On number of generators of normal ultrafilters mod the closed unbounded filter

Moti Gitik*

November 21, 2024

Abstract

Starting with $o(\kappa) = \kappa^{+3} + 1$, a model in which κ carries a normal ultrafilter \mathcal{U} with number of generators mod $\operatorname{Cub}_{\kappa}$ less than 2^{κ} is constructed.

1 Introduction

Let \mathcal{U} be a normal ultrafilter over a measurable cardinal κ .

How many sets are needed in order to generate \mathcal{U} mod the closed unbounded filter over κ , i.e. What is the least cardinal λ for which there exists a set $\mathcal{A} \subseteq U$ such that for every $X \in U$ there is $A \in \mathcal{A}$, $A \subseteq X \mod Cub_{\kappa}$. This is a basic question that we will deal with. Clearly, that if $2^{\kappa} = \kappa^+$, then $\lambda = \kappa^+$. By T. Carlson, H. Woodin, see also [1], it is possible to have $2^{\kappa} > \kappa^+$ and the number of generators of \mathcal{U} , even mod bounded, is κ^+ . Supercompacts and the Mathias forcing were used in this constructions. Here we will use a different methods and reduce greatly the initial assumptions.

2 Basic settings and ideas

Let us present the construction first under a stronger assumption.

Assume GCH. Let E' be a (κ, κ^{+3}) -extender. Pick some $\rho, \kappa^{++} < \rho < \kappa^{+3}$ of cofinality κ^+ which is a limit of generators of E'. We will use $E = E' \upharpoonright \rho$. Note that $\rho = (\kappa^{+3})^{M_E}$ and M_E is a direct limit of

 $\langle M_{E \mid \xi} \mid \xi < \rho, \xi \text{ is a generator of } E \rangle.$

^{*}The work was partially supported by ISF grant No. 882/22.

Let $\langle P_{\alpha}, Q_{\beta} \mid \alpha \leq \kappa + 1, \beta \leq \kappa \rangle$ be the Easton support iteration of Cohen forcings $Cohen(\nu, \nu^{+3})$, for inaccessible $\nu < \kappa$ and let Q_{κ} be $Cohen(\kappa, \rho)$.

Take a generic $G \subseteq P_{\kappa+1}$. Denote by $\langle f_{\nu\xi} | \xi < \nu^{+3} \rangle$ the Cohen functions added by G to $\nu < \kappa$ and $\langle f_{\kappa\xi} | \xi < \rho = (\kappa^{+3})^{M_E} \rangle$ to κ .

The elementary embedding $j = j_E$ extends in V[G] to $j^* : V[G] \to M_E[G^*]$. Define the corresponding normal ultrafilter \mathcal{U} by setting

$$X \in \mathcal{U}$$
 iff $\kappa \in j^*(X)$.

For every $A \in \mathcal{U}$, there are $r, s, t \in M_E$ such that $r \in P_{\kappa+1} \cap G^*, s \in P_{(\kappa+1,j(\kappa))} \cap G^*, t \in Q_{j(\kappa)} \cap G^*$ such that

$$r \widehat{s} t \Vdash \kappa \in j(\underline{A}).$$

We can assume that s, t are in the range of the canonical embedding $k : M_{E_{\kappa}} \to M_E$, i.e. s = k(s') and t = k(t'). Choose functions f_s and f_t on κ such that $s = j(f_s)(\kappa)$ and $t = j(f_t)(\kappa)$.

In addition, for some generator (or a pair of generators) $\eta < \rho$, $r = j(f_r)(\eta)$. Reflect down and set

$$B_s = \{\nu < \kappa \mid f_s(\nu) \in G \cap P_{(\nu+1,\kappa)}\},\$$

$$B_t = \{ \nu < \kappa \mid f_t(\nu) \in G \cap Q_\kappa \},$$

and

$$B_r = \{\nu < \kappa \mid f_r(f_{\kappa\eta}(\nu)) \in G \cap P_{\nu+1}\},\$$

where $f_{\kappa\eta}$ is the η -th Cohen function for κ and it will represent η . Set

$$X = \{ \rho < \kappa \mid f_r(\rho) \cap f_s(\nu) \cap f_t(\nu) \Vdash \nu \in A \}$$

where $\nu = \pi_{\eta\kappa}(\rho)$ and $\pi_{\eta\kappa}$ is the canonical projection from E_{η} to E_{κ} .

Then X is in V and belongs to E_{η} .

Note that the number of possibilities for s's is κ^+ , but for t's it is already κ^{++} . Suppose now, that there is a family \mathcal{Y} of cardinality κ^+ ,¹ such that:

¹Further we will take \mathcal{Y} to consist of the sets $\{\nu < \kappa \mid f_{\kappa\rho_{\xi+2}}(\nu^+) = 0\}, \xi < \kappa^+$ and their intersections.

- 1. there is a set $A_s \in \mathcal{Y} \cup E_{\kappa}$ such that $A_s \subseteq B_s \mod Cub_{\kappa} \upharpoonright Inaccesibles$,
- 2. there is a set $A_t \in \mathcal{Y} \cup E_{\kappa}$ such that $A_t \subseteq B_t \mod Cub_{\kappa} \upharpoonright Inaccesibles$,
- 3. there is a set $A_r \in \mathcal{Y} \cup E_{\kappa}$ such that $A_r \subseteq B_r \mod Cub_{\kappa} \upharpoonright Inaccesibles$,
- 4. there is $Y \in \mathcal{Y} \cup E_{\kappa}$ such that $f_{\kappa\eta}''Y \subseteq X \mod Cub_{\kappa} \upharpoonright Inaccesibles$.

Then

$$A \supseteq B_r \cap B_s \cap B_t \cap Y,$$

since if $\nu \in B_r \cap B_s \cap B_t \cap Y$, then

$$f_r(f_{\kappa\eta}(\nu))^{\frown}f_s(\nu)^{\frown}f_t(\nu) \Vdash \nu \in A$$

and $f_r(f_{\kappa\eta}(\nu))^{\frown} f_s(\nu)^{\frown} f_t(\nu) \in G.$

This means that \mathcal{U} is generated by $\mathcal{Y} \cup E_{\kappa} \mod Cub_{\kappa} \upharpoonright Inaccesibles$, assuming that $\mathcal{Y} \cup E_{\kappa}$ is closed under intersections.

3 An order on Cohen functions and old functins in $\kappa \kappa$

We force clubs such that

(a) $\{\nu < \kappa \mid f_{\kappa\xi}(\nu) < f_{\kappa\zeta}(\nu)\} \supseteq club \cap Inc,$ for every $\xi < \zeta < \kappa^{++}$.

We need to ensure that

$$f_{j(\kappa)j(\eta)} \upharpoonright \kappa = f_{\kappa\eta},$$

for every $\eta < \kappa^{++}$.

Consider

$$X_{\eta} = \{ \nu < \kappa \mid f_{\kappa\eta} \upharpoonright \nu = f_{\nu f_{\kappa\eta}(\nu)} \}.$$

Force a club C_{η} such that $C_{\eta} \cap Inc \subseteq X_{\eta}$.

4 Generating sets

We would like to add clubs intersected with inaccessibles into many sets of \mathcal{U} . The main difficulty is that such forcing should be defined inside M_E in order to be able to extend the embedding j_E . However, $E \notin M_E$, and so, the actual forcing will be wider - more sets and more clubs will be added than actually needed for a small generating family. We will first add a Cohen function over M_E for its κ^{+3} , then change some of its values and use it as a guide for which sets to add clubs.

Consider the Cohen forcing for adding a function for κ^{+3} , $Cohen(\kappa^{+3}, 2)$ in M_E . In V, we can construct M_E -generic subset of it, but let us do this via constructing generics for $M_{E|\xi}, \xi$ is a generator less than ρ . Note that such ξ 's are κ^{+3} 's of $M_{E|\xi}$'s. Hence, given $\xi < \xi'$, we can start building $Cohen(\kappa^{+3}, 2)$ generic over $M_{E|\xi'}$ with $k_{E|\xi E|\xi'} G_{\xi} = G_{\xi}$, since $crit(k_{E|\xi E|\xi'}) = (\kappa^{+3})^{M_{\xi}} = \xi$, where $k_{E|\xi E|\xi'} : M_{E|\xi} \to M_{E|\xi'}$ is the canonical embedding. For a limit ξ^* , let $G_{\xi^*} = \bigcup_{\xi < \xi^*} G_{\xi}$ and finally, $G = G_{\rho} = \bigcup_{\xi < \rho} G_{\xi}$.

Let us deal with the construction at successor stages.

Lemma 4.1 Let $\xi, \kappa^{++} < \xi < \rho$ be a successor generator of E, then $\operatorname{cof}(\xi) = \kappa^+$.

Proof. For every $\zeta < \kappa^{++}$, consider $E_{\zeta} = \{X \subseteq \kappa \mid \zeta \in j_E(X)\}$. It is a κ -complete ultrafilter over κ . There is a natural embedding $k_{\zeta} : M_{E_{\zeta}} \to M_E$ defined by setting $k_{\zeta}([f]_{E_{\zeta}}) = j_E(f)(\zeta)$, for every $f : \kappa \to V$.

We have, in $M_{E_{\zeta}}$, $\kappa^{++} < [id]_{E_{\zeta}} < \kappa^{+3}$. The critical point of k_{ζ} is $(\kappa^{++})^{M_{E_{\zeta}}}$ which is moved to the real κ^{++} . Also, $k_{\zeta}([id]_{E_{\zeta}}) = \zeta$ and $k_{\zeta}((\kappa^{+3})^{M_{E_{\zeta}}}) = \rho$.

Let ξ' be the last generator below ξ or just κ^{++} if ξ was the first generator above κ^{++} . Then, in $M_{E|\xi}$, $\xi = \kappa^{+3}$.

Let $\alpha < \xi$. Then there are $m < \omega$, $f : [\kappa]^m \to \kappa$, for every $\nu_1, ..., \nu_m < \kappa, f(\nu_1, ..., \nu_m) < \nu_1^{+3}$, and $\xi_2, ..., \xi_m \leq \xi'$ such that $j_{E|\xi}(f)(\kappa, \xi_2, ..., \xi_m) = \alpha$.

Define $g: \kappa \to \kappa$ by setting $g(\nu) = \sup_{\nu_1, \dots, \nu_n \leq \nu} f(\nu_1, \dots, \nu_n)$. Then, still $g(\nu) < \nu_1^{+3}$, and hence, $\alpha \leq j_{E|\xi}(g)(\xi') < \xi$.

This shows that if $k_{\xi'\xi} : M_{E_{\xi'}} \to M_{E|\xi}$ is the canonical embedding, then $k_{\xi'\xi}''(\kappa^{+3})^{M_{\xi'}}$ is unbounded in ξ . Clearly, $(\kappa^{+3})^{M_{\xi'}}$ is an ordinal of cardinality and of cofinality κ^+ . So, we are done.

Lemma 4.2 Let ξ , $\kappa^{++} < \xi < \rho$ be a successor generator of E, and let ξ' be the last generator below ξ or just κ^{++} , if ξ was the first generator above κ^{++} .

Then

- 1. there is $G_{\xi'}$ which is $M_{E_{\xi'}}$ -generic for $(Cohen(\kappa^{+3},2))^{M_{E_{\xi'}}}$;
- 2. $k_{\xi'\xi}''G_{\xi'}$ generates a $M_{E|\xi}$ -generic for $(Cohen(\kappa^{+3},2))^{M_{E|\xi}}$;

Proof. (1) is clear, since there are only κ^+ -many dense subsets to meet and $M_{E_{\xi'}}$ is closed under its κ -sequences.

Let us deal with (2). Let D be a dense open subset of $Cohen(\kappa^{+3}, 2)$ in $M_{E|\xi}$. Then there are $m < \omega$, $f : [\kappa]^m \to V_{\kappa}$, such that for every $\nu_1, ..., \nu_m < \kappa, f(\nu_1, ..., \nu_m)$ is a dense open subset of $Cohen(\nu_1^{+3}, 2)$, and $\xi_2, ..., \xi_m \leq \xi'$ such that $j_{E|\xi}(f)(\kappa, \xi_2, ..., \xi_m) = D$. Define $g : \kappa \to V_{\kappa}$ by setting $g(\nu) = \bigcap_{\nu_1, ..., \nu_n \leq \nu} f(\nu_1, ..., \nu_n)$. Then, still $g(\nu)$ is a dense open subset of $Cohen((\nu_1^{+3}, 2), \text{ and hence, } j_{E|\xi}(g)(\xi') \subseteq D$. So, we are done.

Let $\langle \rho_i \mid i < \kappa^+ \rangle$ be an increasing sequence of all generators of E above κ^{++} .

We assume that for every $i < \kappa^+$, $E \upharpoonright \rho_i \triangleleft E \upharpoonright \rho_{i+1}$, say, for example, that the ground model is \mathcal{K} .

Then, the construction of a $M_{E \upharpoonright \rho_i}$ -generic for $(Cohen(\kappa^{+3}, 2))^{M_{E \upharpoonright \rho_i}}$ of Lemma 4.2, can be preformed inside $M_{E \upharpoonright \rho_{i+1}}$.

Instead of a single Cohen function from κ^{+3} to κ^{+3} , we will use the following variation:

 $Q = \{t \mid t: [\kappa^{+3}]^2 \to \kappa^{+3}, |t| \le \kappa^{++}, (\alpha, \beta) \in \operatorname{dom}(t) \to t(\alpha, \beta) > \alpha\}.$

The construction of generics will be preformed inside $M_{E|\rho_{i+1}}$, as it was described above. At limit steps we will take the union.

Let $i < \kappa^+$ be a successor and describe a small change of a generic in the construction inside $M_{E \upharpoonright \rho_{i+1}}$.

Denote the generic function constructed for $M_{E \upharpoonright \rho_i}$ by F_i . Then, F_i is in $M_{E \upharpoonright \rho_{i+1}}$, since the construction was in $M_{E \upharpoonright \rho_{i+1}}$, and so, it is a condition there. Start with it. Proceed to ρ_i . It is the largest generator of $E \upharpoonright \rho_{i+1}$. The relevant α 's are $< \rho_i$, i.e., if $\alpha \ge \rho_i$, then $t(\alpha, \rho_{\xi})$ is undefined for every $\xi \le i$. Hence we can put all (α, ρ_i) 's $(\alpha < \rho_i)$ into a single condition.

Arrange the right values for such pairs, i.e. $F_{i+1}(\langle \alpha, h \rangle, \rho_i) = \gamma$ iff $j_{E \upharpoonright \rho_i}(h)(\alpha) = \gamma$, for any $h : \kappa \to \kappa$.

The assumption $E \upharpoonright \rho_i \triangleleft E \upharpoonright \rho_{i+1}$ is used for this. Just $E \upharpoonright \rho_i \in M_{E \upharpoonright \rho_{i+1}}$, and so, $j_{E \upharpoonright \rho_i}$ is definable there.

Then extend the resulting condition to $M_{E \upharpoonright \rho_{i+1}}$ -generic or just replace in the previously constructed generic such values.

We will use $\{f_{\kappa\rho_{i+2}} \mid i < \kappa^+\}$ in order to form a generating family. Thus, let

$$A_i = \{ \nu < \kappa \mid f_{\kappa \rho_{i+2}}(\nu^+) = 0 \},\$$

for every $i < \kappa^+$.² Let $B_{\beta} = \{\nu < \kappa \mid f_{\kappa\beta}(\nu^+) = 0\}$, for every $\beta < \rho$. By changing generics in the ultrapower, we can assume that

$$f_{i(\kappa)i(\beta)}(\kappa^+) = 0$$
 iff $\beta = \rho_i$, for some $i < \kappa^+$.

Then B_{β} will be in the ultrafilter iff $\beta = \rho_i$, for some $i < \kappa^+$, i.e. $B_{\beta} = A_i$.

Let us explain now how the family $\{A_i \mid i < \kappa^+\}$ will be turn into generating (mod Cub_{κ}).

For every $\alpha_0 < \rho$, $h: \kappa \to \kappa$ in V and $\alpha < \rho$ consider the following set:

$$Y^{h}_{\alpha_{0}\alpha} = \{\nu < \kappa \mid h(f_{\kappa\alpha_{0}}(\nu)) = f_{\kappa\alpha}(\nu)\}.$$

Let $F : \rho^2 \to \rho$ be a final generic with values $F(\langle \alpha_0, h \rangle, \rho_i)$ altered in the right way.³ Namely, if $F(\langle \alpha_0, h \rangle, \rho_i) = \gamma$, then $j(h)(j(f_{\kappa\alpha_0})(\kappa)) = j(f_{\kappa\gamma})(\kappa)$.

At the next stage we will add clubs $\cap Inc$ which avoid $B_{\alpha} \setminus Y^{h}_{\alpha_{0}\gamma}$, whenever $F(\langle \alpha_{0}, h \rangle, \alpha) = \gamma$. In particular such clubs will be forced into $A_{i} \setminus Y^{h}_{\alpha_{0}\gamma}$, whenever $F(\langle \alpha_{0}, h \rangle, \rho_{i}) = \gamma$.

Lemma 4.3 For every generator ζ of E, E_{ζ} is generated by $f_{\kappa\zeta}$ applied to the closure of A_i 's under finite intersection (mod clubs \cap Inc).

Proof. Let $B \in E_{\zeta}$. There are $h_1, h_2 \in V$ functions from κ to κ such that

$$B = \{ \tau < \kappa \mid h_1(\tau) = h_2(\tau) \}.$$

Take any $\alpha, \zeta < \alpha < \rho$ and consider

$$Y_{\zeta\alpha}^{h_1} \cap Y_{\zeta\alpha}^{h_2} = \{\nu < \kappa \mid h_1(f_{\kappa\zeta}(\nu)) = f_{\kappa\alpha}(\nu) = h_2(f_{\kappa\zeta}(\nu))\}.$$

Then,

$$f_{\kappa\zeta}''Y^{h_1}_{\zeta\alpha}\cap Y^{h_2}_{\zeta\alpha}\subseteq B.$$

²It is possible to reserve κ^+ -many sets like this - one for every $h : \kappa \to \kappa$ in V. Also, it is possible to use other similar families of sets as generating families.

 $^{{}^{3}\}rho^{2} = \{(\alpha,\beta) \mid \alpha < \beta < \rho\}.$

Let us deal now with a general case, i.e. take an arbitrary set in \mathcal{U} . Consider the requirements (1)-(3) from the first section.

The treatment of all three is basically the same, so, let show how to arrange (1).

We need to deal with $h: \kappa \to P_{\kappa+1}$, such that for every $\nu < \kappa$, $h(\nu) \in P_{(\nu+1,\kappa+1)}$. Let $\langle h_{\gamma} | \gamma < \rho_i \rangle$ be an enumeration in $M_{E \restriction \rho_i}$ of all such h's and if i < i', then $\langle h_{\gamma} | \gamma < \rho_{i'} \rangle$ extends $\langle h_{\gamma} | \gamma < \rho_i \rangle$. We use here that $\rho_i = (\kappa^{+3})^{M_{E \restriction \rho_i}}$ is the critical point of the canonical embedding $k_{ii'}: M_{E \restriction \rho_i} \to M_{E \restriction \rho_{i'}}$. Also, $E \upharpoonright \rho_i \lhd E \upharpoonright \rho_{i'}$.

$$B_{\gamma} = \{ \nu < \kappa \mid h_{\gamma}(\nu) \in G \cap P_{(\nu+1,\kappa+1)} \}.$$

Use, in M_E , the forcing Q defined above. Let F_1 be M_E -generic subset of Q constructed as above, only now we change the values in order to have the following:

If
$$F_1(\alpha, \rho_i) = \gamma$$
, then $j(h_\gamma)(\kappa) \in G^* \cap P_{(\kappa+1, j(\kappa)+1)}$.

Again, $E \upharpoonright \rho_i \triangleleft E \upharpoonright \rho_{i'} \triangleleft E$ is used for this.

A club \cap Inc which avoids $A_i \setminus B_{\gamma}$ will be forced, in order to arrange $A_i \subseteq B_{\gamma} \mod Cub_{\kappa}\kappa$.

We will need to repeat the above process κ^+ -many times in order "to catch the tail". Note that the forcings for adding clubs $\cap Inc$ are very close to Cohen forcings. Actually, after adding a single club which avoids inaccessibles (clearly, we are not going to force it) they turn to be equivalent to Cohens. This allows to repeat the construction above.

5 Preparation forcing

We will now go back in order to define a preparation forcing. It will be Easton support iteration of the forcings described in the previous sections. The main point is that in M_E , the needed forcing will appear over κ , by elementarity. So, we are able to reflect down and to use the same definition (with different ordinal parameters) at stages of preparation.

6 Some remarks related to the consistency strength

6.1 Basic assumptions

Suppose that E is a (κ, κ^{++}) -extender in \mathcal{K} , in $V, 2^{\kappa} = \kappa^{++}$ and there is a normal ultrafilter U such that:

- 1. $U \cap \mathcal{K} = E_{\kappa}$,
- 2. $j_U \upharpoonright \mathcal{K} = j_E$,
- 3. U is generated mod Cub_{κ} by κ^+ -many sets.

Note that if \mathcal{A} is a generating (mod Cub_{κ}) family of U, then $\mathcal{A} \notin M_U$, since $U \notin M_U$. In particular, E_{κ} cannot generate U, since $E_{\kappa} \in M_E \subseteq M_U$.

6.2 Constructing in M_U functions different mod U

Let $\langle f_{\kappa\xi} | \xi < \kappa^{++} \rangle \in M_U$ be a list of pairwise different functions from κ to κ . Fix $\nu \mapsto \langle f_{\nu\xi} | \xi < \nu^{++} \rangle$ which represents $\langle f_{\kappa\xi} | \xi < \kappa^{++} \rangle$ in M_U . Note that $\langle \langle \nu, \langle f_{\nu\xi} | \xi < \nu^{++} \rangle \rangle | \nu < \kappa \rangle \in V_{\kappa+1} \subseteq M_U$. Let $\eta < \kappa^{++}$ and $\sigma : \kappa \to \kappa$. Set

$$X_{\eta\sigma} = \{ \nu < \kappa \mid f_{\kappa\eta} \upharpoonright \nu = f_{\nu\sigma(\nu)} \}.$$

The next lemma follows from the elementarity of j_U :

Lemma 6.1 $X_{\eta\sigma} \in U$ iff $[\sigma]_U = \eta$.

Proof. (\Rightarrow) Suppose that $X_{\eta\sigma} \in U$. Then, in $M_U, \kappa \in j_U(X_{\eta\sigma})$. Hence,

$$\kappa \in j_U(X_{\eta\sigma}) = \{\nu < j_U(\kappa) \mid j_U(f_{\kappa\eta}) \upharpoonright \nu = f_{\nu\sigma(\nu)}\}.$$

Then, $j_U(f_{\kappa\eta}) = f_{j_U(\kappa)j_U(\eta)}$ and $f_{j_U(\kappa)j_U(\eta)} \upharpoonright \kappa = f_{\kappa j_U(\sigma)(\kappa)}$. Note that for every $\xi < \kappa^{++}$, $j_U(f_{\kappa\xi}) \upharpoonright \kappa = f_{\kappa\xi}$, since $\kappa = \operatorname{crit}(j_U)$. Hence, $[\sigma]_U = j_U(\sigma)(\kappa) = \eta$, since the functions in the list $\langle f_{\kappa\xi} \mid \xi < \kappa^{++} \rangle$ are different. (\Leftarrow) Suppose that $[\sigma]_U = \eta$. As above, we have $j_U(f_{\kappa\eta}) \upharpoonright \kappa = f_{\kappa\eta}$, since $\kappa = \operatorname{crit}(j_U)$. So, $f_{j_U(\kappa)j_U(\eta)} \upharpoonright \kappa = f_{\kappa j_U(\sigma)(\kappa)}$. Hence,

$$\kappa \in \{\nu < j_U(\kappa) \mid j_U(f_{\kappa\eta}) \upharpoonright \nu = f_{\nu\sigma(\nu)}\} = j_U(X_{\eta\sigma})$$

So, $X_{\eta\sigma} \in U$.

Now, for every $\eta < \kappa^{++}$, let $\sigma_{\eta} : \kappa \to \kappa$ be such that $X_{\eta\sigma_{\eta}} \in U$. By the lemma, $[\sigma_{\eta}]_U = \eta$. For every $\eta < \kappa^{++}$, pick a generator A_{η} of U such that $A_{\eta} \subseteq X_{\eta\sigma_{\eta}} \mod Cub_{\kappa}$.

We have only κ^+ such generators, hence there are $S \subseteq \kappa^{++}$, $|S| = \kappa^{++}$ and $A \in U$ such that $A \subseteq X_{\eta_i \sigma_{\eta_i}} \mod Cub_{\kappa}$, for every $i \in S$.

We have $X_{\eta\sigma}$'s and A in M_U , so inside M_U it is possible to construct by induction a set $S^* \subseteq \kappa^{++}, |S| = \kappa^{++}$ such that $A \subseteq X_{\eta_i \sigma_{\eta_i}} \mod Cub_{\kappa}$, for every $i \in S^*$. Then $(\sigma_i \mid i \in S^*)$ and $(m \mid i \in S^*)$ are in M_i and for every $i \in S^*$.

Then $\langle \sigma_{\eta_i} \mid i \in S^* \rangle$ and $\langle \eta_i \mid i \in S^* \rangle$ are in M_U and for every $i < i' \in S^*$,

$$[\sigma_{\eta_i}]_U = \eta_i < \eta_{i'} = [\sigma_{\eta_{i'}}]_U$$

So, we have a sequence of κ^{++} -many functions from κ to κ in M_U which represent increasing, mod U, sequence of ordinals $< \kappa^{++}$, which also belongs to M_U .

6.3 Constructing generators in M_U

Let $\langle f_{\alpha} | \alpha < \kappa^{++} \rangle$ be a list in M_U of functions κ to κ in M_U which represent an increasing, mod U, sequence of ordinals $< \kappa^{++}$.

For every $\alpha_0, \alpha < \kappa^{++}$ and $h : \kappa \to \kappa, h \in \mathcal{K}$, consider

$$Y^h_{\alpha_0\alpha} = \{\nu < \kappa \mid \nu^{++} > h(f_{\alpha_0}(\nu)) \ge f_\alpha(\nu)\}$$

Note that for every $A \in U, \alpha_0 < \kappa^{++}$

$$|\{\alpha < \kappa^{++} \mid \exists h \in {}^{\kappa}\kappa \cap \mathcal{K} \quad A \subseteq Y^h_{\alpha_0\alpha} \bmod Cub_{\kappa}\}| \le \kappa^+.$$

Just otherwise, we will have $[f_{\alpha}]_U = [f_{\beta}]_U$, for some $\alpha \neq \beta$, and actually, for κ^{++} -many of them.

Assume that there is a list $\langle B_{\xi} | \xi < \kappa^{++} \rangle$ in M_U of subsets of κ such that a generating family (mod Cub_{κ}) of U is listed below some $i^* < \kappa^{++}$.

This holds, for example if $2^{\kappa} = \kappa^{++} = (2^{\kappa})^{M_U}$.

Now, in M_U let \mathbb{B} be a set consisting of all $B \subseteq \kappa$ such that

1. B is stationary,

2.
$$\forall \alpha_0 < \kappa^{++}, |\{\alpha < \kappa^{++} \mid \exists h \in {}^{\kappa}\kappa \cap \mathcal{K} \mid B \subseteq Y^h_{\alpha_0\alpha} \mod Cub_{\kappa}\}| \le \kappa^+,$$

3. the index of B is below i^* .

Note that \mathbb{B} covers the generating family of U. For every $\gamma < \kappa^{++}$, let γ^* be the least such that

$$\forall \delta \geq \gamma^* \forall h \in {}^{\kappa} \kappa \cap \mathcal{K} \forall B \in \mathbb{B} \quad B \not\subseteq Y^h_{\gamma \delta} \bmod Cub_{\kappa} \}.$$

It exists, since otherwise, for every $\gamma^* < \kappa^{++}$ there will be $\delta_{\gamma^*} \ge \gamma^*, h_{\gamma^*}, B_{\gamma^*}$ such that $B_{\gamma^*} \subseteq Y_{\gamma\delta_{\gamma^*}}^{h_{\gamma^*}} \mod Cub_{\kappa}$. But $|\mathbb{B}| \le \kappa^+$, so we can freeze $h_{\gamma^*}, B_{\gamma^*}$ and this will lead to a contradiction due to the second condition of the definition of \mathbb{B} .

Now, we define inside M_U an increasing sequence $\langle \alpha_{\xi} | \xi < \kappa^{++} \rangle$ of ordinals below κ^{++} such that $\alpha_{\xi} > \alpha_{\zeta}^*$, for every $\zeta < \xi$. Then $\langle f_{\alpha_{\xi}} | \xi < \kappa^{++}$ is a limit ordinal \rangle will represent (mod U) an unbounded set of generators of E.

If, initially, we have

$$\langle \langle \alpha, [f_{\alpha}]_U \rangle \mid \alpha < \kappa^{++} \rangle \in M_U,$$

then

$$\langle \langle \xi, [f_{\alpha_{\xi}}]_U \rangle \mid \xi < \kappa^{++} \rangle \in M_U,$$

since $\langle \langle \xi, \alpha_{\xi} \rangle | \xi < \kappa^{++} \rangle \in M_U$. So, an unbounded set of generators of E belongs to M_U . Note that such a set cannot be in M_E since M_E is a direct limit of $M_{E \upharpoonright \alpha + 1}, \alpha < \kappa^{++}$ and it cannot have a pre-image in non of $M_{E \upharpoonright \alpha + 1}$'s.

It is not hard to construct a model such that a set of functions which represent the generators of E is inside, however no unbounded set of generators of E belongs to M_U . Just add κ^{++} -many Cohen functions $\langle f_{\kappa\beta} | \beta < \kappa^{++} \rangle$ and change the value of $j(f_{\kappa\beta})(\kappa)$ to the β -th generator of E, for every $\beta < \kappa^{++}$. Then $\langle f_{\kappa\beta} | \beta < \kappa^{++} \rangle$ will be in M_U and each $f_{\kappa\beta}$ will represent (mod U) the β -th generator of E.

Fix $\eta < \kappa^{++}$. Note that there are κ^{++} -many \mathcal{K} which generator is α_{η} . Enumerate all extenders F of \mathcal{K} which generator is α_{η} and $j_F(\alpha_{\eta}) < \alpha_{\eta}^*$. Let $\langle F_i^{\eta} | i < \kappa^+ \rangle$ be the least (in \mathcal{K}) such enumeration.

Each of this extenders is a -point, so there are $Z_i^{\eta} \subseteq \kappa$ such that $Z_i^{\eta} \in F_i^{\eta}$ and for every $i < i', Z_i^{\eta} \notin F_{i'}^{\eta}$.

For every $\xi < \kappa^{++}$, let $i_{\xi} < \kappa^{+}$ be such that $E \upharpoonright \alpha_{\xi} + 1 = F_{i_{\xi}}^{\xi}$. Now, find a set A_{ξ} from a small generating family of U such that $f_{\alpha_{\xi}} "A_{\xi} \subseteq Z_{i_{\xi}}^{\xi} \pmod{Cub_{\kappa}}$. Note that i_{ξ} is the last one for which such set A_{ξ} exists, due to the separation property of the sequence $\langle F_i^{\xi} | i < \kappa^+ \rangle$.

There will be a single A which works for every ξ in a set S of cardinality κ^{++} .

If such S can be found in M_U , then this will lead to a contradiction, since then E will be reconstructible in M_U from $\langle F_{i_{\xi}}^{\xi} | \xi \in S \rangle$.

7 Additional results

Starting with two extenders E_1, E_2 such that $E_1(\kappa) \neq E_2(\kappa)$, instead of a single E in the above construction, it is possible to obtain two normal ultrafilters $\mathcal{U}_1, \mathcal{U}_2$ such that \mathcal{U}_1 is generated by κ^+ -many sets mod CUB_{κ} and every family which generates $\mathcal{U}_2 \mod CUB_{\kappa}$ has cardinality κ^{++} .

In order to achieve this, we pick some $S \in E_1(\kappa) \setminus E_2(\kappa)$ and preform the above construction only over S leaving $\kappa \setminus S$ untouched.

In a similar fashion it is possible to obtain a model with $2^{\kappa} = \kappa^{+3}$ and three normal ultrafilters $\mathcal{U}_1, \mathcal{U}_2, \mathcal{U}_3$ which are generated exactly by κ^+, κ^{++} and κ^{+3} -many sets respectively mod CUB_{κ} .

Note that, at least to our best knowledge, such possibilities mod bounded are open even assuming supercompact cardinals.

8 Concluding remarks

The following remains open:

Let U be a normal ultrafilter over κ which is generated by less than 2^{κ} sets mod Cub_{κ} .

Question 1. Is it possible that \mathcal{K} exists, no cardinal of \mathcal{K} changes its cofinality in V and cardinals of M_U, \mathcal{K} which are less or equal to 2^{κ} are the same.

Question 3. What about generating families mod bounded?

For example, suppose that U is generated by less than 2^{κ} sets mod bounded. Does this imply an inner model with a strong cardinal?

References

[1] M. Gitik and S. Shelah, On density of box products,