈ Bm and the

walk continues.

4. α ∈ An and either

• An is the least model of Cκ+
(Bn−1) and then A−

n = An1 = An, i.e.

the walk terminates at An;

or

• there exists the immediate predecessor of An in Cκ+
(Bm−1). Then

A−
n is this immediate predecessor of An and there is no Z ∈ A1κ+

such that A−
n , Z, An is of a ∆-system type. In this case An1 = A−

n

and the walk terminates at A−
n ;

or

• there exists the immediate predecessor of An in Cκ+
(Bm−1). Then

A−
n is this immediate predecessor of An and there is Z ∈ A1κ+

such that A−
n , Z, An is of a ∆-system type, witnessed by ξ0 ∈

A−
n ∩A1κ++

, ξ1 ∈ Z∩A1κ++
. Then α 6∈ Z. If α 6∈ [ξ1, sup(Z)], then

An1 = A−
n and the walk to α terminates at A−

n . If α ∈ [ξ1, sup(Z)],

then An1 = Z.

Note that walks to ordinals terminate by the last model An to which the

ordinal belongs followed by its immediate predecessor in Cκ+
(An), whenever

such predecessor exists.
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Definition 1.5 (Complexity of walks)

Let 〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉 ∈ P ′.

• Suppose that A,B ∈ A1κ+
. We say that the walk from A0κ+

to A is

simpler than the walk from A0κ+
to B iff

1. A ⊂ B, or

2. A 6⊂ B,B 6⊂ A,A 6= B and if F ∈ A1κ+
is the last common point of

both walks, then A ⊆ F0, where F0 is the immediate predecessor

of F in Cκ+
(F ). Note that necessarily, there is F1 ∈ A1κ+

such

that F0, F1, F is a triple of a ∆-system type and B ⊆ F1.

• Suppose that A ∈ A1κ+
and α ∈ A1κ++ ∩ A0κ+

. We say that the walk

from A0κ+
to A is simpler than the walk from A0κ+

to α iff

1. A is one of the models of the walk to α,

or

2. if F is the last common model of the walks, then A ∈ Cκ+
(F ),

or A 6∈ Cκ+
(F ) and A ⊆ F0, where F0 is the immediate predeces-

sor of F in Cκ+
(F ). Note, if the second possibility occurs, then,

necessarily, there is F1 ∈ A1κ+
such that F0, F1, F is a triple of a

∆-system type and α ∈ F1.

• Suppose that α, β ∈ A1κ++ ∩A0κ+
. We say that the walk from A0κ+

to

α is simpler than the walk from A0κ+
to β iff α 6= β, there is F ∈ A1κ+

which is the last common point of both walks and

1. there are D,E ∈ Cκ+(F ) such that α ∈ D ∈ E and β ∈ E \D,

or

2. there are F0, F1 ∈ A1κ+
such that F0, F1, F are of a ∆-system type,

F0 ∈ Cκ+
(F ), α ∈ F0 and β ∈ F1,
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3. there are F0, F1 ∈ A1κ+
such that F0, F1, F are of a ∆-system type,

F0 ∈ Cκ+
(F ),ξ0, ξ1 the witnessing ordinals, and β ∈ F \ (F0 ∪F1),

ξ1 ≤ β ≤ sup(F1) and α ∈ F1,

or

4. there are F0, F1 ∈ A1κ+
such that F0, F1, F are of a ∆-system type,

F0 ∈ Cκ+
(F ),ξ0, ξ1 the witnessing ordinals, and α ∈ F \ (F0 ∪F1),

β ∈ F1 and α < ξ1 or α > sup(F1).

The above defines a well-founded relation. We will use further the walks

complexity in inductive arguments.

Lemma 1.6 Let 〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉 ∈ P ′ and B ∈ A1κ+
. Then

1. 〈〈B,A1κ+ ∩ (B ∪ {B}), Cκ+ ¹ A1κ+ ∩ (B ∪ {B})〉, A1κ++〉 ∈ P ′.

2. If B′ ∈ A1κ+
and B′  B, then B′ ∈ B.

Proof. We prove both statements simultaneously by an induction on dcl(B)

-the distance from the central line. If B is on the central line, then it

is clear. Suppose that B is not on the central line. Consider the walk

〈A1, A
−
1 , B1, ..., An−1, A

−
n−1, Bn−1, An, A−

n , Bn〉 from A0κ+
to B. We have

〈〈A−
1 , A1κ+ ∩ (A−

1 ∪ {A−
1 }), Cκ+ ¹ A1κ+ ∩ (A−

1 ∪ {A−
1 })〉, A1κ++〉 ∈ P ′.

Recall that A−
1 , B1, A1 are of the ∆-system type. Hence we have the isomor-

phism πA−1 ,B1
between A−

1 and B1 which preserves all the relevant structure.

In particular, it will move the walk from A−
1 to a model in A1κ+∩(A−

1 ∪{A−
1 })

to the walk from B1 to the corresponding under πA−1 ,B1
model of A1κ+∩(B1∪

{B1}). This easily implies that

〈〈B1, A
1κ+ ∩ (B1 ∪ {B1}), Cκ+ ¹ A1κ+ ∩ (B1 ∪ {B1})〉, A1κ++〉 ∈ P ′.

Suppose now that we have some B′ ∈ A1κ+
, B′ ( B1. If B′ 6⊆ A−

1 , then

the walk from A0κ+
to B′ goes via B1, and hence B′ ∈ B1. Suppose that
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B′ ⊆ A−
1 . It is impossible to have B′ = A−

1 , since then

A−
1 ∩B1 ⊇ B′ = A−

1 ,

which is clearly not the case. So, B′ ( A−
1 . Then the walk from A0κ+

to B′

goes via A−
1 , and hence B′ ∈ A−

1 . Then πA−1 ,B1
(B′) ∈ B1, but

πA−1 ,B1
(B′) = πA−1 ,B1

“B′ = B′.

So we are done.

Hence, A1κ+ ∩ (B1 ∪ {B1}) = A1κ+ ∩ P(B1).

Now we deal with B and 〈〈B1, A
1κ+ ∩ (B1 ∪ {B1}), Cκ+ ¹ A1κ+ ∩ (B1 ∪

{B1})〉, A1κ++〉 ∈ P ′. The walk distance from B1 to B is shorter than those

from A0κ+
to B. So the induction hypothesis applies.

¤
The next lemma is trivial.

Lemma 1.7 Let 〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉 ∈ P ′ and Z ∈ A1κ++
is so that

Z ∩κ+3 ≥ sup(A0κ+
). Then 〈〈A0κ+

, A1κ+
, Cκ+〉, {Y ∈ A1κ++ | Y ⊆ Z}〉 ∈ P ′.

Let us introduce the following notation:

Definition 1.8 Let p = 〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉 ∈ P ′ and B ∈ A1κ+
.

Then set

p ¹ B := 〈〈B, A1κ+ ∩ (B ∪ {B}), Cκ+ ¹ A1κ+ ∩ (B ∪ {B})〉, A1κ++〉.

We call p ¹ B the restriction of p to B.

Similar, if Z ∈ A1κ++
, then set

p ¹ Z := 〈〈A0κ+

, A1κ+

, Cκ+〉, {Y ∈ A1κ++ | Y ⊆ Z}〉

. Also, let p ¹ (B,Z) := (p ¹ B) ¹ Z.

By the previous lemmas, p ¹ (B, Z) ∈ P ′.
The next lemma follows easily from the definitions.
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Lemma 1.9 Let 〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉 ∈ P ′, A ∈ A1κ+
and δ ∈ A1κ++

.

If δ < sup(A), then min(A \ δ) ∈ A1κ++
.

Proof. By 1.3(4), 〈Cκ+
(A), A1κ++〉 ∈ P ′′. So, it satisfies 1.1(6(d)), (or ???)

and we are done, if A is a successor model of Cκ+
(A). Suppose A is a limit

model of Cκ+
(A). Let 〈Ai | i < η〉 be an increasing sequence of successor

models of Cκ+
(A) with

⋃
i<η Ai = A. Now, δ < sup(A), so starting with some

i∗ < η, we have δ < sup(Ai). Just note that i < j implies Ai ∈ Aj, hence

〈 sup(Ai) | i < η〉 is an increasing sequence of ordinals with limit sup(A). Set

αi = min(Ai \ δ), for each i, i∗ ≤ i < η. By 1.1(6(d)), αi ∈ A1κ++
. Clearly,

i ≥ j implies αi ≤ αj. Hence, the sequence 〈αi | i∗ ≤ i < η〉 is eventually

constant. Let α∗ be this constant value. Then min(A \ δ) = α∗ and we are

done.

¤

Definition 1.10 Let 〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉 ∈ P ′ and A,B ∈ A1κ+
. We

say that A satisfies the intersection property with respect to B or shortly

ip(A,B) iff either

1. A ⊇ B, or

2. B ⊇ A, or

3. A 6⊇ B,B 6⊇ A, and then there are A′ ∈ A1κ+ ∩ (A ∪ {A}) and η ∈
A1κ++ ∩ A′) such that

A ∩B = A′ ∩ η,

or just

A ∩B = A′.

Let ipb(A,B) denotes that both ip(A,B) and ip(B, A) hold.

Lemma 1.11 (The intersection lemma) Let 〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉 ∈ P
and X, Y ∈ A1κ+

. Then ipb(X,Y ).
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Proof. Assume that X 6⊇ Y, Y 6⊇ X.

Consider the walks 〈A1, A
−
1 , B1, ..., An−1, A

−
n−1, Bn−1, An, A−

n , Bn〉 from A0κ+

to X and 〈D1, D
−
1 , E1, ..., Dm−1, D

−
m−1, Em−1, Dm, D−

m, Em〉 from A0κ+
to Y .

Let Bk = Ek be the last place up to which the walks coincide. Then we have

both Ak+1, Dk+1 in Cκ+
(Bk) but at different places.

Suppose first that Ak+1 is above Dk+1. Then A−
k+1 = Dk+1 or Ak+1 ⊃ Dk+1,

and then Dk+1 ∈ A−
k+1. Now, A−

k+1, Bk+1, Ak+1 are of a ∆-system type. Hence

by Definition 1.2(6), there are ordinals α0, α1 ∈ A1κ++ ∩Ak+1, α0 ∈ A−
k+1 and

α1 ∈ Bk+1 such that

A−
k+1 ∩Bk+1 = A−

k+1 ∩ α0 = Bk+1 ∩ α1.

Recall that X ⊆ Bk+1 and Y ⊆ A−
k+1. Hence,

X ∩ Y = (X ∩Bk+1) ∩ (Y ∩ A−
k+1) = (X ∩ α1) ∩ (Y ∩ α0).

Let us use (7) of 1.3. Then

X ′ = πBk+1,A−k+1
[X] ∈ Ak+1 ∩ A1κ+

.

Also,

X ∩ α1 = X ′ ∩ α0,

since the isomorphism πBk+1,A−k+1
is the identity over Bk+1 ∩ A−

k+1. Hence,

X ∩ Y = X ∩ α1 ∩ Y = X ′ ∩ α0 ∩ Y.

Consider

p := 〈〈A−
k+1, A

1κ+ ∩ (A−
k+1 ∪ {A−

k+1}), Cκ+ ¹ A1κ+ ∩ (A−
k+1 ∪ {A−

k+1})〉, A1κ++〉.

By Lemma 1.6, it is in P ′. We can apply the inductive hypothesis to p,X ′

and Y , since the walk from A−
k+1 to X ′ shorter than those from A0κ+

to X

(it is just a copy under πBk+1,A−k+1
of the final segment 〈Bk+1, ..., An, A

−
n , Bn〉
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of the original walk to X from A0κ+
). Hence there are Y ′ ∈ A1κ+ ∩ (Y ∪{Y })

and η ∈ A1κ++ ∩ A such that

X ′ ∩ Y = Y ′ ∩ η.

Then

X ∩ Y = Y ∩ Y ′ ∩ η ∩ α0.

If α0 ∈ Y , then we are done. Suppose otherwise. If α0 ≥ sup(Y ), then we

can just remove it from the intersection above. If α0 < sup(Y ), then replace

it by min(Y ∩ α0), which is in A1κ++
by Lemma 1.9.

This shows ip(Y,X). Finally, using πA−k+1,Bk+1
and moving Y to Bk+1, the

same argument shows ip(X, Y ).

¤
It is easy to deduce the following generalization using an induction:

Lemma 1.12 Let 〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉 ∈ P and A1, ..., An ∈ A1κ+
, for

some n < ω . Then there are A′ ∈ A1κ+ ∩ (A1 ∪ {A1}) and η ∈ A1κ++ ∩ A′

such that A1 ∩ ... ∩ An = A′ ∩ η or just A1 ∩ ... ∩ An = A′.

We need to allow a possibility to change the component Cκ+
in elements

of P ′ and replace one central line by another. It is essential for the definition

of an order on P ′ given below.

Definition 1.13 Let p = 〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉 ∈ P ′ and B ∈ A1κ+
.

Define swt(p, B) (here swt stands for switch) to be

〈〈A0κ+

, A1κ+

, Dκ+〉, A1κ++〉 ,

where Dκ+
is obtained from Cκ+

as follows:

Dκ+
= Cκ+

unless B has exactly two immediate predecessors in A1κ+
. If

B0 6= B1 are such predecessors of B and, say B0 ∈ Cκ+
(B), then we set

Dκ+
(B) = Cκ+

(B1)
aB. Extend Dκ+

on the rest in the obvious fashion just

replacing Cκ+
(B0) by Cκ+

(B1) for models including B and then moving over
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isomorphic models.

Intuitively, we switched here from B0 to B1.

Note that swt(swt(p, B), B) = p.

Define q = swt(p,B1, . . . , Bn) by applying the operation swt n-times:

pi+1 = swt(pi, Bi), for each 1 ≤ i ≤ n, where p1 = p and q = pn+1.

The following simple observation will be useful further.

Lemma 1.14 Let p = 〈〈A0κ+
(p), A1κ+

(p), Cκ+
(p)〉, A1κ++

(p)〉 ∈ P ′ and B ∈
A1κ+

(p). Then there are E1, ..., Em ∈ A1κ+
(p) such that B ∈ Cκ+

(q)(A0κ+
(p)),

where

q = 〈〈A0κ+

(p), A1κ+

(p), Cκ+

(q)〉, A1κ++

(p)〉 = swt(p, E1, ..., Em).

Proof. If B ∈ Cκ+
(p)(A0κ+

(p), then let q = p. Otherwise, Consider the walk

〈A1, A
−
1 , B1, ..., An−1, A

−
n−1, Bn−1, An, A−

n , Bn〉 from A0κ+
to B. Then

q = 〈〈A0κ+

(p), A1κ+

(p), Cκ+

(q)〉, A1κ++

(p)〉 = swt(p,A−
1 , B1, A

−
2 , B2, ..., A

−
n , Bn)

will be as desired.

¤

Definition 1.15 Let r, q ∈ P ′. Then r ≥ q (r is stronger than q) iff there

is p = swt(r, B1, . . . , Bn) for some B1, . . . , Bn appearing in r so that the

following hold, where

p = 〈〈A0κ+

, A1κ+

, Cκ+〉, A1κ++〉
q = 〈〈B0κ+

, B1κ+

, Dκ+〉, B1κ++〉

A1κ++ ∩ (max(B1κ++

) + 1) = B1κ++

(1)

B0κ+ ∈ Cκ+

(A0κ+

) and Dκ+

(B0κ+

) is an initial segment of Cκ+

(A0κ+

)(2)

q = p ¹ (B0κ+

, B0κ++

)( as it was defined in 1.8).(3)
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Remarks (1) Note that if t = swt(p,B0, . . . , Bn) is defined, then t ≥ p

and p = swt(swt(p,B0, . . . , Bn), Bn, Bn−1, . . . , B0) = swt(t, Bn, . . . , B0) ≥ t.

Hence the switching produces equivalent conditions.

(2) We need to allow swt(p,B) for the ∆-system argument. Since in this

argument two conditions are combined into one and so Cκ+
should pick one

of them only. Also it is needed for proving a strategic closure of the forcing.

(3) The use of finite sequences B0, . . . , Bn is needed in order to insure

transitivity of the order ≤ on P ′.
Let p = 〈〈A0κ+

, A1κ+
, Cκ+〉, A1κ++〉 ∈ P ′. Set p\κ++ = A1κ++

. Define

P ′≥κ++ to be the set of all p\κ++ for p ∈ P ′.
The next lemma is obvious.

Lemma 1.16 〈P ′≥κ++ ,≤ 〉 is κ+3-closed.

Set p ¹ κ++ = 〈A0κ+
, A1κ+

, Cκ+〉 where p = 〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉 ∈
P ′.

Let G(P ′≥κ++) be a generic subset of P ′≥κ++ . Define P ′<κ++ to be the set

of all p ¹ κ++ for p ∈ P ′ with p\κ++ ∈ G(P ′≥κ++).

Let p ∈ P ′ and q ∈ P ′≥κ++ . Then qap denotes the set obtained from p by

adding q to the last component of p, i.e. to A1κ++
.

The following lemma is trivial.

Lemma 1.17 Let p ∈ P ′, q ∈ P ′≥κ++ and q ≥P′≥κ++
p\κ++. Then qap ∈ P ′

and qap ≥ p.

It follows now that P ′ projects to P ′<κ++ .

Let us turn to the chain condition.

Lemma 1.18 The forcing P ′<κ++ satisfies κ+3-c.c. in V
P ′≥κ++ .

Proof. Suppose otherwise. Let us assume that

∅‖P ′≥κ++
(〈 p
∼α

= 〈A
∼

0κ+

α , A
∼

1κ+

α , C
∼

κ+

α 〉 | α < κ+3〉 is an antichain in P ′
∼<κ++)

14



Without loss of generality we can assume that each A0κ+

α is forced to be a

successor model, otherwise just extend conditions by adding one additional

model on the top. Define by induction, using Lemma 1.16, an increasing

sequence 〈qα | α < κ+3〉 of elements of P ′≥κ++ and a sequence 〈pα | α < κ+3〉,
pα = 〈A0κ+

α , A1κ+

α , Cκ+

α 〉 so that for every α < κ+3

qα‖P′≥κ3
〈A
∼

0κ+

α , A
∼

1κ+

α , C
∼

κ+

α 〉 = p̌α .

For a limit α < κ+3 let

qα =
⋃

β<α

qβ ∪ {sup
⋃

β<α

qβ}

and qα be its extension deciding p∼α. Also assume that max qα ≥ sup(A0κ+

α ∩
κ+3).

We form a ∆-system. By shrinking if necessary assume that for some

stationary S ⊆ κ+3 and δ < κ+3 we have the following for every α < β in S:

(a) A0κ+

α ∩ α = A0κ+

β ∩ β ⊆ δ

(b) A0κ+

α \α 6= ∅

(c) sup A0κ+

α < β

(d) sup qα = α + 1

(e)

〈A0κ+

α ,∈,≤,⊆, κ, Cκ+

α , fA0κ+
α

, A1κ+

α , qα ∩ A0κ+

α 〉
〈A0κ+

β ,∈,≤,⊆, κ, Cκ+

β , f
A0κ+

β
, A1κ+

β , qβ ∩ A0κ+

β 〉

are isomorphic over δ, i.e. by isomorphism fixing every ordinal below δ, where

fA0κ+
α

: κ+ ←→ A0κ+

α

15



and

f
A0κ+

β
: κ+ ←→ A0κ+

β

are the fixed enumerations.

We claim that for α < β in S it is possible to extend qβ to a condition

forcing compatibility of pα and pβ. Proceed as follows. Pick A to be an

elementary submodel of cardinality κ+ so that

(i) A1κ+

α , A1κ+

β ∈ A

(ii) Cκ+

α , Cκ+

β ∈ A

(iii) qβ ∈ A.

Extend qβ to q = qβ ∪ sup(A ∩ κ+3). Set p = 〈A,A1κ+
, Cκ+〉, where A1κ+

:=

A1κ+

α ∪ A1κ+

β ∪ {A}, Cκ+
:= Cκ+

α ∪ Cκ+

β ∪ 〈A,Cκ+

β (A0κ+

β )aA〉〉.
Clearly, 〈Cκ+

(A), q〉 ∈ P ′′.
The triple A0κ+

β , A0κ+

α , A is of a ∆-system type relatively to q, by (e) above.

It follows that 〈p, q〉 ∈ P ′. Thus the condition (6) of Definition 1.3 holds

since each of 〈pα, q〉, 〈pβ, q〉 satisfies it. The condition (7) of Definition 1.3

follows from (e) above and since both 〈pα, q〉, 〈pβ, q〉 satisfy it.

¤

Lemma 1.19 P ′ is κ++-strategically closed.

Proof. We define a winning strategy for the player playing at even stages.

Thus suppose 〈pj | j < i〉, pj = 〈〈A0κ+

j , A1κ+

j , Cκ+

j 〉, A1κ++

j 〉 is a play according

to this strategy up to an even stage i < κ++. Set first

B0κ+

i =
⋃
j<i

A0κ+

j , B1κ+

i =
⋃
j<i

A1κ+

j ∪ {B0κ+

i },

Dκ+

i =
⋃
j<i

Cκ+

j ∪ {〈B0κ+

i , {B0κ+

i } ∪ {Cκ+

j (A0κ+

j ) | j is even}〉}

16



and

B1κ++

i =
⋃
j<i

B1κ++

j ∪ {sup
⋃
j<i

B1κ++

j }.

Then pick A0κ+

i to be a model of cardinality κ+ such that

(a) κA0κ+

i ⊆ A0κ+

i

(b) B0κ+

i , B1κ+

i , Dκ+

i , B1κ++

i ∈ A0κ+

i .

Set A1κ+

i = B1κ+

i ∪{A0κ+

i }, Cκ+

i = Dκ+

i ∪{〈A0κ+

i , Dκ+

i (B0κ+

i )∪{A0κ+

i }〉} and

A1κ++

i = B1κ++

i ∪ {sup(A0κ+

i ∩ κ+3}. As an inductive assumption we assume

that at each even stage j < i, pj was defined in the same fashion. Then

pi = 〈〈A0κ+

i , A1κ+

i , Cκ+

i 〉, A1κ++

i 〉 will be a condition in P ′ stronger than each

pj for j < i. The switching may be required here once moving from an odd

stage to its immediate successor even stage.

¤

2 Suitable structures and assignment func-

tions

In the gap 2 case assignment functions an (those connecting the level κ with

level κn, n < ω) were order preserving. In other words an is an isomorphism

between structures in the language containing only the predicate for the order

relation. Here, in the gap 3 case (and beyond ), an’s will be isomorphisms

between structures in more complicated languages.

Let us start with two definitions which will specify relevant structures.

Definition 2.1 A three sorted structure 〈〈X, Y, Z〉, C,∈,⊆ 〉 is called suit-

able structure iff

1. X has a maximal under inclusion element. Denote it by max(X).

2. Y ⊆ max(X),

17



3. C is a binary relation X,

4. 〈〈max(X), X,C〉, Y 〉 ∈ P ′, where for every A ∈ X we identify C(A)

with the set {B ∈ X | 〈A,B〉 ∈ C}.

5. Z = {t1 ∩ ... ∩ tn | n < ω, t1, ..., tn ∈ X ∪ Y }.

Note that by Lemma 1.11, an intersection t1 ∩ ... ∩ tn above is really simple,

thus it is equal to an element of X or of Y or to s ∩ α, where s ∈ X and

α ∈ Y .

Let G(P ′) be a generic subset of P ′.

Definition 2.2 A suitable structure 〈〈X, Y, Z〉, C,∈,⊆ 〉 is called suitable

generic structure iff there is 〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉 ∈ G(P ′) such that

1. 〈〈X, Y, Z〉, C,∈,⊆ 〉 is a substructure (not necessarily elementary) of

〈〈A1κ+
, A1κ++

, {t1 ∩ ... ∩ tn | n < ω, t1, ..., tn ∈ A1κ+ ∪ A1κ++}〉,
Cκ+

,∈,⊆ 〉,

2. max(X) ∈ Cκ+
(A0κ+

),

3. 〈〈max(X), X,C〉, Y 〉 and 〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉 agree about the

walks to members of X and to ordinals in max(X)∩Y . In other words

we require that all the elements of walks in 〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉
to elements of X and to ordinals in max(X) ∩ Y are in X.

Note that, as a condition in P ′, 〈〈max(X), X, C〉, Y 〉 need not be weaker

than 〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉, and hence it need not be in G(P ′). Thus,

for example, A1κ++
need not be an end extension of Y .

Note also, that any stronger condition 〈〈B0κ+
, B1κ+

, Dκ+〉, B1κ++〉 ∈ G(P ′)
with Cκ+

(A0κ+
) being an initial segment of Dκ+

(B0κ+
) will witness that

〈〈X,Y, Z〉, C,∈,⊆ 〉 is a suitable generic structure.

18



Lemma 2.3 Let 〈〈X,Y, Z〉, C,∈,⊆ 〉 be a suitable generic structure as wit-

nessed by 〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉 ∈ G(P ′). Suppose that F0, F1, F ∈
A1κ+

, F0, F ∈ Cκ+
(A0κ+

) is a triple of a ∆-system type with α0, α1 as in

Definition 1.2, and α1 ∈ Y . Then F0, F1 ∈ X ∩ max(X), F ∈ X, α0 ∈
max(X) ∩ Y .

Proof. The walk to α1 from max(X) (or the same from A0κ+
) passes through

F and turns to F1. Hence, by 2.2(3), F0, F1, F ∈ X. Recall that by 2.1(3)

we have 〈〈max(X), X,C〉, Y 〉 ∈ P ′. Hence F0, F1, F are of a ∆-system type

in 〈〈max(X), X, C〉, Y 〉. Then there are α′0 ∈ F0 ∩ Y, α′1 ∈ F1 ∩ Y such that

F0 ∩ F1 = F0 ∩ α′0 = F1 ∩ α′1.

But, also

F0 ∩ F1 = F1 ∩ α1

and α1, α
′
1 ∈ Y ⊆ A1κ++

.

Hence, α1 = α′1. Finally, α′0 = πF1,F0(α1) = α0. Hence, α0 ∈ max(X) ∩ Y .

¤

Lemma 2.4 Let p = 〈〈X, Y, Z〉, C,∈,⊆ 〉 and p′ = 〈〈X ′, Y ′, Z ′〉, C ′,∈,⊆ 〉
be isomorphic suitable structures (even over different cardinals) and a an

isomorphism between them. Suppose that F0, F1, F is a triple in X of a ∆-

system type and α0 ∈ F0 ∩ Y, α1 ∈ F1 ∩ Y are witnessing this ordinals. Then

a(F0), a(F1), a(F ) is a triple in X ′ of a ∆-system type witnessed by a(α0) and

a(α1).

Proof. Obviously, α0 and α1 are uniquely determined by F0 and F1.

Denote a(F0) by F ′
0,a(F1) by F ′

1,a(F ) by F ′, a(α0) by α′0 and a(α1) by α′1.

Now, F ′
0, F

′
1 ∈ F ′, moreover F ′

0 is the immediate predecessor of F ′ in C(F ′)

and F ′
1 is an additional predecessor of F ′ under the inclusion relation, since

a is an isomorphism between p and p′. Note that by 2.1(3) this implies that
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F ′
0, F

′
1, F

′ is a ∆-system type triple in p′.

Let α′′0 ∈ F ′
0 ∩ a(Y ) and α′′1 ∈ F ′

1 ∩ a(Y ) be such that

F ′
0 ∩ F ′

1 = F ′
0 ∩ α′′0 = F ′

1 ∩ α′′1.

Also α′0 ∈ F ′
0 ∩ a(Y ) and α′1 ∈ F ′

1 ∩ a(Y ), since a respects ∈-relation. But

then, necessarily, α′0 = α′′0, α
′
1 = α′′1.

¤

Lemma 2.5 Let p = 〈〈X, Y, Z〉, C,∈,⊆ 〉 and p′ = 〈〈X ′, Y ′, Z ′〉, C ′,∈,⊆ 〉
be isomorphic suitable structures (even over different cardinals) and a an

isomorphism between them. Then a respects walks, i.e. for every A ∈ X and

B ∈ (X ∪ Y ) ∩ A, a maps the walk between A and B in p onto the walk

between a(A) and a(B).

Proof. Induction on walks length. Thus, if B in C(A) or if B ∈ Y and the

walk to it from A involves only C(A), then the isomorphism a guaranties

the same for the images. Suppose that the walk proceeds with splitting. Let

F0, F1, F be the first split on the way to B, i.e. F ∈ C(A), the triple F0, F1, F

is of a ∆-system type, B 6⊆ F0 (or, if B ∈ Y , B 6∈ F0) and B ⊆ F1 (or B ∈
F1∪{F1}). By the previous lemma (Lemma 2.4), a(F0), a(F1), a(F ) is a triple

in X ′ of a ∆-system type. a is isomorphism, hence a(F ) ∈ C(a(A)), a(F0) ∈
C(a(F0)), a(B) 6⊆ a(F0) (or, if B ∈ Y , a(B) 6∈ a(F0)) and a(B) ⊆ a(F1) (or

a(B) ∈ a(F1) ∪ {a(F1)}).
But this means that the walk from a(A) to a(B) goes via a(F1). Now we

can apply induction to the walk from F1 to B, since it is shorter than the

original one from A to B.

¤

Lemma 2.6 Let p = 〈〈X, Y, Z〉, C,∈,⊆ 〉 and p′ = 〈〈X ′, Y ′, Z ′〉, C ′,∈,⊆ 〉
be isomorphic suitable structures (even over different cardinals), a an isomor-

phism between them and F0, F1, F ∈ X a triple of a ∆-system type. Then
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a respects πF0,F1, i.e. for every A ∈ F0 ∩ (X ∪ Y ) we have a(πF0,F1(A)) =

πa(F0),a(F1)(a(A)).

Proof. Let F0, F1, F ∈ X be a triple of a ∆-system type and A ∈ F0∩(X∪Y ).

We prove the lemma by induction on the length of the walk from F0 to A.

Suppose first that A ∈ C(F0) (or in case A ∈ Y the walk to A involves

only C(F0)). The isomorphism a moves C(F0) to C(a(F0)) and C(F1) to

C(a(F1)). By Lemma 2.4, the triple a(F0), a(F1), a(F ) is of a ∆-system

type. So, πa(F0),a(F1) moves C(a(F0)) onto C(a(F1)) respecting the inclusion

relation. Then πa(F0),a(F1)(a(A)) should an element of C(a(F1)) at the same

place as a(A) in C(a(F0)), which, in turn is at the same place as A in C(F0)

and πF0,F1(A) in C(F1). Hence

a(πF0,F1(A)) = πa(F0),a(F1)(a(A)).

Suppose no that A 6∈ C(F0). Let H0, H1, H be the first splitting on the way

to A from F0. The induction applies to H1, A . Hence

a(πH1,H0(A)) = πa(H1),a(H0)(a(A)).

Let A′ = πH1,H0(A). Apply the induction to F0, A
′. Then

a(πF0,F1(A
′)) = πa(F0),a(F1)(a(A′)).

Again, apply induction to F0, H0 and F0, H1. So,

a(πF0,F1(H0)) = πa(F0),a(F1)(a(H0))

and

a(πF0,F1(H1)) = πa(F0),a(F1)(a(H1)).

Finally,

πF0,F1(A) = ππF0,F1
(H0),πF0,F1

(H1)(πF0,F1(πH1,H0(A
′))).

Applying a, we obtain

a(πF0,F1(A)) = πa(F0),a(F1)(a(A)).
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¤
Note that the proofs of Lemmas 2.5, 2.6 rely only on Lemma 2.4 and

?(also this lemma does not use Z) do not use the component of suitable

structures consisting of intersections. Let us isolate a weaker notion that

still will capture all the essential parts.

Definition 2.7 A two sorted structure 〈〈X, Y 〉, C,∈,⊆ 〉 is called weak suit-

able structure iff

1. X has a maximal under inclusion element. Denote it max(X),

2. Y ⊆ max(X),

3. C is a binary relation X,

4. 〈〈max(X), X,C〉, Y 〉 ∈ P ′, where for every A ∈ X we identify C(A)

with the set {B ∈ X | 〈A,B〉 ∈ C}.

The following analogs of Lemmas 2.5, 2.6 were actually proved above:

Lemma 2.8 Let p = 〈〈X, Y 〉, C,∈,⊆ 〉 and p′ = 〈〈X ′, Y ′〉, C ′,∈,⊆ 〉 be

isomorphic weak suitable structures (even over different cardinals) and a an

isomorphism between them. Then a respects walks, i.e. for every A ∈ X and

B ∈ (X ∪ Y ) ∩ A, a maps the walk between A and B in p onto the walk

between a(A) and a(B).

Lemma 2.9 Let p = 〈〈X, Y 〉, C,∈,⊆ 〉 and p′ = 〈〈X ′, Y ′〉, C ′,∈,⊆, 〉 be

isomorphic weak suitable structures (even over different cardinals), a an iso-

morphism between them and F0, F1, F ∈ X a triple of a ∆-system type. Then

a respects πF0,F1, i.e. for every A ∈ F0 ∩ (X ∪ Y ) we have a(πF0,F1(A)) =

πa(F0),a(F1)(a(A)).
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Let p = 〈〈X,Y 〉, C,∈,⊆ 〉 be a weak suitable structure. Consider Z =

{t1∩ ...∩ tn | n < ω, t1, ..., tn ∈ X∪Y }. Then 〈X,Y, Z〉, C,∈,⊆ 〉 is a suitable

structure. Let us call it expansion of p to a suitable structure.

Lemma 2.10 Suppose that p = 〈〈X,Y 〉, C,∈,⊆ 〉 and p′ = 〈〈X ′, Y ′〉, C ′,∈
,⊆ 〉 are isomorphic weak suitable structures (even over different cardinals).

Then their expansions are isomorphic as well.

Proof. Let a be the isomorphism between p and p′. We show that it extends

to an isomorphism between the expansions. Let Z = {t1 ∩ ... ∩ tn | n <

ω, t1, ..., tn ∈ X∪Y } and Z ′ = {t1∩...∩tn | n < ω, t1, ..., tn ∈ X ′∪Y ′}. Extend

a to a function b in the obvious fashion: b ¹ dom(a) = a and b(t1 ∩ ...∩ tn) =

a(t1) ∩ ... ∩ a(tn), for any t1, ..., tn ∈ X ∪ Y . We need to check that such

defined b is a function and an isomorphism.

Note first that for every A,B ∈ X, A′ ∈ (A∪{A})∩X and α ∈ Y ∩A′ such

that A ∩B = A′ ∩ α we have a(A) ∩ a(B) = a(A′) ∩ a(α). Use induction on

the walks complexity from max(X) to A,B as in Lemma 1.11. The inductive

step follows since a preserves ∆-system triples. Also, by Lemmas 2.8,2.9, a

respects walks and images under ∆-system triples isomorphisms.

Similar, if instead of two sets we have finitely many A1, ..., An ∈ X, A′ ∈
(A1 ∪ {A1}) ∩ X and α ∈ Y ∩ A′ such that A1 ∩ ... ∩ An = A′ ∩ α, then

a(A1)∩ ...∩ a(An) = a(A′)∩ a(α). Also, the same holds if some (or actually

one) of Ai’s is in Y , i.e. is an ordinal.

Now, by Lemma 1.12, for every A1, ..., An ∈ X there are A′ ∈ (A1∪{A1})∩
X and η ∈ Y ∩A′ such that A1 ∩ ...∩An = A′ ∩ η, or just A1 ∩ ...∩An = A′.

An alternative proof that works for higher gaps as well proceeds as follows.

Suppose that

A1 ∩ ... ∩ An = B1 ∩ ... ∩Bn,

for some A1, ..., An, B1, ..., Bn ∈ X ∪ Y . We need to show that then

a(A1) ∩ ... ∩ a(An) = a(B1) ∩ ... ∩ a(Bn).
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The proof is by induction on complexity of the walks to components of the

intersections. Thus, suppose that A1 has a maximal walk complexity among

the components of the intersection. Consider the walks from max(X) to A1

and to A2. Go to the last point until which the walks coincide. Then, as in

the proof of Lemma 1.11, we replace A1 by A′
1 ∈ X and α1 ∈ Y which are

simpler than A1 in the walk sense and such that

A1 ∩ A2 = A′
1 ∩ α1 ∩ A2.

Now the induction applies.

¤
Fix n < ω. We define an analog P ′n of P ′ on the level n just replacing κ by

κ+n
n . An assignment function an will be an isomorphism between a suitable

generic structure of cardinality less than κn over κ and a suitable structure

over κ+n
n .

Define Qn0.

Definition 2.11 Let Qn0 be the set of the triples 〈a,A, f〉 so that:

1. f is partial function from κ+3 to κn of cardinality at most κ

2. a is an isomorphism between a suitable generic structure

〈〈X, Y, Z〉, C,∈,⊆ 〉 of cardinality less than κn and

a suitable structure 〈〈X ′, Y ′, Z ′〉, C ′,∈,⊆ 〉 in P ′n so that

(a) max(X ′) is above every t ∈ X ′ ∪ Y ′

in the order≤En of the extender En, (or actually, the ordinal which

codes max(X ′) in the fixed in advance nice codding of [κ+n+3
n ]<κn .

We need that each element of [κ+n+3
n ]<κn is coded by a stationary

many ordinals below κ+n+3
n ).

(b) if t ∈ X ′ ∪ Y ′ then for some k, 2 < k < ω,

?t ≺ H(χ+k), with χ big enough fixed in advance. (Alternatively,

may be to work with subsets of κ+n+3
n only and further require it
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is a restriction of such model to κ+n+3
n .) We deal with elementary

submodels of H(χ+k), instead of those of H(κ+n+3
n ).

Further passing from Qn0 to P we will require that for every k < ω

for all but finitely many n’s the n-th image of a model t ∈ X ∪ Y

will be an elementary submodel of H(χ+k).

The way to compare such models t1 ≺ H(χ+k1), t2 ≺ H(χ+k2),

when k1 6= k2, say k1 < k2, will be as follows:

move to H(χ+k1), i.e. compare t1 with t2 ∩H(χ+k1).

3. A ∈ En,max(X′),

4. for every ordinals α, β, γ which are elements of Y ′ or the ordinals coding

models in X ′ we have

α ≥En β ≥En γ implies

πEn
αγ (ρ) = πEn

βγ (πEn
αβ (ρ))

for every ρ ∈ π“max(X′),α(A).

Define a partial order on Qn0 as follows.

Definition 2.12 Let 〈a,A, f〉 and 〈b, B, g〉 be in Qn0. Set 〈a,A, f〉 ≥n0

〈b, B, g〉 iff

1. a ⊇ b,

2. f ⊇ g,

3. πmax(rng(a)),max(rng(b))“A ⊆ B,

4. dom(f) ∩ Y b = dom(g) ∩ Y b, where Y b is the second component (i.e.

the set of ordinals) of the suitable structure on which b is defined.

Note that here we do not require disjointness of the domain of g and

of Y b, but as it will follow from the further definition of non-direct

extension, the value given by g will be those that eventually counts.
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Definition 2.13 Qn1 consists of all partial functions f : κ+3 → κn with

|f | ≤ κ. If f, g ∈ Qn1, then set f ≥n1 g iff f ⊇ g.

Definition 2.14 Define Qn = Qn0 ∪Qn1 and ≤∗n=≤n0 ∪ ≤n1.

Let p = 〈a,A, f〉 ∈ Qn0 and ν ∈ A. Set

p_ν = f ∪ {〈α, πmax(rng(a)),a(α)(ν) | α ∈ dom(a) \ dom(f)}.

Note that here a contributes only the values for α’s in dom(a) \ dom(f) and

the values on common α’s come from f . Also only the ordinals in dom(a)

are used to produce non direct extensions, models disappear.

Now, if p, q ∈ Qn, then we set p ≥n q iff either p ≥∗n q or p ∈ Qn1, q =

〈b, B, g〉 ∈ Qn0 and for some ν ∈ B, p ≥n1 q_ν.

Definition 2.15 The set P consists of all sequences p = 〈pn | n < ω〉 so

that

(1) for every n < ω, pn ∈ Qn,

(2) there is `(p) < ω such that

(i) for every n < `(p), pn ∈ Qn1,

(ii) for every n ≥ `(p), we have pn = 〈an, An, fn〉 ∈ Qn0,

(iii) there is 〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉 ∈ G(P ′) which witnesses that

dom(an(p)) is a suitable generic structure (i.e. dom(an(p)) and

〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉 satisfy 2.2), simultaneously for every

n, l(p) ≤ n < ω.

(3) for every n ≥ m ≥ `(p), dom(am) ⊆ dom(an),

(4) ? for every n, `(p) ≤ n < ω, and X ∈ dom(an) we have that for

each k < ω the set {m < ω | ¬(am(X) ∩ H(χ+k) ≺ H(χ+k))} is

finite.] (Alternatively require only that am(X) ⊆ κ+m+3
m but there is

X̃ ≺ H(χ+k)) such that am(X) = X̃ ∩ κ+m+3
m . It is possible to define

being k-good this way as well).
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(5) ? For every n ≥ `(p) and α ∈ dom(fn) there is m,n ≤ m < ω such

that α ∈ dom(am) \ dom(fm).

Next lemma deals with extensions of elements of P . The analogs for the

gap 2 are trivial.

Lemma 2.16 Let p ∈ P and 〈〈B0κ+
, B1κ+

, Dκ+〉, B1κ++〉 ∈ G(P ′). Then

1. for every α ∈ B1κ++
there is q ≥∗ p such that α ∈ dom(an(q)) for all

but finitely many n’s;

2. for every A ∈ B1κ+
there is q ≥∗ p such that A ∈ dom(an(q)) for

all but finitely many n’s. Moreover, if 〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉 ≥
〈〈B0κ+

, B1κ+
, Dκ+〉, B1κ++〉 witnesses a generic suitability of p and A ∈

Cκ+
(A0κ+

), then the addition of A does not require adding of ordinals

and the only models that probably will be added together with A are its

images under ∆-system type isomorphisms for triples in p.

Proof. Pick some 〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉 ∈ G(P ′) stronger than

〈〈B0κ+
, B1κ+

, Dκ+〉, B1κ++〉 such that

1. α ∈ A1κ++
,

2. A ∈ A1κ+
,

3. 〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉 witnesses that dom(an(p)) is a suitable generic

structure (i.e. dom(an(p)) and 〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉 satisfy 2.2),

for every n, l(p) ≤ n < ω.

Note first that it is easy to add to p any A ∈ Cκ+
(A0κ+

) such that the

maximal models of pn’s belong to A. Just at each level n ≥ l(p) pick an

elementary submodel of H(χ+ω) of cardinality κ+n+1
n which includes rng(an)

as an element. Map A to such a model.

Hence it is enough to deal with α, A which are the members of the max-

imal model of p, just, if not, then we can add first A0κ+
.
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We proof the lemma simultaneously for α and A by induction on the walk

distance or complexity.

Fix n ≥ l(p). Let dom(an(p)) = 〈〈X, Y, Z〉, C,∈,⊆ 〉.
Suppose that the walk to α involves only the central line. The general

case is treated similar.

Let A1 ∈ Cκ+
(max(X)) be the least model of Cκ+

(max(X)) with α ∈ A1.

We assume that A1 ∈ X. Just otherwise use the induction to add it. This is

possible, since the walk to A1 is simpler than those to α.

Case 1. A1 is the least model of Cκ+
(max(X)).

The walk to α from max(X) (or from A0κ+
) consists of A1 alone. So, in order

to add α we do not have to add models or other ordinals first.

Consider β1 = min(A1∩Y )\α) and γ1 = max(A1∩Y ∩α) whenever defined.

Suppose that both β1 and γ1 are defined. If one of them or both are undefined

then the argument below will be only simpler.

Let us denote an(β1) by β∗1 , an(γ1) by γ∗1 , an(X) by X∗ and an(A1) by A∗
1.

Let C∗ be the function that corresponds to C in rng(an). Then A∗
1 ∈ C∗(X∗).

Also, β∗1 , γ
∗
1 ∈ A∗

1 ∩ an”Y and γ∗1 < β∗1 .

Assume that A∗
1 and β∗1 are k-good, for some k >> 2. Pick now M ∈ A∗

1

such that

1. M ∈ β∗1 ,

2. |M | = κ+n+2
n ,

3. M is k − 1-good,

4. γ∗1 ∈ M .

Now, extend an by mapping α to M and all the images of it under ∆-system

types triples isomorphisms to those of M .

Case 2. A1 is not the least element of Cκ+
(max(X)).

Then we will need to add also the immediate predecessor A−
1 of A1 in

Cκ+
(max(X)). Do this using the induction.
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Split the argument into three cases.

Case 2.1. α > sup(A−
1 ).

Then we proceed exactly as in Case 1 above only require in addition that

an(A−
1 ) ∈ M .

Case 2.2. α = sup(A−
1 ).

Set B = an(A1). Then, its immediate predecessor B− = an(A−
1 ). Pick

k < ω such that B− ≺ H(χ+k+1) and B ∩ H(χ+k+1) ≺ H(χ+k+1). Then

H(χ+k) ∈ B−. Hence

B− ² ∀ν < κ+n+3
n ∀t ∈ [H(χ+k)]<κ+n+3∃M ≺ H(χ+k) (M ⊇ ν∪t and |M | < κ+n+3

n ).

Let δ = sup(B−∩κ+n+3
n ). Set M to be the Skolem hull of δ∪ (B−∩H(χ+k))

in H(χ+k). Then M ∩ κ+n+3
n = δ. Also, M ∈ B.

Now, extend an by mapping α to M and all the images of it under ∆-system

types triples isomorphisms to those of M .

Case 2.3. α < sup(A−
1 ).

Consider α1 = min(A−
1 \ α). We need to add α1 before α and this can be

done using the induction, since the walk to α1 is simpler than those to α. So

assume that α1 is already in Y . Note that cof(α1) = κ++, since A−
1 ⊇ κ+

and it is an elementary submodel of H(κ+3).

We split the proof now into two cases.

Case 2.3.1. α = sup(α1 ∩ A−
1 ).

This case is similar to Case 2.2 above. Set B = an(A1). Then, its immediate

predecessor B− = an(A−
1 ). Let E = an(α1).

Pick k < ω such that E ≺ H(χ+k+1), B− ∩ H(χ+k+1) ≺ H(χ+k+1) and

B ∩H(χ+k+1) ≺ H(χ+k+1). Then H(χ+k) ∈ E ∩B−.

E ∩B− ² ∀ν < κ+n+3
n ∀t ∈ [H(χ+k)]<κ+n+3

∃M ≺ H(χ+k) (M ⊇ ν ∪ t and |M | < κ+n+3
n ).

Let δ = sup(E ∩B− ∩ κ+n+3
n ). Set M to be the Skolem hull of δ ∪ (E ∩B− ∩

H(χ+k)) in H(χ+k). Then M ∩ κ+n+3
n = δ. Also, M ∈ B.
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Now, extend an by mapping α to M and all the images of it under ∆-system

types triples isomorphisms to those of M .

Case 2.3.2. α > sup(α1 ∩ A−
1 ).

Consider β1 = min((A1∩Y )\α) and γ1 = max(A1∩Y ∩α) whenever defined.

Suppose that both β1 and γ1 are defined. If one of them or both are undefined

then the argument below will be only simpler.

Let us denote an(β1) by β∗1 , an(γ1) by γ∗1 , an(X) by X∗ and an(A1) by A∗
1.

Let C∗ be the function that corresponds to C in rng(an). Then A∗
1 ∈ C∗(X∗)

and an(A−
1 ) is the immediate predecessor of A∗

1 in C∗(A∗
1). Also, β∗, γ∗ ∈

A∗
1 ∩ an”Y and γ∗ < β∗.

Assume that A∗
1 and β∗1 are k-good, for some k >> 2. Pick now M ∈ A∗

1

such that

1. M ∈ β∗1 ,

2. |M | = κ+n+2
n ,

3. M is k − 1-good,

4. γ∗1 , an(A−
1 ) ∩ an(α1) ∈ M .

Now, extend an by mapping α to M and all the images of it under ∆-system

types triples isomorphisms to those of M .

Set

Y1 = Y ∪ {α′ | α′ is the image of

α under ∆− system types triples (of X) isomorphisms }.
Claim 2.16.1 Y1 is a closed set.

Proof. We just prove that every limit point of Y1 is a limit point of Y ,

and hence, is in Y . It is enough to deal limits of ω-sequences, since if every

limit of an ω-sequence from Y1 is in Y , then any limit will be in Y , because

Y is closed.

Such images are generated as follows. Pick the smallest triple F 1
0 , F 1

1 , F 1 ∈ X
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of a ∆-system type with F 1
0 , F 1 ∈ C(max(X)) and F 1

0 ⊆ A. We add

α1 = πF 1
0 ,F 1

1
(α) to Y . Note that it is possible to have α = α1. Let

ξ1
0 ∈ F 1

0 ∩ Y, ξ1
1 ∈ F 1

1 ∩ Y be as in Definition 1.2(6d). Then α1 > α im-

plies ξ1
0 ≤ α < ξ1

1 ≤ α1.

Then pick the smallest triple F 2
0 , F 2

1 , F 2 ∈ X of a ∆-system type with

F 2
0 , F 2 ∈ C(max(X)) and F 2

0 ⊆ F 1. We add α20 = πF 2
0 ,F 2

1
(α) and α21 =

πF 2
0 ,F 2

1
(α1) to Y . Again it is possible to have α2i ∈ {α, α1}, where i < 2.

Let ξ2
0 ∈ F 2

0 ∩ Y, ξ2
1 ∈ F 2

1 ∩ Y be as in Definition 1.2(6d). Again, if one of

the new α2i’s is above its pre-image, then the corresponding ξ2
i will be above

sup(F 2
0 ), and so, above both α, α1.

Continue further all the way up to max(X). This way all the images of α

are generated. Note that we move up over the central line of X.

At each stage j in the process the same effect observed above will take place-

if one of αji’s is above its pre-image, then the corresponding ξj
i will be above

sup(F j
0 ), and so, above all the images αj′i′ of α generated at stages j′ < j.

But all such ξj
i are in Y . Hence, their limit, which is the same as those of

increasing sequence of αji’s, is in Y as well.

¤ of the claim.

Turn now to the adding of a model.

Assume first that a model A is on the central line. Let us observe that no

collision with ordinals in Y can occur. Thus if some α ∈ Y, α 6∈ A and

sup(A) > α (if α = sup(A), then by the walk closure we must have A ∈ X),

then the same should hold with images, i.e. the image A∗ of A must have

supremum above α∗ := an(α) and α∗ 6∈ A∗. There may be infinitely many

such α’s and then, in general, it will be impossible to find A∗. In present

situation, we have the advantage - X is closed under walks to ordinals of

Y . This means, in particular, that there is Bα ∈ C(max(X)) such that

α ∈ Bα and Bα is the least model of C(max(X)), or Bα has the immediate

predecessor B−
α in C(max(X)) and α 6∈ B−

α . In our case the first possibility

is just impossible. Thus, we assumed that A ∈ Cκ+
(A0κ+

), α ∈ Bα \ A. So,
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Bα is not the least element of Cκ+
(A0κ+

), which by 2.2(3) implies that Bα is

not the least element of C(max(X)) as well.

Hence, B−
α exists and A ⊆ B−

α .

Consider now a set

T = {B−
α | α ∈ Y, α 6∈ A, sup(A) > α}.

T is a subset of the closed chain C(max(X)). Let E be the least element of

T under the inclusion. Then A ⊂ E, since T ⊆ Cκ+
(A0κ+

) and so, both E

and A are inside the chain Cκ+
(A0κ+

), but E is of the form B−
α , for some

α ∈ Bα \ A, and B−
α ∈ X,A 6∈ X.

Now it is easy to add A in a fashion similar to adding an ordinal above.

First we pick the least D ∈ C(E) which contains A. Let F be the last model

of C(E) inside D. Note that D can be a limit model of Cκ+
(A0κ+

) and so

D− may not exist. Even if D− exists, still it cannot be in X, since otherwise

A = D− will be in X.

Set β = min((D∩Y ) \ sup(A)) whenever defined. Suppose that β is defined.

If it is undefined then the argument below will be only simpler. Note that

necessarily β > sup(A). Otherwise, sup(A) = β and it is in Y . Then the

largest model W of Cκ+
(A0κ+

) with sup(A) 6∈ W must be in X (walks closure

to ordinals). But then W = A, since W 6= A will imply W ∈ A or A ∈ W ,

both possibilities are clearly impossible.

Note that every γ ∈ D∩Y ∩β is in F . Otherwise, let some γ ∈ D∩Y ∩β be

not in F . The walk to γ goes via D but does continue further on Cκ+
(D).

Hence, D must be a successor model of Cκ+
(A0κ+

) and D− must be in X,

which is impossible, as was observed above.

Let us denote an(β) by β∗, an(D) by D∗, an(X) by X∗ and an(F ) by F ∗.

Let C∗ be the function that corresponds to C in rng(an). Then D∗, F ∗ ∈
C∗(X∗) and β∗ ∈ D∗ ∩ an”Y .

Assume that D∗ and β∗ are k-good, for some k >> 2. Pick now M ∈ D∗

such that

1. M ∈ β∗,
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2. |M | = κ+n+1
n ,

3. M is k − 1-good,

4. F ∗ ∈ M .

Now, extend an by mapping A to M and all the images of it under ∆-system

types triples isomorphisms to those of M .

Note that no new ordinals were added in the process and only models that

are images of A under ∆-system types isomorphisms for triples in X were

added.

Suppose that A is not on the central line. In this case we are supposed

to add to p the whole walk from A0κ+
to A. We can concentrate, using the

induction, only on the case of a ∆-system triple. Namely given F0, F1, F ∈
A1κ++

of a ∆-system type with F0 being the immediate predecessor of F in

Cκ+
(A0κ+

). We need to add F1 (and probably also F0, F if they are not inside)

to p. F0, F are on the central line, hence we may assume that they are in p.

Let α0, α1 ∈ F∩A1κ++
be so that α0 ∈ F0, α1 ∈ F1, F0∩F1 = α0∩F0 = α1∩F1

and either α0 > sup(F1) or α1 > sup(F0). By the argument above, we can

assume that α0 is already in p.

Note that F1 6∈ p implies that α1 6∈ p, since otherwise the walk to α1 must be

in p, by the definition of a suitable structure, but F1 which is a part of this

walk ( actually the final model of it) is not in p. This provides a freedom to

define the image of α1 which will be crucial further in choosing the image of

F1.

Fix n ≥ l(p). We need to add F1 to dom(an(p)). Let dom(an(p)) =

〈〈X,Y, Z〉, C,∈,⊆ 〉. We assume that F0, F ∈ C(max(X)) and α0 ∈ Y .

Note that Y ∩ [α1, sup(F1)] = ∅, since if some ξ ∈ Y ∩ [α1, sup(F1)], then all

models of the walk to ξ are in X, but F1 is one of them.

Split into two cases.

Case 1. α0 > α1.
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Then sup(F1) < α0. Consider the images F ∗
0 , F ∗ and M0 of F0, F and α0

under an.

Let us deal first with a little bit simplified situation, but which still con-

tains the main elements of the construction.

Subcase 1.A. No elements of Y ∩ (sup(F0∩α0), α0) are in dom(an)∩F .

By Definition 1.2, we have cof(α0) = κ++. Hence cof(M0 ∩ κ+n+3
n ) =

κ+n+2
n . So, κ+n+1

n >M0 ⊆ M0. In particular, M0∩F ∗
0 ∈ M0. Clearly, M0∩F ∗

0 ∈
F ∗, as well. We assume that M0 is k-good for k big enough. Hence there is

a k − 1-good M1 ∈ M0 realizing the same k − 1 type over M0 ∩ F ∗
0 as M0

does. By elementarity, we can find such M1 inside F ∗. Finally, pick F ∗
1 to

be an element of F ∗ ∩M0 which realizes over 〈M0 ∩ F ∗
0 ,M1〉 the same k − 1

type as F ∗
0 realizes over 〈M0 ∩ F ∗

0 ,M0〉.
Extend an by mapping F1 to F ∗

1 and all the images of it under ∆-system

types triples isomorphisms. In particular, M1 is added as the image of M0

under πF ∗0 ,F ∗1 .

Turn now to a general case.

Subcase 1.B. There are elements of Y ∩(sup(F0∩α0), α0) in dom(an)∩F .

Let γ denotes the last such element below α1 and β the first such element

above α1. If one of them does not exists, then the argument below applies

with obvious simplifications. Note that, as was observed above, there is no

elements of Y in the interval [α1, sup(F1)].

Denote an(β) by N and an(γ) by γ∗. We assume that M0 and N are k-

good for k big enough. sup(F ∗
0 ∩M0)∩κ+n+3

n < N ∩κ+n+3
n , hence F ∗

0 ∩M0 ∩
κ+n+3

n ∈ N (as a set of ordinals of small cardinality). There is a k − 1-good

M1 ∈ N realizing the same k− 1 type over F ∗
0 ∩M0 ∩ κ+n+3

n as M0 does and

with γ∗ ∈ M1. By elementarity, we can find such M1 inside F ∗. Finally, pick

F ∗
1 to be an element of F ∗∩N which realizes over 〈F ∗

0 ∩M0∩κ+n+3
n , M1〉 the

same k − 1 type as F ∗
0 realizes over 〈M0 ∩ F ∗

0 ,M0〉.
Extend an by mapping F1 to F ∗

1 and all the images of it under ∆-system

types triples isomorphisms. In particular, M1 is added as the image of M0
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under πF ∗0 ,F ∗1 .

Case 1. α0 < α1.

The construction is similar. The only change is that we pick M1 above

M0.

This completes the inductive construction, and hence the proof of the

lemma.

¤
The ordering ≤∗ on P and ≤n on Qn0 seems to be not closed in the present

situation. Thus it is possible to find an increasing sequence of ℵ0 conditions

〈〈ani, Ani, fni〉 | i < ω〉 in Qn0 with no simple upper bound. The reason is

that the union of maximal models of these conditions, i.e.
⋃

i<ω max(dom ani)

need not be in A1κ+
for any A1κ+

in G(P ′). The next lemma shows that still

≤n and so also ≤∗ share a kind of strategic closure.

Lemma 2.17 Let n < ω. Then 〈Qn0,≤n 〉 does not add new sequences of

ordinals of the length < κn, i.e. it is (κn,∞) – distributive.

Proof. Let δ < κn and h∼ be a Qn0-name of a function from δ to ordinals.

Without loss of generality assume that δ is a regular cardinal.

Using genericity of G(P ′) (or stationarity of the set {A0κ+ |A0κ+
appears in

an element of G(P ′)}) it is not hard to find elementary submodel M of some

H(ν) for ν big enough so that

(a) Qn0, h∼, P ′ ∈ M ,

(b) |M | = κ+,

(c) there is 〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉 ∈ G(P ′) such that A0κ+
= M ∩

H(κ+3) and max(A1κ++ ∩ κ+3) = sup(M ∩ κ+3).

(d) cf(M∗ ∩ κ++) = δ,

(e) δ>M ⊆ M .
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Note that for such M , M∗ = M ∩ H(κ+3) must be a limit model, since

by Definition 1.1(3) successor models are closed under κ sequences, but M∗

is not by (d) above.

We have Cκ+
(M∗) \ {M∗} ⊆ M∗. Let B ∈ Cκ+

(M∗)\{M∗}. We claim

that then Cκ+
(B) ∈ M . Thus, by elementarity there are B1κ+

, Dκ+
, B1κ++ ∈

M such that

〈〈B, B1κ+

, Dκ+〉, B1κ++〉 ∈ G(P ′) ∩M.

Note that Cκ+ ¹ B1κ+
may be different from Dκ+

, but by the definition of

order on P ′ (1.15) and since B ∈ Cκ+
(M∗), there are E1, ..., En ∈ B1κ+

such

that the switch with E1, ..., En turns Dκ+
into Cκ+ ¹ B1κ+

. But B1κ+ ∈ M

and |B1κ+ | ≤ κ+. Hence B1κ+ ⊆ M . So E1, ..., En ∈ M , and then the

corresponding switch is in M as well. This implies that its result Cκ+ ¹ B1κ+

is in M .

The cofinality of Cκ+
(M∗)\{M∗} under the inclusion must be δ, since

it is an ∈-increasing continuous sequence of elements of M∗ with limit M∗

and by (d) above cf(M∗ ∩ κ++) = δ. Fix an increasing continuous sequence

〈Ai | i < δ〉 of elements of Cκ+
(M∗)\{M∗} such that

⋃
i<δ Ai = M∗, A0 is

a successor model and for each limit model Ai in the sequence Ai+1 is its

immediate successor in Cκ+
(M∗). By (e), each initial segment of it will be

in M . Now we decide inside M one by one values of h∼ and put models from

〈Ai | i < δ〉 to be maximal models of conditions used. This way we insure

that unions of such conditions is a condition.

We define by induction an increasing sequence of conditions

〈〈a(i), A(i), f(i)〉|i ≤ δ〉.

and an increasing continuous subsequence

〈Aki
|i < δ〉 of 〈Ai|i < δ〉

such that for each i < δ

(1) 〈a(i), A(i), f(i)〉 ∈ M ,
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(2) 〈a(i + 1), A(i + 1), f(i + 1)〉 decides h∼(i),

(3) Aki
, Aki+1

∈ dom(a(i)), Aki+1
is the maximal model of dom(a(i)) and

〈〈Aki+1
, T, Cκ+ ¹ T 〉, R〉 ∈ G(P ′) ∩M witnesses a generic suitability of

dom(a(i)), for some T, R, with R ⊆ Aki+1
∪ sup(Aki+1

).

There is no problem with A(i)’s and f(i)’s in this construction. Thus we

have enough completeness to take intersections of A(i)’s and unions of f(i)’s.

The only problematic part is a(i). So let us concentrate only on building of

a(i)’s.

i=0

Then let us pick some Z0 ≺ Z1 ≺ H(χ+ω) ∩ M of cardinality κ+n+1
n ,

closed under κ+n
n - sequences of its elements and Z0 ∈ Z1 . Set a(0) =

〈〈A0, Z0〉, 〈A1, Z1〉〉.
i+1

Then we first extend 〈a(i), A(i), f(i)〉 to a condition 〈a(i)′, A(i)′, f(i)′〉 ∈
M which decides h∼(i). Then perform swt (see 1.13) to turn 〈a(i)′, A(i)′, f(i)′〉
into an equivalent condition 〈a(i)′′, A(i)′, f(i)′〉 with Aki

∈ Cκ+
(max(dom(a(i)′′)).

Pick a successor model Aj (from the cofinal sequence 〈Ai | i < δ〉) including

max(dom(a(i)′′)). Set ki+1 = j and add it to dom(a(i)′′), using swt inside

Aj if necessary. Finally we add Aj+1.

i is a limit ordinal

Then we need to turn a =
⋃

j<i a(j) into condition. For this we will need

to add to dom(a) models and ordinals which are limits of elements of dom(a).

First we extend a by adding to it 〈Aki
,
⋃

j<i a(Akj
)〉, where ki = ∪j<ikj. Then

for each non decreasing sequence 〈αj|j < i〉 of ordinals in dom(a) we add the

pair 〈∪j<i αj,∪j<i(a(αj)∩H(χ+`))〉, if it is not already in the dom(a), where

` ≤ ω the maximal such that for unboundedly many j’s in i a(αj) ≺ H(χ+`),

if the maximum exists or ` >> n otherwise. Finally, for each model B ∈
dom(a) if there is a nondecreasing sequence 〈Bj|j < i〉 of elements of Cκ+

(B)

in dom(a) and B is the least possible (under inclusion or with least sup)
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including the sequence, then we add the pair 〈∪j<iBj,∪j<i(a(Bj)∩H(χ+`))〉,
if it is not already in the dom(a), where ` ≤ ω is the minimum between

the least k such that a(B) ⊆ H(χ+k) and the maximal `′ such that for

unboundedly many j’s in i a(Bj) ≺ H(χ+`′), if the maximum exists

or

it is k, if the maximum does not exist and k < ω,

or

` >> n, if the maximum does not exist and k = ω.

We will need to extend a bit more if the following hold:

1. B ∈ dom(a),

2. 〈Bj | j < i〉 is a nondecreasing sequence of elements of Cκ+
(B) in

dom(a),

3. B is the least element of dom(a) such that
⋃

j<i Bj ∈ B,

4. 〈αj | j < i〉 is a sequence of ordinals such that

(a) αj ∈ Bj,

(b) αj ∈ dom(a),

(c)
⋃

j<i αj 6∈ dom(a).

Set α =
⋃

j<i αj. Then α ∈ B.

Let us consider two cases.

Case 1. α 6∈ ⋃
j<i Bj.

If B is the real immediate successor of
⋃

j<i Bj, i.e. the one in Cκ+
(A0κ+

)

of G(P ′), then the extension made above suffices. Otherwise, we need to

add the real successor of
⋃

j<i Bj in order to insure walks to ordinals closure.

Denote such successor by E. We map it to a model E∗ such that
⋃

j<i(a(Bj)∩
H(χ+`)) ≺ E∗ ≺ a(B)∩H(χ+`)) and E∗ is good enough, where ` is as above.

Note that each γ ∈ B ∩ dom(a) is already in Bj, for some j < i, by walks to

ordinals closure of dom(a). Finally we map α to
⋃

j<i(a(Bj) ∩ a(αj)).
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Case 2. α ∈ ⋃
j<i Bj.

Let E be the smallest model in Cκ+
(B) with α ∈ E.

Subcase 2.1. E is the least (under the inclusion) element of Cκ+
(B).

If for some j < i we have αj ∈ E, then by the walk closure of dom(a), the

model E is in dom(a). It is easy now to extend a by adding only α which is

mapped to an appropriate element of a(E).

Suppose that for each j < i, αj 6∈ E. Consider α0. Let D0 be the largest

model in Cκ+
(B) with α0 6∈ D0. By the walk closure of dom(a), we have

D0 ∈ dom(a). Assume that D0 6= E, otherwise proceed as above. Clearly

D0 ⊃ E, and hence α0 < α < sup(D0). Then α01 := min(D0∩α0) ∈ dom(a).

So, α0 < α01 < α. Let D01 be the largest model in Cκ+
(B) with α01 6∈ D0.

By the walk closure of dom(a), we have D01 ∈ dom(a). Again, we assume

that D01 6= E. Clearly D0 ⊃ D01 ⊃ E, and hence α01 < α < sup(D01). Then

α02 := min(D01 ∩ α01) ∈ dom(a). So, α0 < α01 < α02 < α. We continue and

define D02 etc. The sequence of such D0k will be ∈-decreasing, and hence at

certain stage D0k = E.

Subcase 2.2. E is not the least (under the inclusion) element of Cκ+
(B).

Then E has the immediate predecessor E− in Cκ+
(B). Suppose first that α

is a limit point of E−. Note that then necessarily E− is a limit model, as

successor ones are closed under < κ+-sequences.

Claim 2.17.1 There is an increasing sequence 〈α′j | j < i〉 in E−∩dom(a)

with limit α.

Proof. Let j < i. If αj ∈ E−, then we take it. Suppose that αj 6∈ E−. Pick

Dj to be the largest model in Cκ+
(B) with αj 6∈ Dj. Then, Dj ∈ dom(a),

and clearly, Dj ⊇ E−. Also, αj < α and α is a limit point of E−. Hence

αj < sup(Dj). Then αj1 := min(Dj \ αj) ∈ Dj ∩ dom(a). If αj1 ∈ E−,

then we pick it. Otherwise, continue and consider Dj1 the largest model in

Cκ+
(B) with αj1 6∈ Dj1. Then, Dj1 ∈ dom(a), and clearly, Dj1 ⊇ E−. Also,

αj1 < α and α is a limit point of E−. Hence αj1 < sup(Dj). Then αj2 :=

min(Dj1 \ αj1) ∈ Dj1 ∩ dom(a). If αj2 ∈ E−, then we pick it. Otherwise,
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continue. After finitely many steps we will reach some such αjk ∈ E−.

¤ of the claim.

Let 〈α′j | j < i〉 be given by the claim. For each j < i let Kj be the least model

of Cκ+
(B) with α′j ∈ Kj. Then E− =

⋃
j<i Kj, since, clearly E− ⊇ ⋃

j<i Kj

and if E− +
⋃

j<i Kj, then α will be in the immediate successor K ∈ Cκ+
(B)

of
⋃

j<i Kj, but K ⊆ E− and α 6∈ E−. Now we are in situation of Case 1

with 〈αj | i < j〉 replaced by 〈α′j | i < j〉 and 〈Bj | i < j〉 by 〈Kj | j < i〉.
Suppose now that α is not a limit point of E−. Pick j∗ < i such that

for every j, j∗ ≤ j < i, sup(E− ∩ α) < αj. If for some j, j∗ ≤ j < i, αj ∈
E, then E will be the least model of Cκ+

(B) with αj inside, and hence

E, E− ∈ dom(a), due to the walk closure of dom(a). Suppose that for each

j, j∗ ≤ j < i, αj 6∈ E. Fix such j. Pick Dj to be the largest model in

Cκ+
(B) with αj 6∈ Dj. Then, Dj ∈ dom(a), and clearly, Dj ⊇ E. If Dj = E,

then E ∈ dom(a). Then, also E− ∈ dom(a), since αj1 := min(E \ αj) ∈
E ∩ dom(a), but E− is the largest model in Cκ+

(B) with αj1 not inside, and

hence it must be in dom(a) by the walk closure.

Suppose that Dj 6= E. Consider αj1 := min(Dj \αj) ∈ Dj ∩dom(a). Clearly,

αj1 < α, since E ⊆ Dj and α ∈ E. If αj1 ∈ E, then E will be the least

model of Cκ+
(B) with αj1 inside, since αj1 6∈ E−. Then E,E− ∈ dom(a).

If αj1 6∈ E, then we continue and pick Dj1 to be the largest model in Cκ+
(B)

with αj1 6∈ Dj1. Then, Dj1 ∈ dom(a), and clearly, Dj1 ⊇ E. If Dj1 = E,

then E ∈ dom(a). Then, also E− ∈ dom(a), since αj2 := min(E \ αj1) ∈
E ∩ dom(a), but E− is the largest model in Cκ+

(B) with αj2 not inside, and

hence it must be in dom(a) by the walk closure.

If Dj1 6= E, then we continue in the same fashion to define αj2, Dj2 etc.

After finitely many steps we will have E = Djk or αjk ∈ E. Both imply

E, E− ∈ dom(a).

Finally denote the resulting extension of a by b.

Claim 2.17.2 dom(b) is a suitable generic structure.

Proof. Let as check the condition (6(6c)) of Definition 1.1. Thus let A,α ∈
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dom(b), A ∈ C(max(dom(b))) a non-limit model and sup(A) > α. We need

to show that min(A \ α) ∈ dom(b).

Case 1. A ∈ dom(a(l)) for some l < i.

If α ∈ dom(a), then for some j < i big enough we will have A,α ∈ dom(aj),

and then min(A \ α) ∈ dom(aj). Note that if α is a non-limit element of

dom(b), then α ∈ dom(a).

Suppose that α is a limit point of dom(b) and α 6∈ dom(a). Let 〈αj|j <

i〉 be a nondecreasing sequence from dom(a) converging to α. By (6(6c))

of Definition 1.1, γj = min(A\αj) ∈ dom(a). If 〈γj|j < i〉 is eventually

constant, then the constant value will be as desired. Suppose otherwise.

Then 〈γj|j < i〉 will be also a converging to α sequence. But remember that

A is non-limit, hence κA ⊆ A, and so α ∈ A. Then min(A\α) = α ∈ dom(b)

and we are done.

Case 2. A 6∈ dom(a).

Assume that α 6∈ A, just otherwise min(A \α) = α and we are done. Denote

min(A \ α) by α∗

Subcase 2.1. α ∈ dom(a).

Consider then the smallest model Eα in C(max(dom(b))) with α inside. Let

E−
α be its immediate predecessor in C(max(dom(b))). Then A ⊆ E−

α , since

α 6∈ A, and A 6= E−
α , since E−

α ∈ dom(a) and A 6∈ dom(a). Then sup(E−
α ) >

α, hence α1 := min(E−
α \ α) > α and α1 ∈ dom(a). E−

α ⊇ A implies that

α1 ≤ α∗. If α1 = α∗, then α∗ ∈ dom(a) and we are done. Suppose otherwise.

Then α1 < α∗. Consider then the smallest model Eα1 in C(max(dom(b)))

with α1 inside. Let E−
α1

be its immediate predecessor in C(max(dom(b))).

Then A ⊆ E−
α1

, since α1 6∈ A, and A 6= E−
α1

, since E−
α1
∈ dom(a) and

A 6∈ dom(a). Then sup(E−
α1

) > α1, since α∗ ∈ E−
α1

and α∗ > α1. Hence α2 :=

min(E−
α1
\ α1) > α1 and α2 ∈ dom(a). If α2 = α∗, then α∗ ∈ dom(a) and we

are done. Otherwise, α2 < α∗. We continue and consider Eα2 , Eα−2
etc. Note

that the sequence of models Eαm constructed this way is decreasing. So the

process stops after finitely many steps. Which means that α∗ ∈ dom(a).
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Subcase 2.2. α 6∈ dom(a).

Then α is a limit of an increasing sequence 〈αj | j < i〉 of elements of dom(a).

If an unbounded subsequence of the sequence 〈αj | j < i〉 is in A, then α will

be in A as well, since A is a non-limit model and so is closed under δ sequences

of its elements. Hence there is j∗ < i such that for every j, j∗ ≤ j < i, αj 6∈ A.

Let j∗ ≤ j < i. We have sup(A) > α > αj. Set α∗j = min(A\αj). By Subcase

2.1, α∗j ∈ dom(a). If α∗j > α, then α∗j = α∗ and we are done. Assume, hence

that α∗j < α, for every j < i. But the sequence 〈α∗j | j < i〉 is a sequence of

elements of A which converges to α. So, α ∈ A. Contradiction.

¤ of the claim.

The next claim is similar.

Claim 2.17.3 rng(b) is a suitable structure over κn.

We need to check that b is an isomorphism between the suitable structures

dom(b) and rng(b). By Lemma 2.10, it is enough to show that the restriction

of b is an isomorphism between between the corresponding weak suitable

structures. But this is obvious, since no ∆-system type triples are added at

limit stages.

¤
It is possible to work in V rather than in V [G(P ′)] or M . Combining

arguments of 1.19 and the previous lemma it is not hard to show the following:

Lemma 2.18 P ′ ∗Qn0 is < κn-strategically closed.

Lemma 2.19 〈P ,≤∗ 〉 does not add new sequences of ordinals of the length

< κ0.

Proof. Repeat the argument of Lemma 2.17 with P replacing Qn0.

¤
The argument of Lemma 2.17 can be used in a standard fashion to show

the Prikry condition (i.e. the standard argument runs inside elementary

submodel M with δ replaced by κ+).
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Lemma 2.20 〈P ,≤∗ 〉 satisfies the Prikry condition.

Finally we define → on P similar to those of [1] or [2].

Lemma 2.21 〈P ,→ 〉 satisfies κ++-c.c.

Proof. Suppose otherwise. Work in V . Let 〈p∼α | α < κ++〉 be a name of

an antichain of the length κ++. Using 1.19 we find an increasing sequence

〈〈〈A0κ+

α , A1κ+

α , Cκ+

α 〉, A1κ++

α 〉 | α < κ++〉 of elements of P ′ and a sequence

〈pα | α < κ++〉 so that for every α < κ++ the following hold:

(a) 〈〈A0κ+

α+1, A
1κ+

α+1, C
κ+

α+1〉, A1κ++

α+1 〉 ° p∼α ≤ p̌α,

(b)
⋃

β<α A0κ+

β = A0κ+

α , if α is a limit ordinal,

(c) κA0κ+

α+1 ⊆ A0κ+

α+1,

(d) A0κ+

α+1 is a successor model,

(e) 〈A1κ+

β | β < α〉 ∈ A0κ+

α+1,

(f) for every α ≤ β < κ++ we have

Cκ+

α (A0κ+

α ) is an initial segment of Cκ+

β (A0κ+

β ),

(g) pα = 〈pαn | n < ω〉,

(h) for every n ≥ l(pα), A0κ+

α+1 is the maximal model of dom(aαn) and A0κ+

α ∈
dom(aαn), where pαn = 〈aαn, Aαn, fαn〉.
Actually this condition is the reason for not requiring the equality in

(a) above.

Let pαn = 〈aαn, Aαn, fαn〉 for every α < κ++ and n ≥ l(pα).

Let α < κ++. Fix some

〈〈B0κ+

α+1, B
1κ+

α+1, D
κ+

α+1〉, B1κ++

α+1 〉 ≤P′ 〈〈A0κ+

α+1, A
1κ+

α+1, C
κ+

α+1〉, A1κ++

α+1 〉
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which witnesses a generic suitability of structure dom(aαn) for each n, l(pα) ≤
n < ω, as in Definition 2.2. Note that B0κ+

α+1 need not be in Cκ+

α+1(A
0κ+

α+1)

and even if it does, then Dκ+

α+1(B
0κ+

α+1) need not be an initial segment of

Cκ+

α+1(A
0κ+

α+1). By the definition of the order ≤P′ (Definition 1.15) there are

m < ω and E1, ..., Em ∈ A1κ+

α+1 such that

swt(〈〈A0κ+

α+1, A
1κ+

α+1, C
κ+

α+1〉, A1κ++

α+1 〉, E1, ..., Em) and 〈〈B0κ+

α+1, B
1κ+

α+1, D
κ+

α+1〉, B1κ++

α+1 〉

satisfy (1)-(3) of Definition 1.15.

By Lemma 2.16 it is possible to add all Ei(i = 1, ..., m) to dom(aαn), for a

final segment of n’s. By adding and taking non-direct extension if necessary,

we can assume that Ei’s are already in dom(aαn), for every n ≥ l(pα).

Now we can apply the opposite switch (i.e. the one starting with Em, then

Em−1, ...,and finally E1 ) to dom(aαn) (and the corresponding to it under aαn

to rng(aαn)). Denote the result still by aαn.

Finally, 〈〈A0κ+

α+1, A
1κ+

α+1, C
κ+

α+1〉, A1κ++

α+1 〉 will witness a generic suitability of struc-

ture dom(aαn) for each n, l(pα) ≤ n < ω.

In particular, we have now that the central line of dom(aαn) is a part of

Cκ+

α+1(A
0κ+

α+1) and A0κ+

α is on it, for every n, l(pα) ≤ n < ω.

Shrinking if necessary, we assume that for all α, β < κ+ the following

holds:

(1) ` = `(pα) = `(pβ),

(2) for every n < ` pαn and pβn are compatible in Qn1 i.e. pαn ∪ pβn is a

function,

(3) for every n, ` ≤ n < ω, 〈dom(fαn) | α < κ++〉 form a ∆-system with

the kernel contained in A0κ+

0 ,

(4) for every n, ω > n ≥ `, rng(aαn) = rng(aβn).

Shrink now to the set S consisting of all the ordinals below κ++ of cofi-

nality κ+. Let α be in S. For each n, ` ≤ n < ω, there will be β(α, n) < α
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such that

dom(aαn) ∩ A0κ+

α ⊆ A0κ+

β(α,n).

Just recall that |aαn| < κn. Shrink S to a stationary subset S∗ so that for

some α∗ < min S∗ of cofinality κ+ we will have β(α, n) < α∗, whenever

α ∈ S∗, ` ≤ n < ω. Now, the cardinality of A0κ+

α∗ is κ+. Hence, shrinking S∗

if necessary, we can assume that for each α, β ∈ S∗, ` ≤ n < ω

dom(aαn) ∩ A0κ+

α = dom(aβn) ∩ A0κ+

β .

Let us add A0κ+

α∗ to each pα with α ∈ S∗.

By 2.16(2), we can add it without adding ordinals and the only other

models that probably were added are the images of A0κ+

α∗ under ∆-system

type isomorphisms. Denote the result for simplicity by pα as well.

Let now β < α be ordinals in S∗. We claim that pβ and pα are compatible

in 〈P ,→〉.
First extend pα by adding A0κ+

β+2. This will not add other additional models

or ordinals except the images of A0κ+

β+2 under isomorphisms to pα, as was

remarked above.

Let p be the resulting extension. Denote pβ by q. Assume that `(q) =

`(p). Otherwise just extend q in an appropriate manner to achieve this.

Let n ≥ `(p) and pn = 〈an, An, fn〉. Let qn = 〈bn, Bn, gn〉. Without loss

of generality we may assume that an(A0κ+

β+2) is an elementary submodel of

An,kn with kn ≥ 5. Just increase n if necessary. Now, we can realize the

kn − 1-type of rng(bn) inside an(A0κ+

β+2) over the common parts dom(bn) and

dom(an). This will produce q′n = 〈b′n, Bn, gn〉 which is kn − 1-equivalent to

qn and with rng(b′n) ⊆ an(A0κ+

β+2). Doing the above for all n ≥ `(p) we will

obtain q′ = 〈q′n | n < ω〉 equivalent to q (i.e. q′ ←→ q).

Extend q′ to q′′ by adding to it 〈A0κ+

β+2, an(A0κ+

β+2)〉 as the maximal set for

every n ≥ `(p). Recall that A0κ+

β+1 was its maximal model. So we add a

top model. Hence no additional models or ordinals are added at all. Let

q′′n = 〈b′′n, Bn, gn〉, for every n ≥ `(p).
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Combine now p and q′′ together. Thus for each n ≥ `(p) we add b′′n to an

as well as all of its isomorphic images under ∆-system type isomorphisms of

triples in an. The rest of the parts are combined in the obvious fashion (we

put together the functions and intersect sets of measure one moving first to

the same measure). Add if necessary A0κ+

α+3 as a new top model in order to

insure 2.11(2(2a)). Let r = 〈rn|n < ω〉 be the result, where rn = 〈cn, Cn, hn〉,
for n ≥ `(p).

Claim 2.21.1 For each γ, α + 3 < γ < κ++,

〈〈A0κ+

γ , A1κ+

γ , Cκ+

γ 〉, A1κ++

γ 〉 ° r ∈ P∼.

Proof. Let γ ∈ (α + 3, κ++) and G(P ′) be a generic subset of P ′ with

〈〈A0κ+

γ , A1κ+

γ , Cκ+

γ 〉, A1κ++

γ 〉 ∈ G(P ′).
Fix n ≥ `(p). The main points here are that b′′n and an agree on the com-

mon part and adding of b′′n to an does not required other additions of models

or of ordinals except the images of b′′n under ∆ -system type isomorphisms

for triples in an.

We need to check that dom(cn) is a suitable generic structure and rng(an)

is a suitable structure. Let us deal with dom(cn). The range is similar.

By Lemma 2.10 it is enough to deal with a weak suitable structures. Let

〈〈X,Y 〉, C,∈,⊆ 〉 be the corresponding redact of dom(cn).

Clearly, 〈〈X,Y 〉, C,∈,⊆ 〉 is a submodel

of 〈〈A1κ+

γ , A1κ++

γ 〉, Cκ+

γ ,∈,⊆〉.
Let us check that the structures 〈〈X,Y 〉, C,∈,⊆ 〉 and

〈〈A1κ+

γ , A1κ++

γ 〉, Cκ+

γ ,∈,⊆〉 agree about walks to members of X and to ordi-

nals in Y . This will show, in particular that 〈〈X,Y 〉, C,∈,⊆ 〉 is walks closed

and, hence 〈〈max(X), X, C〉, Y 〉 ∈ P ′.
Fix t ∈ X ∪ Y (a model or an ordinal). Note that, by the choice of the top

model max(X) of X we have max(X) ∈ Cκ+

γ (A0κ+

γ ). Hence, the walk from

A0κ+

γ to t will go via max(X). If t appears in dom(an), then the continuation

of the walk will be inside dom(an), since max(an) = A0κ+

α+1 ∈ C(max(X)).
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It will co-inside with the walk from A0κ+

α+1 to t, since dom(an) is a suitable

structure. Hence all the members of the walk are in X ∪ Y .

Note that if t is in the common part, i.e. if t appears in both dom(an)

and dom(bn), then t ∈ A0κ+

α∗ . So the walk to t passes through A0κ+

α∗ , since

A0κ+

α∗ ∈ Cκ+
(A0κ+

γ ).

If t appears in dom(b′′n) = dom(bn)∪ {A0κ+

β+2}, then the walk to t will proceed

via A0κ+

β+2, since t ∈ A0κ+

β+2 and A0κ+

β+2 ∈ C(max(X)). Now, it will co-inside

with the walk from A0κ+

β+1 to t, since dom(bn) is a suitable structure and

A0κ+

β+1 ∈ C(A0κ+

β+2).

The agreement between the walks follows.

¤ of the claim.

Now we have r ≥ p, q′′. Hence, p → r and q → r. Contradiction.

¤
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