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Abstract

We use the forcing with overlapping extenders [4] to give a direct construction of a
model of -SCH+Reflection.

1 Introduction.

In 2005 Assaf Sharon [9] constructed a model with a singular strong limit cardinal x of
cofinality w such that 2% > k™ and every stationary subset of k™ reflects. He used infinitely
many supercompact cardinals for this.

Recently, A. Poveda, A. Rinot, D. Sinapova [8] and O. Ben Neria, Y. Hayut, S. Unger [2]
addressed this problem again. In [8] a general schema of iteration is given. The paper [2] uses
the iterated ultrapowers approach of Y. Hayut and S. Unger [7] and the overlapping extenders
forcing of [4]. It extends Sharon’s result to uncountable cofinality (using supercompacts) and
for countable cofinality replaces supercompacts by much weaker assumptions.

The purpose of the present note is to give a strait proof of Sharon’s result using the
forcing with overlapping extenders but without appeal to iterated ultrapowers (still using

supercompacts).
2 A model in which SCH fail at a singular cardinal
and Reflection holds at its successor.

Recall that Sharon used long extenders forcing and as a result a rather complicated iteration

was needed in order to destroy non-reflecting stationary sets that appear there. By using
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the forcing with overlapping extenders instead, there is no need for further iteration.
This was pointed out by O. Ben Neria, Y. Hayut and S. Unger [2], however their argument
was based on a delicate analyzes of iterated ultrapowers. We will use here the forcing of [4]

and ideas from A. Sharon [9] instead.

Fix a regular cardinal n. Let (k. | @ < n) be an increasing sequence of cardinals and let

(E, | o < m) be a sequence of extenders such that for every oo < n
1. 7 < Ko,
2. E(a) is a (Kq, Ky T)—extender, where &, = U, Ka,
3. E(a) < E(a+1),

4. there is a supercompact cardinal between supg_,, kg and Kq.

Let (Pig(a)la<n), <, <*) be the forcing of Section 2 of [4].
For every limit a <7 denote Rq = J,/,, Kar-

By [4], Section 2, it has the following properties:

L. (Pig()a<n), <, <) is a Prikry type forcing,
2. the forcing (Pig(a)ja<n) < ):

(a) blows up the power of &, to K, ",
(

b
(c

(d) preserves strong limitness of each of k,’s, for every @ < n, and &,’s, for every

blows up the power of &, above &f, for every limit o < 7,

preserves cardinals and cofinalities,

)
)
)
)

limit a <7

(e) does not add new subsets to k.

3. For every p € P and every P—name ( of an ordinal, there is p* >* p such that the

~Y

number of possible decisions of ¢ above p* is at most &,,.

~Y

Le. {€|3q > p*(qlFpsy ¢ =} <Ry !

! This condition basically says that one entree given dense open set by taking a direct extension and then
specifying finitely many coordinates. Usually, this property has the same proof, as the Prikry condition and
is used to show that Foﬁ is preserved in V(P:=),




4. The forcing (Pp(a)a<n), <* ) is equivalent to the product of
Cohen forcings Cohen(rf, 7, ").2
Namely, we just remove or ignore sets of measure one AP in each coordinate p(a) =
(fF, AP) of a condition p = (p(a) | @ < 1) € Pg(a)ja<n)- More precisely, if p = (p(a) |

a<n) and ¢ = (g(a) | @ < n) are in Ppa)a<y), then set p ~ ¢ iff for every a <17
(a) p(«) is non-pure iff ¢(«) is non-pure. Require then that p(a) = ¢(«).
(b) If p(a)) = (fP, AP), i.e. is pure, then g(a) = (g2, B?) is pure as well, and require
that f? = gP.

Then (Pig(a)a<n/ ~» <) is the product of Cohen forcings.

Let us assume (or make) that all relevant supercompact cardinals were made indestruc-
tible under directed closed forcings using the Laver forcing.
Then force with (P<E(a)‘a<n>, < ). Denote further Pig(a)ja<n by P. We claim that the re-
sulting generic extension is as desired, i.e. it satisfies 257 = /%j{* and every stationary subset
of R} reflects.
2f1 = R follows by (2(a)) above. Let deal with the reflection. Denote &, by .

Theorem 2.1 In VP every stationary subset of /%,': reflects.

Proof. Assume for simplicity that n = w. The argument follows closely Section III of [9],
only the long extenders forcing is replaced by P.

Let S be a canonical name of a stationary subset of RS, ie.,
S={{a,p)|pePandplpa e S}

Suppose for simplicity that S concentrates on a fixed cofinality below the least super-
compact.

For every n < w, set
Sn={{a,p) [ lp) =n}, Py ={p €P|llp) =n} and < =<[7P,.

The following was proved in [9] (Claim 1.1.1):

2This is the crucial difference from the long extenders Prikry forcing (P, <,<* ) of Sec. 2 of [3]. The
conditions in P consist basically of two parts one of cardinality < k,, (n < w) (assignment functions) and
another of cardinality x, (Cohen functions). As a result, (P, <* ) collapses .} and this allowed Asaf Sharon
[9] to build a non-reflecting stationary set.
In the present setting both parts are put into one of cardinality .



Lemma 2.2 Suppose that for some m < w, we have p € P, such that
plp,, (S is stationary ). Then there is ¢ >* p, q IFp (S reflects ).

So, it is enough to show that for every p € P there is ¢ > p such that
q H_pz(q) S(q) 1s stationary.

Suppose otherwise. Then, as in [9], there are p € P and P,—names C,,,n < w such that
for every q > p,
q H_paq) Cy(g) is a club in RI and Cyg) N Syq) = 0.

Suppose for simplicity that p = Op.

Fix n < w. Consider the forcing P,, and Qn
Here P, is just a full support product of Cohen forcings (Qy | k < w), where for every k < n,
Q. is a Cohen forcing which adds less than ki1 new subsets to a cardinal < kj, and so its
cardinality < ky.

Q. is a Cohen forcing which adds 5 *—many subsets to a cardinal < k,, and, for every
k,n < k < w, @y is a Cohen forcing which adds &/ ™—many subsets to ;.

++
k

In particular, for every k < w, Qj satisfies k" —c.c. and " < K.

Now, using the chain condition, for every m < w, we can find a [ Qr—mname 7" which

m<k<w
is forced to be a club subset of C\,.
It is possible to make C7'’s decreasing.

If f € [, @r and m’ < m < w, then let us view f [ [m,w) € [Lhcpen @k also as
a condition in ], . . @&, just put the empty function at each coordinate_in the interval
[m’,m). Clearly, then f [ [m',w) will be a stronger condition than f [ [m,w) in the forcing
Hm’§k<w Q- ~ -
So, if, for some «, f | [m,w) H_Hm5k<ka a € O, then f [ [m,w) ”_Hrg«w@k a € (O, for
every r < m, since (] ’s are decreasing.
Hence, if for every large enough m < w, f [ [m,w) “_Hm§k<ka a € O, then for every
m<w, f[[mw) g . e o€C

Now we use an idea from [2] and consider the forcing [],_ , Qx/ finite.

Lemma 2.3 There is a [],_, Qr/finite—name C% of a club in kS such that for every
fE [ @k if f/fim'te IFIT, o, Qu/ finite @ € Cw, then for every m < w,
f1m,w) II—HmSIKW Q. €.

Proof. Let H be a generic subset of [],_  Q/finite.



Work in V[H] and define
Cy ={a<r}|3f e HYm <w(f|[mw) iy, _,_ o @€ Ch}
Claim 1 C¥ is unbounded in & .

Proof. Work in V' and then use the density argument. Let p < £/. Find g, p < ap < R}
and fy € [],.,, @k such that
fO “_Hk<u Qr Qo € Qg

Next, we find a1, a0 < oy <& and fi € [[,_, @k, f1 > fo such that

Al ILw) I, g0 o € Ol

Note that since this clubs are decreasing, we will have

f1 r [1,w) ”‘Hk<ka o) € Q?L

Continue in the similar fashion by induction and define two increasing sequences (v, |
m < w) and (f,, | m < w) such that

fm r [m7w) “_ngk<w Qk Qm € Q:’Ln’

for every m < w. Also, since the clubs are decreasing, we will have

fm T [m,w) ”_Hrgk<w Q. m € C),

for every r <m < w.

Finally, let o = {J,,,., am and f =, ., fm-

Then, for every m < w, f [ [m,w)IFrp o, a € Cy.
So, f/finite ”_Hk@ Qu/finite @ € C7, and we are done.
(1 of the claim.

Claim 2 CY is a closed subset of 5.

Proof. Note that 5] is a successor of singular cardinal, so we need to deal only with sequences
of a length below &,,.

Work in V' and then use the density argument.

So let ¢ < Ry, and (¢ | € < () be an increasing sequence of elements of C%.

Pick my < w to be large enough such that x,,, > (.
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Similar to the previous claim, we define an increasing sequence (fe | € < () of conditions in
[y <hew @ which decide a¢’s. Set a¢ = g ¢ and fe = g fe-

Then
fg/fz'nite H_Hk<u Qu/ finite O € Q% A Q¢ = U Q.
€<

O of the claim.
O]

Let us argue now that in V[G(P)] we can find H which is a generic subset H of
[, Qr/ finite.

Set

H={{(fm | m <w)/finite | Ip = (pi. | k < w) € G(P)Img < wV¥m > mo(pm = {fm, Am))}-

Let us show a genericity of H. So, let D € V be a dense open subset of [],_. @/ finite.
Define D’ C P as follows.

D' ={p={(pp | k<w) €P|Img<w({(fE | mg<m<w)e D},
where for m > ¢(p), p,, = (fF, AL).
Claim 3 D' is dense in (P, <) and even in (P, <* ).

Proof. Let q = (qx | k < w) € P. For every m > £(q), ¢, is of the form (f%,6 A% ). Consider
F={f1]0q <m<w). Thereis § = (g | m < w) € D such that § >, Qu/finite f.
Now define h = (h,,, | m < w) as follows:
hm = gm, for every m < £(q); for every m > £(q), if g,, does not extend f,,, then let h,, = f,,
(note that there are only finitely many m’s like this); if g,, extends f,, then h,, = g,.
Now we pick sets of measure one B, which project to subsets of A such that p = ¢ |
0(q)” ((hm, Bm)l(q) < m < w is a condition in P. Then p >* ¢, by its definition, and also,
peD.
O of the claim.

Pick now some p € D' N G(P), then (f2 | {(p) <m <w) € H.

Given such generic H inside V[G(P)], we will there all the corresponding clubs C¥, for
every n < w.
Set C'=(),<, Cy. Then C C k] is a club as well.
Pick some o € C'NS. Then there is some p € G(P) which forces all this. Take n = {(p).



Then (a,p) € S, and also, p IFp, a € C,, which is impossible.
Contradiction.
O

3 —SCH and the reflection for a club.

We generalize the result to club many cardinals:

Theorem 3.1 Suppose that 0 is the least inaccessible cardinal which is a limit of supercom-
pact cardinals.

Then there is cofinality preserving extension so that
e 0 remaining inaccessible,
e there is a club in 6 consisting of singular strong limit cardinals v such that

1.2V > vt

2. every stationary subset of vt reflects.

Proof. The construction of the previous section can be applied here, only replace n by an
inaccessible cardinal 6.
Let (d, | @ < @) be an increasing sequence of supercompact cardinals. Set k, = 0441, for
every a < . Clearly, each k, is strong. Repeat the previous construction using the sequence
(Ko | a0 < 0).
Note that given a limit @ < 6, we do not know in advance (i.e. without forcing with
E(a)) what will be 2%, where, as before, &Ko = Uz, /5. So, if we have only boundedly
many supercompacts below k., then it is possible that there will be no supercompact in
the interval (27, k). However, having a supercompact inside (kq, Kar1), We can repeat the
argument of the previous section just using k.1 as the first strong in this argument.
O

Finally note that it is possible to combine the previous results on AP [5] and Tree Property
[6] with the present one, since the same forcing is used in all of them. So we obtain the

following;:

Theorem 3.2 Suppose that 6 is the least inaccessible cardinal which is a limit of supercom-
pact cardinals.

Then there is cofinality preserving extension so that
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e O remaining inaccessible,

e there is a club in 6 consisting of singular strong limit cardinals v such that
1. 2" > v,
—AP,+,

the tree property holds at v+

)

every stationary subset of v reflects.
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