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Abstract

We use the forcing with overlapping extenders [4] to give a direct construction of a
model of ¬SCH+Reflection.

1 Introduction.

In 2005 Assaf Sharon [9] constructed a model with a singular strong limit cardinal κ of

cofinality ω such that 2κ > κ+ and every stationary subset of κ+ reflects. He used infinitely

many supercompact cardinals for this.

Recently, A. Poveda, A. Rinot, D. Sinapova [8] and O. Ben Neria, Y. Hayut, S. Unger [2]

addressed this problem again. In [8] a general schema of iteration is given. The paper [2] uses

the iterated ultrapowers approach of Y. Hayut and S. Unger [7] and the overlapping extenders

forcing of [4]. It extends Sharon’s result to uncountable cofinality (using supercompacts) and

for countable cofinality replaces supercompacts by much weaker assumptions.

The purpose of the present note is to give a strait proof of Sharon’s result using the

forcing with overlapping extenders but without appeal to iterated ultrapowers (still using

supercompacts).

2 A model in which SCH fail at a singular cardinal

and Reflection holds at its successor.

Recall that Sharon used long extenders forcing and as a result a rather complicated iteration

was needed in order to destroy non-reflecting stationary sets that appear there. By using
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the referee of the paper for his helpful remarks.
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the forcing with overlapping extenders instead, there is no need for further iteration.

This was pointed out by O. Ben Neria, Y. Hayut and S. Unger [2], however their argument

was based on a delicate analyzes of iterated ultrapowers. We will use here the forcing of [4]

and ideas from A. Sharon [9] instead.

Fix a regular cardinal η. Let 〈κα | α < η〉 be an increasing sequence of cardinals and let

〈Eα | α < η〉 be a sequence of extenders such that for every α < η

1. η < κ0,

2. E(α) is a (κα, κ̄
++
η )−extender, where κ̄η =

⋃
α<η κα,

3. E(α) C E(α + 1),

4. there is a supercompact cardinal between supβ<α κβ and κα.

Let 〈P〈E(α)|α<η〉,≤,≤∗ 〉 be the forcing of Section 2 of [4].

For every limit α ≤ η denote κ̄α =
⋃
α′<α κα′ .

By [4], Section 2, it has the following properties:

1. 〈P〈E(α)|α<η〉,≤,≤∗ 〉 is a Prikry type forcing,

2. the forcing 〈P〈E(α)|α<η〉,≤ 〉:

(a) blows up the power of κ̄η to κ̄++
η ,

(b) blows up the power of κ̄α above κ̄+
α , for every limit α < η,

(c) preserves cardinals and cofinalities,

(d) preserves strong limitness of each of κα’s, for every α ≤ η, and κ̄α’s, for every

limit α ≤ η

(e) does not add new subsets to κ0.

3. For every p ∈ P and every P−name ζ
∼

of an ordinal, there is p∗ ≥∗ p such that the

number of possible decisions of ζ
∼

above p∗ is at most κ̄η.

I.e. |{ξ | ∃q ≥ p∗(q 
〈P,≤〉 ζ∼
= ξ)}| ≤ κ̄η.

1

1This condition basically says that one entree given dense open set by taking a direct extension and then
specifying finitely many coordinates. Usually, this property has the same proof, as the Prikry condition and
is used to show that κ̄+η is preserved in V 〈P,≤〉.
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4. The forcing 〈P〈E(α)|α<η〉,≤∗ 〉 is equivalent to the product of

Cohen forcings Cohen(κ+
α , κ̄

++
η ).2

Namely, we just remove or ignore sets of measure one Apα in each coordinate p(α) =

〈fpα, Apα〉 of a condition p = 〈p(α) | α < η〉 ∈ P〈E(α)|α<η〉. More precisely, if p = 〈p(α) |
α < η〉 and q = 〈q(α) | α < η〉 are in P〈E(α)|α<η〉, then set p ∼ q iff for every α < η

(a) p(α) is non-pure iff q(α) is non-pure. Require then that p(α) = q(α).

(b) If p(α) = 〈fpα, Apα〉, i.e. is pure, then q(α) = 〈gpα, Bp
α〉 is pure as well, and require

that fpα = gpα.

Then 〈P〈E(α)|α<η〉/ ∼,≤∗ 〉 is the product of Cohen forcings.

Let us assume (or make) that all relevant supercompact cardinals were made indestruc-

tible under directed closed forcings using the Laver forcing.

Then force with 〈P〈E(α)|α<η〉,≤ 〉. Denote further P〈E(α)|α<η〉 by P . We claim that the re-

sulting generic extension is as desired, i.e. it satisfies 2κ̄η = κ̄++
η and every stationary subset

of κ̄+
η reflects.

2κ̄η = κ̄++
η follows by (2(a)) above. Let deal with the reflection. Denote κ̄η by λ.

Theorem 2.1 In V 〈P,≤〉, every stationary subset of κ̄+
η reflects.

Proof. Assume for simplicity that η = ω. The argument follows closely Section III of [9],

only the long extenders forcing is replaced by P .

Let S∼ be a canonical name of a stationary subset of κ̄+
ω , i.e.,

S∼ = {〈α, p〉 | p ∈ P and p 
P α ∈ S∼}.

Suppose for simplicity that S∼ concentrates on a fixed cofinality below the least super-

compact.

For every n < ω, set

S∼n = {〈α, p〉 | `(p) = n},Pn = {p ∈ P | `(p) = n} and ≤∗n=≤� Pn.

The following was proved in [9] (Claim 1.1.1):

2This is the crucial difference from the long extenders Prikry forcing 〈P,≤,≤∗ 〉 of Sec. 2 of [3]. The
conditions in P consist basically of two parts one of cardinality < κn, (n < ω) (assignment functions) and
another of cardinality κω (Cohen functions). As a result, 〈P,≤∗ 〉 collapses κ+ω and this allowed Asaf Sharon
[9] to build a non-reflecting stationary set.
In the present setting both parts are put into one of cardinality κn.
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Lemma 2.2 Suppose that for some m < ω, we have p ∈ Pm such that

p 
Pm (S∼m is stationary ). Then there is q ≥∗ p, q 
P (S∼ reflects ).

So, it is enough to show that for every p ∈ P there is q ≥ p such that

q 
P`(q) S∼`(q) is stationary.

Suppose otherwise. Then, as in [9], there are p ∈ P and Pn−names C∼n, n < ω such that

for every q ≥ p,

q 
P`(q) C∼`(q) is a club in κ̄+
ω and C∼`(q) ∩ S∼`(q) = ∅.

Suppose for simplicity that p = 0P .

Fix n < ω. Consider the forcing Pn and C∼n.

Here Pn is just a full support product of Cohen forcings 〈Qk | k < ω〉, where for every k < n,

Qk is a Cohen forcing which adds less than κk+1 new subsets to a cardinal < κk, and so its

cardinality < κk.

Qn is a Cohen forcing which adds κ̄++
ω −many subsets to a cardinal < κn, and, for every

k, n < k < ω, Qk is a Cohen forcing which adds κ̄++
ω −many subsets to κ+

k .

In particular, for every k < ω, Qk satisfies κ++
k −c.c. and κ++

k < κ̄+
ω .

Now, using the chain condition, for every m < ω, we can find a
∏

m<k<ωQk−name C∼
m
n which

is forced to be a club subset of C∼n.

It is possible to make C∼
m
n ’s decreasing.

If ~f ∈
∏

k<ωQk and m′ ≤ m < ω, then let us view ~f � [m,ω) ∈
∏

m≤k<ωQk also as

a condition in
∏

m′≤k<ωQk, just put the empty function at each coordinate in the interval

[m′,m). Clearly, then ~f � [m′, ω) will be a stronger condition than ~f � [m,ω) in the forcing∏
m′≤k<ωQk.

So, if, for some α, ~f � [m,ω) 
∏
m≤k<ω Qk

α ∈ C∼
m
n , then ~f � [m,ω) 
∏

r≤k<ω Qk
α ∈ C∼

r
n, for

every r ≤ m, since C∼
i
n’s are decreasing.

Hence, if for every large enough m < ω, ~f � [m,ω) 
∏
m≤k<ω Qk

α ∈ C∼
m
n , then for every

m < ω, ~f � [m,ω) 
∏
m≤k<ω Qk

α ∈ C∼
m
n .

Now we use an idea from [2] and consider the forcing
∏

k<ωQk/finite.

Lemma 2.3 There is a
∏

k<ωQk/finite−name C∼
ω
n of a club in κ̄+

ω such that for every
~f ∈

∏
k<ωQk, if ~f/finite 
∏

k<ω Qk/finite
α ∈ C∼

ω
n, then for every m < ω,

~f � [m,ω) 
∏
m≤k<ω Qk

α ∈ C∼
m
n .

Proof. Let H be a generic subset of
∏

k<ωQk/finite.
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Work in V [H] and define

Cω
n = {α < κ̄+

ω | ∃~f ∈ H∀m < ω(~f � [m,ω) 
∏
m≤k<ω Qk

α ∈ C∼
m
n )}.

Claim 1 Cω
n is unbounded in κ̄+

ω .

Proof. Work in V and then use the density argument. Let ρ < κ̄+
ω . Find α0, ρ < α0 < κ̄+

ω

and f0 ∈
∏

k<ωQk such that

f0 
∏
k<ω Qk

α0 ∈ C∼
0
n.

Next, we find α1, α0 < α1 < κ̄+
ω and f1 ∈

∏
k<ωQk, f1 ≥ f0 such that

f1 � [1, ω) 
∏
1≤k<ω Qk

α1 ∈ C∼
1
n.

Note that since this clubs are decreasing, we will have

f1 � [1, ω) 
∏
k<ω Qk

α1 ∈ C∼
0
n.

Continue in the similar fashion by induction and define two increasing sequences 〈αm |
m < ω〉 and 〈fm | m < ω〉 such that

fm � [m,ω) 
∏
m≤k<ω Qk

αm ∈ C∼
m
n ,

for every m < ω. Also, since the clubs are decreasing, we will have

fm � [m,ω) 
∏
r≤k<ω Qk

αm ∈ C∼
r
n,

for every r ≤ m < ω.

Finally, let α =
⋃
m<ω αm and f =

⋃
m<ω fm.

Then, for every m < ω, f � [m,ω) 
∏
m≤k<ω Qk

α ∈ C∼
m
n .

So, f/finite 
∏
k<ω Qk/finite

α ∈ C∼
ω
n, and we are done.

� of the claim.

Claim 2 Cω
n is a closed subset of κ̄+

ω .

Proof. Note that κ̄+
ω is a successor of singular cardinal, so we need to deal only with sequences

of a length below κ̄ω.

Work in V and then use the density argument.

So let ζ < κ̄ω and 〈α∼ξ | ξ < ζ〉 be an increasing sequence of elements of C∼
ω
n.

Pick m0 < ω to be large enough such that κm0 > ζ.
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Similar to the previous claim, we define an increasing sequence 〈fξ | ξ < ζ〉 of conditions in∏
m0<k<ω

Qk which decide α∼ξ’s. Set αζ =
⋃
ξ<ζ αξ and fζ =

⋃
ξ<ζ fξ.

Then

fζ/finite 
∏
k<ω Qk/finite

αζ ∈ C∼
ω
n ∧ αζ =

⋃
ξ<ζ

α∼ξ.

� of the claim.

�

Let us argue now that in V [G(P)] we can find H which is a generic subset H of∏
k<ωQk/finite.

Set

H = {〈fm | m < ω〉/finite | ∃p = 〈pk | k < ω〉 ∈ G(P)∃m0 < ω∀m > m0(pm = 〈fm, Am〉)}.

Let us show a genericity of H. So, let D ∈ V be a dense open subset of
∏

k<ωQk/finite.

Define D′ ⊆ P as follows.

D′ = {p = 〈pk | k < ω〉 ∈ P | ∃m0 < ω(〈fpm | m0 < m < ω〉 ∈ D},

where for m ≥ `(p), pm = 〈fpm, Apm〉.

Claim 3 D′ is dense in 〈P ,≤ 〉 and even in 〈P ,≤∗ 〉.

Proof. Let q = 〈qk | k < ω〉 ∈ P . For every m ≥ `(q), qm is of the form 〈f qm, Aqm〉. Consider
~f = 〈f qm | `(q) ≤ m < ω〉. There is ~g = 〈gm | m < ω〉 ∈ D such that ~g ≥∏

k<ω Qk/finite
~f .

Now define ~h = 〈hm | m < ω〉 as follows:

hm = gm, for every m < `(q); for every m ≥ `(q), if gm does not extend fm, then let hm = fm

(note that there are only finitely many m’s like this); if gm extends fm, then hm = gm.

Now we pick sets of measure one Bm which project to subsets of Aqm such that p = q �

`(q)_〈〈hm, Bm〉`(q) ≤ m < ω is a condition in P . Then p ≥∗ q, by its definition, and also,

p ∈ D′.
� of the claim.

Pick now some p ∈ D′ ∩G(P), then 〈fpm | `(p) ≤ m < ω〉 ∈ H.

Given such generic H inside V [G(P)], we will there all the corresponding clubs Cω
n , for

every n < ω.

Set C =
⋂
n<ω C

ω
n . Then C ⊆ κ̄+

ω is a club as well.

Pick some α ∈ C ∩ S. Then there is some p ∈ G(P) which forces all this. Take n = `(p).
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Then 〈α, p〉 ∈ S∼n and also, p 
Pn α ∈ Cn, which is impossible.

Contradiction.

�

3 ¬SCH and the reflection for a club.

We generalize the result to club many cardinals:

Theorem 3.1 Suppose that θ is the least inaccessible cardinal which is a limit of supercom-

pact cardinals.

Then there is cofinality preserving extension so that

• θ remaining inaccessible,

• there is a club in θ consisting of singular strong limit cardinals ν such that

1. 2ν > ν+,

2. every stationary subset of ν+ reflects.

Proof. The construction of the previous section can be applied here, only replace η by an

inaccessible cardinal θ.

Let 〈δα | α < θ〉 be an increasing sequence of supercompact cardinals. Set κα = δα+1, for

every α < θ. Clearly, each κα is strong. Repeat the previous construction using the sequence

〈κα | α < θ〉.
Note that given a limit α < θ, we do not know in advance (i.e. without forcing with

E(α)) what will be 2κ̄α , where, as before, κ̄α =
⋃
β<α κβ. So, if we have only boundedly

many supercompacts below κα, then it is possible that there will be no supercompact in

the interval (2κ̄α , κα). However, having a supercompact inside (κα, κα+1), we can repeat the

argument of the previous section just using κα+1 as the first strong in this argument.

�

Finally note that it is possible to combine the previous results on AP [5] and Tree Property

[6] with the present one, since the same forcing is used in all of them. So we obtain the

following:

Theorem 3.2 Suppose that θ is the least inaccessible cardinal which is a limit of supercom-

pact cardinals.

Then there is cofinality preserving extension so that
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• θ remaining inaccessible,

• there is a club in θ consisting of singular strong limit cardinals ν such that

1. 2ν > ν+,

2. ¬APν+,

3. the tree property holds at ν+,

4. every stationary subset of ν+ reflects.
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