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Abstract

We show that some cardinal arithmetic configurations related to the negation of
the Shelah Weak Hypothesis and natural from the forcing point of view are impossible.

1 Introduction

The Shelah Weak Hypothesis (SWH) formulated in [Sh:400A] states that for every cardinal
A the number of singular cardinals k < A with pp(k) > X is at most countable. The
negation of SWH is one of the weakest statements on cardinal arithmetic whose consistency
is unknown. Clearly, SWH follows from GCH or even from the Shelah Strong Hypothesis
saying that for every singular k, pp(k) = k7. On the other hand by [Sh-g, VIII, 3.4 -
Localization Theorem]|, “|pcf(a)| > |a|” implies “"SWH, where a is a set of regular cardinals
with min(a) > |a|. Thus suppose that |pcf(a)| > |a| for some set a of regular cardinals with
la| < mina. Let (ko | a < |a|T) be an increasing enumeration of the first |a|™ elements
of pef(a). Set A = (J{ka | @ < |a|T}. Clearly, for every § < |a|™ we have pcf{r, | <

a < |a|t}\\ # 0. Then using Localization Theorem, we define by induction an increasing
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sequence (; | i < |a|™) of ordinals below |a|* and (p; | i < |a|™) of singular cardinals below
A with pp(p;) > A. Let 3y be the least such that pcf{ra | @ < Bo}\A # 0. Set po = U, g, Ka-
Assume that for each j < i, §; and p; are defined. Define 3; and p;. Set 8 = Uj<l. B;. Using
the Localization Theorem, find least 3; > [} so that pcf{rs | B < a < Bi}\N # 0. Set
pi=U{ka | B < o < Bi}-

The forcing construction of [Gi-Sh] and [Gi-Ma] show that any finite or countable number
of k’s with pp(k) > A is consistently possible.

The present paper grew from an attempt made by the first author to force ~SWH using
a forcing of type of [Gi]. One of the features of this forcing is that it does not add new
bounded subsets to a cardinal while blowing its power. Here we show (in ZFC) that some
configurations which are very natural from the forcing point of view are just impossible.

The first theorem under stronger assumptions was proved by the first author; the second
author was able to weaken the assumptions and find a more elegant proof. Most of the
generalizations are due to the second author. The second theorem is due solely to the

second author.
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2 Main Results

Theorem 1 The following is impossible:

(a) K1 < Ky, cfr1 = Ng, cfk, > 280

(b) for every large enough p < k1 of cofinality (2%°)* we have pp(p) = u*

(c) Fu=sup{p | p < ku,cfp=Ro and pp(n) > £}

(d) there are a strictly increasing sequence (A, | o < cfk.) of reqular cardinals between
k1 and ks unbounded in ks, a filter D on w containing all cofinite subsets of w and a

sequence of functions (fy, | @ < cfk.) such that
(@) fr, 1w — RegNri\(2%)"

(B) limp fr, = k1
(7) Ao = tcf(Hn<w fra(n)/D)



(0) a < B < cfk. implies fx, <p [,
(€) if « < B < cfke and X € Reg N A\g\A! then there is a function fy : w —
Reg N k1 \(2%)F such that fr, <p fr <p fr, and X = tef([],-, fr(n)/D).

Discussion

(1) The assumption (c) is a form of “SWH which claims that there are more than 2%

singular cardinals of cofinality 8y with pp above their supremum.

(2) The assumption (d) holds naturally in forcing constructions with D = the filter of
cofinite subsets of w. But it seems to be problematic in ZFC. In [Sh-g, II§1] proof of a

weak relative is a major result.

(3) See [Sh-g, VI] for uncountable cofinalities.

Proof. Suppose otherwise. W. 1. of g. we can assume that cfx, = (2%)*. Just take
(2%0)T of \,’s such that between any two of them will be u of cofinality Ry with pp(u) > k.
Also, replacing (A, | @ < (2%)*) by its restriction to an unbounded subset and restricting
everything if necessary to a D — positive set, we can assume that the following holds:

() for every n < w, {fr,(n) | a < (2%0)*) is strictly increasing and, if f.(n) = Ua<(@roy+ fra(n)
then f.(n) < fi,(n+1).

(%) follows from [Sh-g, 11, 1.2, 1.2A(3)]. According to the referee request we present the

argument.

Claim 1.1 Let I be a filter on w containing all finite subsets of w, (fo | @ < (2%0)F) be
an <j-increasing sequence of members of YOn. Then there are S C (2%)* |S| = 2% and
ACw, A& I so that for every a, 3 € S andn € A

a < fB— faln) < faln) .

Proof. Let D be an ultrafilter disjoint to I. Clearly, (f, | a < (2%)%) is <p-increasing.
Apply to it [Sh-g, I, 1.2 and 1.2 A(3)] and find f € ®On so that

(i) for every aw < (2%)*, fo <p f
(i) if g € ®On, g <p f then for some o, g <p fa

(iii) c¢f(f(n)) > Ny for every n < w.



Subclaim 1.1.1 A= {n <w | cf(f(n)) = (2%)*} € D.

Proof. Suppose otherwise. Let B = w\A € D. Denote cf(f(n)) for n € B by 0,. Let
(Oni | @ < d,) be a cofinal in f(n)) sequence. Consider [, .5 0,/D. Let 6 = cf(]]d./D).
Then, § # (2%0)F since either {n € B |§, > (2%)T} € Dor {n € B |4, <2%} € D. In the
first case, clearly, & > (2%)" (just if {g; | ¢ < (2%°)"} C [],.cp 0n then h € [],.p 0, where
h(n) = Ui guoy+ gi(n)). In the second, note that |[],,.p d,| < (2%)% = 2%.

Let (g; | i < d) be a sequence witnessing c¢f([[,,c5 0n/D) = 0. Wemove g;’sto [],,c5 f(n).
Thus for every i < ¢ define h; € [], .5 f(n) by hi(n) = dng,(n). Clearly, (h; | i < 6) is a
<p-increasing and unbounded in ], 5 f(n) sequence. But also (f, [ B | a < (2%)*) is
such a sequence. This is impossible unless § = (2%)*.

O of subclaim.

Now, for n € A we pick (0,; | i < (2%)) to be a cofinal in f(n) sequence. Define
hi(n) = 6,; for every i < (2%)* and n € A. Then for every i < j < (2%)* and n € A we
have h;(n) < hj(n). Also (h; | i < (2%)T) is unbounded in [],_, fi(n)/D. Define now by
an easy induction two increasing sequences (i, | v < (2%)") and (a, | v < (2%0)F) so that
hi, <p fa, < hi,., holds for every v < (2%)". Find a stationary S C (2%)" and B € D so
that for every o € S and n € B, h;, (n) < fa,(n). Then, for every vy,15 € S, n € B, 11 < 1y
implies h;, (n) < fa,, (n) < hi, (n) < i, (n) < fa,,(n). So, (fa, | B|v e S) will be an
increasing sequence on B. Clearly, B ¢ I. So, we are done.

0

Now for every a@ < (2%)T and A € Reg N Aay1\ Mo we use (¢) and find a function
fr:w — Reg N k\(2%)F such that A = tef ([, fr(n)/D) and for every n < w, fi,(n) <
) < fro(n).

Clearly, (f.(n) | n < w) is strictly increasing with limit x; and cf(f.(n)) = (2%)F
for every n < w. Using (b), we can assume removing finitely many n’s, if necessary, that
pp(fe(n)) = (fu(n))* for every n < w. Let D, by an ultrafilter on w extending D. Let
po = tef [, ((fe(n))*/Dy). It is well defined since D, is an ultrafilter. By (c), w.l. of g.,
for every a < (2%)*F there is K, Ao < Ko < Aatl, CfFa = No and pp(ke) > k7T, Hence,
there are 72, € Reg Nk \A\," (n < w) and a filter D, on w continuing all cofinite subsets
of w such that limp, 72, = ke and I+ = tef([1,.,72,/Da)- By [Sh-g, II, 1.3], we can
then find 7}, € Reg N 72, \\} such that x} = tcf(I],., Ta.n/Da) (note that we are doing
this separately for each v < (2%)%). Let ap>* = {fre (m) | n < w} for every m < w and
Ce{1,2}. Set ay = ay'Uag?, a™ =, gnoy+ o and a =, ., a™. All these sets consists

of regular cardinals above (2%0)F, a™’s are countable, a™’s and a have cardinality of at most
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(2%)*F. Also a” C [fa.(m), fr.,.(m)). Clearly, a™ (m < w) is an unbounded subset of
f+(m) N Reg of order type (2%0)* since (fy,(m) | o < (2%)*) is increasing with limit f,(m).
Then, (f.(m))" € pcf(a™) C pcf(a), as pp(fe(m)) = (fe(m))T, for every m < w. Again, by
[Sh-g, I, 1.12], pef({(fu(m))" | m <w}) € pef(a). But p. =tef ([1,<,(fe(n))"/D.), hence
s € pcfa. Let (b, | 0 € pcfa) be a generating sequence for a (see [Sh-g, I, §3] or [Sh:506]).
W.I of g if g # kf* for £ € {1,2}, then b, N bt = 0. Let £ € {1,2} be such that
fhe 7 K

Claim 1.2 The set A= {m < w| for some a < (2%)F, Usefa,2t0y+) @5 € by} is in D.
Proof. Otherwise w\A € D, and for m € w\A, f.(m) = sup(a™\b,,). Hence (f.(m))* €
pef(a\by.). So, pef({(f.(m))" [ m € w\A}) € pef(a\by,). But W\A € D, and p, =
tef (I new(fe(m))™/D,). Hence . € pcf(a\by,). Contradicting the choice of b, .

U of the claim.

For m € A let v, be the minimal « such that U,@e[a,(zNo)ﬂ ag Cby,. Set a, = Unmea Qm-
Clearly, a, < (2%)*. Let o/ = J{a} | m € A, 3 € |, (2%)")}. Then o’ C b, and hence
kT & pefd’. However, m € A and n < w imply that frer (m) € amt Ca? Cd'. So, for
each n < w we have |

(e (m) [ me A} Cd .

Hence pcf{f,e- (m)|m € A} C pcfa’. But as A € D, 74 0 = tef([1en fre= (m)/D).

Qi , TV Q% ,M

So, for every n < w, Tﬁn € pcfa’. Then by [Sh-g, I, 1.12], pcf{Tf;m | n <w} C pefa'. But
w7 =tef(IThew oo n/Dar)- So, 1 € pefa’. Contradiction.

O]

Remark 1.3

(1) We can replace “cfr, > 287 by “cfr, > Ny provided that (d) of the theorem is
strengthened by adding the condition (x) introduced in the beginning of the proof and
(2%0)* is replaced by Xy in (b).

(2) It is possible to weaken “pp(u) > " in (c) of the theorem to “pp(u) > k.”, replacing
(2%)* in (b) by N;. Just after (x) is obtained using cfx, > (2%)F, we can replace
Ky, K57, k71 by the limit of first Ny, \,’s, its successor and its double successor. This
is provided that for every a < wy there is kq, Ao < Ko < Aar1 With pp(ke) > AT,
where \, = an1
such (A, | @ < wy).

Ao- The condition “pp(p) > k,” can be used easily to construct

(3) It is possible to replace “cfr, > 28" by Va < cfk. (|t < k,)” just use cfr.

instead of (2%0)* in the proof.



The following is parallel to Solovay’s result that SCH holds above a strongly compact

cardinal.

Corollary 1.4 Suppose that the following holds: k is a cardinal such that

(a) for any given cardinal X it is possible to force 2% > X\ by k™t -c.c. forcing not adding
new bounded subsets to k and adding A w-sequences (f, | o < \) to k such that
(i) o < B — fo < fz (mod finite), (ii) for every A C X of cardinality Xy there is
B C A of the same cardinality and ng < w such that for every a < 3 in B, n € w\ny,
fa(n) < fs(n), and (iii) 0 € (k, A] reqular cardinal implies that fs(n) is reqular cardinal
for every n < w and 6 = tef([] fs(n)/finite).

(b) pp(p) = pt for every large enough p < k of cofinality N;.
Then above k the following version of SWH holds:
for every cardinal X the set {p | K < pu < A\, cfpu = Ro, pp(p) > AT} is at most countable.

Remark. Forcing notion of [Gi-Ma] or [Gi] satisfy (a).

Proof. Suppose otherwise. Let k. be the first cardinal such that the set {u | k < p <
Ko, cfpn = o, pp(p) > kf} is uncountable. Clearly, cfr, = ¥;. Now we force with the
forcing of (a) and make 2% > k,. The w-sequences produced by such forcing will satisfy (x)
of the proof of Theorem 1 with D equal to the filter of cofinite sets. The chain condition of
the forcing insures that the cardinal arithmetic does not change above k. No new bounded
subsets are added to &, hence (b) of the statement of the corollary still holds. Now Theorem
1 (actually using 1.3(2)) provides a contradiction.

O

Repeating the proof of Theorem 1 we can show the following generalization:

Theorem 1.5 The following is impossible:
(a) K1 < Ky, cfr1 = Ng, cfk, > 280
(b) thereisl, 1 < { < w such that for every p < ky of cofinality (2%°) we have pp(p) < pt*
(¢) ki =sup{u | p < Ky, cfpp = Ro and pp(p) > £}
(d) the same as in Theorem 1.

If we allow infinite gaps between p and pp(u) in (b) of 1.5, then the following can be shown:
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Theorem 1.6 Assume that
(a) K1 < Ky, cfk1 = Ro, cfke =0 >Ny, a* < Ky, cfa™ > N
(b) for every large enough pu < k1 of cofinality 6 we have pp(p) < put®

(c) for some 3%, k. = sup{p | p < Ky, cfr=Ro and pp(p) > w7}
(d) the condition (d) of Theorem 1 and (x) of its proof

Then 3* < o** for some o < o*.

Sketch of the proof. Suppose otherwise. We define f.(n)’s as in Theorem 1. Now
cffi(n) = 0 and so pp(f.(n)) < (f.(n))T® for every n < w. Find o < o* such that for
every n < w, pp(f*(n)) < (f«(n))*™. Here we use that cfa* > N,. Instead of one p, in
the proof of Theorem 1 (or finitely many cardinals in 1.6) we consider pcf{(f.(n))*" | n <
w,0’ < o} N (ky, k7], By the assumption we made, 3* > o**. Then there should be
K pef{(fu(n)t | n < w,0’ < o} for some 5, 1 < ¢* < 3. This follows by results of
[Sh:g, IX], see also [Sh:g, Analytical Guide, 4.18 (b)]. The rest of the proof is as those of
Theorem 1, only we use [Sh:g, I, 3.2(5)] to include pcf{(f.(n))™ | n < w,¢’ < o} into a
union of finitely many pcf-generators.
0

Now we turn to another theorem which provides a different proof of Theorem 1 and some

of its generalizations.

Theorem 2 Suppose that
(a) Ko < K1 < Ky, 1 <" <w, n* <~v* <0 and v* is a successor ordinal
(b) 0 =cfRy <0 < kg and for every a < 0, |a| <
(c) cffr =N and pp(k1) > w17
(d) if p € (ko, k1) and cfp =0 then pp(u) < ™™ .
Then the following holds

(1) For every nonprincipal ultrafilter D on w and a sequence * = (o} | { < w) with
k1 = limpa* and o} (¢ < w) a limit cardinal of cofinality > 0 in the interval (Ko, K1)
there are a set w C v* 4+ 1 consisting of at most n* elements and a sequence T =

(o7 | b < w), kg < o;* <o; (f <w) such that
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(¥)1 if a € [Rpz 7", B <~ and k1P € pcfa then 8 € w,
where Rpg+g~ = {tcf(lg/D) | 7 = (on | n < w), 0 < 0, = cfo, < 0} (n <
w)} N[k, Ke)-

(2) There are a* < 0 and a sequence (R, | o < ) with |J,_,. Ra = Reg Nk, \k1 s0 that

(%)2 for every a < o* there is w C v* 4+ 1 consisting of at most n* elements such that
if a € [Ry]™, B <~* and k1P € pcfa then B € w.

(3) Let D be a nonprincipal ultrafilter on w. There is a partition (I, | p < p*), p* < 8 of
Reg N k1\ko into closed open intervals (i.e. of the form [x,y)) with (minl, | p < p*)

strictly increasing such that

(%) for every sequence (p, | n < w) of ordinals below p* with limp(min I, |n < w) =
K1

{tcf(H 0,/D) | 0y € 1,, for n <w} Nk, Ky)

n<w
is included in one of R,’s (o < a*) from a sequence (R, | @ < a*) (a* < 0) satisfying

(*)2-

Remark 2.1 Part (1) is close to [Sh:g, IX 1.x].

Proof of (2) and (3) from (1). As k77" < pp(k:1) there are a countable unbounded
a C k1 N Reg\kp and an ultrafilter Dy on a containing all cobounded subsets of a with
ki7" =tcf(Ma/Dy). Let a ={\, |n <w}and D ={A Cw|{\, | n€ A} € Dy}. Now,
by [Sh:g, II], for every regular 7 € k17 \k; we can find & = (0, | n < w), 0, € Reg N k1\ko
(n <w), limp @ = k; such that 7 = tcf (Il /D).

Fix x to be a large enough cardinal. Let M < (H(x), ¢) be such that |M| < 6,“M C M,
{Kko, k1,0, D,k.} € M and M N6 € 6. There is such M since we assumed (b). Consider
the following set ® = {* | 7" = (0} | n < w), limpd* = k; and for every n < w,
of € M N [k$, k1) is a limit cardinal of cofinality > 6}. Clearly, ® C M since “M C M.
Now, by (1), applied with D defined above for each 7* € ® there will be 7** for which (x);
holds. By elementarity, there is such @** in M. Denote it by @*[¢*]. Define (R, | @ < a*) to
o e @ U {{tcf(Il,con/D)} |0 € M N KN
Reg\ ko and nl<itrunD on, = k1}. Then a* < 0 since |M| < 6. Clearly here (x); implies (x)s. So,
R,. Let
T € Reg N Kk, \k1. Then for some 7 = (0, | n < w), 0, € Reg N k1\ko (n < w), limp T = Ky,
T =tcf(Ilg/D). Let A={n<w|o, € M}.

be an enumeration of the set {Rp s+ 75+

in order to complete the proof of (2) it remains to show that Reg N k.\r1 =

a<a*



Case 1. A€ D.
Then, w.l. of g. we can assume that A = w (just if o, € M replace it by ). But then

7 appears in the second part of the union defining (R, | a < a*).

Case 2. A¢D.

Clearly k1 > /ig@, since otherwise k1 N Reg C M and Case 2 cannot occur. So w.l. of g.
we can assume that A = (). Let for n < w, o} = min(M N k1\o,). Such o is well defined
since k1 € M, c¢fry = Ny and hence k1 = sup(ky N M). Also, o} should be a limit cardinal
of cofinality > 0 as M NG € . Sod* = (0} | n < w) € . Let 7 = 7"*[c*]. Now, for
every n < w, kg < o < o and 0 € M. Hence, 0** < 0,, < o for every n < w. Then
tef(Ilo/D) =7 € Rpz+ 7+ by (*); and we are done.

This completes the proof of (2) from (1).

Let us turn now to (3). Here we are given a nonprincipal ultrafilter D. Define M and
(Ry | @ < a*) as above using this D. For every v € M N k1 \ko a limit cardinal of cofinality
> 6 denote sup(M Nv) by v(M). Let (I, | p < p*) be the increasing enumeration of the
following disjoint intervals:

{RegN[v(M),v] | v € M Nk, is a limit cardinal of cofinality > 0} U{{v} | v € M, cfv = v}.

Clearly, p* < 0, since |[M| < 6. Let us check that (x)3 holds. So let (p, | n < w) be a
sequence of ordinals below p* with limp(min/,, | n < w) = ky and let 0, € I, for n < w.
Consider 7 = tef([]

on the situation when A = () (i.e. Case 2). Define 7* and &

on/D). Let A={n <w|o, € M}. As above we can concentrate

n<w
Kok

as in Case 2. Then for every
n<w,o* <orand o € M. But 0 = min(M Nk1\oy,) is a limit cardinal of cofinality > 6
in M. Let p,, denote the left side of the interval I,,. Then o} = p,, since p, € M is a limit
cardinal of cofinality > 6 and o,, € I,, = (sup(M N py,), pn) N Reg. Also the last equality
implies that ¢, > o;*. Then 7 = tcf([],., on/D) € Rpz 5 and we are done.

Proof of (1). Suppose otherwise. Let D be a nonprincipal ultrafilter on w and * =
(of | n < w) a sequence of limit cardinals of cofinality > € in the interval (kg, 1) with
k1 = limpa* witnessing the failure of (1). We choose by induction on & < 6 cardinals

Ug,n,Tgk,Ugn (n,k < w) so that

() o+ < 0o <0

(B) € < & implies UE < O¢rp

(7) & € Reg Nk, \ky
)

(0) kI Npef({Té | k < w})\k, has at least n* + 1 members



(€) oen < 0¢, < 0y and o, is regular

(©) tef(Ilucw 08n/D) = 7¢
(n) & < & implies that o¢,, < ¢ p.

In order to carry out the construction we choose first at stage &, o¢,, satistying (o), (5).
This is possible, since o7 is a limit cardinal > kg of cofinality > 6. Second, as (o¢,, | n < w)
cannot serve as a** in (x); by our assumption, there are Tgk € Rp s+ (o¢ nln<w) for k£ < w such
that pef({7f | k < w}) N (K, £777] has at least n* + 1 members. So clauses (), (6) hold.
By the definition of Rpz* (o, ,jn<w), We can find for each k < w, agn € Reg N o} \o¢,, such
that tcf (][], 0¢, D) = 7£. So clauses () and (€) hold. The clause (7) is implied by the
previous ones. So, we have finished the inductive construction.

Now, for every n < w, as (o¢, | £ < 0) is strictly increasing, its limit 0, = U,y 0¢n 1s
a singular cardinal of cofinality 0. Also, clearly, o,, € [k, k1). Hence, by the assumption
(d) of the theorem, pp(c,) < of™. For £ = 1,...,n" let A\, = tef([],.,00"/D). Set
w* ={a <y | kF* = N\ for some ¢, 1 < ¢ < n*}. Then w* is a set of < n* ordinals below
v+ 1 Let ap = {0¢, | k <w,§ <f}and a =, ,a, U{o} | n <w,1 <0< n*} So,
ais a set of < 0 < kg < mina regular cardinals. By [Sh:g, VIII §2] or [Sh:506, §2] a has a
generating sequence (b, | 7 € pcfa). For each & < 6 we can find a successor ordinal ¢ < ~*
so that r, € € pef({d [k <wp)\{Ae | 1 <€ <n*}. So, for some successor ordinal v** < ~*
there is an unbounded in 6 set Y consisting of {’s such that { < 6 and 7, = v**. Clearly,
N € pcfafor £ =1,...,n* and k77" € pcfa. Then w.l. of g. we can assume that bnjy** is

disjoint to each by, for £ =1,...,n*. Set A= {n <w|b_i,+ N o, is unbounded in o,}.
Claim 2.2 A€ D.

Proof. If this does not hold, then there is {(*) < @ such that for every n € W\A b_s\++ N
06y 0n) = 0. WL of g. £(x) € Y. Also, n € w\A implies that {of ), | k <w}Nb 4= =0,

since for every k < w, o¢() < ag(*) o < Op.

Hence {05(*),n | k <w,n € w\A} is disjoint to b . Now, each Tf(*) € pcf({afé*)’n | k' <
w,n € w\A}). Here we use the assumption that A ¢ D and so w\A € D.

But k[ € pCf({T?(*) | k < w}). Hence k7" € pcf({ag(*)m | k < w,n e w\A}) C
pef (a\bﬁ*ﬂ**), which is impossible by the choice of generators.
[ of the claim.

Let n € A. Then bﬁjw N o, is unbounded in o,. Hence pcf(bﬁjw No,)\on # 0. But

pp(o,) < o™, hence for some £(n) € {1,...,n*} we have o' € pef(b v Noy) C
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pcf(b_+-). Then for some £(x) € {1,...,n"} the set A* = {n € A|{(n) = {(x)} belongs to
D. So, Myx € pcf({a:{e(*) |n € A*}) Cpef(b,+v+). But b o= Nby,,, = 0. Contradiction.
0

Using (3) of Theorem 2 we can give another proof of Theorem 1.

2.3 Second proof of Theorem 1

W.L of g. cfk, = (2%)". Let = (2%)* and ko = *. Assume also w.l. of g. that D is a
nonprincipal ultrafilter on w. For every f :w — Reg N k1\ko we define g5 : w — p* < 0 as

follows:
grin)=p it f(n)el,.

Then, fi >p fo will imply g, >p gy, since the sequence (minl, | p < p*) is strictly
increasing. Consider (fy, | @ < 6) of (d) of Theorem 1. This is a strictly increasing sequence
modulo D. Now, the total number of g;’s is (p*)¥ < (2%0)% = 2% Hence there are

g" :w — p* and a* < 0 such that for every a,0 > a > a*, every f:w — Reg N ky\Ko such
that f/\a SD f <D f)\a+1

f(n) € Iy, for almost each n < w mod D .

Apply (%)3 to (¢*(n) | n < w) with v* = 2. Then for some ¢* € {1,2} the following holds:

if a € [{tcf([1,-,0n/D) | 04 € Ipoiny for n < w} N [k1, %)% then v & pefa. Let a,
0 > a > a*. Pick Koy, Ao < Ko < Aat1, ¢fka = Ro and pp(ka) > kT (by (¢) of Theorem
1 we can assume w.l. of g. that it exists). Then, by [Sh-g], there are 7,, € Reg N ko \A\JT
(n < w) and a filter D, on w containing all cofinite sets such that £ = tcf(I],-., Tasn/Da)-
Consider (f, . (m) | m < w) for every n < w. It is a sequence of regular cardinals such that
Tag = tef([Lnew fran(m)/D) and fr, <p fro.. <D [ras,- Then for almost every m < w
(mod D) fr, .(m) € Igm). Hence 1o, € {tcf(I],co,om/D) | om € Ige(m),m < w} for
every n < w. Take a = {7, | n <w}. Then k" & pcfa, but k" = tcf([1,-. Tan/Dn).
Contradiction.

0

The following is parallel to 1.6.

Theorem 2.4 Suppose that

(a) Ko < K1 < Ky
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(b)

()
(d)
(e)
(f)
(8)

(h)

(1)

(2)

(3)

01,05 < ko are such that cf0, > Ng, O, = 6’;“3 or 0, is reqular > 9?3 and for every
a <0y cf([a]<0, D) < 0,

cfry = Ny and pp(k,) > k%

03 1s reqular cardinal between 05 and kg

04 is cardinal between 03 and ko of cofinality > 03

05 € (04, ko) is a cardinal such that cf([05]=%, C) = 05

D is an Ri-complete filter on 04 + 1
(Notice that we allow D to be principal. For example, generated by {64} ).

if (o | a0 < 04) is a strictly increasing continuous sequence of singular cardinals between

ko and k1, then
{o < 04 | o limit, cfpq > 04 and pp(pa) < pi”} € D

(Thus, if {0,} € D then the condition means pp(p) < p* for every limit cardinal

i € (Ko, k1) of cofinality 0y.)

Then

For every sequence * = (0¥ | n < w) of limit cardinals of cofinality > 6, between kg
and k1 there are 3 < 0y and a sequence T* = (07* | n < w), Ky < o <0’ (n < w)
such that

(91 if @ € [Ror g then pef(a) 0 (537, 53%) = 0, where By poe = {r € (g m1) |
there is a sequence (o, | n < w), with o, € Reg N [0}, 0%) such that T € pcf{o, | n <
w}}.

There are a* < 85 and a sequence (R, | o < a*) with |J,_ . Ra = Reg Nk, \k1 so that
(¥)2 for every a < a* there is 3 < 0y such that for every a € [Ra]™ we have pcf(a) N
(K50, 50%) = 0.

There are p* < 05 and a partition (I, | p < p*) of RegNki\Ko into closed open intervals

(i.e. of the form [x,y)) with (minl, | p < p*) strictly increasing such that

(¥)3 for every sequence of ordinals (p, | n < w) below p* there is 3 < 0y such that for
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every a € [{tcf([ L. on/D) | 0, € 1, forn<uw, D is a nonprincipal ultrafilter on w

with liInn<u) D(Il’liIl ]Pn) = ’%1}]&0

pef(a) N[2RE2) =0

Proof of (2) and (3) from (1)

Let x be a large enough cardinal. Pick M < (H(x),¢€) so that |M| = 05, ko, k1,05 € M,
MNoOF €6 and (VX € [M]™)(FY € M)(X CY A Y| = Rp).

This is possible since by (f) c¢f([05]=%0, C) = 65. Define the set ® now to be {7* € M |
o = (0} | n < w) is a sequence of limit cardinals between k¢ and k; with c¢fo’ > 6,
n<w)}.

For each " € ® we choose ** = 7**[g*] in M satisfying (%);. Define (R, | a < a*) to

be an enumeration of the set { R« 7+ | 7 € ®} U {pcf({on |n <w}) | (on|n <w) € P

and for every n < w cfo, = 0,}.
Now we proceed as in Theorem 2.

Proof of (1). Assume toward contradiction that for some @* there is no 7** satisfying (1).

We choose by induction on & < 64 cardinals o, Tg’k, 02"; (k,n < w,i < ) such that

(@) kg < 0gn <oy,

(8) € < & implies that 02771 < O¢ip

() Tg’k € Reg N k. \K1

(6) pef ([r* | k< wh) 0 [, 1) = 0

(©) 7% € pef(fotl [ n<w})

(&) oen < ‘7?,]; = cfag’; <o}

(n) (0en | € < 04) is an increasing continuous sequence of singular cardinals.

The verification that such a construction is possible is as in the proof of (1) of Theorem

Let 0, = 0,0, = Ue oy, 0en for each n < w. Applying the condition (h) of the statement
of the theorem to (o¢, | € < 6,) we find for every n < w a set Y,, € D such that { € Y,
implies that pp(oe,) < O’;:Zl. By R;-completeness of D, the set Y = (1, __ Y, € D. Choose
some 0* € Y. Let pp(0s¢,) = (05¢,,) TP for some 3, < 6; (n < w).

Consider sets a, = {02'; | & < 0%i < Oy k < w} and a = (U, an) U a*, where

a* = {(05n)™? | n <w, B < B, is a successor ordinal }. Then a is a set of regular cardinals
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of cardinality < 0, + 0y < kg < mina. Let (b, | 7 € pcfa) be a generating sequence. As
each 3, < 0; and cff, > Ny, |a*| < 6;. By [Sh:g, IX] or [Sh:g, Analytical Guide, 4.18(b)]
c = pef(a*) N [ky, k192) is bounded in x}%, since 8, > 6 > |a*|™. Also pcf(c) = c. For
each & < 0* for some i(§) we have pcf({rg(g)’k|k: < w}) N [Ky, £192) is not bounded by sup c.
So, choose k" € pcf({Tg(E)’kJ | k < w}) N[k, 5192)\ supc. Clearly, p(€) < 65 is a successor
ordinal. As, 0, < 03 = cf0s, and 6* € Y implies either (cfd* = 63) or (6* = 0, and then also
cfo} > 03), necessary, for some p* < 0, the set Z = {& < 6" | p(§) = p*} is unbounded in
0*. Let J, = Jfl’ff. So J, is an ideal on a,, and, clearly, for every ¢, € J, (n < w) we have
k0 € pef (U (an\en)).

By pcf theory (see [Sh:g, VIII, 1.5] or [Sh:g, Analytical Guide]) there are finite sets
en C N{pcf(an\cn) | ¢n € Ju} (n < w) such that £ € pef(U, -, en)- But N{pcf(an\c,) |
cn € Jn} C {agfn | 8 < B, is a successor ordinal} for every n < w. So |J._. e, C

n<w

U{U;fn | B < B3, is a successor ordinal and n < w} = a*. Hence, k*" € pcf(a*). But then

kP € pef(a*) N [ky, k%) = ¢, which is impossible by the choice of p*. Contradiction.
[

Let us conclude with a question which is most natural taking into account the results

above.

Question. Is the following situation possible:

(a) K1 < Rs, ¢fk1 = Vo, cfRe =Ny

(b) for every singular p < k1, pp(p) = p* (or if one likes only for u’s of countable
cofinality)

(¢) ru=sup{p | p < ku,cfpp=Ro and pp(p) = kf}
(d) the same as (d) of Theorem 1 or even add (x) of the proof of Theorem 1.
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