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Let k = |

strong to a some degree below k,;. The purpose of the present paper is to present new

new Fin, for an increasing sequence of cardinals (k, | n < w). Each of k,’s is
methods of blowing up the power of x in situations of this type.
In Chapter 1, the simplest case the gap 3 (i.e. 2% = k™) is considered. The basic apparatus
which consists of the preparation forcing which produces a structure with pistes, the main
forcing with suitable structures and equivalence which allows cardinals preservation is intro-
duced.
Chapter 2 deals with generalizations to gap 4 (again between x and its power) and higher
gaps. The main issue here is the preparation forcing that is supposed to preserve GCH.
Chapter 3 presents a small modification of the preparation forcing of the previous chapter
that allows to preserve strong cardinals.
In Chapter 4, we deal with a certain PCF-configuration called dropping cofinalities.
In Chapter 5 techniques of dropping cofinalities are applied to specific problems like con-
structing models with arbitrary gaps between s and its power from optimal large cardinal
assumptions, the first fixed point of the R—function.

The techniques developed here will be used in a subsequent paper [8] to construct a model

with a countable set which pcf has cardinality N;.






Chapter 1

Gap 3

We introduce here a special structure that will be used in order to blow up the power of a
singular cardinal & of cofinality w to k3.
A knowledge of the method used for dealing with Gap 2 is assumed. We refer for this to

[1] or to [10] with a smoother presentation.

1.1 The Preparation Forcing

We assume GCH.

A condition in the preparation forcing P’, which we define below, will consists basically of an
elementary chain of models of cardinality ™" and a directed system elementary submodels
of cardinality x*. Inside this directed system a crucial role will be played by a certain
elementary chain which will be called central line . Let us give first a definition of both

elementary chains.

Definition 1.1.1 The set P” consists of elements of the form
<Bln+ A1n++>

so that the following hold:

1. A" is a continuous closed chain of length less than x*3 of elementary submodels of
(H(k%3),€,<,C, k) each of cardinality k™.

2. For each X € A" we have XNk € On. So, X D k™. Further we shall frequently
identify such model X with the ordinal X Nx*3 and also view A" as a closed set of

ordinals.



3. If X is a non-limit element of the chain A*"" then

(a) AT X ={Y|YCXYecA" "} eX,
(b) *"X C X.

4. B is a continuous closed chain of length less than s+ of elementary submodels of
(H(kT3), €, <,C, k), each of cardinality x*. B has a last element which we denote
by max(B").

5. For each X € B we have X N k™ € On. Hence X D ™.
6. If X is a non-limit element of the chain B*" then

(a) B | X :=(Y|Y CX,YeB")eX,
(b) "X C X,

(¢) If 6 < sup(X) for some § € A" (we identify here an element of A" with an
ordinal), then min((X N On)\ §) € A",

The following technical notion will be needed in order to define P’ (and will be used

further as well).

Definition 1.1.2 Suppose that (B A% ¢ P’ F € B and F,,F, € F. We say
that the triple Fy, Fi, F' is of A-system type iff

1. Fj is the immediate predecessor of F' in the chain B,

2. Fy < F,

3. If § < sup(F, N On) for some § € A" then min((Fy N On)\ §) € A"
4. There are ag, o € A" such that

(a) cof(ag) = cof(ay) = k1T,

(b) o € Fy and oy € F,

(¢c) FoNFiNOn=FyNaoy=FNay,
)

(d) either oy > sup(Fy N On) or oy > sup(Fp N On).
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Intuitively, this means that Fp, F; behave as in a A-system with the common part
below min oy, a.

Further let us call ag, a; the witnessing ordinals for Fy, Fi, F.

The next condition will require more similarity:

(isomorphism condition)
the structures
(Fo,€.<.Cm A N Ry, fry)

and

Tt

<F1,€,<,§,K,A1 ﬂFl, fF1>

are isomorphic over FyNFy, i.e. the isomorphism g between them is the identity on
FoN Fy, where fg, : kT <— Fy, fr, : &7 <— F; are some fixed in advance bijections.

It is possible for gap 3 to do without f,.

Note that, in particular, we will have that otp(Fy) = otp(F})! and Fynkt™ = FiNk*tT.

Definition 1.1.3 The set P’(k) or, for simplicity, just P’ consists of elements of the form

<<AOH+’A1/{+’ CH+>7A1N++>

so that the following hold:

1.

1401%Jr c Aanr

. every X € A" is either equal to A% or belongs to it,
L CFT AT o P(ANT),

. for every X € A" (C*(X), A%") € P" and X is the maximal model of C*" (X).

In particular, each C*" (X) is an increasing continuous chain of models of cardinality

KT

(Coherence) If XY € A™ and X € C*(Y), then C*"(X) is an initial segment of
C*"(Y) with X being the largest element of it.
We call C%" (A%") central line of ((A%" A" C%") A", The following conditions

describe a special way in which A" is generated from the central line.

Here and further by otp(X) we mean otp(X N On).



6. Let B € A™". Then B € C* (A%") (i.e., it is on the central line) or there are n < w
and sequences (Ay, ..., A,), (By, ..., By) of elements of A" such that
(a) Ay € C""(A%") is the least model of the central line C*" (A%") that contains B.
(b) Aj is a successor model in C*" (A%"). Let A] denotes its immediate predecessor
in C*" (A%,
(¢) The triple A7, By, A is of a A-system type with respect to (C*" (A%"), A",
(d) For each m,1 <m <wmn,

i. A, € C" (Bp_1) (i.e. it is on the central line of B,,_;) is the least model in
C*"(Bp,_1) that contains B.

ii. A, is a successor model in C*" (B,_1). Let A, denote its immediate prede-
. +
cessor in C*" (By,—1).
iii. The triple A, B, Ay, is of a A-system type with respect to (C*" (By,_1), A¥" ).
(e) B € C" (B,).

We refer to the sequence (Ay, A7, By, ..., An-1,A,_1, Bu_1,4,, A, B,) as the piste
from A%" (or from the central line) to B. Denote it by pst(A%", B).

Let us call n the distance of B from the central line, denote it by dcl(B). If it is on the
central line, then set dcl(B) = 0.

The next condition strengthens a bit the isomorphism condition (5) of Definition 1.1.2.
7. (isomorphism condition) Let Fy, i, F' € A" be of a A-system type and X € A%,
Then X € F, iff 750 [X] € Fy N A", This means that the structures of 1.1.2(5)

remain isomorphic even if we add Fyy N A" to the first and F; N A" to the second.

8. (uniqueness) Let Fy, Fy, F/, F € A" If both triples Fy, Fy, F and Fy, F, F are of a
A-system type, then F; = FJ.

Note that both conditions 7, 8 can be stated equivalently only in the case when F'is

on the central line.

Let us define also a piste to an ordinal.

Definition 1.1.4 Let ((A%" A" %) A € P/ and o € A" " N A%" . The sequence
(A1, A7, By, ., An_1, A7 Bu_1, An, A Apy) of elements of A" is called a piste from A%

n—1»
to o iff
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1. A; € C""(A%7) is the least model of C*"(A%") with a € Ay,
2. either

e A is the least model of C* (A%") and then A = A;, i.e. the piste consists of
A; alone,

or

o A] exists, it is the immediate predecessor of A; on C*'(A%"). If Ay is the
unique immediate predecessor of Ap, or there is another one but « does belong
to it, then the piste consists of (Ay, A7). Otherwise, A7, By, A; are of A-system
type, a € By and the piste continues.

3. For each m,1 <m <n,

(a) Ap, € C* (Bp_1) (i.e. it is on the central line of B,,_;) is the least model in
C*" (By,_1) with a € A,,, either
e A, is the least model of C*" (Bm—1) and then B, = A,,,
or
o A~ exists, it is the immediate predecessor of A,, on oL (Bm-1). If A is
the unique immediate predecessor of A,,, or there is another one but o does
belong to it, then A, = A . Otherwise, A, , B, A, are of A-system type,

a € B, and the piste continues.
4. o € A, and either

e A, is the least model of C"‘+(Bn_1) and then A, = A,; = A,, i.e. the piste
terminates at A,;

or

e there exists the immediate predecessor of A, in C*'(B,,_;). Then A, is this
immediate predecessor of 4,, and there is no Z € A" such that A, Z, A, is of
a A-system type. In this case A,,; = A and the piste terminates at A, ;

or

e there exists the immediate predecessor of A, in C* (B,,_;). Then A; is this
immediate predecessor of A,, and there is Z € A" such that A, Z A, is of a
A-system type, witnessed by & € A N AW " & € ZN A" Then a ¢ Z.
If « & [§,sup(Z)], then A,; = A, and the piste to a terminates at A, . If
a € [&1,sup(Z)], then A, = Z.

11



Note that pistes to ordinals terminate by the last model A,, to which the ordinal belongs
followed by its immediate predecessor in C*" (A,), whenever such predecessor exists.
Define now a well-founded relation called the complexity of pistes. We will use it further

in inductive arguments.

Definition 1.1.5 (Complexity of pistes)
Let ((A%" AW COn7) AWy ¢ P,

e Suppose that A, B € A", We say that the piste from A% to A is simpler than the
piste from A% to B iff

1. AC B, or

2. A¢ B_B¢ A A+ Bandif F € A" is the last common point of both pistes,
then A C F,, where Fy is the immediate predecessor of F' in C*"(F). Note that

necessarily, there is F; € A" such that Fy, F}, F is a triple of a A-system type
and B C Fj.

e Suppose that A € A" and o € A" N A%". We say that the piste from A% to A

is simpler than the piste from A% to « iff

1. A is one of the models of the piste to «,

or

2. if F is the last common model of the pistes, then A € C*"(F), or A & C*" (F)
and A C F,, where Fj is the immediate predecessor of F in C*" (F). Note, if the
second possibility occurs, then, necessarily, there is Fy € A*" such that Fy, Fy, F

is a triple of a A-system type and a € Fj.

e Suppose that a, 8 € A" N A% We say that the piste from A%" to « is simpler
than the piste from A% to S iff a # f3, there is ' € A" which is the last common
point of both pistes and

1. there are D, E € C*" (F) such that « € D € F and 8 € E\ D,

or

2. there are Fy, F; € A*" such that Fy, Fi, F are of a A-system type, Fp € C"‘+(F),
a € Fyand 8 € Fy,
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3. there are Fy, Fy € A" such that Fy, Fy, F are of a A-system type, Fy € CF" (F),&0,&
the witnessing ordinals, and 8 € F'\ (Fo U FY), & < 8 < sup(F}) and « € F7,

or

4. there are Fy, F; € A" such that Fy, Fy, F are of a A-system type, Fy € C*" (F),
and &, & are the witnessing ordinals, and o € F'\ (Fo U Fy), € F} and a < &
or a > sup(Fy).

Lemma 1.1.6 Let ((A%" A" C%") A%™Y€ P' and B € A" . Then

1. ((B,A*" N (BU{B}),C*" | A% N (BU{B})), A" ") e P

2. If B € A" and B' ¢ B, then B' € B.
Proof. We prove both statements simultaneously by an induction on dcl(B) -the distance
from the central line. If B is on the central line, then it is clear. Suppose that B is not on

the central line. Consider the piste (Ay, AT, By, ..., An_1, A-_|, Bu_1, An, A7, B,) from A%
to B. We have

(A7, A" N (AT U{ATD, C T A N (A7 U{AT ), A ) e P,

Recall that A7, By, A; are of the A-system type. Hence we have the isomorphism 7 AT By
between A; and B; which preserves all the relevant structure. In particular, it will move the
piste from A} to a model in A" N (A7 U{A]}) to the piste from B to the corresponding
under 74~ 5 model of A" 0 (By U{B,}). This easily implies that

((By, A" N (B U{B}),C" | A% N (B, U{B})), A" ") e P

Suppose now that we have some B’ € A" B’ C By. If B ¢ A], then the piste from A%"
to B’ goes via By, and hence B’ € By. Suppose that B" C A7. It is impossible to have
B’ = A7, since then

AT NB; 2 B = A7,

which is clearly not the case. So, B’ C A7. Then the piste from A%" to B’ goes via AJ,
and hence B’ € Ay. Then 7 - p (B') € By, but

AN ! /
ﬂ-Al_,Bl(B> _ﬂ-Al_,Bl B _B

So we are done.

Hence, A" N (B, U{B,}) = A" NP(By).

13



Now we deal with B and ((By, A" N(ByU{B}),C"" | A N(BU{B})), A" ") e P
The piste distance from B; to B is shorter than those from A%" to B. So the induction
hypothesis applies.

O

The next lemma is trivial.

Lemma 1.1.7 Let ((A%" AW C"") AW™Y € P and Z € A" is so that Z N k*> >
sup(A%"). Then ((A%" AW O {Y e A |Y C Z}) e P

Let us introduce the following notation:
Definition 1.1.8 Let p = ((A%" A" C%") A"™™) ¢ P’ and B € A", Then set
p1B:=((B.A" N(BU{B}),C" [ A" N(BU{B}),A").

We call p | B the restriction of p to B.
Similarly, if Z € A", then set

P Z = ((A% AW Y {Y e AT | Y C Z)).
Also, let p [ (B,Z) :=(p | B) | Z, if ZN k"3 > sup(B).

By the previous lemmas, p | (B, Z) € P'.

The next lemma follows easily from the definitions.

Lemma 1.1.9 Let ((A%" AW O™ AW™Y € P/ A e A% and 6§ € AW, If 6 <
sup(A), then min(A\ §) € A",

Proof. By 1.1.3(4), (C*"(A), A*"") € P". So, it satisfies 1.1.1(6(c)) and we are done, if A
is a successor model of C*" (A). Suppose A is a limit model of C*" (A). Let (A; | i <) be an
A; = A. Now, § < sup(A), so
starting with some ¢* < n, we have § < sup(4;). Just note that ¢ < j implies A; € A;, hence

increasing sequence of successor models of C*" (A) with | J, <
(sup(A;) | i < n) is an increasing sequence of ordinals with limit sup(A). Set a; = min(A;\0),
for each 7,7* < i < n. By 1.1.1(6(c)), a; € A"

the sequence («; | i* < i < n) is eventually constant. Let o* be this constant value. Then

. Clearly, « > j implies a; < ;. Hence,

min(A \ §) = o and we are done.
UJ

Definition 1.1.10 Let ((A%", A" C*"), A"™) € P and A, B € A™' . We say that A
satisfies the intersection property with respect to B or shortly ip(A, B) iff either

14



1. AD B, or
2. BD A, or

3. A2 B,B 2 A, and then there are A’ € A" N (AU{A}) and n € A" " N A’ such
that
ANB=AnNn,

or just
AnB=A.
Let ipb(A, B) denotes that both ip(A, B) and ip(B, A) hold.

Lemma 1.1.11 (The intersection lemma) Let ((A%" A" C%") AW™") € P and X,Y €
AYT . Then iph(X,Y).

Proof. Assume that X 2Y,Y 2 X.
Consider the pistes (A, A7, By, ..., Ap_1, A, Bu_1, An, A7, B,) from A% to X and

(D1, Dy, Ey,....;Dm1, D5, Ep_1, D, D By from A% to Y.

Let By = E), be the last place up to which the pistes coincide. Then we have both Agy1, Dy1q
in C*"(By) but at different places.

Suppose first that Ay, is above Dy, Then A, | = Dy or A, D Dgy1, and then
Dy € A . Now, A, |, Biy1, Apy1 are of a A-system type. Hence by Definition 1.1.2(4),

there are ordinals ag,a; € A" N Apy1, 0 € A, and oy € By such that
A N Brpr = A Nag = Bryr Nay.
Recall that X C By, and Y C A,;rl. Hence,
XNY =(XNB)NYNAL)=XnNa)N (Y Nay).
Let us use (7) of 1.1.3. Then

_[X] € Ap, nANT

X' =n
Bk+1:Ak+1

Also,
XN p = X, N Q,

since the isomorphism T B AL, is the identity over By, N A, ;. Hence,
XNY=XNnoyNY =X NagNY.

15



Consider
pi= (A, A 0 (A, UEAG D, CF 1AM 0 (A, U{AL ), AT,

By Lemma 1.1.6, it is in P’. We can apply the inductive hypothesis to p,X’ and Y, since
the piste from A, ; to X' is shorter than those from A% o X (it is just a copy under
T B Ay of the final segment (Byi1, ..., An, A7, B,) of the original piste to X from A%").
Hence there are Y/ € A" N (Y U{Y}) and n € A" " NY’ such that

X'NnYy =Y'nn.

Then
XNY=XNaNY =Y"NnNay.

If ap € Y, then we are done. Suppose otherwise. If ay > sup(Y”), then we can just remove
it from the intersection above. If ay < sup(Y”), then replace it by min(Y”" \ «y), which is in
A" by Lemma 1.1.9.

This shows ip(Y, X). Finally, using 7 Ay,
shows ip(X,Y).

0

It is easy to deduce the following generalization using an induction:

By and moving Y to Bji1, the same argument

Lemma 1.1.12 Let ((A%" A" C"") AW™Y € P and Ay, ..., A, € A" for somen < w
. Then there are A’ € A™ N (A U{A}) andn € A" " NA" such that A;N...NA, = A'Ny
or just AN ...NA, =A".

We need to allow a possibility to change the component C*" in elements of P’ and replace

one central line by another. It is essential for the definition of an order on P’ given below.

Definition 1.1.13 Let p = ((A%", A" C"") A%™Y€ P and B € A" . Define swt(p, B)

(here swt stands for switch) to be
<<A0ﬁ+’A1n+’ DR+>,A1R++> :

where D" is obtained from C*" as follows:
D" = C*" unless B has exactly two immediate predecessors in A" . If By # By are such
predecessors of B and, say By € C*'(B), then we set D*' (B) = C*"(B;)"B. Extend D*"
on the rest in the obvious fashion just replacing C*" (By) by C*" (B;) for models including
B and then moving over isomorphic models.

Intuitively, we switched here from By to B;.
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Note that swt(swt(p, B), B) = p.

Let us further denote swt(p, B) also by swt(p, By, B1).
Define ¢ = swt(p, By, ..., By,) by applying the operation swt n-times:
pir1 = swt(p;, B;), for each 1 <i < n, where p; = p and ¢ = p,41.

The following simple observation will be useful further.

Lemma 1.1.14 Let p = ((A% (p), A" (p),C*" (p)), A" " (p)) € P and B € A" (p).
Then there are Ey, ..., En, € A" (p) such that B € C* (q)(A%" (p)), where

g = (A" (p), A" (p), C"" (), A (p)) = swit(p, By, ey Ey).

Proof. If B € C*" (p)(AO"“+ (p)), then let ¢ = p. Suppose otherwise. Consider the piste
(A1, A7 By, ..., Ap_1, A7 Bn_1, A, A7, B,) from A% to B. Then

n—1»
q = (A" (p), A" (p),C""(q)), A" (p)) = swit(p, AT, By, Ay, Ba, ..., A7, By)

will be as desired.
O

Definition 1.1.15 Let r,q € P’. Then r > ¢ (r is stronger than ¢) iff there is p =
swt(r, By, ..., By,) for some By,..., B, appearing in r so that the following hold, where

p= <<AOH+7A1HZ+’CK]+>7A1I€++>
q= <<BOI€+7B1K,+’DR+>’B1/€++>

(1.1) AY A (max(BY ) +1) = B
(1.2) B € C*"(A%") and D (B%") is an initial segment of C*" (A%")
(1.3) ¢=p | (B  max(B™ ))( as it was defined in 1.1.8).

Remarks (1) Note that if t = swt(p, By, .. ., By,) is defined, then ¢ > p and
p = swt(swt(p, By, ..., Bn), Bn, Bu_1,...,Bo) = swt(t,B,,...,By) >t

. Hence the switching produces equivalent conditions.
(2) We need to allow swt(p, B) for the A-system argument. Since in this argument two
conditions are combined into one and so C*" should pick one of them only. Also it is needed

for proving a strategic closure of the forcing.
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(3) The use of finite sequences By, . .., B, is needed in order to insure transitivity of the
order < on P’.

Let p = ((A%" A" O"") A € P Set p\nTT = A", Define PL,.++ to be the
set of all p\r™* for p € P'.

The next lemma is obvious.

Lemma 1.1.16 (P, <) is £*%-closed.

Set p | kT = (A% A" %) where p = (A% AW O, AWTTY € P

Let G(PL,1+) be a generic subset of P, ... Define P_ ., to be the set of all p | k1T for
p € P with p\r ™" € G(PL,++).

Let p € P" and ¢ € P._,.. Then ¢"p denotes the set obtained from p by adding ¢ to the

ot

last component of p, i.e. to Al

The following lemma is trivial.

Lemma 1.1.17 Let p = ((A%" AW CF") AW™Y € P/ max(A% ") > sup(A%'), ¢ €
PL et and g >p L, p\x™t. Then ¢"p € P' and q"p > p.

It follows now that P’ projects to PL ..

Let us turn to the chain condition.
Lemma 1.1.18 The forcing P, . satisfies K¥3-c.c. in Vawtt,

Proof. Suppose otherwise. Let us assume that

0 Fp L, (p, = (A% AT CfTY | o < k%) is an antichain in PL++)

~

Without loss of generality we can assume that each Agj‘+ is forced to be a successor
model, otherwise just extend conditions by adding one additional model on the top. Define
by induction, using Lemma 1.1.16, an increasing sequence {q, | o < x™3) of elements of

P+ and a sequence (po | o < £7%), po = (A% AT CFTY so that for every o < k13
+ + + 5
Go lFpr <1N4gﬂ ; fﬁf , 08 ) = Pa -

For a limit o < k™2 let
7= J asU{sup | 45}
B<a B<a
and ¢, be its extension deciding p,. Also assume that maxq, > sup(Agf+ NKT3).
We form a A-system. By shrirﬁiing if necessary assume that for some stationary S C k™3

and J < k'3 we have the following for every o < 3 in S:
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(a) A" Na=A¥"NBCSs
(b) (AF" NET)N\a#0

(c) sup(AY Nwt?) < 3

(d) supg, = a+1

(e)

okt + 1kt okt
</40¢N 7€7S727K‘70§ Jngfi"'? Aan 7QOzmAan >

+ + + +
(AF" € <SR O fagers A 45 N AT
are isomorphic over 4, i.e. by isomorphism fixing every ordinal below 9, where
faoet KT A%
and
) Okt
fA%,ﬁ— DR — AY

are the fixed enumerations.

We claim that for o < fin S it is possible to extend g to a condition forcing compatibility
of p, and pg. Proceed as follows. Pick A to be an elementary submodel of cardinality ™ so
that

(i) A" A" e A
.. T kT
(i) Cy ,C5 € A
(iii) g5 € A.
Extend gz to ¢ = qzUsup(ANk™3). Set p = (A, A" C*") where A" := Aél"“UA%}“+ U{A},
Cr' = O U Cs U (A, C5 (AT ) A)).
Clearly, (C*"(A),q) € P".
The triple A%’#, A% A is of a A-system type relatively to ¢, by (e) above. It follows that

(p,q) € P'. Thus the condition (6) of Definition 1.1.3 holds since each of (pa,q), (ps,q)
satisfies it. The condition (7) of Definition 1.1.3 follows from (e) above and since both

(Par @) (pg, q) satisfy it.
]
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Lemma 1.1.19 P’ is k™" -strategically closed.

Proof. We define a winning strategy for the player playing at even stages. Thus suppose
(pj |7 <), pj = <<A?“+,A}“+,Cf+>,AJ1“++> is a play according to this strategy up to an
even stage i < k1. Set first

B = JA¥ B = AR u{B™},
j<i j<i
Dt = O U {(BY ABYT I U{CT(AYT) | jis even})}
j<i
and
B}”H = U A;”H U {sup U A}”H}.

j<i j<i

Then pick A%" to be a model of cardinality x* such that
(a) AP C AP
(b) B, BI<" Df" BTN e A%

Set Al*" = Bl U{AF"}, OF = Dt U {(AF, Dy (BY) U {AFT )} and AT =
B U {sup(A%" N k*3)}. As an inductive assumption we assume that at each even stage
j < i, p; was defined in the same fashion. Then p; = ((A%" A" CF") AF™) will be a
condition in P’ stronger than each p; for j < i. The switching may be required here once
moving from an odd stage to its immediate successor even stage.

O

Let us point out in addition the following;:
Lemma 1.1.20 Let G be a generic subset of P'. Then the set
S={A|3(A% AW ATV e @ A= A""}
is stationary subset of [H(k™)]=*" in V[G].
Proof. Suppose otherwise. Then there are p € G and C such that
pl-C is a closed unbounded subset of [H (k%)= disjoint to S.

Work in V. Pick an elementary submodel M of H (), for large enough y, such that |M| = kT,
"M C M and P',p,C, S € M. Let (Do | @ < &™) be a list of all dense open subsets of P’
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which are M.
We use Lemma 1.1.19 and "M C M in order to construct an increasing sequence
(((AY™, ALY ALY | B < &) of elements of P’ above p such that for every a < x*

1. <<<Agﬁ*,A;ﬂ*>,A;ﬁ**> | B <a)e M,
2. ((A%, Al), ALY € Do,

3. Agff* = Uﬂw A%"‘+, if o is a limit ordinal.

Then, clearly, Ag’f = M N H(sk"?) and ((Agf,Ai’f),A}{iH) I+ Ag’f € C. But also
AORT ATy ALY - AT e G Which is impossible. Contradiction.
<< K K K K ~
[

1.2  Suitable structures and assignment functions

In the gap 2 case (see for example [1]) assignment functions a, (those connecting the level &
with level k,,n < w) were order preserving. In other words a,, is an isomorphism between
structures in the language containing only the predicate for the order relation. Here, in the
gap 3 case (and beyond ), a,,’s will be isomorphisms between structures in more complicated
languages.

Let us start with two definitions which will specify relevant structures.

Definition 1.2.1 A three sorted structure ((X,Y, Z),C,€,C ) is called suitable structure
(over k) iff

1. X has a maximal under inclusion element. Denote it by max(X).
2. Y C max(X),
3. C'is a binary relation X,

4. ((max(X),X,C),Y) € P’, where for every A € X we identify C'(A) with the set
{Be X | (A, B)eC}.

5. Z={tin..Nt,|n<w,ty,.. t, e XUY}
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Note that by Lemma 1.1.11, an intersection ¢, N...Nt, above is really simple, thus it is equal
to an element of X or of Y or to sN«, where s € X and a € Y.
Since ((max(X),X,C),Y) € P’ (item 4), it is possible to talk about pistes in a suitable
structure ((X,Y, Z),C,€,C ).
Further we will consider suitable structures also over cardinals g different from . The
definition of such structures is the same only P’ = P’(k) in the item 4 above should be
replaced by P’(1).

Let G(P’) be a generic subset of P’.

Definition 1.2.2 A suitable structure ((X,Y,Z), C,€,C ) is called suitable generic struc-
ture iff there is ((A%" A" C%") A% € G(P') such that

1. ((X,Y,Z),C,e,C ) isasubstructure (not necessarily elementary) of ((A"" A" {0
Nt | <w by, oty € AT UAWTTY,
CK/J’” e7 g >7

2. max(X) € " (A%"),

3. ((max(X), X, C),Y) and ((A%" A" CF") A" agree about the pistes to members
of X and to ordinals in max(X)NY. In other words we require that all the elements
of pistes in ((A%", A" C"") A o elements of X and to ordinals in max(X)NY

are in X.

Note that, as a condition in P’, ({max(X), X, C),Y) need not be weaker than
(A% AT sy A% and hence it need not be in G(P’). Thus, for example, A"
need not be an end extension of Y.
Note also, that any stronger condition ((B%", B D5") B ¢ G(P') with C*" (A%")
being an initial segment of D* (B%") will witness that ((X,Y,Z),C,€,C ) is a suitable

generic structure.

Lemma 1.2.3 Let ((X,Y,Z),C,€,C ) be a suitable generic structure as witnessed by
(AT AT OsTY ATy e G(P'). Suppose that Fy, Fy, F € A" Fy,F € C% (A%") is
a triple of a A-system type with og, a1 as in Definition 1.1.2, and oy € Y. Then Fy, F1 €
X Nmax(X), F € X,ap € max(X)NY.

Proof. The piste to a; from max(X) (or the same from A% ") passes through F and turns to
Fy. Hence, by 1.2.2(4), Fy, F1, F € X. Recall that by 1.2.1(4) we have ({(max(X), X,C),Y) €
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P’. Hence Fy, I, F are of a A-system type in ((max(X),X,C),Y). Then there are
a, € FonY,a) € F1NY such that

FoﬂFleoﬂOéBZFlﬂO/l.

But, also
Fg N F1 = F1 N (05}

and ap, 0 €Y C AT
Hence, oy = o). Finally, af, = 7p, g, (1) = ap. Hence, ap € max(X)NY.
0

Lemma 1.2.4 Let p = ((X,Y,2).C,e,C ) and p' = (X, Y'.Z"),C", €,C ) be isomor-
phic suitable structures (even over different cardinals) and a an isomorphism between them.
Suppose that Fy, Fy, F is a triple in X of a A-system type and oy € FyNY, a4 € F1NY
are witnessing this ordinals. Then a(Fy),a(Fy),a(F) is a triple in X' of a A-system type

witnessed by a(ap) and a(ay).

Proof. Obviously, ag and a; are uniquely determined by Fy and F}.

Denote a(Fy) by Fj,a(F1) by F|,a(F) by F', a(ag) by o and a(ay) by o). Now, Fj, F| € F’,
moreover [ is the immediate predecessor of F' in C'(F’) and F] is an additional predecessor
of F’ under the inclusion relation, since a is an isomorphism between p and p’. Note that by
1.2.1(4) this implies that F{, F}, F" is a A-system type triple in p'.

Let ap € FiNna(Y) and of € F{ Na(Y') be such that

FoNF =FNay=F Naj.

Also af, € FjNna(Y) and o] € F{Na(Y'), since a respects €-relation. But then, necessarily,
af = af, o) = af.

O

Lemma 1.2.5 Let p = ((X,Y,Z),C,€,C ) and p' = (X", Y', Z"),C",€,C ) be isomorphic
suitable structures (even over different cardinals) and a an isomorphism between them. Then
a respects pistes, i.e. for every A€ X and B€ (XUY)NA, a maps the piste between A
and B in p onto the piste between a(A) and a(B).

Proof. Induction on pistes length. Thus, if B in C(A) or if B € Y and the piste to it from

A involves only C'(A), then the isomorphism a guaranties the same for the images. Suppose
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that the piste proceeds with splitting. Let Fp, Fi, F' be the first split on the way to B, i.e.
F € C(A), the triple Fy, Fy, F is of a A-system type, B € F, (or, if B €Y, B ¢ Fp) and
B C Fy (or B € Fy U{F}). By the previous lemma (Lemma 1.2.4), a(Fp),a(F1),a(F) is a
triple in X’ of a A-system type. a is isomorphism, hence a(F') € C'(a(A)), a(Fy) € C'(a(Fy)),
a(B) € a(Fy) (or, if BeY, a(B) & a(Fo)) and a(B) C a(Fy) (or a(B) € a(Fy) U{a(F1)}).
But this means that the piste from a(A) to a(B) goes via a(F}). Now we can apply induction
to the piste from Fj to B, since it is shorter than the original one from A to B.

U

Lemma 1.2.6 Let p = ((X,Y,Z),C,e,C ) and p' = ((X",Y',Z),C",€,C ) be isomor-
phic suitable structures (even over different cardinals), a an isomorphism between them
and Fy, F1,F € X a triple of a A-system type. Then a respects wg, r,, t.e. for every
A€ FyN(XUY) we have a(mry, m (A)) = Tary),ar) (a(A)).

Proof. Let Fy, F1, F € X be a triple of a A-system type and A € [y N (X UY'). We prove
the lemma by induction on the length of the piste from Fj to A.

Suppose first that A € C(Fy) (or in case A € Y the piste to A involves only C(Fp)).
The isomorphism a moves C(Fp) to C'(a(Fp)) and C(Fy) to C'(a(Fy)). By Lemma 1.2.4,
the triple a(Fp),a(F1),a(F) is of a A-system type. So, Tu(m)am) moves C'(a(Fp)) onto
C'(a(Fy)) respecting the inclusion relation. Then 7,y a(rm)(a(A)) should be an element of
C(a(Fy)) at the same place as a(A) in C(a(Fp)), which, in turn is at the same place as A in
C(Fp) and 7, m (A) in C(Fy). Hence

a(Try, 1 (A)) = Ta(ry),a(m)(a(A)).

Suppose now that A € C'(Fy). Let Hy, Hy, H be the first splitting on the way to A from Fj.
The induction applies to Hy, A . Hence

(T, 1o (A)) = Ta(ty),a(Ho) (a(A))-
Let A" = 7y, m,(A). Apply the induction to Fy, A’. Then

a(mpy,my (A') = Ta(ry),ae) (a(A)).
Again, apply induction to Fy, Hy and Fy, Hy. So,

(g, 1 (Ho)) = Ta(ry),a(ry) (a(Ho))
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and
a(7ry.m (H1)) = Ta(ry).a(m) (a(H1)).
Finally,
Ty 1 (A) = T oy (Ho)mrg o (H11) (T, 1 (A).
Applying a, we obtain
a(Tpy,F (A)) = Ta(ry),a(ry) (a(A)).

O
Note that the proofs of Lemmas 1.2.5, 1.2.6 rely only on Lemmas 1.2.3 and 1.2.4 do not

use the component of suitable structures consisting of intersections. Let us isolate a weaker

notion that still will capture all the essential parts.

Definition 1.2.7 A two sorted structure ((X,Y),C, €,C ) is called weak suitable structure
ift

1. X has a maximal under inclusion element. Denote it max(X),
2. Y C max(X),
3. C is a binary relation X,

4. ((max(X),X,C),Y) € P, where for every A € X we identify C(A) with the set
{Be X | (A, B)eC}.

The following analogs of Lemmas 1.2.5, 1.2.6 were actually proved above:

Lemma 1.2.8 Let p = ((X,Y),C,e,C ) and p' = (X', Y'),C",€,C ) be isomorphic weak
suitable structures (even over different cardinals) and a an isomorphism between them. Then
a respects pistes, i.e. for every A€ X and B € (XUY)NA, a maps the piste between A
and B in p onto the piste between a(A) and a(B).

Lemma 1.2.9 Let p = ((X,Y),C,€,C ) and p' = (X', Y"),C",€,C,) be isomorphic
weak suitable structures (even over different cardinals), a an isomorphism between them
and Fy, F1,FF € X a triple of a A-system type. Then a respects wg, p,, i.e. for every

Ae FyN(XUY) we have a(mr, m (A)) = Tary)am)(a(A)).
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Let p = ((X,Y),C,€,C ) be a weak suitable structure. Consider Z = {t; N...Nt, |
n < w,ty, .. t, € XUY} Then ((X,Y,Z),C,€,C ) is a suitable structure. Let us call it

expansion of p to a suitable structure.

Lemma 1.2.10 Suppose that p = ((X,Y),C,€,C ) and p' = ((X",Y'),C",€,C ) are iso-
morphic weak suitable structures (even over different cardinals). Then their expansions are

1somorphic as well.

Proof. Let a be the isomorphism between p and p’. We show that it extends to an iso-
morphism between the expansions. Let Z = {t; N...Nt, | n < w,ty,...,t, € X UY} and
Z'={tin.Nt, | n <w,ity,....t, € X' UY'}. Extend a to a function b in the obvious
fashion: b [ dom(a) = a and b(t; N ... N t,) = a(ty) N ... Na(t,), for any tq,....,t, € X UY.
We need to check that such defined b is a function and an isomorphism.

Note first that for every A,B € X, A’ € (AU{A}) N X and a € Y N A’ such that
ANB = A"Nna we have a(A) Na(B) = a(A") Na(«). Use induction on the pistes complexity
from max(X) to A, B as in Lemma 1.1.11. The inductive step follows since a preserves
A-system triples. Also, by Lemmas 1.2.8,1.2.9, a respects pistes and images under A-system
triples isomorphisms.

Similarly, if instead of two sets we have finitely many A;,..., A4, € X, A’ € (A;U{A;})NX
and o € Y N A" such that Ay N...N A, = A’ ' Na, then a(A;) N...Na(A,) = a(A") Na(a).
Also, the same holds if some (or actually one) of A;’s is in Y, i.e. is an ordinal.

Now, by Lemma 1.1.12, for every Ay,..., A, € X there are A’ € (4; U{A4;}) N X and

ne€Y NA such that A;N..NA,=A"Nn,orjust A;N..NA,=A"

An alternative proof that works for higher gaps as well proceeds as follows. Suppose that
AiN..NA,=BiN..NB,,
for some Ay, ..., A,, By, ..., B, € X UY. We need to show that then
a(A)N...Na(A,) =a(By) N...Na(By,).

The proof is by induction on complexity of the pistes to components of the intersections.
Thus, suppose that A; has a maximal piste complexity among the components of the inter-
section. Consider the pistes from max(X) to A; and to A;. Go to the last point until which
the pistes coincide. Then, as in the proof of Lemma 1.1.11, we replace A; by A} € X and

a1 € Y which are simpler than A; in the piste sense and such that
AlﬁAngllﬂozlﬂAg.
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Now the induction applies.
O

Our setting for the gap 3, which is almost identical to those for the gap 2 in [1], [3], is as
follows:
K is a limit of an increasing sequence (k, | n < w) such that for every n < w, k, caries a
(K, k1" T3)—extender E, (in the gap 2 case (k,, k" ?)—extender was used). The order <p,
of the extender E,, and the corresponding to it projection maps ng, a >p, [ are defined as
in [2].

Fix n < w. We define an analog P/ of P’ on the level n just replacing k by k™.
An assignment function a, will be an isomorphism between a suitable generic structure of
cardinality less than k,, over k and a suitable structure over x;™.

Define Q.

Definition 1.2.11 Let Q0 be the set of the triples (a, A, f) so that:

1. f is partial function from x*3 to k, of cardinality at most x

2. a is an isomorphism between a suitable generic structure
((X,Y,Z),C,e,C) of cardinality less than k,, and
a suitable structure ((X',Y’, Z"),C’, €,C ) in P, so that

(a) max(X') is above every t € X" UY’
in the order <g, of the extender E,, (or actually, the ordinal which codes max(X")
in the fixed in advance nice codding of [« ""3]<%». We need that each element of
[k F3]<#n is coded by a stationary many ordinals below x™*3).

Further let as denote max(X’) by max(rng(a)).

(b) if t € X" UY’ then for some k,2 < k < w,
t < H(x*"), with x big enough fixed in advance. (Alternatively, it is possible to
work with a subset of k"™ only and further require it is a restriction of such
model to x;"3.) We deal with elementary submodels of H(x*), instead of those
of H(k,™"3).
Further passing from Q,o to P we will require that for every k£ < w for all but
finitely many n’s the n-th image of a model ¢ € X UY will be an elementary
submodel of H(x**).
The way to compare such models t; < H(x™*),ty < H(x™2), when k; # ks, say
k1 < ko, will be as follows:
move to H(x**1), i.e. compare t; with t, N H(xtF1).
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3.

4.

D.

A€ Emmax(X’)a

for every ordinals «, 3, which are elements of Y’ or the ordinals coding models in X’

we have
o >p, B >p, v implies
Ty (p) = w5 (145 (p))
for every p € T nax(x),a(4),

Tmax(X),a (V) > Tmax(x1),8(V), for every a > fin Y, v e A

Define a partial order on ), as follows.

Definition 1.2.12 Let (a, A4, f) and (b, B, g) be in Q. Set (a, A, f) >0 (b, B, g) iff

1.

2.

3.

a Db,
/29,

Tmax(rng(a)),max(rng(b)) “AC B7

dom(f)NY? = dom(g)NY?, where Y is the second component (i.e. the set of ordinals)
of the suitable structure on which b is defined.

Note that here we do not require disjointness of the domain of g and of Y°, but as it
will follow from the further definition of non-direct extension, the values given by ¢

will be those that eventually counts.

Definition 1.2.13 Q,,; consists of all partial functions f : k™ — &, with |f| < k. If
f’g € ina then set f >nl g 1ﬂf 2 g.

Definition 1.2.14 Define @), = Q0 U Qn1 and <F=<,0 U <,1.
Let p=(a, A, f) € Qno and v € A. Set

P = [ U {0 Toas(eng(ay oo (v) | @ € dom(a) \ dom(f)}.

Note that here a contributes only the values for a’s in dom(a) \ dom(f) and the values on

common «’s come from f. Also only the ordinals in dom(a) are used to produce non direct

extensions, models disappear.

Now, if p,q € Q,,, then we set p >,, ¢ iff either p >* qor p € Qu1,q = (b, B, g) € Qno and

for some v € B, p >,1 ¢ V.

28



Definition 1.2.15 The set P consists of all sequences p = (p, | n < w) so that
(1) for every n < w, pn € Qn,

(2) there is ¢(p) < w such that

(i) for every n < €p),  pn € Qua,
(ii) for every n > {(p), we have p, = (an,, An, fn) € Qno,

(iif) there is ((A%" A" O"") AW™) € G(P') which witnesses that dom(a,) is a
suitable generic structure (i.e. dom(a,) and ((A%", AW C"") AW™) satisfy

1.2.2), simultaneously for every n,l(p) < n < w.
(3) for every n >m > {(p), dom(a,,) C dom(a,),

(4) for every n, £(p) < n < w, and X € dom(a,) we have that for each £ < w the set
{m < w | =(an(X) N H(x™) < H(x™))} is finite.] (Alternatively require only that
am(X) C KE™ but there is X < H(x ™)) such that a,(X) = X N k™3, It is
possible to define being k-good this way as well).

(5) For every n > {(p) and « € dom(f,,) there is m,n < m < w such that a € dom(a,) \
dom( f,,).

The orders <p, <}, are defined as in the gap 2 case in [1].

Next lemma deals with extensions of elements of P. The analogs for the gap 2 are trivial.

Lemma 1.2.16 Let p € P and ((B*" B D*"), B"*"") € G(P'). Then

1. for every o € B there is ¢ >* p such that o € dom(ay,(q)) for all but finitely many

n’s;

2. for every A € B there is ¢ >* p such that A € dom(a,(q)) for all but finitely many
n’s. Moreover, if ((A%" A™" CF7) AWTY > ((BO" B" D7) B witnesses a
generic suitability of p and A € C”+(A0”+), then the addition of A does not require
adding of ordinals and the only models that probably will be added together with A are

its images under A-system type isomorphisms for triples in p.

Proof. Pick some ((A%" A" C*") A) € G(P') stronger than
((B%" B" D*") B such that

29



1. e AW,
2. Ae AT,

3. ((A%" AT CRTY) AT witnesses that dom(a,(p)) is a suitable generic structure
(i.e. dom(an(p)) and ((A%" A" Cs7) AW satisfy 1.2.2), for every n,l(p) < n <

w.

Note first that it is easy to add to p any A € C*" (AO"+) such that the maximal models
of p,’s belong to A. Just at each level n > I(p) pick an elementary submodel of H(x) of
cardinality ™! which includes rng(a,) as an element. Map A to such a model.

Hence it is enough to deal with a, A which are the members of the maximal model of p,
just otherwise, we can add first A%

We proof the lemma simultaneously for @ and A by induction on the piste distance or
complexity.

Fix n > l(p). Let dom(a,(p)) = ((X,Y, Z),C,€,C).

Suppose that the piste to « involves only the central line. The general case is treated
similarly.

Let A; € C* (max(X)) be the least model of C*" (max(X)) with a € A;. We assume
that A; € X. Just otherwise use the induction to add it. This is possible, since the piste to
Ay is simpler than those to a.

Case 1. A is the least model of C*" (max(X)).

The piste to a from max(X) (or from A%") consists of A; alone. So, in order to add a we
do not have to add models or other ordinals first.

Consider 1 = min((A;NY)\ @) and v, = max(A; NY Na) whenever defined. Suppose that
both 8 and +; are defined. If one of them or both are undefined then the argument below
will be only simpler.

Let us denote a,(81) by B, an(m) by 7, an(X) by X* and a,(A;) by Aj. Let C* be
the function that corresponds to C in rng(a,). Then A € C*(max(X*)). Also, ff,7; €
AT Na,”Y and 7§ < B7.

Assume that A} and 7 are k-good, for some k >> 2 2. Pick now M € A such that

1. M e jf,

2. |M| = K+,

ZWe use the definition of k-goodness as defined in [1].
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3. M is k — 1-good,
4. 7 e M.

Now, extend a,, by mapping o to M and all the images of it under A-system types triples
isomorphisms to those of M.

Case 2. A, is not the least element of C*" (max(X)).
Then we will need to add also the immediate predecessor A7 of A; in C*" (max(X)). Do
this using the induction.
Split the argument into three cases.
Case 2.1. a > sup(A7).
Then we proceed exactly as in Case 1 above only require in addition that a,(A7) € M.
Case 2.2. a =sup(A7).
Set B = a,(A;). Then, its immediate predecessor B~ = a,(A]). Pick k < w such that
B~ < H(x™*) and BN H(x™ ) < H(x*t**1). Then H(x™) € B~. Hence

<gtnts

B™ EVYv < k5" € [H(x™)) IM < H(x™) (M Dvutand |M|< k™).

Let § = sup(B~ Nk, ™3). Set M to be the Skolem hull of § U (B~ N H(x™)) in H(x™).
Then M N k"3 =4. Also, M € B.

Now, extend a, by mapping o to M and all the images of it under A-system types triples
isomorphisms to those of M.

Case 2.3. a <sup(A7).

Consider oy = min(A; \ o). We need to add a; before o and this can be done using the
induction, since the piste to oy is simpler than those to a. So assume that a; is already in
Y. Note that cof(a;) = k™", since A] 2 kT and it is an elementary submodel of H(k™3).
We split the proof now into two cases.

Case 2.3.1. a =sup(a; N A7).

This case is similar to Case 2.2 above. Set B = a,(A;). Then, its immediate predecessor
B~ =a,(A7]). Let E = a,(ay).

Pick k < w such that £ < H(x™), B~ N H(x™*) < H(x™ ) and B n H(x™ ) <
H(x™ ). Then H(x**) € ENB~.

<gtnt3

ENB™ EVy < k™3 € [H(x™)]

IM < H(x™) (M DvuUtand |M|< k™).

Let § = sup(E N B~ N k™). Set M to be the Skolem hull of § U (E N B~ N H(x**)) in
H(x™). Then M N k"3 =4§. Also, M € B.
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Now, extend a,, by mapping o to M and all the images of it under A-system types triples
isomorphisms to those of M.

Case 2.3.2. a > sup(a; NA7).

Consider 81 = min((A;NY)\ @) and 73 = max(A; NY Na) whenever defined. Suppose that
both B, and v, are defined. If one of them or both are undefined then the argument below
will be only simpler.

Let us denote a,(51) by 51, an(y1) by 71, a,(X) by X* and a,(A;) by Aj. Let C* be the
function that corresponds to C' in rng(a,). Then A} € C*(max(X*)) and a, (A7) is the
immediate predecessor of A} in C*(A}). Also, 5*,v* € A} Na,”Y and v* < [*.

Assume that A} and 7 are k-good, for some k >> 2. Pick now M € Aj such that

1. M e gy,

2. |M| = k™2

3. M is k — 1-good,

4. v, an(A7) Nap(ar) € M.

Now, extend a,, by mapping o to M and all the images of it under A-system types triples
isomorphisms to those of M.
Set
Y1 =Y U{d | o is the image of

« under A — system types triples (of X) isomorphisms }.

Claim 1.2.16.1 Y] is a closed set.

Proof. We just prove that every limit point of Y] is a limit point of Y, and hence, is in
Y. It is enough to deal limits of w-sequences, since if every limit of an w-sequence from Y;
is in Y, then any limit will be in Y, because Y is closed.
Such images are generated as follows. Pick the smallest triple F, F}l, F! € X of a A-system
type with Fj, ' € C(max(X)) and Fj € A. We add o' = 7p1 g (@) to Y. Note that it is
possible to have a = o!. Let { € Fj NY,&] € F! NY be as in Definition 1.1.2(4d). Then
al > o implies 5& <a< 5% < al.
Then pick the smallest triple FZ, 2, F? € X of a A-system type with F?, F? € C'(max(X))
and Fy C F'. We add a® = 72 p2() and o' = 7z p2(a') to Y. Again it is possible to
have a* € {a,a'}, where 1 < 2. Let &2 € FZNY, £ € F2NY be as in Definition 1.1.2(4d).

Again, if one of the new «*"’s is above its pre-image, then the corresponding £2 will be above
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sup(FZ), and so, above both a, o'

Continue further all the way up to max(X). This way all the images of « are generated.
Note that we move up over the central line of X.
At each stage j in the process the same effect observed above will take place- if one of a/%’s
is above its pre-image, then the corresponding 55 will be above sup(Fg ), and so, above all
the images o' of o generated at stages j' < j. But all such 55 are in Y. Hence, their limit,
which is the same as those of increasing sequence of o/%’s, is in Y as well.
(1 of the claim.

Turn now to the adding of a model.
Assume first that a model A is on the central line. Let us observe that no collision with
ordinals in Y can occur. Thus if some o € Y, ¢ A and sup(A4) > a (if @ = sup(A), then
by the piste closure we must have A € X), then the same should hold with images, i.e. the
image A* of A must have supremum above o* := a,(a) and o* ¢ A*. There may be infinitely
many such «’s and then, in general, it will be impossible to find A*. In present situation, we
have the advantage - X is closed under pistes to ordinals of Y. This means, in particular,
that there is B, € C'(max(X)) such that a € B, and B, is the least model of C'(max(X)),
or B, has the immediate predecessor B, in C'(max(X)) and o ¢ B, . In our case the first
possibility is just impossible. Thus, we assumed that A € C*" (A%"), o € B, \ A. So, B,
is not the least element of C*" (A%"), which by 1.2.2(3) implies that B, is not the least
element of C'(max(X)) as well.
Hence, B, exists and A C B, .

Consider now a set

T'={B, |acY,a¢ A sup(4) > a}.

T is a subset of the closed chain C'(max(X)). Let E be the least element of 7" under the
inclusion. Then A C E, since T C C* (A%") and so, both E and A are inside the chain
C*"(A%7), but E is of the form B, for some o € By \ 4, and B; € X, A ¢ X.

Now it is easy to add A in a fashion similar to adding an ordinal above.

First we pick the least D € C(F) which contains A. Let F' be the last model of C'(F) inside
D. Note that D can be a limit model of C*" (A%") and so D~ may not exist. Even if D~
exists, still it cannot be in X, since otherwise A = D~ will be in X.

Set f = min((DNY)\sup(A)) whenever defined. Suppose that /3 is defined. If it is undefined
then the argument below will be only simpler. Note that necessarily § > sup(A). Otherwise,
sup(A) = B and it is in Y. Then the largest model W of C*" (A%") with sup(A) ¢ W must
be in X (pistes closure to ordinals). But then W = A, since W # A will imply W € A or
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A € W, both possibilities are clearly impossible.

Note that every v € DNY N isin F. Otherwise, let some v € DNY N3 be not in F'. The

piste to v goes via D but does continue further on C*" (D). Hence, D must be a successor

model of C*" (A%") and D~ must be in X, which is impossible, as was observed above.
Let us denote a,(8) by *, a,(D) by D*, a,(X) by X* and a,(F) by F*. Let C* be the

function that corresponds to C' in rng(a,). Then D*, F* € C*(X*) and * € D*Na,”Y.

Assume that D* and * are k-good, for some k >> 2. Pick now M € D* such that

1. M e g,

2. |M| = kg™t

3. M is k — 1-good,
4. F* e M.

Now, extend a, by mapping A to M and all the images of it under A-system types triples
isomorphisms to those of M.
Note that no new ordinals were added in the process and only models that are images of A
under A-system types isomorphisms for triples in X were added.

Suppose that A is not on the central line. In this case we are supposed to add to p the
whole piste from A%" to A. We can concentrate, using the induction, only on the case of

AT of a A-system type with F, being the

a A-system triple. Namely given Fjy, F}, F' €
immediate predecessor of F'in C* (A%"). We need to add F; (and probably also Fpy, F' if
they are not inside) to p. Fp, F' are on the central line, hence we may assume that they are
in p. Let ag, a1 € F'N A% be so that ag € Fy,ap € Fi, FoNFy =a9N Fy =a; N F; and
either oy > sup(Fy) or a; > sup(Fp). By the argument above, we can assume that aq is
already in p.
Note that F; ¢ p implies that a; € p, since otherwise the piste to a; must be in p, by the
definition of a suitable structure, but F; which is a part of this piste ( actually the final
model of it) is not in p. This provides a freedom to define the image of a; which will be
crucial further in choosing the image of F.

Fix n > l(p). We need to add F; to dom(a,(p)). Let dom(a,(p)) = ((X,Y, Z),C,€,C ).
We assume that Fy, F' € C'(max(X)) and o € Y.
Note that Y N [aq,sup(F})] = 0, since if some & € Y N [ay, sup(F1)], then all models of the
piste to & are in X, but Fj is one of them.

Split into two cases.
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Case 1. ag > a;.

Then sup(Fy1) < ap. Consider the images F§, F* and M, of Iy, F' and o under a,,.

Let us deal first with a little bit simplified situation, but which still contains the main
elements of the construction.

Subcase 1.A. No elements of Y N (sup(Fp N ayp), ap) are in dom(a,) N F.

By Definition 1.1.2, we have cof(ag) = ™. Hence cof(My N k,;™*3) = k"2 So,
"> 0y C My, In particular, My N F € M. Clearly, My N Fy € F*, as well. We assume
that M is k-good for k big enough. Hence there is a k — 1-good M; € M, realizing the
same k — 1 type over My N F as My does. By elementarity, we can find such M; inside F™*.
Finally, pick F} to be an element of F* N M, which realizes over (My N EFf, M;) the same
k — 1 type as F{ realizes over (M, N Ey, M).

Extend a, by mapping F; to F; and all the images of it under A-system types triples
isomorphisms. In particular, M, is added as the image of My under mgy p.

Turn now to a general case.

Subcase 1.B. There are elements of Y N (sup(Fp N ay), ap) in dom(a,) N F.

Let v denotes the last such element below «; and 3 the first such element above a;. If
one of them does not exists, then the argument below applies with obvious simplifications.
Note that, as was observed above, there is no elements of Y in the interval [y, sup(F})].

Denote a,(8) by N and a,(y) by 7*. We assume that My and N are k-good for k big
enough. sup(FgNMy) Nk < NNkt hence Ff N MyNk3 € N (as a set of ordinals
of small cardinality). There is a k — 1-good M; € N realizing the same k — 1 type over
Fy N MyN k™3 as My does and with v* € M;. By elementarity, we can find such M, inside
F*. Finally, pick F} to be an element of F* N N which realizes over (F§ N My N k™3 M)
the same k — 1 type as F{ realizes over (Mo N F§, My).

Extend a, by mapping F; to F} and all the images of it under A-system types triples
isomorphisms. In particular, M; is added as the image of My under 7gs p.

Case 2. oy < 3.

The construction is similar. The only change is that we pick M; above M,.

This completes the inductive construction, and hence the proof of the lemma.

OJ

The ordering <* on P and <,, on ),o seems to be not closed in the present situation.
Thus it is possible to find an increasing sequence of Ny conditions ({a,;, Ani, fni) | 7 < w) in
(,,0 with no simple upper bound. The reason is that the union of maximal models of these

conditions, i.e. |J,_ max(dom a,;) need not be in A" for any A" in G(P'). The next

<w
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lemma shows that still <, and so also <* share a kind of strategic closure.

Lemma 1.2.17 Let n < w. Then (Qno, <, ) does not add new sequences of ordinals of the

length < Ky, i.e. it is (k,,00) — distributive.

Proof. Let 0 < k, and h be a Qno-name of a function from ¢ to ordinals. Without loss of
generality assume that 0 is a regular cardinal.

Using genericity of G(P’) (or stationarity of the set {A%"|A%" appears in an element of
G(P’')}, see 1.1.20) it is not hard to find elementary submodel M of some H(v) for v big

enough so that
(a) QnOa ,@Ja P e Ma
(b) [M[=~r", M 2",

(c) thereis ((A%", A" C"") AW™) € G(P’) such that A" = MNH (5%) and max(A™" "N
kT3) = sup(M N K13).

(d) cf(MNKTF) =4,
(e) M C M.

Note that for such M, M* = M N H(x*3) must be a limit model, since by Definition
1.1.1(6) successor models are closed under k sequences, but M* is not by (d) above.

We have C*"(M*) \ {M*} € M*. Let B € C* (M*)\{M*}. We claim that then
C*"(B) € M. Thus, by elementarity there are B, D*" B ¢ M such that

((B, B D*"), B*"™") € G(P') N M.

Note that C*" | B may be different from D", but by the definition of order on P’
(1.1.15) and since B € C% (M*), there are Fi,...,E, € B"" such that the switch with
Ei, ..., E, turns D* into C*" | B"". But B € M and |B"'| < x*. Hence B C M,
since M D k™. So E4, ..., E, € M, and then the corresponding switch is in M as well. This
implies that its result C*" | B is in M.

The cofinality of C*" (M*)\{M*} under the inclusion must be d, since it is an €-increasing
continuous sequence of elements of M* with limit M* and by (d) above cof(M*Nk*TT) = 4.
Fix an increasing continuous sequence (A; | i < 6) of elements of C*" (M*)\{M*} such that
Uics Ai = M*, Ay is a successor model and for each limit model A; in the sequence A; 1 is

its immediate successor in C* (M*). By (e), each initial segment of it will be in M. Now
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we decide inside M one by one values of h and put models from (A; | i < §) to be maximal
models of conditions used. This way we insure that unions of such conditions is a condition.

We define by induction an increasing sequence of conditions
((a(i), A(i), f(i))]i < 6).
and an increasing continuous subsequence
(Ag,|i < &) of (A;]i < 6)
such that for each i < ¢
(1) (a(i), AQ@), (i) € M,
(2) (a(i +1),A(i +1), f(i + 1)) decides h (i),

(3) A, Ay, € dom(a(i)), Ay,,, is the maximal model of dom(a(i)) and ((Ay,,,,T,C*" |
T),R) € G(P') N M witnesses a generic suitability of dom(a(i)), for some T, R, with
R g Aki+1 U Sup(Ak

'L+1)‘

There is no problem with A(é)’s and f(¢)’s in this construction. Thus we have enough
completeness to take intersections of A(7)’s and unions of f(i)’s. The only problematic part
is a(i). So let us concentrate only on building of a(i)’s.
i=0

Then let us pick some Zy < Z; < H(x™) N M of cardinality x"™!, closed under " -
sequences of its elements and Zy € Z; . Set a(0) = ((Ao, Zo), (A1, Z1)).
i+1

Then we first extend (a(i), A(7), f(4)) to a condition {(a(i)’, A(i)’, f(i)’) € M which decides
h(i). Then perform swt (see 1.1.13) to turn (a(i)’, A(¢)’, f(7)") into an equivalent condition
(a(i)", A(@), f(3)") with A, € C*" (max(dom(a(i)")). Pick a successor model A; (from the
cofinal sequence (A4; | i < ¢)) including max(dom(a(i)”)). Set ki o = j and add it to

dom(a(#)”), using swt inside A; if necessary. Finally we add A;;.

i is a limit ordinal

Then we need to turn a = (J;_; a(j) into condition. For this we will need to add to
dom(a) models and ordinals which are limits of elements of dom(a). First we extend a by
adding to it (Ay,, U;.; a(A,)), where ki = Uj<;k;. Then for each non decreasing sequence
(a]j < i) of ordinals in dom(a) we add the pair ( U;-; o, Uj<i(a(a;) N H(x1))), if it is
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not already in the dom(a), where ¢ < w the maximal such that for unboundedly many j’s
in i a(e;) < H(x"), if the maximum exists or £ >> n otherwise. Finally, for each model
B € dom(a) if there is a nondecreasing sequence (Bj|j < i) of elements of C*" (B) in dom(a)
and B is the least possible (under inclusion or with least sup) including the sequence, then
we add the pair ( U;; B;,Uj<i(a(B;) N H(x*))), if it is not already in the dom(a), where
¢ < w is the minimum between the least k such that a(B) C H(x ") and the maximal ¢’
such that for unboundedly many j’s in i a(B;) < H(x*), if the maximum exists

or

it is k, if the maximum does not exist and k < w,

or

¢ >> n, if the maximum does not exist and k = w.

We will need to extend a bit more if the following hold:
1. B € dom(a),
2. (B, | j < i) is a nondecreasing sequence of elements of C*" (B) in dom(a),

3. B is the least element of dom(a) such that |J,_, B; € B,

j<i
4. (o | j < ) is a sequence of ordinals such that
(a) a; € Bj,
(b) a; € dom(a),
(©) Uiy & dom(a).

Set v =,
Let us consider two cases.

Case 1. a ¢ U,_; B;.

If B is the real immediate successor of |J;_; Bj, i.e. the one in C""(A%T) of G(P'), then

the extension made above suffices. Otherwise, we need to add the real successor of | J,_; B;

aj. Then o € B.

in order to insure pistes to ordinals closure. Denote such successor by E. We map it to a
model £* such that |J;_,(a(B;) N H(x™) < E* < a(B) N H(x*)) and E* is good enough,
where ¢ is as above. Note that each v € B N dom(a) is already in Bj, for some j < i, by
pistes to ordinals closure of dom(a). Finally we map a to (J;_;(a(B;) Na(ay)).

Case 2. a € U;_; B;.

Let E be the smallest model in C*"(B) with a € E.

Subcase 2.1. E is the least (under the inclusion) element of C*" (B).
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If for some j < i we have a; € E, then by the piste closure of dom(a), the model E is in
dom(a). It is easy now to extend a by adding only « which is mapped to an appropriate
element of a(E).
Suppose that for each j < i, a; € E. Consider og. Let Dy be the largest model in C”+(B)
with o &€ Dy. By the piste closure of dom(a), we have Dy € dom(a). Assume that Dy # E,
otherwise proceed as above. Clearly Dy D E, and hence

ag < a < sup(Dp). Then ag := min(Dy \ ap) € dom(a). So, ap < ag < «a. Let
Do be the largest model in C*"(B) with ag; ¢ Do. By the piste closure of dom(a), we
have Dy € dom(a). Again, we assume that Doy # E. Clearly Dy D Dy; D E, and hence
ap; < a < sup(Dp1). Then age := min(Dg; N agr) € dom(a). So, ag < apr < g < . We
continue and define Dgyy etc. The sequence of such Dy, will be €-decreasing, and hence at
certain stage Do, = F.
Subcase 2.2. E is not the least (under the inclusion) element of C*" (B).
Then E has the immediate predecessor £~ in C"‘+(B). Suppose first that « is a limit point
of E~. Note that then necessarily £~ is a limit model, as successor ones are closed under
< kt-sequences.

Claim 1.2.17.1  There is an increasing sequence (o | j < 14) in B~ Ndom(a) with limit .

Proof. Let j <. If o;j € E~, then we take it. Suppose that o; € E~. Pick D; to be the
largest model in C*"(B) with a; ¢ D;. Then, D; € dom(a), and clearly, D; D E~. Also,
a; < a and « is a limit point of £~. Hence a; < sup(D;). Then a;; := min(D; \ a;) € D; N
dom(a). If aj; € E~, then we pick it. Otherwise, continue and consider D;; the largest model
in C~" (B) with a1 € Dj;. Then, D;; € dom(a), and clearly, D;; 2 E~. Also, a;; < a and
a is a limit point of E~. Hence aj; < sup(Dj;1). Then ajs := min(Dj; \ a;1) € D;yNdom(a).
If ajo € E~, then we pick it. Otherwise, continue. After finitely many steps we will reach
some such a;, € E7.
[ of the claim.
Let (o’ | j <) be given by the claim. For each j < i let K be the least model of C""(B)
with o € K;. Then E~ = J,_; Kj, since, clearly E~ 2 |,_, K; and if E- 2 J,_; Kj, then
o will be in the immediate successor K € C*"(B) of Ui Kj, but K € B~ and a ¢ E~.
Now we are in situation of Case 1 with (a; [ i < j) replaced by (o | i < j) and (B; | i < j)
by (K, | < i)

Suppose now that « is not a limit point of £~. Pick j* < i such that for every 7, j* < j <1,
sup(E~ Na) < a;. If for some j,5* < j < i, «; € E, then E will be the least model of
C*"(B) with «; inside, and hence E,E~ € dom(a), due to the piste closure of dom(a).
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Suppose that for each j,7* < j <, a; € E. Fix such j. Pick D; to be the largest model
in C*'(B) with a; ¢ D;. Then, D; € dom(a), and clearly, D; D E. If D; = F, then
E € dom(a). Then, also £~ € dom(a), since a;y := min(E \ o;) € E N dom(a), but £~
is the largest model in C*" (B) with ;1 not inside, and hence it must be in dom(a) by the
piste closure.

Suppose that D; # E. Consider aj; := min(D; \ «;) € D; Ndom(a). Clearly, a1 < «, since
E C D;and a € E. If aj; € E, then E will be the least model of C*" (B) with a;; inside,
since a1 ¢ E~. Then E, E~ € dom(a).

If aj1 & E, then we continue and pick Dj; to be the largest model in C’”+(B) with a1 & Dj1.
Then, D;j; € dom(a), and clearly, Dj; O E. If D;; = E, then £ € dom(a). Then, also
E~ € dom(a), since ajy = min(E \ a;1) € ENdom(a), but E~ is the largest model in
C""(B) with a;, not inside, and hence it must be in dom(a) by the piste closure.

If Dj; # E, then we continue in the same fashion to define a9, Djo etc. After finitely many
steps we will have £ = D, or aj; € E. Both imply E, E~ € dom(a).

Finally denote the resulting extension of a by b.

Claim 1.2.17.2 dom(b) is a suitable generic structure.

Proof. Let as check the condition (6¢) of Definition 1.1.1. Thus let A,a € dom(b), A €
C'(max(dom(b))) a non-limit model and sup(A) > a. We need to show that min(A \ «) €
dom(b).

Case 1. A € dom(a(l)) for some | < i.

If @« € dom(a), then for some j < i big enough we will have A, a € dom(a;), and then
min(A \ @) € dom(a;). Note that if v is a non-limit element of dom(b), then o € dom(a).
Suppose that « is a limit point of dom(b) and o € dom(a). Let (|7 < i) be a nondecreasing
sequence from dom(a) converging to o. By (6¢) of Definition 1.1.1, 7; = min(A\e;) €
dom(a). If (y;]j < i) is eventually constant, then the constant value will be as desired.
Suppose otherwise. Then (;|j < 4) will be also a converging to a sequence. But remember
that A is non-limit, hence *A C A, and so v € A. Then min(A\a) = a € dom(b) and we
are done.

Case 2. A ¢ dom(a).

Assume that a € A, just otherwise min(A \ &) = a and we are done. Denote min(A \ «) by
o

Subcase 2.1. « € dom(a).

Consider then the smallest model E, in C'(max(dom(b))) with « inside. Let E be its
immediate predecessor in C'(max(dom(b))). Then A C E_, since a € A, and A # E_, since
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E, € dom(a) and A ¢ dom(a). Then sup(E,) > «, hence oy := min(E, \ ) > « and
a; € dom(a). E, D A implies that a; < o*. If oy = a*, then o € dom(a) and we are done.
Suppose otherwise. Then oy < a*. Consider then the smallest model E,, in C'(max(dom(b)))
with o inside. Let E_ be its immediate predecessor in C'(max(dom(b))). Then A C £,
since iy € A, and A # E_ , since E; € dom(a) and A ¢ dom(a). Then sup(E,,) > oy, since
o € B and o > a;. Hence oy := min(E;, \ o) > a; and ay € dom(a). If ap = a*, then
a* € dom(a) and we are done. Otherwise, ay < a*. We continue and consider E,,, B, etc.
Note that the sequence of models E,,, constructed this way is decreasing. So the process
stops after finitely many steps. Which means that o* € dom(a).

Subcase 2.2. a ¢ dom(a).

Then « is a limit of an increasing sequence («a; | j < 7) of elements of dom(a).

If an unbounded subsequence of the sequence (o | j < 7) isin A, then v will be in A as well,
since A is a non-limit model and so is closed under § sequences of its elements. Hence there
is j* < ¢ such that for every j, j* < j < i,a; ¢ A. Let 7* < j < i. We have sup(A4) > a > a;.
Set a; = min(A \ a;). By Subcase 2.1, o} € dom(a). If o > «, then o} = o and we
are done. Assume, hence that o < a, for every j < i. But the sequence (a | j < i) is a
sequence of elements of A which converges to a. So, o € A. Contradiction.

O of the claim.

The next claim is similar.

Claim 1.2.17.3 rng(b) is a suitable structure over k.

We need to check that b is an isomorphism between the suitable structures dom(b) and
rng(b). By Lemma 1.2.10, it is enough to show that the restriction of b is an isomorphism
between the corresponding weak suitable structures. But this is obvious, since no A-system
type triples are added at limit stages.

O
It is possible to work in V' rather than in V[G(P’)] or M. Combining arguments of 1.1.19

and the previous lemma it is not hard to show the following:
Lemma 1.2.18 P’ x Q, is < k,-strategically closed.

Lemma 1.2.19 (P, <*) does not add new sequences of ordinals of the length < kg.

Proof. Repeat the argument of Lemma 1.2.17 with P replacing (.
OJ
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The argument of Lemma 1.2.17 can be used in a standard fashion to show the Prikry
condition (i.e. the standard argument runs inside elementary submodel M with ¢ replaced
by k™).

Lemma 1.2.20 (P, <*) satisfies the Prikry condition.

Finally we define — on P similar to those of [1] or [3].
Lemma 1.2.21 (P, — ) satisfies k™ 1-c.c.

Proof. Suppose otherwise. Work in V. Let (p, | @ < k™*) be a name of an antichain of
the length x**. Using 1.1.19 we find an increasing sequence (((A%" A" C57) ALY |
a < k1) of elements of P" and a sequence (p, | @ < k*7) so that for every a < k™ the
following hold:

(a) ({45 AT Ciln)s A ) IE P < s

() Usca A%”+ = A%" if o is a limit ordinal,

Kk AOk™T 0kt
(C) Aa+1 g Aa+17

+ .
(d) A% is a successor model,

(e) (AFT |8 <) € A,
(f) for every a < < k™" we have

C (A% is an initial segment, of CE+( A%w)’

(g) Pa = <pcm | n < w>,

(h) for every n > I(p,), A%, is the maximal model of dom(a,,) and A% € dom(an,),

where pan = (Gan, Aan, fan)-

Actually this condition is the reason for not requiring the equality in (a) above.

Let Pan = (Gan, Aan, fan) for every a < k™ and n > 1(p,).

Let oo < k™. Fix some
oxt 1kt kT 1Tt okt 1kt kT 1Tt
<<Ba+17 Ba+17 Da+1>7 BaJrl > SP' <<Aa+17 Aa+17 Ca+1>7 Aa+1 >
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which witnesses a generic suitability of structure dom(a,,) for each n,l(p,) < n < w, as
in Definition 1.2.2. Note that BY| need not be in C%, (A%") and even if it does, then
DL (BY%) need not be an initial segment of C%,(A%"). By the definition of the order
<p (Definition 1.1.15) there are m < w and FE, ..., E,, € Aa’fl such that

ot ot vt ot ot PR ot
Sw’f(<<Ag+1aA}x+1>Ca+1>7Ai+1 ), B, ..., En) and <<Bg+1aBi+1>Da+1>aBa1y+1 )

satisfy (1)-(3) of Definition 1.1.15.

By Lemma 1.2.16 it is possible to add all E;(i = 1,...,m) to dom(a,,), for a final segment
of n’s. By adding and taking non-direct extension if necessary, we can assume that E;’s are
already in dom(ay,), for every n > l(py).

Now we can apply the opposite switch (i.e. the one starting with E,,, then E,, 1, ...,and
finally £ ) to dom(a,,) (and the corresponding to it under a,, to rng(aa,)). Denote the
result still by aqy,.

Finally, (A%, A" O ), AT will witness a generic suitability of structure dom(a,,)
for each n,l(py) <n < w.

In particular, we have now that the central line of dom(a,,) is a part of Cgil(Agﬂ) and
A%" is on it, for every n,l(pa) < n < w.

Shrinking if necessary, we assume that for all a, 3 < k™" the following holds:
(1) €= L(pa) = L(ps),
(2) for every n < { pay, and pg, are compatible in Q1 i.e. pa, Upg, is a function,

(3) for every n, £ < n < w, (dom(fu,) | @ < k*T) form a A-system with the kernel

contained in A"
(4) for every n, w >n >{, rng(as,) = rng(as,).

Shrink now to the set S consisting of all the ordinals below k™" of cofinality k™. Let «
be in S. For each n, ¢ < n < w, there will be 5(a,n) < a such that

Iﬁl+ Ii+
dom(aan) N ALY C AR, -

Just recall that |au,| < k. Shrink S to a stationary subset S* so that for some a* < min S*
of cofinality x* we will have S(a, n) < o*, whenever « € S*, ¢ < n < w. Now, the cardinality
of Ag’i+ is k*. Hence, shrinking S* if necessary, we can assume that for each o, 5 € S*, ¢ <
n<w
+ +
dom(aa,) NAY = dom(ag,) N AF .
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Let us add A% to each p, with o € S*.
By 1.2.16(2), we can add it without adding ordinals and the only other models that

probably were added are the images of Ag’i+ under A-system type isomorphisms. Denote

the result for simplicity by p, as well.

Let now 8 < « be ordinals in S*. We claim that ps and p, are compatible in (P, —).
First extend p, by adding Aﬁ - This will not add other additional models or ordinals except

the images of Aﬂ ", under isomorphisms to p,, as was remarked above.

Let p be the resulting extension. Denote pg by ¢. Assume that £(q) = ¢(p). Otherwise just
extend ¢ in an appropriate manner to achieve this. Let n > ¢(p) and p, = {(a,, A,, fn). Let
qn = (bn, By, gn). Without loss of generality we may assume that an(A%’fQ) is an elementary
submodel of 2, , with k,, > 5. Just increase n if necessary. Now, we can realize the k,, — 1-
type of rg(b,) inside a,(AY; ©,) over the common parts dom(b,) and dom(a,). This will
produce ¢, = (b, By, g,) which is k, — l-equivalent to ¢, and with rng(b)) C an(A%’fQ)
Doing the above for all n > {(p) we will obtain ¢ = (¢, | n < w) equivalent to ¢ (i.e.
q < q).

Extend ¢’ to ¢ by adding to it <A%’f2, an(AY; <)) as the maximal set for every n > ¢(p).
Recall that A%’fl was its maximal model. So we add a top model. Hence no additional

models or ordinals are added at all. Let ¢! = (b, By, gn), for every n > {(p).

Combine now p and ¢” together. Thus for each n > ¢(p) we add b/ to a, as well as all
of its isomorphic images under A-system type isomorphisms of triples in a,. The rest of
the parts are combined in the obvious fashion (we put together the functions and intersect
sets of measure one moving first to the same measure). Note that this is possible due to the
intersection properties, since the relevant models that witness problematic intersections are
in A%" and in AY" respectively, and so are in the kernel A%

For example let us show that ordinals (i.e. the images of members of Aé% and of A}J,’ff)
are in the right order.

Let n, € Alr +1+ and let nz € A,B ", be the corresponding to it ordinal in ¢”. We need to
argue that 7, > ng. The only problematic case is once there is some ¢ in the kernel above
Na, M- Consider then ¢, € AO"‘+ N Al’“ur such that Ag"‘+ NN = Ag"‘+ Ny, i.e. (4 is the first
element of Ag” above 7,. Then, necessarily, (, is in the kernel. Hence (, € A/%’$+ N Aé’i?
and AY" Nng = AY" N ¢, ie. (, is the first element of A% above 7. But o > 8 and « is
a limit ordinal, hence A% A%i2 In particular, g € A%". This implies 15 < 7q.

Add if necessary A%, as a new top model in order to insure 1.2.11(2a). Let r = (r,|n <
w) be the result, where r,, = (¢,,, Cp, hy,), for n > {(p).
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Claim 1.2.21.1 For each v, +3 <~y < k™1,
(AU AT Oy AT I r e P

Proof. Let v € (a+3,5%+) and G(P’) be a generic subset of P’ with (A%, AIF" ") Al €
G(P').

Fix n > ¢(p). The main points here are that b/ and a, agree on the common part and
adding of b to a,, does not require other additions of models or of ordinals except the images
of b under A -system type isomorphisms for triples in a,.

We need to check that dom(c,) is a suitable generic structure and rng(c,) is a suitable
structure. Let us deal with dom(c,). The range is similar. By Lemma 1.2.10 it is enough to
deal with a weak suitable structures. Let ((X,Y),C, €, C ) be the corresponding redact of
dom(cy,).

Clearly, ((X,Y),C,€,C ) is a submodel

of ((AlF" Al O e, C).

Let us check that the structures ((X,Y),C,€,C ) and

((A;’#, A}Y”H ) C’fr, €, C) agree about pistes to members of X and to ordinals in Y. This will
show, in particular that ((X,Y), C, €, C ) is pistes closed and, hence ({max(X), X,C),Y) €
P

Fix t € X UY (a model or an ordinal). Note that, by the choice of the top model max(X)
of X we have max(X) € C’f (Ag”+). Hence, the piste from A3”+ to ¢t will go via max(X).
If ¢ appears in dom(a,), then the continuation of the piste will be inside dom(a,), since
max(a,) = A% € C(max(X)). It will co-inside with the piste from A% to ¢, since
dom(a,) is a suitable structure. Hence all the members of the piste are in X UY.

Note that if ¢ is in the common part, i.e. if t appears in both dom(a,) and dom(b,), then
t € A%". So the piste to ¢ passes through A%, since A% € C*" (AF).

If ¢t appears in dom(b”) = dom(b,,) U {A%’fQ}, then the piste to ¢t will proceed via A%*f;, since
te A%’fz and Ag’g € C(max(X)). Now, it will co-inside with the piste from A%’fl to t, since
dom(b,) is a suitable structure and A%, € C(AY).

The agreement between the pistes follows.

U of the claim.

Now we have r > p, ¢”. Hence, p — r and ¢ — r. Contradiction.

O

Combining the previous lemmas together, we obtain the following:

Theorem 1.2.22 VP2 is q cardinal preserving extension of V which satisfies 2% = k13.
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Chapter 2

Gaps 4 and above-more symmetry.

It is a slightly changed version of [7] which allows more symmetry in the following sense:
for any two isomorphic models A, B € A" from a generic G C P’ the structure of models
from G of cardinalities smaller than 7 in A is the same as those in B, i.e. m45[E] € GN B
whenever ' € G N A of cardinality < 7.

This symmetry makes the forcing PL, equivalent to Ny NPL, , see [7],1.23,1.24.

<

2.1  One difference between gap 3 and higher gaps

Let P’(3) denote the preparation forcing for the gap 3 defined in the previous chapter. Let
G be a generic subset of P’(3). Consider

S ={A|JUA™ AW Y ATV e G A= A"

It was shown (Lemma 1.1.20) that S is a stationary subset of [H (s73)]<%". Let us point

out in addition the following:

Proposition 2.1.1 If A,B € S and otp(A N x*3) = otp(B N k™), then A and B are

isomorphic by an isomorphism which is an identity over AN B.

Proof. Induction on pistes complexity.
O
The purpose of this note will be to show that this proposition fails already in the gap 4

case.
Theorem 2.1.2 Let A < p be cardinals such that
1. p is regular,
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2. Nt < p,
3. 20 =\,
4. for every 6, \t <& < p, 0 =6.

Suppose that S is an unbounded subset of [H(u)]*.
Then there are A, B € S with otp(AN p) = otp(B N p), but the isomorphism between AN p
and B N p is not the identity on AN BN p.

Proof. Suppose otherwise. Let S be an unbounded subset of [H (u)]* witnessing this.
Consider a sequence (M, | o < p) such that for every a < p

1. (My,e,<,M,NS) < (H(n),e, <,9),

[\

- [Ma| = AT,

3. M, 2\,

4. *M, C M,,

5. f # « implies Mg # M,

Form a A-system and shrink the sequence (M, | @ < p) to a sequence (M, | a € Z) such
that for every «, 5 € Z,a < [ the following hold:

1. Maﬂa:Mgﬁﬁ,
2. sup(M, N p) < B,

3. (My,€,<,M,NS) >~ (Mg, €,<,MzN S) and the isomorphism is the identity on the

common part.

Fix some o #  in Z. Pick an ordinal 7 € M,, above sup(M, N Mz N p).
Now we use unboundedness S and find A € S with 7,7, a1, (7) € A.
Consider A N M,. This set belongs to M,, since M, is closed under A-sequences of its
elements. By elementarity it is possible to find A, € M, such that

e A, DM, NA,
e otp(Aa N p) = otp(AN p),
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e A, €S.
Set Ag = Tar, v, (Aa). Then otp(A, N ) = otp(AgNp) and Ag € S, by (3) above. Note

also that the isomorphism 74, 4, is just maz, a1, (Aa) [ Aa. By (1) above and the choice of 7
we have A, N AgNpu C Ay N 7. Hence 7' :=ma, 4,(7) # 7. But ma, 4,(7) = Tas,,01,(7) and
the last component is in A. So, 7" € AN Ag.
Now,

TaAs(T) = T, a,(Ta,4,(7)).

But € AN A, A A, €S, 80 ma4,(7) =7. Then
TA,A5(T) = Tag,a5(T) = T

Which is impossible, since 7' € AN Ag, A, Az € S and 7 # 7.
OJ

Without GCH type assumptions the theorem above consistently fails. Thus one can use
a "baby” version of the arbitrary gap preparation forcing P’ which will be defined in the

next section:

((A", A7) [ 7 € 5),

with only requirement that models of the same order type are isomorphic over their inter-
section.

We do not know if for the gap 3 always there is S as in Proposition 2.1.1 (or even only
unbounded set like this). Our conjecture is that it should not be the case. On the other
hand in L-like models it may exist due to morass structures inside.

Note also that once we have such S, then it is quite hard to eliminate it. Cardinals should
be collapsed or change their cofinality.

Carmi Merimovich asked the following question:

Suppose Ny, Ny < (H(w,), €,< ) are countable and otp(N; Nwy) = otp(Na Nwsy). Does
it necessarily imply that Ny = Ny?

The following provides a rather complete answer.

Proposition 2.1.3 Suppose that V = L, N1, Ny < (H(ws), €, < ) are countable and otp( NN
wy) = otp(Ny Nwy). Then Ny = Nj.

Proof. By Condensation Lemma, both N7 and N, are isomorphic to L., where o = otp(IN1 N
ws) = otp(N N ).
O
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Proposition 2.1.4 Suppose that 2% > Ry, Ni, Ny < (H(ws), €,< ) are countable, otp(Ny N
LUQ) == Otp<N2 QWQ), but N1 N W9 % N2 ﬂwg . Then N1 % Ng.

Proof. We have Ny Nwy # Ny Nwy and 2% > N, hence there is a real r in N; \ N
Now if N3 = Ny, then the isomorphism function 7y, y, is the identity on w. In particular
TN, N, () = r. Contradiction.

O

The same conclusion can be derived even under GCH.

Proposition 2.1.5 Assume GCH. Suppose that N1, Ny < (H(ws), €, < ) be countable iso-
morphic structures such that min((Ny Nws) \ (N1 Nwsy)) > sup(Ny; Nwsy). Let P be Cohen

forcing which adds a function from Ry to 2 with conditions of a size < Xy. Then there is a

generic G C P such that Ni[G], No[G] < (H(wo)VIC €, <), but N,[G] 2 N»[G].

Proof. Let n; = min((N1;Nwsy) \ (N2Nws)) and 72 = min((NaNws) \ (N1 Nwsy)). Then, clearly,
TNy Ny (1) = m2. Now let us pick g1 : Ny Nwy — 2 to be P-generic function over N;. Let
g1(m) = 0. Consider g = g1 | n;. Clearly, g € NyNP and 7, n,(9) = g. Set ¢ = gU{(n2, 1) }.
Extend now ¢’ to go : No Nwy — 2 which is P-generic function over Ny. Set ¢” = g1 U gs.
Then ¢"” € P, since 1, = min((No Nws) \ (N1 Nws)) > sup(N; Nws). Let now G be a generic
subset of P with ¢” € G. By the construction we have N;[G], No[G] < (H(wq)VI¢ €, <),
but |JG(m) # U G(n2), and so the models N;[G], N3|G] cannot be isomorphic.

0

2.2 The Preparation Forcing

We assume GCH. Fix two cardinals x and 6 such that x < 6 and 6 is regular.

We define a set which is parallel to P” of Gap 3, i.e. the set of central lines.

Definition 2.2.1 The set P"” consists of sequences of the form (C7 | 7 € s) such that

1. s is a closed set of cardinals from the interval [« 6] satisfying the following:

(
(

a) |sNd |< o for each inaccessible § € [kT, 0]

)
b) kT,0 € s
) if pT € sand p > k™, then p € s
)

(c

(d) if p € s is singular, then s is unbounded in p and p* € s.
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If there is no inaccessible cardinals inside the interval [T, 0], then s can be taken to

be the set of all the cardinals of this interval.

2. For every 7 € s, C7 is a continuous closed chain of a length less than 71 of elementary
submodels of (H(0"), €, <, C, k) each of cardinality 7

such that

(a) for each element X € C™ we have X N7 € On and, hence X D 7,
Further we shall denote otp(X N 6#7%) by simply otp(X).

(b) If X € C7 and there is Y € C?,Y D X, for some p € s\ 7+ 1, then there is
Y € C7,Y D X such that for each p € s\ 7+ 1if Z € C” and Z D X, then
Z DY, where 7* = min(s \ 7+ 1).

(¢) If X is a non-limit element of the chain C” then
L CT X ={Y|YCX,Ye(C}elX,
i, ofM> Y C X,
iii. if for some p € s,p > 7 we have Y € C? with sup(Y) > sup(X), then X C Y,

iv. if for some p € s,p > 7 we have Y € C”? with sup(Y) < sup(X), then there
are p' € (s\p)NX and Y’ € C” N X such that Y DY and Y NX =Y'NX.

Note that p’ = p, unless there are inaccessible cardinals.

v. f€e(s\7+1)NX and C*N X # 0, then
Jivectlyextex

Denote this union by (X)e.

Note that if for some 7 € s, € sN7and Z € C7 thereisno p € s\ 7, A € C¢
with (A), defined and so that Z C (A),, then Z O B for each B € C°.
Since, if for some B € C¢ we have sup(Z N 07) < sup(B N OT), then, by the
condition (iv) above, there are p € s\ 7,Y € C? N B such that Z C Y and
ZNB=YNB. So, (B), exists and Z C (B),.

vi. (CSN(X)e|€€s\T7+1,(X)e is defined ) € X.

3. If (§; | j <) is an increasing sequence of elements of s, § = |J,_;§; and (X; [ j <) is
an increasing (under the inclusion) sequence such that X; € C% for each j < i, then
X =, X; isin C°,
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The next set will be needed here in order to define a A-system type triple.

Definition 2.2.2 The set P” consists of all sequences of triples
(A AT CTY | T € )
such that for every 7 € s the following hold:
1. |AYT| <7,
2. A ¢ AT,
3. every X € A'7 has cardinality 7 and is either equal to A" or belongs to it,
4. C7: AT — P(A'7),
5. (CT(A) | T € s) € P,

6. (Coherence)
if X,Y € C7(A") and X € C"(Y), then C7(X) is an initial segment of C7(Y") with X

being the largest element of it.

7. Let BE C7(A") and ' = {p e snt|3IX € CP(A%) X C B}. For each p € s’ let
B, be the largest element of C?(A") contained in B. Then

(C*(B,) | pe &) (C(B)) (CX(A™) [ £ € s\ 7 +1) € P

Now we define A-system type triples. The definition is more involved than those in the
gap 3 case. The basic reason is that instead of using a single central line consisting of ordinals
there, we may have here many other central lines. Over each of them A-system type triple
may appear (thus, for example for the gap 4: there will be A-system type triples for x*
relatively to lines of models of cardinality x™*, and those of cardinality x** relatively to
lines of cardinality k™, i.e. ordinals). We define simultaneously also switching using the

induction on the rank of sets.

Definition 2.2.3 Suppose that p = ((A°7, A", C") | 7 € s) € P", F € C"(A"), for some
T € s, 7 <0 and Fy, Fi € F. We say that the triple Fy, Fi, F' is of A-system type iff

1. Fp is the immediate predecessor of F' in CT (A7)
2. Fi < F,
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. if for some p € s,p > 7 we have Y € C?(A%) with sup(Y) > sup(F}), then F; C Y,

. if for some p € s,p > 7 we have Y € C?(A%) with sup(Y) < sup(F}), then there are
"€ (s\p)NFand Y € CP(A%)N Fy such that Y DY and Y N Fy, = Y' N F.

Here we need to consider two possibilities: 71 € s or 77 ¢ s and then min(s\ 7+ 1) is

an inaccessible cardinal. We will treat both possibilities similar. Denote min(s\ 7+ 1)

by 7*. So 7* is either 77 or 7* is an inaccessible.

. There is H; € A'™ N F; which is maximal under inclusion, where i € {0,1}. Moreover
Hy e C7(A").

. There are Gy, Gy € C™ (A°") N F such that

(a) cof(GoN (7)") = cof (G1 N (77)7) =77,

(b) Gy € Fy and G, € Fy

(¢) FoNFy = FynGo=F NG,

(d) either Gy € Gy or Gy € Gy,

(e) there is a switch of p\ 7+ 1 := ((A°, A" C™) | 7 € s\ 7+ 1) which involves

models only with supremums below max(sup(F,N607%), sup(F; NOT)) which leaves
Hy on the central line for 7* and moves H;, GGg, G; to the central line. Moreover,
all the models involved in the switch are in F'.

Here we use the induction on the ranks of sets.

Further let us call Gg, Gy the witnessing models for Fy, Fi, F.
We may refer to Hy, H; and the models used in the switch as witnessing models as

well.

The next condition will require more similarity:

. (isomorphism condition)

the structures

(Fo, €, <, C,k, 7, CT(Fy), (A N EFy | pe (s\T)NF), (CP T AYNFy | pes\T), fr,)
and

(F1,€,<,C, k7, CT(F), (AN EF [ pe (s\T)NEY,(CP T AYNFy | pes\T), fr)
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are isomorphic over Fy N Fy, i.e. the isomorphism 7g m between them is the identity

on Fy N Fy, where fr, : 7 +— Fy, fr, : 7 <— F} are some fixed in advance bijections.

In particular, we will have that otp(Fy) = otp(Fy) and Fo N 7* = Fy N 7"
Note that here we use C* | A N F; (i < 2). In

the gap 3 case we had only A" but it was just an increasing sequence and so served
as a replacement of C*" " as well.

8. For each ¢ € s, if X € A€ and X D F,, F}, then X D F.

Define the switch ¢q of p by Fy, F, F' to be

((A%, A%, D) | € € 5),

where D¢, for £ € s\ 7 + 1 is determined by switching in p \ 7 + 1 below max(sup(Fp N
67),sup(F; N 6F)) which turns C™ (H;) into an initial segment of 7*-central line. D7(F) =
C™(Fy)"F and D"(A") = D™(F)™(X € C7(A") | X D F). The rest is defined in the
obvious fashion by taking images under isomorphisms 7g, r, etc.

Further let denote such ¢ by swt(p, F').

Note that that it need not be a condition.

Denote by swt(p, By, ..., B,) the result of an application of the switch operation n-times:

pit1 = swt(p;, B;), for each 1 < i < n, where p; = p and swt(p, By, ..., B,) = Pni1.

Note that there is no A-system type triples in the cardinality 6.

Now we define the preparation forcing P’.
Definition 2.2.4 The set P’ consists of elements of the form
(A AT CTY | T € s)
so that the following hold:

1. <<AOT’A1T’CT> | = S> c 73//’
We call C7(A%) 7-central line of ((A°7, A C7) | T € s).

The following conditions describe a special way in which A" is generated from the

central line, for each 7 € s.

2. Let B € A'". Then B € C"(A") (i.e. it is on the central line) or there there is a
finite sequence piste(B) of models in |J ., , A" that terminates with B. We call this
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sequence a piste to B and it will be defined recursively below.
First let us define blue (easy) pistes and the set bp(A°T) of elements of A" reachable
by such pistes from A°7.

Set CT(A) C bp(A°). If B € C™(A"), then set piste(B) = (B).
Suppose now that A € bp(A°") and bp(A) is defined. Again, set C7(A) C bp(A°T). If
B e C7(A)\ {A}, then set piste(B) = piste(A)™(B).

It is allowed to continue a blue piste via a A-system triple.
Blue Piste Continuation—First Continuation.

Suppose now that A € bp(A°7), bp(A) is defined and there are models Ay, A; € ANA"
such that

(a) the triple Ay, A;, A is of a A-system type with respect to ((A%, AE C¢) | € € s\71),
(b) Ag € C7(A),

Then we add A; to bp(A°") and piste(A;) is defined by adding A;, Ay and the models
witnessing the A system to piste(A).

Now let B € A'™. We define piste(B) the piste leading to B. If B € bp(A°), then
piste(B) was already defined. Suppose that B & bp(A°7). We follow first the blue piste
down from AY" until reaching the least element A of bp(A°") with B € A, i.e. first pick
the least element of C7(A°") with B inside if it is not of a A-system type, then set A
to be this element; otherwise, take the immediate predecessor of it which is not on the

central line and continue down through it etc.

We continue and define recursively (and using €-induction) in addition sets of models
connected by a piste to a given model T € |J .. A" which will be denoted by pe(T).

Require that bp(T") C pe(T).

ves

Second Continuation.

There are p € sN A, p > 7, T*, Ty, Ty, T € A N A such that

(a) T* is on p—central line relatively to A, i.e. once we make the switches along the
piste up to A which move A to the central line, then 7™ is moved there as well;
other way to state this: if Z is the largest model of A N A, then T* € C*(Z).
In particular, if A is the first model of the piste or only the first continuation was
used on the way to A, then T* € CP(A").
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(b) T, Ty, Ty € pc(T).
Note that T € A, so we can assume that pc(T™*) is already defined.
(c) piste(T*,T) € A,
(d) Ty, Ty, T are of a A-system type,
(e) Thereis E € bp(A) such that
i ECT,
ii. there is no E' € bp(A) with E C E' C Ty,
iii. B C o (E).

We add all the relevant models above, i.e. T* Ty, 71, T, E, mp, 1, (F) etc. to piste(B)
and 77, 1 (E) to pc(A). Continue further from mp, 7, (E).

Note that 77, , (E) is an immediate predecessor of A. Once E is a proper subset of
Ap, this produces an immediate predecessor of A of smaller order type.
Also this process applied to different 7’s and E’s may generate a large number of

immediate predecessors of A of different order types.
The next continuation is just an iteration of the previous one.
Third Continuation.

There are n < w and a sequence (A; | i < n) of elements of A7 N A such that

(a) A € bp(A),
(b) A; is obtained from A, as in Second Continuation.
(c) For every 7,2 < i < n, A; is obtained using A; ;. Namely there are E' €
bp(Ai_1),pi € sNA, pt > 1, T™ Ti, Ti, T" € A N A such that
i. T% is on the central line relatively to A,
i T8, T8, T" € pe(T™),
iii. T¢, TY, T are of a A-system type,
iv. piste(T™,T") € A,
v. BV C A1 N T;,
vi. there is no F' € bp(A;_,) with £ C E' C T¢,
vii. A; = WTg,Tf(Ei)a

(d) BC A,
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We add all the relevant models above to piste(B) and all models of |J,, pc(4;) to
pc(A).

The next condition insures a kind of symmetry:

. Let Tg, TT', E™ be as in Third Continuation. Then wzp 7n[pe(E™)] = pe(mrp mn(E™)).

Moreover mrn 5 | pc(E™) is an isomorphism between the corresponding structures.

We require that every element of A'" is connected to A°" by a piste:
. A = pc(A°T), for every T € s.

. Let Fy, Fy, F € A" be of a A-system type, Fy, F' € CT(A"). Suppose that £ € sNT,
(A%), exists and (A%), D Fy. Let X € C(A%) be the least with (X), D Fy. Then
(X), 2 F.

The meaning of this condition is that it is impossible to have a small model in between
models of a A-system type of larger cardinality. It will not be very restrictive for our
further purposes, since we will be always able to increase first elements of P’ by adding

models of cardinality 7 at the top, and only then to make a A-system type triple.

The next condition is relevant once inaccessibles are present.

. Let Fy, Fy, F € A" be of a A-system type, Fy, F' € CT(A°). Suppose that £ € sN T,
X € C4(A%), for some p € s\ 7, (X), exists and (X), 2 Fp. Then (X), D F.

. (uniqueness) Let fg, I, by, by, B € . oth triples Fo, 1, I an , Py, I are o
(uni ) Let Fy, Fy, Fj, F|, F A7 If both triples Fy, Fy, F d Fj, F|, F f
a A-system type, then {Fy, [} = {F}), F|}.

The following lemma follows directly from the definition.

Lemma 2.2.5 Let ((A% A€ C%) | ¢ €s) € P'. Then AY is a chain.

Proof. Just note that we have no A-system triples in the cardinality 6. Hence each model

in A is on the f-central line, i.e. on C?(A%).

We need to allow a possibility to change the component C™ in elements of P’ and replace

one central line by another. It is essential for the definition of an order on P’ given below.
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Definition 2.2.6 Let r,¢ € P’. Then r > ¢ (r is stronger than ¢) iff there is p =
swt(r, By, ..., B,) € P’ for some By, ..., B, appearing in r so that the following hold, where
p=((A% A%, C%) | € €s)
1= (B B DY) | € € )

1. ¢ Cs

— Y

2. B% € C¢(A%), for each £ € ¢,

3. q=p [ (B |es),
where p [ (B% | € §') = ((B%, A" N (B¥ U{B%}),C* | (B*U{B%})) | € ),

4. for each € € s and X € C(A%)\ C¢(B%) q¢e€ X,
5. for each £ € s\ s’ and X € C¢(A%) q¢e X.

The meaning of the last two conditions is that new models over central lines supposed to be

above all old ones.

Let p = ((A%, A C¢) | £ €s) € P and n € s. Set p\n = ((A% A% C%) | £ € s\ n).
Define P, to be the set of all p \ 1 for p € P".

Lemma 2.2.7 The function p — p \ n projects a dense subset of the forcing P’ onto the

forcing P%,.

Remark. Note that we split at n only p’s in P’ with 7 inside s of p. The reason is that in
the case of 7 € s an extension of p\ n may include models of cardinality 7 which for example

belong to models of p of cardinalities below 7. Such extensions will be incompatible with p.

Proof. The set of p’s in P’ with 7 inside s of p is dense. Denote it by D,,.

Let p € D, and ¢ € P>,,q > p\n. We need to find » € P',r > p such that r \ n > ¢. Let
us take an equivalent to ¢ condition ¢’ in P%, (a switching of g) with the central lines of ¢’
extending those of p\ 7. Then p™¢’ the combination of p with ¢’ will be in P’, p~¢ > p and
(P=d)\n=d.

0

Lemma 2.2.8 P, is n*-strategically closed.
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Proof. We define a winning strategy for the player playing at even stages. Thus suppose
(pj 1 J <1),p; = ((AY,AJ7,C7) | T € s5) is a play according to this strategy up to an even
stage i < n7.

Split into two cases.

Case 1. 1 =75 + 1.

Let p = ((A°7, A'7,C7) | 7 € s = s;) be a switch of p; which restores A}, to 7-th central
line, i.e. AY" € C7(A"), for every 7 € 5;_;.

Then pick an increasing continuous sequence (A% | 7 € s) such that for every 7 € s
(a) COf(T)>14’?T g A?T’
(b) (pr |k <i),p, (A |7/ < 7)€ A",
Set p; = ((AY A" CT) | T € s), where

AT = AT U{AT}CT =0T [ AT U{{A]7,CT(AT) U{AT )}

Case 2. 7 is a limit ordinal.

Set first
s = the closure of U 5;.
j<i
For every 7 € ,_, sj, define
or or 1T 1T or
Ai = UAJ 7Ai = UAj U {Az }a
i<t i<t
cr= U cu{Aar Ao {CrAY) | jis even})}.
j<t,j is even
If 7€ s\ U, sj, then set
Ar=J Ay
T'€(Ujcisj)NT

AT ={A} and CT(A7) = {{A]" {47 })}-

As an inductive assumption we assume that at each even stage j < i, p; was defined in
the same fashion. Then p; = ((A%, Al",CT) | 7 € s) will be a condition in P’ stronger than
each p; for j <.

O
If we take n = 6, then it is easy to show the following:
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Lemma 2.2.9 (PL,, <) is 07 -closed.

Let p= ((A% A% C%) | £ €s)e P and n€s. Set p | n=((A% A% C%) | & e€snn).
Let G(P%,) be a generic subset of P, . Define P, to be the set of all p [ n for p € P’
with p\n € G(P%,).

Lemma 2.2.10 P' ~ P, «P',.
Lemma 2.2.11 Ifn is a regular cardinal, then the forcing PL, satisfies nt-c.c. in VP,

Proof. Suppose otherwise. Let us assume that
@H@Zn((ga = ((égf, 1N4};, g;} [T € 5q)|a< n*) is an antichain in 73'<n)

Without loss of generality we can assume that each A% is forced to be a successor model,
otherwise just extend conditions by adding one additional models on the top. Define by
induction, using Lemma 2.2.8, an increasing sequence (g, | o < n™) of elements of P., and

a sequence (p, | o < ™), po = ((AY AT CT) | 7 € s,) so that for every a < ™
qa”ﬁlzn<<:4gj7 :45—7 g£> | T E ;ioz) :ﬁa .

For a limit v < ™ let g, be an upper bound of {¢s | f < a}, as defined in Lemma 2.2.8
and ¢, be its extension deciding p,. Also assume that p, € A" (q,), where A%(q,) is the
maximal model of ¢, of cardinalitr; n.

Note that the number of possibilities for s,’s is at most 7, since if 7 is an inaccessible,
then by Definition 2.2.1(1), |ss] < n and if 1 is an accessible cardinal, then n = (n7)*
(remember that 7 is a regular cardinal). So s, Cn~ U{n~}. But 27 =n.

Hence, by shrinking if necessary, we may assume that each s, = s*, for some s* C 7. Let
n* = max(s*).
Form a A-system. By shrinking if necessary assume that for some stationary S C n* we

have the following for every @ < f in S:
LAY 0 A(g,) = AZ" N A™(g,) € A™(go)

* * * * on* * 1n*

2. <Ag77 6, 5,50k, Og 7ng77*7 Aéﬂ 7qaﬂAgZ7 > and <A1877 €, S, Gk, o 7ng7l*7 Aﬁn 1 qp M

A%"*> are isomorphic over A% N Ag”*, i.e. by isomorphism fixing every ordinal below
A AU where

. On*
ngn* : T]* — Aan
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and
Foon 1 —— A%
Agr Tl B
are the fixed enumerations.

Note that A% N A%”*| < 7n*. So we can define a function h, : n* — n, for every
a € S, by mapping each i < n* to the order type A% N O+ between the i-th element of
A% N Ag”* N and its immediate successor in A" N Ag"* N 6*. The total number of such
he’s is at most 7, hence by shrinking if necessary we will get the same function. This will
insure the isomorphism which is the identity on A% N A%"* N 6T and, hence, on A" N Ag"*.

We claim that for o < fin S it is possible to extend g to a condition forcing compatibility
of p, and pg. Proceed as follows. Pick A to be an elementary submodel of cardinality n*
with pa, pg, gg inside.

Then the triple AO”*7A(O)]7*,A is of a A-system type relatively to ¢g, by (2) above.
Use this to construct a condition stronger than both p,, ps.

Let (A(7) | 7 € s* U s(gz)) (where s(gg) denotes the support of ¢z) be an increasing and
continuous sequence of elementary submodels such that for each 7 € s* U s(gg) the following
hold:

i pomPB»QﬁaA € A(T)a
o |[A(T)|=T.

Extend gg to ¢ by adding to it (A(7) | 7 € s(gs)), as maximal models, i.e. A°(q) = A(T).
Set p = ((A%, A", C™) | T € s*), where

A = A(nr), A" = AT U AL U{A, A,
C" =CIUCE U(A CT (AY" ) A) U (A™ CIT (AT )" AT A™),
and for each 7 € s* Nn*,
A = A(7), AT = AT U AT U{A"},
CT=CluCzuU (A CE(A%T)”AOT>.
The triple A%"*, A% A is of a A-system type relatively to ¢, by (2) above. It follows
that (p,q) € P’. Thus the condition (2) of Definition 2.2.4 holds since each of (p,, q), (pg, q)

satisfies it.
O
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Lemma 2.2.12 Letn, k <1 < 0, be a reqular cardinal. Then in VF we have 2" = n*.

Proof. Fix N < H((2*)*), for X large enough, such that P’ € N, |[N| = n™ and "N C N.
We find p]ZV77+ € Plzrﬁ which is N-generic for PIZW’ using ntt-strategic closure of PIZW' Let
G(PL,+) be a generic subset of P, with p>,+ € G(PL, ;). Then, Nlp>,+] < V\[G(PL,+)].
By Lemma 2.2.11, P_ , satisfies n**-c.c in V[G(PL, ;)]. In particular, PL, satisfies n**-c.c.
Let G(PL,) be a generic subset of P, over V[G(PL,.)]. Denote N[ps,+] by Ni. Then
N[N N G(PL,)] < VAIG(PL,+)][G(PL,)], since each antichain for P_, has cardinality at
most 7. Hence, if it belongs to N; then it is also contained in N;. Denote N;[N;N G(PL,)]
by Ns.

Consider P_, N Ny. Clearly this is a forcing of cardinality n*. By Lemma 2.2.11, P._
satisfies 77-c.c., so PL, M N is a nice suborder of PL,. Thus, let G C P, be generic over
VIG(PL,)IG(PL,)] and H = GNN,. Then H is PL, N N> generic over V[G(PL, ,)|[G(PL,)],
since, if A € PL, N Ny is a maximal antichain, then A is a maximal antichain also in P., .
This follows due to the fact that Ny is an elementary submodel closed under n-sequences of
its elements. Namely, |A| <7, so A € Ny. Then

N |= A is a maximal antichain in P, .

Now, by elementarity, A is a maximal antichain in P.,. So there is p € G N A. Finally,
A C N, implies that p € N, and hence p € H.

We claim that each subset of n in V|G(PL,,)]|G(PL,)][G] is already in No[G]. It is
enough since |Ny[G]| = |N| =n™.

Work in V. The construction below can be preformed above any condition of P’ stronger
than p§n+ € P/ZW (which is needed in order to preserve the elementarity of N in generic
extensions). So, by density arguments, we will obtain the desired conclusion.

Let a be a name of a function from 7 to 2. Define by induction (using the strategic

closure of the forcings and n*-c.c. of PL,) sequences of ordinals

(0 | B<m),{(v(a,B) | B<n,a<ds)

and sequences of conditions

(pp() | a < 3)(B < n), (p(B) | B<n)
such that
(1) for each 8 < n, ds <n™,
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2) for each 8 < n, (pg(a)s, | @ < dg) is increasing sequence of elements of P, and p(f3
1, \PplQ)>n B >n

is its upper bound obtained as in the Strategic Closure Lemma 2.2.8,

(3) o(0)zp+ > Y+,

(4) the sequence (p(5) | B < n) is increasing,

(5) for each § < and a < dg, ps(a)lbe(B) = v(a, B),

(6) if for some p € P’ we have p \ >pL, p(B) >y, then there is o < dg such that the
conditions p, pg(c) are compatible. (Le. {pg(a)<, | a < dg} is a pre-dense set as

forced by p(8)>,).

Set p(n) to be the upper bound of (p(3) | B < n) as in the Strategic Closure Lemma 2.2.8.
Let L' denote the top model of cardinality 7 of p(n), i.e. A% (p(n)). By the construction in
2.2.8, we have dg, p(5) € L' and y(a, ), pg(a) € L', for each f < npand a < d3. Alternatively,
we can just extent the model L’ to one which includes this sequences. Extend L’ further if
necessary to a model L in order to include p(n) as an element.

Turn for a moment to a generic extension. Let G(PL, ;) be a generic subset of P, , with
pm) \n" € G(PL,+). Pick K € N realizing the same type as those of L in H(2M[G( L))
over N N L. Note that N N L is a subset of N of cardinality n and, hence, it is in N.

Let

(a(B) 18 <m) (gsla) | a <dg)(B <n)

be the sequences corresponding to

(pala) [ o < 65)(B <), (p(B) | B <m)

and let g(n) correspond to p(n). Note that g(8) \ n*,qs(a) \ n* are in G(PL, ), since
p(B)\ ", ps(a) \ n* are in G(PL, . ). Then,

a(B)\" ap() \ 0" <pr  pZ,e,

by the choice of pgw and since p§n+ §p/§n+ pm \n" € G(PL, . )

Combine now K, L into one condition making them a splitting point. Let M be a model
of cardinality n such that K, L € M. Then the triple L, K, M will be of a A-system type
relatively to p(n)”L~M (which is defined in the obvious fashion with L € C"(M)). Now,
we add ¢(n)"K to p(n)"L~M and turn this into condition in P’, exactly the same way as it

was done at the end of the proof of Lemma 2.2.11. Denote such condition by r.
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Define a name b of a subset of n to be

{{as(a),v(a, B)) | o < b5, B < m}.

Clearly, b isin N.
Claim 2.2.12.1 r|fa = b.

Proof. Let G be a generic subset of P’ with r € G. Then also p(n)>y, ¢(n)s, € G. Now, for
each 8 < n there is a < d3 with pg(a) € G (just otherwise there will be a condition ¢ in
G forcing that for some [ there is no a < dg with pg(a) € G. Extend it to t' deciding the
value a(f). By (6) there is a such that t', ps(a) are compatible). Let ' € G be a common
extension of r and pg(a). Recall that L, K, M is a triple of a A-system type in r and the
isomorphism 77, moves pg(a) to gs(cr). Hence gs(a) < 7’. But then ¢z(a) € G.

O of the claim.

O

Remark 2.2.13 The proof of 2.2.12 actually shows that in V[G(P>,)] the forcing P, is

equivalent to the forcing No NP, of cardinality . Thus, instead of a name a of a subset

/

<> the antichain has

of n take a PL,-name of a maximal antichain of PL,. By n*-c.c. of P
cardinality < 7. Using the strategic closure of P, we produce a condition deciding all the
elements of the antichain. Let L be its top model of cardinality n. Find K as in the proof of
2.2.12 and copy the antichain to N,. Finally, any Ny N P.,-generic will intersect this image,
which in turn will imply that on the L-side the same happens.

The models of small cardinalities (i.e. < n) will always be moved from K to L and vice verse

by the definition of Continuations, which is much more relaxed here than in [7].

Let us show that 27 = 5™ for singular n’s as well. Note that it is possible to deduce this
appealing to Core Models arguments (provided that there is no inner model with too large

cardinals).

Lemma 2.2.14 (a) Let 1 be a singular cardinal in [k*,0]. Then in V¥ we have 2" = nt.
(b) VP satisfies GCH.

Proof. 1t is enough to prove (a) since then (b) will follow by the previous lemma 2.2.12.

Fix a singular cardinal n € [x™,0]. Let N, p>y+, N1, Ny, a be as in the proof of 2.2.12.

Pick an increasing sequence (n; | i < cof(n)) of regular cardinals cofinal in 7. Let (L; | i <

cof(n)) be an increasing sequence of elementary submodels of H((2*)*) such that
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9. N,p2n+,g€L0.

Now we construct a sequence (p(7) | ¢ < cof(n)) of elements of P’ such that

1. p(O) 2 p2n+,

2. p(i)>y, is (L;, P')-generic over p(i)<y,, i.e. for any maximal antichain A C P’ with
A € L;, if some ¢ is in A and is compatible with p(i), then there is > ¢, p(i) such

that for some " < r we have v’ € AN L;.

3. p(4) I mi = p(i)<y,, for every j > 1,
4. p(i) € Ly

The construction is by recursion and uses that at each i < cof(n) strategic closure of P,
together with 7;7-c.c. of PL, .

Now let p be the result of putting (p; | ¢ < cof(n)) together as in the strategic closure
lemma 2.2.8 with L the top model of cardinality 1. Note that if G C P’ with p € G, then
LGN L] < H((2")")[G]. Thus, if A € L is a maximal antichain, then A € L; for some
i < cof(n) and by (2) above some 7’ € G is in AN L;.

In particular, a can be computed correctly inside L. We continue further as in 2.2.11 define
K etc.,with p replacing p(n) of 2.2.11.

O

2.3 The Intersection Property- beyond 3

We deal here with the intersection properties in context of gaps above 3.
The following definition is a straightforward generalization of the intersection property for

gap 3 from Chapter 1.
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Definition 2.3.1 Let ((A% A% C%) | es)e P, 7 <pand A€ A" B e A We say
that A satisfies the intersection property with respect to B or shortly ip(A, B) iff either

1. B € pc(A), or
2. A€ pce(B), or

3. A€ pc(B),B & pc(A), p= 1 and then there are pairwise different ordinals 7, ...,n, €
s\ p and sets A; € A" Npc(A),..., A, € A" Npc(A), A’ € A" N pc(A) such that

ANB=ANAN..NA,,

or

I

. A& pc(B),B ¢& pc(A), p> 7 and then there are pairwise different ordinals n;, ..., 7, €
s\ p and sets A; € A" Npc(A), ..., A, € A N pc(A) such that

ANB=ANAN..NA,.

If p = 7, then let ipb(A, B) denotes that both ip(A, B) and ip(B, A) hold.

Unfortunately such defined intersection property may break down already at gap 4, as
shows an example below.

An example of a failure of the intersection property ip at gaps above 3.

Let Xy, X1, X be a A-system triple with witnessing model Fy € X1, i.e. X1NXy = X1NFp.
Assume that X, € Fy. Suppose that [y is a part of an other A-system type triple Fy, F, F.
Let Gy € Fy be such that Fy N Fy = Fy N G.

Assume that Fy, F1, F € X; and Fy, F, X, Xo, Gy are on the central lines. Suppose finally
that C1*1(X7)\ {X;} has (or consists only of) a model A; such that A; is above F (i.e.
sup(A;) > sup(F)), Go € Ay, but F' ¢ A;.

Note that in this case (A;)p| should exist.

Set Ag = mx, x,(A1) and A = 7, p, (Ao).

We claim that ip(Xi, A) fails. First note that AN |X|T = Ay N |X|T = A; N|X|T and
AN X" < Xp N |X|*, since A; € X;. So, if ip(X;, A) holds then A; should be one of
the models intersection of which witnesses ip(X;, A), since there is no other models in X of
cardinality |X|.

Consider A;NA. Clearly AiNA = A;NANF. Remember that F, Fy are on the central line,
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this central line remains such in A; (just C1¥I((A1)r))) and F & A;. So 4, NF = A N K.
Now AN Fy = AgN Fy N Fy. Hence we have

leAgAlmA:AlonmFoﬂFl:AlmFgﬂFb

since Al N AO = Al N F[).
Note that X1 N A = 7g, g [A1 N Fyl, since mrp, € X1 and so

ZeleA@WFlFO(Z)EleA():AlmFo.

We have Gy € (A1 N Fy) \ Fi. Then mg, g (Go) € Fo, but it isin X3 N A and X3 NA C
AN FyN Fy. Contradiction.
It is possible to have |A| > | X;| as well here.

We define now and use a weaker notion wip.

Definition 2.3.2 Let A € A'". Denote by pwcy(A) (0- piste connected) the set of all
intersections of the form

Eyn...NE,

such that n < w and for each i <n, E; € pc((A),,) N (AU{A}) for some n; € sN A\ 7.
If Z € pwey(A), then Z is of the form EqN...N E,. Let us call witnessing this sets Ey, ..., E,
a description of Z.

Set

pwer(A) = {mp, m [E] | for some p € sNA\7+1 there is F' € ANpc((A),) such that the triple
Fy, F1, F is of a A-system type, E € pwco(A) and (E € Fy or E C Fy)}.
If Z € pwei(A), then Z is of the form 7g g [E]. By a description of Z we mean Fy, Fy, F

together with a description of F.

Let us take now intersections again, i.e. set

pweg(A) ={EyN..NE, | n<w, foreachi <n E; € pwcy(A) Upwei(A)}.

If Z € pweo(A), then Z is of the form EyN...N E,. By a description of Z we mean the union
of descriptions of Ey, ..., E,.
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Continue the definition further by induction taking intersections at even stages and im-
ages under A-systems isomorphisms at odd stages.

Finally define the set wpc(A) (weakly piste connected) to be

U pweg(A).

n<w

Note that A D wpe(A). Also if ip(A, B), then AN B € wpc(A).
If Z € wpce(A), then for some

Definition 2.3.3 Let ((A% A% C%) | es)e P, 7 <pand A€ A" B e A'. We say
that A satisfies the weak intersection property with respect to B or shortly wip(A, B) iff

AN B € wpc(A).
If p = 7, then let wipb(A, B) denotes that both wip(A, B) and wip(B, A) hold.

The proof of the next lemma just repeats the proof of the intersection lemma of gap 3 of
Chapter 1.
Lemma 2.3.4 Let ((A", A . C™) | T € s}) € P',7 €5s,A,B € bp(A°). Then ipb(A, B).

In the general case the following holds:

Lemma 2.3.5 Let ((A, A . C™) |t €s}) e P,r,m€s,A€ A B e A'™. Then
1. 71 < 1o implies wip(A, B),

2. 1 = 1o implies wipb(A, B).

Proof. Without loss of generality we can assume that B € A, just otherwise extend the
condition ((A°, AT CT) | 1 € s}).

Consider the pistes from A°™ leading to A and to B. Let X be the least common point of
this pistes using only the first continuation. X must be a successor point.

Case 1. There are Xo, X1 € XNAYX! such that the triple Xo, X1, X is a triple of a A-system
type, and say the piste to A continues via Xo and those to B via X;.

Set Ay = mx,.x,[A4]. Let Fy € Xo, F1 € X; be the models witnessing that X, X, X is a
A-type triple.

Then

ANB=ANXoNnBNX;=(ANFK)N(ANB)= (A NF)N(A NB).
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Apply the induction to Ay, B. Then we will have A; N B € wpc(A;). Let Ey be a description
of Ay N B inside wpc(A;). Denote by E the image of E; under mx, x,. Then E will be
a description in wpc(A) and AN FyN7x, x,(Z) = A1 N Fy N Z for every Z € Ey, by the
elementarity of mx, x,. Apply the induction to AN Fy. Then we will have AN Fy € wpc(A)
and F C wpc(A), hence the intersection® will be in wpc(A) as well. So AN B € wpc(A).
Case 2. There are p°,p! € (s\7)NX,T° € C*°((X),0) N X, T € C* ((X),1) N X such that
the continuation of the piste to A splits from T° and those to B from T*.

Let Ty, T} be the splitting, i.e. T% T¢, T} form a A-system with T on the central line, where
1€ 2.

We do not exclude the possibility that 7° = X or T* = X.

Assume that sup(7°) < sup(7T"). Further we will always deal with wip(B, A) once |B| < |A],
so there will be no need to consider separately also the case when sup(7°) > sup(7").
Subcase 2.1. T° ¢ T

Then necessarily, |T"| < |T°|. Consider (T")zo. T" is on a central line so T° € C'7°I((T%) o).
Let Z € C‘TO|((T1)|T0‘) be the least model above T° which belongs to 7. Then

"N’ =T'NT) =T"NnZ.
Now we have
ANB=ANT'NT'NB=ANT{NBNTY = BN Ay N Gy,

where Ay = mrop0(A) and Gy € Tg is a A-system witness, ie. 79 0T = 79 N Go. The
induction applied to B, Ay and B, Gy gives wip(B, A), once 11 = 7s.

Let us deduce wip(A, B). Apply the induction toAy, B. There is a set Ey € wpc(Ap) such
that Ag N Ey = AgN B. So

AﬂB:AomEoﬂG[):AﬂAoﬂEomGo

Set G = mpo70(Go) and let E € wpc(A) be the set which description (in the process of
constructing wpc(A)) will be the image of the description of Ey. By elementarity mroro(Eo) =
E. The elementarity and the fact that 77o70 is the identity on 75 N 77 imply

ZGAﬂAoﬂEoﬂG()(:)z:ngTlo(z)EAﬂAOF‘IEﬂG.

So ANAyNE,NGy=ANANENG = AN ENG. Apply the induction to A, G. We
obtain Y € wpc(A) such that AN AgN ENG =Y. Then also AN B =Y and we are done.

There and further let us identify E with the set in wpc(A) which it describes.
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Subcase 2.2. T° € T,

Sub-Subcase 2.2.1. T° € Tj.

Then we just repeat the argument of Case 1.

Sub-Subcase 2.2.2. T° ¢ Ty and T° € T}

Note that (T7)7o| is on the central line of |77, since |T"| < |T°| and Ty, T}, T" is a A-system
triple. If 7% € (T})/70, then as in Subcase 2.1 we have

T'NT'=T'NTY) =T} N Z,

where Z € CT°l((T})10)) is the least model above T° which belongs to T}. The argument
of Subcase 2.1 applies now.

Suppose that T° & (T})ro|, then (T7)r0; € T°. Then also (T})o; € Tg. This implies
T! € TY. Hence

ANB=BNT/NTYyNA=BNT)NA=BnN AN Gy,

where as before Ay = mrop0(A) and Gy € T is a A-system witness, i.e. 79 0T = T5 N Go.
Now we continue as in Subcase 2.1.
Sub-Subcase 2.2.3. T° ¢ Ty and T° € T}.
Sub-Sub-Subcase 2.2.3.1. T° € T} and T° € B.
Let us show first wip(B, A), once it makes sense. Apply the induction to B, Ag. Let E €
wpc(B) be so that BN Ay = E. Now, T° € B implies that 7y, 77 € B and also mpor0 € B.
Then

z € ANB & mropo(2) € AgNB =E.

Set £ = mpopo(E). Clearly, E' € wpe(B) and AN B = E', which means wip(B, A).
Turn now to wip(A, B). Let us apply the induction to Ay, B and find Ey € wpe(Ap) such
that BN Ag = Eo. Set E = mpogo(Ep). Then E € wpc(A). We claim that AN B = E. Thus

z€ANB <& mpopo(z) € AgNB =Ey < z € E.

Sub-Sub-Subcase 2.2.3.2. T° &€ T} and T° ¢ B.
Consider (B)ro. If T € (B) 0|, then the argument of Sub-Subcase 2.2.2 works here.

If (B) o) # 0 and (B)po; € T°, then B € T°. This implies that B € T§ or B € TY, since
between models forming a A-system there is no models of a small cardinality. Now if B € T,
then we apply the induction to Ag, B. So there is Ey € wpe(Ag) such that AgN B = Ey. Set
E = mroro(Ey) and let Gy € T} be such that 79 N 7Y = TP N G1. Then
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ANB=ANTyNB=ANANGiNB=ANENG,

and we are done.
If B € TP, then consider By = mpozo(B). It is simpler than B, since Tj on the central line.
Apply the induction to Ag, By and then move the result back by Tro70.

Suppose now that 7° & (B)ro; and (B)po; & T° or (B)jro; = 0 but B ¢ T°. Then the
piste from T} must split at some point of cardinality > |T°| above T°. Let S be such point
and Sy, S; its immediate predecessors forming a A-system with Sy on the central line and
B € S;. Now Sy D TP, hence

ANB=ANS,NS;NB=ANByN M,

where By = mg,5,(B) and My € Sy is such that Sy N.S; = Sy N My. Apply the induction
to A, By and A, My. This shows wip(A, B). The property wip(B, A), when applies, can be

shown by using in addition mg,s, .

2.4 Suitable structures and assignment functions— be-
yond 3

We address first the new splitting possibility, which is crucial for GCH and does not appear
in the gap 2, 3 cases.

Definition 2.4.1 Let v < £ < pbe cardinals, A, X, Yy, Y1, Y bemodels, C, C P+ (H(61)),Ce C
Pe+(H(0F)). We call triples Fy, Fy, F' and A{), Ao, Ay splitting triples over A, X, Y, Y1,Y in-
side C,, C¢ iff

1. ’A0| =V,
3. | X| = pu,

4. Ao, AL A €O,
D. %71/17}/’FO7F1>F€O§7
6. Fy,F, € F,
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7. Fy, F are isomorphic over Fy N FY,
8. Iy, Fi, F € Ay,
9. X € I,
10. FobNF=FNX,
11. Ag € Fp,
12. AiNAy=AiNF,
13. Aj, Ag are isomorphic over A; N A,
4. A = g, (Ao),
15. A C Aj,

16. Yy = 7TF0,F1(7TA1,AO(F0)), Y1 = T Fy,Fy (WAl,Ao(Fl)),Y = 7TF0,F1(7TA1,AO<F))-
Note that AgN Ay = Ag N7, a,(Fo), since o € AgN Ay iff « € Ay N Fy iff 74, 4, (ax) €
Ao N ay 4,(Fp), but for a € Ag N Ay, ma, 4,(a) = a.
Then Ay N A = A NF = AjNY,, since mp r, € A;. Hence Y is a model which

corresponds to Fp in Aj,.
Normally, we will have |Ay| < |F| and |X| = |F|*.

Lemma 2.4.2 Suppose that all the models of Definition 2.4.1 are members of a condition
in P'. Then Yy € A implies Y1,Y, X € A.

Proof. Set A} = ma,a, (7 (A)). If Yo € A, then 7p 5 (Yo) € 7r .1 (A), and hence
Tag.A (TR 1, (Y0)) = Fo € A}, Then F' € Aj, since there are no models of small cardinality
between Fy and F. Hence, F; € A}. So, their pre-images Y and Y; are in A.

Now, there is Gy € Fy N A} such that Fo N Fy = Fo N Gy. Then Gy € A1 N Fy = AgN A;.
Moreover, Gy € A} N Fy = AN A}, where A = 7 g, (A).

Set Gh = 7py 1 (Go). Then Gy € ANA} and Fo N Fy = F1 NGy, ie. Gy =X and X € A.
O

Lemma 2.4.3 (Ezistence of splitting triples). Let pn > & > v be regqular cardinals in [k, 6].
Then for every closed unbounded sets C,, C P,+(H(01)),Ce C Per (H(0)) there is a closed
unbounded C,, C P,+(H(0)) such that for every model X € C,, with *X C X, there are
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Yo, Y1,Y € Ce,"Yo C Y0, "Y1 CY1,"Y CY so that for every model A with |A| < v there are
splitting triples over A, X, Yy, Y1,Y inside C,, Cs.

Proof. Suppose otherwise. Then there are clubs C, C P,+(H(01)),Ce C Per(H(O))
such that for every club C, C P,+(H(6")) there is a model X € C, so that for ev-
ery models Y, Y1,Y € C¢ there is a model A(X,Y,,Y:,Y) without splitting triples over
A(X, Y0, Y1,Y), X, Y, V1, Y inside C,, Ce.

Let C, C P+ (H(07%)),Ce C Per(H(67)) be such clubs. Define a function

I:P,(H(BF)) x Ce x Ce x Ce — Por (H(O))

by setting I(X,Yp,Y1,Y) to be the least model A € P,+(H(61)) without splitting triples
over A(X,Yp,Y1,Y), XY inside C,, C¢, if there is one and 0 otherwise.
Fix functions h, : [H(07)]<Y — P« (H(0)), he : [H(6)] — Pe+(H(67)) such that

C, 2{teP,+(H(OF))|h,(e) Ctwhenever e € [t]“},

Ce D {t € Pe+(H(6T)) | he(e) C t whenever e € [t]<“}.
Turn to submodels of (H(A*?), €, <,0%, h,, he, I) for A much bigger than 6. Consider

C={ZeP(HN?)|Z=<(HA?),€,<,0 h,he;I)}.

Then
CIHON={ZnHO")|ZeC}

contains a club in P+ (H(61)). Let C, be such a club. Pick X € C,,*X C X, to be a
counterexample.
Find X* € C with X*N H(0") = X. Note that X* may be not closed under {-sequences of
its elements (even sup(X* N OTH) can have cofinality w).
Let Ff < (H(\*?),€,<,0%, h,, he, I) be a model of cardinality £, closed under v-sequences
of its elements and with X* inside. Then F} = Fy' N H(6") is closed under he and hence
Fy € C¢. Let Fj be obtained from F} via a reflection to X*. Here F; N X* need not be
an element of X* due the possible lack of closure, but 3 N X isin X = X* N H(#"), since
¢X C X. We pick Fj < (H(A\™),€,<,07,h,, he, I) to be a model realizing the same type
as Fy over F1 N X. So FY}, F§ are isomorphic by the isomorphism which is the identity over
Fy N X, but probably not the identity over F} N Fj.

Let F* < (H(A\*?),€,<,0%, h,, he,I) be a model with Fy, F} inside and closed under
v-sequences of its elements. Pick now A} < (H(A*?),€,<,0%, h,, he, I) to be a model of
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cardinality v with Fy, Ff, F*, X* € A}. Reflect A} to Fj. Let A% C Ff N H(A™) be a
result. Then Ay < (H(A™?),€,<,07, hy, he, I), the isomorphism 7 4+ m(x+3),4; is the identity
on AfNHOT)NAyand AN H(OT)NEy = AT N AN H(OT).

Set Ay" = 7ps prar(aray(4p). Then, AF < (HAT?), €, <,0% hy,, he, I), since A5 < F§ N
H(AT3) and F7 ~ F;y N H(A™). This implies in particular that Aj = Af N H(0T) is in C,
and Ay is closed under I.

Set FY* = maznm ooy s (Fy 0 H(A)), FY = 7 gy 4 (F 0 H(AT)

and F* = maenpaesy,az (F* N H(AT?)).

Move these models to Af. Thus let Y§" = 7 peamoes (F5*), Y1 = gz pramora) (F7*) and
Y* = WFJ,FFQH(,\-&-AL)(FO*). Then Y7, Y, Y* € Af.

Define Fy = Ff N H(0"),F, = FFNH@OT),F=FNnHO),Yy =Y, NH(#"),Y: =Y"nN
HO),Y =Y"NH(OF), Ay = AyNH(0") etc. Then X,Y;,Y1,Y € Aj, since X € AyNF, =
Ay N Aj (the last equality holds because A; N Fy = Ay N Ag and 7, p, € Ar). The models
Aj, Ag, Ay are in O, since they are closed under h,. Similarly Fy, Fi, F, Yy, Y1,Y € Ce.
Finally, Ay is closed under I and X,Y,Y1,Y € Aj, hence I(X,Y,Y1,Y) € Af. By
the choice of XY, Y1,Y, I(X,Yy,Y1,Y) must be a model without splitting triples over
I(X,Yo,Y1,Y), X, Y, Y1, X inside C,, Ce. But Fy, Fi, F' € Ce and Aj), Ay, Ay € C, are split-
ting triples over I(X, Yy, Y1,Y), X, Yy, Y1, Y. Contradiction.

O

Lemma 2.4.4 Suppose that X,Yy, Y1,Y satisfy the conclusion of Lemma 2.4.3 and they
are in M for a model M € C,. Then there are splitting triples Ay, Ao, A1, Fo, F1, F over
M, X, Yy, Y1,Y with Ay = M.

Proof. Let Aj, Ao, A1, Fy, F1, F' be any splitting triples over M, X, Yy, Y1, Y. Consider My =
e r (M) and My = w4, 4, (Mo). Then, Fy, Fy, F € My, since Fy = may 4, (71 1, (Y0)), F1 =
Tao A (TR 7 (Y1), B = Tag 4, (Tr 1, (V)
So, we can replace A by M, Ay by My and A; by M;. Hence M, My, My, Fo, Fy, F will be
splitting triples over M, X, Yy, Y1, Y.
O

For every cardinal ;1 € [kT, 0] we define a closed unbounded subset C), of P,+(H(6%)) by
induction as follows: Cy+ = P+ (H(0T)),
Cpr+ = Pors(H(6T)),
if 14 is a limit cardinal, then

Cu = Pur (H(07)),
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if pu is a successor cardinal, then let C), be the intersection of the clubs given by Lemma 2.4.3

for each v < & < p.

Definition 2.4.5 A model M of a regular cardinality v is called a reliable model itt
1. MNH(6) e C,,

2. for every regular cardinals &, u € M, v < £ < p, for every clubs E C P,+(H(61)),D C
Pe+(H(07)) in M and there is a club C C P,+(H(01)),C C C,,C € M such that for
every X € C'N M there are Yy, Y;,Y € DN M which satisfy the conclusion of Lemma
2.4.3 with E and D.

Definition 2.4.6 A structure X = (X, F,C €,C ), where £ C [X]? and C C [X]? is called
suitable structure iff there is p(X) = ((A" (%), A" (X),C7(X)) | 7 € s(X)) € P’ such that

1. X = A% (%),

2. 5(X) e X,

3. s(X) C X,

4. {a,b) € B iff a € s(X) and b € A(X),

5. {a,b,d) € C iff a € 5(X),b € A'(X) and d € C*(X)(b).
Let G(P’) be a generic subset of P’.

Definition 2.4.7 A suitable structure X = (X, E,C €, C ) is called suitable generic struc-
ture iff there is ((A°", A7 C7) | 7 € s) € G(P’) such that

1 ((A% A7 CTY |7 es\ {xt}) € A%",
In particular s € A%". Note that s may have cardinality above x* (which is not a

. . . . . +
case in a suitable structure ) and so s not necessary is contained in A% .

2. X is a substructure (not necessarily elementary) of the suitable structure generated by
(A7, A7, C7) | 7 € s),ie. (A% {(1,B) |7 €s,Be A"} {(r,B,D)|r€sBEe
A7.D € C7(B)},

3. X € " (A%,
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4. p(X) and ((A°, A7 C7) | 7 € s) agree about the pistes to members of X N|J{A" | 7 €
s}. In other words we require that all the elements of pistes in ((A°7, A" C7) | T € s)
to elements of X NJ{A!" | 7 € s} are in X.

5. If A € A7(X), for some 7 € s(X), then either A it is of one of the first three types of
Definition 2.2.4(2) inside ((A°", A7 C7) | 7 € s) or the models witnessing that it is of
the forth type appear in X as well.

Note that, as a condition in P’, p(X) need not be weaker than ({(A°, A" C7) | T € s),
and hence it need not be in G(P’).
Note also, that any stronger condition ((B°", B", D7) | 7 € r) € G(P’) such that

e (B, B, D7) |Ter\{st}) e B,

and
e (C7(A") is an initial segment of D7 (B°7), for each 7 € s

will witness that X is a suitable generic structure.

Fix n < w. We define an analog P/, of P’ on the level n just replacing x by ™ and 6 by
some )\, big enough ( A, a Mahlo will be more than enough; we can use for the gap 4 case
A, = K" etc). An assignment function a, will be an isomorphism between a suitable

generic structure of cardinality less than x, over x and a suitable structure over x,".

Define Q.

Definition 2.4.8 Let Q)0 be the set of the triples (a, A, f) so that:
1. f is partial function from 0" to k, of cardinality at most s

2. a is an isomorphism between a suitable generic structure X of cardinality less than «,
and a suitable structure X’ in P/, so that

(a) every model in X’ is a reliable model,

(b) X’ is above every model which appears in A (X’) for some 7 € s(X’) \ {x*} and
also those in A" (%) \ {X'} in the order <g, of the extender E,, (or actually,
after codding X’ by an ordinal),

(c) ift € U{A(X') | T € s(X')}, then for some k,2 < k < w,
t < H(x**), with x big enough fixed in advance. (Alternatively, may be to work

with subsets of \,, only and further require it is a restriction of such model to A,,.)
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We deal with elementary submodels of H(x**), instead of those of H(\,).
Further passing from Q),o to P we will require that for every k < w for all but
finitely many n’s the n-th image of a model ¢ € X UY will be an elementary
submodel of H(x**).

The way to compare such models t; < H(x™),ty < H(x™2), when k; # ks, say
k1 < ko, will be as follows:

move to H(x k1), i.e. compare t; with t, N H(xF).

3. Ae En,X’a

4. for every ordinals «, 3, which code models in [J{A7(X') | 7 € s(X')} we have

o >p, B2, 7 implies
Ty (p) = w55 (725 ()
for every p € m“xs o (A).

5. For every ordinals o < 8 which code models in [J{A'7(X) | 7 € s(X')}, for every p € A

we have

Tt o(p) < X 5(p).

Define a partial order on ), as follows.

Definition 2.4.9 Let (a, A, f) and (b, B, g) be in Q0. Set (a, A, f) >.0 (b, B, g) iff
1. a Db,
2. 29,

3. Tmax(rng(a)),max(rng(b)) “A - B,

4. dom(f)NAY(dom(b)) = dom(g)NAY(dom(b)), where A?(dom(b)) is the set of ordinals
of the suitable structure on which b is defined.
Note that here we do not require disjointness of the domain of g and of A%(dom(b)),
but as it will follow from the further definition of non-direct extension, the value given

by g will be those that eventually counts.

Definition 2.4.10 Q),; consists of all partial functions f : 6% — k, with |f| < k. If
f’g € in; then set f an g 1fff 2 g.
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Definition 2.4.11 Define Q,, = Q0 U Qp1 and <F=<,0 U <, 5.
Let p=(a, A, ) € Qno and v € A. Set

p v = fU{{ Tmax(mg(a)),a(a) (V) | @ € A'Y(dom(a)) \ dom(f)}.

Note that here a contributes only the values for a’s in dom(a) \ dom(f) and the values on
common «’s come from f. Also only the ordinals in A (dom(a)) are used to produce non
direct extensions, the rest of models disappear.

Now, if p, g € @y, then we set p >,, ¢ iff either p >* gorp € Qn1,q¢ = (b, B, g) € Qno and

for some v € B, p >,1 ¢ V.

Definition 2.4.12 The set P consists of all sequences p = (p,, | n < w) so that
(1) for every n < w, pn € Qn,
(2) there is ¢(p) < w such that

(i) for every n < {(p), pn € Qnui,
(ii) for every n > {(p), we have p, = (an, An, fn) € Qno,

(iii) there is ((A7, A" . C™) | 7 € s) € G(P') which witnesses that dom(a,(p)) is a
suitable generic structure (i.e. dom(a,(p)) and ((A°7, AT C7) | 7 € s) satisfy
2.4.7), simultaneously for every n,l(p) < n < w.

(3) For every n >m > {(p), dom(a,,) C dom(ay,),

(4) for every n, {(p) < n < w, and X € dom(a,) we have that for each k < w the set
{m < w | ~(an(X) N H(x™) < H(x™))} is finite. (Alternatively require only that
am(X) C A but there is X < H(x™)) such that am,(X) = X N A,. It is possible to
define being k-good this way as well).

(5) For every n > £(p) and a € dom(f,,) there is m,n < m < w such that « € dom(a,,) \
dom(f,,)-

Next lemma which allows to extend elements of P is crucial.
Lemma 2.4.13 Let p € P and ((B"",BY,D") | T € r) € G(P'). Then

1. for every t € \J{B' | T € r} there is ¢ >* p such that t € dom(a,(q)) for all but

finitely many n’s;

78



2. for every A € BY" there is ¢ >* p such that A € dom(an(q)) for all but finitely many
n’s. Moreover, if (A’ A C™) | T € s) > ((B",B'", D7) | T € r) witnesses a
generic suitability of p and A € C’*+(AO"+), then the addition of A does not require
adding of ordinals and the only models that probably will be added together with A are

its images under A-system type isomorphisms for triples in p.

Proof. The proof follows the proof of this lemma in a gap 3 case. Let us concentrate on the
new possibility of splitting. Namely given triples Aj, Ag, A1 € A and Fy, F}, F' as in the last
case of Definition 2.2.4 (Second, Third continuations) with Aj, A and Fi, F' on the central
lines (other possibilities are as in a gap 3 case), we would like to add Ag, A, Fo. Denote
by A the largest model of C14I(A})\ {A}} which is in p, if such a model exists. Suppose
that it exists. If it does not exist then the argument is similar and simpler. Consider
X € Fy N AT such that Fy,NFy = Fr N X and Yy, Y3, Y € ANAIT as in Definition 2.4.1.
Then X,Y,Y1,Y € Aj. Using the induction we can assume that X already appears in p.
Now apply Lemma 2.4.3 to X* = a,(X) and appropriate C' (C' will depend on a,(A) and
its place relatively to Yp, Y1,Y) and find models Y, Y}*, Y* satisfying the conclusion of this
lemma and which can be added to rng(a,) as images of Yy, Y],Y. Assume that already
an(Yo) = Yy, a,(Y1) = Y and a,(Y) = Y*. Pick now inside A* = a,(A) splitting triples
Fy, Ff, F* and A, Af, AT over a,(Ap), X*, Yy, Y, Y*. By Lemma 2.4.4, we can assume
that A™ = a,(A[). Add these models to rng(a,) as images of the corresponding models over
k. Finally extend a, further by adding the images under isomorphisms corresponding to
A-system types.

We need the following property:

if A e A% ndom(a,), for some n > ¢(p) big enough, and B € max(dom(a,)) is a model
which is reachable by a piste from A, then

(1) it is possible to extend a, to b, by adding B, probably in addition also models which

belong to A and then taking isomorphic images.

(2) Let A € dom(a,), B a model added to dom(a,) and B is an isomorphic image of B
which belongs to A, then b,(B) € a,(A) as well as all the models of the piste from A to
B, where b, denotes the extension of a,, obtained by adding B and taking isomorphic

images.

This means basically that for adding such B we should take care only of models which

are in A. The images of the rest of models with B inside will have the image of B inside
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automatically.

The proof is similar to the gap 3 case in Chapter 1 and uses weak intersection property
of Chapter 2.3.
O

As in the Gap 3, we have the following:
Lemma 2.4.14 P’ x Qo is < ky,-strategically closed.
Lemma 2.4.15 (P, <*) does not add new sequences of ordinals of the length < kq.

Lemma 2.4.16 (P,<*) satisfies the Prikry condition.

Define — on P similar to those of [1] or [3].

Lemma 2.4.17 (P,— ) satisfies k7T -c.c.

Combining the previous lemmas together, we obtain the following:

Theorem 2.4.18 VPP js ¢ cardinal preserving extension of V which satisfies 25 = 0.
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Chapter 3

Preserving Strong Cardinals

We will need to make some minor changes in the previous settings made in Chapter 2. Thus,
first it will be convenient to increase a bit a set of conditions by allowing to remove some
maximal models (i.e. A%) from elements of P’. This way the original P’ will be dense in
the new one, so from the forcing point of view nothing changes. Second, we like to deal
with elementarity. In Chapter 2, we had H(0#") and considered its elementary submodels.
We would like to deal instead with H () and its elementary submodels, for regular (or even
inaccessible) 6’s. Note that once embeddings j : V' — M are around, j(H(0)) = (H(j(0)))™
may differ from H(0) even if § is not moved. So being elementary in sense of M will differ
from being elementary in sense of V. We suggest below two ways to overcome this difficulty.
The first one will be to assume that @ is a 2°-supercompact cardinal. Consider the following

set

S = {a < O|a is a superstrong cardinal with target 6

(i.e. thereisi:V — M, crit(i) = a, i(a) = 0 and M D Vp)}.

It is stationary (actually of measure one for a normal measure over 6), see for example
Kanamori [11], 26.11.

Now, V,, < Vj for every a € S. Hence, V,, < Vj for every a < 3, a, 8 € S. Also the
following holds:

Lemma 3.0.19 Let a € S and i : V — N is an ultrapower by an («,v)-extender for some
v < 0. which is a part of superstrong («,0)-extender with target 0. Then Vi < (Vi)™ for
every B €S, a< <.

Proof. Let j : V. — M be the ultrapower by a superstrong (c«, #)-extender with target 6
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extending the used (o, v)-extender. Then the following diagram is commutative

M
J
/

1% %
N

N

where k is defined in the obvious fashion.

Now, k((Viia))™) = Vj(a) = Vo. Also k(8) = B and Vs < Vp. Hence, Vi < (Vi))".
O

Note also that by elementarity (Vi)™ < (Vi)™ = (Vo)™.

The second way will be to deal with just subsets (closed enough) and 3, elementarity.
Using this approach there will be no need in supercompacts cardinals- thus strongs alone

suffice.

Lemma 3.0.20 Suppose that V5 <y, Vy, « is d-strong and j : V. — M be an elementary
embedding such that

o M DV
e j(0)=0.
Then Vs <x, (Va)M.

Proof. Just note that
Vs C (Vo)™ C V.

Models Vy, (Vp)M agree about Yy formulas. So each ¥; formula with parameters from (V)™
true in (V)M is also true in Vy. But V5 <x, Vp, hence Vs <x, (Vo)M.
O

Let us make some changes in the definition of the preparation forcing P’ = P’(0).
Definition 3.0.21 (Changes in the definition of P’).

1. V, is allowed to be an element of A7, for 7 € s which is an inaccessible and V, <y, Vj.
Note that V, will be the least (under €, C) member of A'", since 7 is an element and

contained in any other member of A!".
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2. If 7 € s is a critical point of an elementary embedding j : V — M,”"M C M which is
strong enough and the previous condition is satisfied,
then it is allowed to have j”A € A", for A € A", provided the intersection properties

are respected, i.e.:

o B €U, AV = ip(j"A, B),

o B e A" = iph(j"A, B),
o Bel,n A = ip(B,j"A).

Note that allowing sets of the form j” A in A7, we allow also as well a new Continuation

in the definition of the set of models piste connected to a given model (see Chapter 2).

3. Let 7 be as in 1 above.
It is convenient to allow in the present context conditions having two top models for
each a € s N 7. However conditions with a single top model in every cardinality will
remain dense.
Thus

((A%5, A% AT C8) [ € esn) ((A™, A, CY) v e s\1) € P/
provided both
(A% A% C8 | € esnT) (A% AY C¥) | v e s\T),
(A A% OO | e esnT) (A% AY C¥) | v € s\T)
are in P’ and

o A cV_ foreach & €sNr,
e the structures
(ADOmax(s0r) | e o (A% AN (ADSU{ A%}, OF | (AYU{AYEY) | € € sniT))
and
<A01max(sﬂ7'), <, €, g) K, <‘AOIE7 Alﬁm(AOlfu{A()lf}), Of I* (AOlfu{A()lf}) | g c Sﬂ7—>>
sﬂ’r)_

are isomorphic over V, N A% max(
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Let p” = ((A%%, A1, C%) | € € snT) " ((A%, AV, C") | v € s\7) and p' = ((A”¢, A1, CF) |
EesnT) ((A% AY C") | v € s\T) be as in the previous item and ¢ € P’(7) be an
extension of p°.

The next condition allows to combine p! and ¢ into a condition in P’ which is stronger
than both ¢, p'.

4. Let (B¢ | £ € s) be an increasing continuous sequence such that for every £ € s the

following holds:
(a) B < Vs,
(b) [Bel = ¢,
(C) Qapl € Bn+~
Then
r=((A%(r), A¥(r),C%(r)) | £ € 5) € P’

and it is stronger than both ¢, p', where

[ ] AOg(T) = Bg,
o A%(r) =A% U{B}, if € € s\t and A¥(r) = A¥ U{B:} UAY(q),if E€snT

o C%(r) = C*U (B, C*"B%), if € € s\ and C4(r) = C* U C%(q) U (B¢, C(q)" B%),
iféesnr.

O of the changes.

The crucial observation will be that P’ breaks at each o € S (or just for each av < 6 which
is Mahlo and has §’s as in 3.0.20) into forcing P’(«) which deals with elementary submodels
(or just closed enough subsets) of V;, and PZ,, which breaks in turn into PL,, * Py, * Qa-

Define P’(a) the same way as P’ but only with V,, replacing V,. Thus in this notation
P’ is actually P'(6).

Lemma 3.0.22 Suppose that « is a Mahlo cardinal. Then P'(«) satisfies a -c.c.

Proof. Let (ps|8 < a) be a sequence of conditions in P’ (), ps = ((A" (pg), A7 (pg), C™(ps))|T €

s(pg)), B < a.
Consider their supports sequence (s(pg)|8 < ). Recall that supports are of the Easton form.
Hence we can find a stationary X C « and s such that (s(pg)|8 € X) forms a A-system with

kernel s. Moreover,
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e cach § € X is inaccessible

° s(pp)NP=s
e if v < fis also in X then for each 7 € s(p,), then A" (p,) C Vj.

This implies that
AC Vg C B,

whenever v < Bin X, A € A", 7 € s(p,) and B € A, p € s(pg)\s.
Shrinking X more, if necessary we can insure that for each v, 5 € X the following two

structures
(A0 (pg), < €, C, k, AP (pg) N pg)
and

<A0maX(S) (py), <,€,C K, ACmax(s) (py) N py)

are isomorphic over A9max(s)(pz)NA0max(s)(p ),

Note that A" (pg)’s may have elements above 3.

Now we claim that such ps and p, are compatible, say v < 8. The proof repeats the
corresponding argument in Chapter 2. Note that models of cardinalities in s,\s should be
added between models of ps of cardinalities in s and those including them of cardinalities in
s(pg)\s. In order to this, we work over the center line of ps to add models which include p,

as a member and then such setting via isomorphisms.

O

Lemma 3.0.23 Suppose that « is a Mahlo cardinal and V,, < Vy. Then P’ > P'(«).

Proof. Consider P’ N'V,. By the definition of the preparation forcing Chapter 2 we have
P'(a) = P'NV,. The cardinal « is an inaccessible. Hence *~V,, C V,,. In particular, each
antichain of P'(«) is in V,, by the previous lemma. Hence , if H C P'(«a) is P’'(«)-generic
over V,,, then H will be full P’(«)-generic.

Note that P’(«) is definable in V,, and using the same formula that defines P’ in Vj.

Let A C P'(«) be a maximal antichain. Then |A| < a and, so A € V,,. In addition,

V., E A is a maximal antichain in P’.
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Then, by elementarity,

Vyp E A is a maximal antichain in P’.

So, GN A # (), for any generic G C P'. Also, V,[G NV,] < V4[G].
O

By the lemma above P’ projects to P’(«). We prefer to deal with an explicit projection
rather then with the projection defined via the corresponding Boolean algebras. In order to

define an explicit projection we consider the following dense subset of P’:
D = {({A"T AT AT CTY | T esna) (A%, A" . CY) |v e s\a) € P |
acs&vresna A" €V, and the structure
(AOmax(s00) e o (4007 ALT (4007 £ADTYY O (A% U £ ATV - € 5 )
is isomorphic to
(A0t mx(s00) < e C g, (AN, AT N (AYT U {AYTY), CT T (AMT U{AYT) T € sNa))

over V,, N A0t max(sne)y,

Here is the point where we prefer to allow two top models (A7, A°'" 7 € sNa) instead
of a single one. Using V,, <5, Vj it is easy to extend any standard (i.e. with single top model
in each cardinality) condition in P’ to one in D. We need just to intersect its part consisting
of models of cardinality below o with V,, and then using elementarity of V, to find inside V,
something isomorphic over this intersection.

Now, once we have p = ((A%7 A7) A" CT)|1 € sNa)” ((A%, A C")|v € s\a) € D,
then define o(p) to P’'(«) to be

(A% AT AP(AYT), O T P(AY )T € sna) (A%, A C)|v € s\a).
Let us check that such defined o is indeed a projection map.

Lemma 3.0.24 The map o is a projection map from D to P'(«).

Proof. Let p € D be as above and ¢ € P’'(a) be an extension of o(p). Pick increasing

continuous sequence (B;|T € s) such that for each 7 € s the following holds:
1. B, <Vj
2. |B;| =71
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3. p,q € B+.
Now let r = ((A%(r), A (r),C7(r))|7 € s) be defined as follows:
o A”(r) = B,
o A"(r) = A" U{B,},if T € s\aand A (r) = A" U{B,}UAY(q),if T€sNa

e C7(r)=C"U(B,,C™B"),if 1 € s\aand C"(r) = CTUC"(q) U(B,,C"(q)"B7), if
TESNA.

Then r is an element of P’ stronger than both p and ¢q. Note that the situation as here
was specially allowed in 3.0.21(4) in contrast with the parallel definition of Chapter 2. It
remains to extend r to some " € D and then to take o(r’) which will be above q.

0

Lemma 3.0.25 Suppose that o is a Mahlo cardinal and V, < Vy. Let v < « be a regqular
cardinal. Then PL. > P'(a)>,.

The proof repeats those of Lemma 3.0.23.
Note that PL, does not add new sets of cardinalities < o and P" = P% , * PL,,.

Lemma 3.0.26 Let V, < Vjy, a be a Mahlo and 6 < a be a reqular. Then P' = PL; *
(P'(a))<s-

Proof. Pick M < Vg, 6% € M and [M| = 6*. By 3.0.23, we have PL; > (P'(a))>s. Note
that M NP" = M NP'(«a), since M < V,. Pick p € V, N PL,, to be (PL,,, M)-generic.
Then p € (P'(a))>s+ and it is ((P'(a))sg+, M)-generic. Pick now Gss+ C Pgﬁ generic with
p € Gss+ and G5 C P’ generic over V[Gss+]. Recall that P, satisfies §++-c.c. Hence each
antichain of P’ ; which belongs to M [p] will be contained in M|p]. But (Gss+ * G_5) NV, is
PLs -generic over V,,, by 3.0.23. So G_sNM [p] will be (PLs, M[p])-generic. Denote G_sNM [p]
by Gu. Then Mp, G| < Vo [Gss+ ¥ Gos NV, ]| < Vp|Gset, G=s).

Let us turn now to PLs;. By 2.2.12,2.2.13, PL, in Vy[G>s, G=s| is equivalent to PLs N
Mip,Gu. But Mp, Gu) < Vo[Gss+ x G=s N'V,]. Hence, PLs N M[p, Gyl is just the same
as (P'(a))<s N M|[p, Gy]. But this last forcing is equivalent to (P’(«))<s. So we are done.

UJ

Lemma 3.0.27 Let V, < Vp, a be a Mahlo and § < « be a regular. Then P = P'(a)>s *
(@ x (P'(a))<s)-
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Proof. By Lemma 3.0.25, PLs > P'(a)>s5. So let PLy; = P'(a)ss * Q, for some Q. Now,
P'(a) = P'(a)ss ¥ P'(a)<s. By Lemma 3.0.26 we have P’ = PL; * (P'(a))<s. Hence

P =P (a)s5 xQ* (P'(a))<s-
But ) does not add new bounded subsets to a. So this can be written as follows:
P' =P (a)>s % (Q x (P'(a))<s)-

U
Recall that P, * (PL,)>p is B-strategically closed, P’(a)<s satisfies f*-c.c. and is
actually isomorphic to a forcing of cardinality S*, by 2.2.12.

Lemma 3.0.28 Leta € S, <6, (SNd)\a+1+#0 and

M 2 Vi) = Vo
J
/!
v |
N\
N

be a commutative diagram with N being the ultrapower by an («, 0)-extender. Then i extends
to
i: VP — NP

Alternatively, using only strongs we can show that the following analog of this lemma
holds:

Lemma 3.0.29 Suppose that
1. p <6 is a Mahlo cardinal
2.V, <x, Vo
3. « 1s p-strong, as witnessed by j:V — M D'V,
4. 0,0 < 6 < pis a reqular cardinal

5. there is pi, a0 < p < 6 such that 'V, <V,.
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Let

be a commutative diagram with N being the ultrapower by an («,d )-extender derived from j,
such that p = k(&), for some . Then i extends to

i VP = N,

The proofs of both lemmas are very similar. We concentrate on the proof of 3.0.28 and

state the minor changes needed for those of 3.0.29.

Proof. Note that by the definition of forcings P’(§) we have P’ = P’(6). Also, i(0) = 0, since
6 is an inaccessible. In N, hence i(P") = (P'(i(9))) = (P'(0))N. We split first (P'(6))~
into (P'(i()) X ((P'(0)sitw) * (P'(0) <o) 50)) ™.

Let us deal first with (P'(i(«)))". Note that Vz C N. We split in N the forcing P’(i(c))
into P’'(i(a))ss * P'(i(c))<s. The part P'(i(«))>s is 0 -strategically closed. The extender
used to form N has no generators above ¢, so standard methods apply. Thus, we can find an
N*-generic set for (P'(iy+(a))ss)Y move it then to N and in this way obtain an N-generic set
for (P'(i(a))ss)", where N* is the ultrapower by the measure U = {X C o? | (o, §) € i(X)}.
For 3.0.29, we include also &, i.e. U ={X C a?® | (a,d,&) € i(X)}.

Denote the corresponding embedding by ¢* and those of N* into N by £*. Then we obtain

the following commutative diagram:

M 2V =V (orjust M DOV,in 3.0.29)

b %

vV - N

S e
N = VeU

Let 6* be the preimage of § under k* (and £* the preimage of £). Use at-strategic closure
of P'(i*())>(s+) to build an N*-generic subset of (P’(i*(a))ss+)" . Then move it by k* to

obtain an N-generic subset of (P'(i(a))ss)".
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We deal now with (P'(i(a))<s). Let A* € N* be an elementary submodel of (Vjx(q))"
(or of (Ve+)N" in 3.0.29) of cardinality ((6*)™)N" closed under §*-sequences. Let A € N be
k*(A*). Then it is an elementary submodel of (V)" of cardinality (67)" closed under
d-sequences. Let k(A) = B. Then, B will be an elementary submodel of (Vj))" = Vj(a)
(or of (V,)™ =V, correspondingly) of cardinality 7. Recall that k | (67)N =id, [(67)V] =
§,cf(6T)N) =a™ and k((67)N) = 4.

Pick in N* a condition 7, € P’(i*(«v))>(s+)+ which is A*-generic. Let G* be an N*-generic
subset of (P'(i*(a))ss< )Y with r; € G*, built using the a™ strategic closure of the forcing.

Moving to N we set ¢ = k*(r1). Then ¢; € P’'(i(a))>s+ will be A-generic. Set p; = k(q1).
Then, by elementarity, p; will be B-generic for the real P’'(j(a))ss+.

Let 7o be G*NA*[r1] and ¢ be generated by &*"ry. Then g, will be (A, P’(i(c)) sy )-generic
set (remember that P’(i(a))s) is 6 -strategically closed).

Consider k”¢y. It contains an increasing cofinal subset of size a™ - the image of r, under
ko k*. Now, k" A € B, since °B C B, by elementarity. Let ps € P'(j(«))s; be the union of
conditions in k”¢y. It exists, due to this cofinal subset of size a™.

Chose a generic over M (or,the same V') with (p1, p2) inside. Let ps be a (B[p1], P’ (j())sy)-
generic over M with py € po. Then k [ A extends to an elementary embedding

k: Alg1, 2] — Blp1,p2] -

By 2.2.12,2.2.13, P'(j(«))<s is equivalent to P’(j(a))<s N B[p1, p2] and the same is true in N
replacing B[p1, p2] by Alq1, ¢o]. Also, by 2.2.11, P’'(j(«))<s satisfies 6*-c.c. Hence k will move
maximal antichains to maximal antichains. This allows us to obtain (P’(i(«)))%Ys -generic
set from P’(j(c))<s -generic one, just intersect the last one with k”A[gy, ] and pull back
the result to N using k!

Putting together now the parts above and below § we will obtain an N generic subset
Gi(a) of (P'(i()))™.

Let us turn now to the forcing (P’(9))" and also deal with the master condition part.

Let p e (SNd)\(w+1) (or in 3.0.29, let o we as in (5), i.e. V, < V,). We pick in V an
elementary submodel A < V,, < Vj (or V,) of cardinality a® and closed under a-sequences of
its elements. Let p be PL . -generic over A. It exists since P._. is o *-strategically closed.
Fix an increasing continuous sequence (A, | v < a™) of elem_entary submodels of A each of
cardinality o, (A¢ | £ <v) € A, 41 and V,, € Ag. Without loss of generality for each v < ot
we may assume that A,[pNA,] < A[p]. Consider now the forcing P’ . It satisfies o™ -c.c.

Hence each antichain in P__ that belongs to A[p| is contained in A[p]. Now working inside
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A it is easy to see for each & < a™ the set of conditions ¢ in P__, having A, for some v,
< v < at, as the maximal model, i.e. A% (q) = A, is dense. Let us use Gjo) N P_.(6%) to
(@) o
produce P_ -generic over A. Note that the set

T ={v <a' | A, is the maximal model of a condition in this generic set}

is unbounded. Actually, using a™ -strategic closure of P it is not hard to see that T is
stationry and fat.

Consider in N models

B =i(A), Biw) = i(Ay), Bli(p)], Biwli(p) N Bigy] -

We have U(i"a™) = i(a™), hence

B = |J Biw) and Bli(p)] = | Biwli(p) N Biw)] -
v<at v<at

Now we fix a list (E, | v < at) of dense open subsets of ((P'(6)<i(a))>s)" in Bli(p)]
which are the images of all dense open subsets coming from the ultrapower by the normal
measure of the extender i. Note that the forcing under the consideration is 6 -strategically
closed (in N) and the generators of i are below 4, so this can be done.

For each v < a* let E/, be the dense open subset of ((P'(#)<i())>a)” obtained from
E, by adding to each ¢ € E, models of cardinalities in the interval [«,d], i.e. ¢"r € E
iff g € E,, ¢°r € (P'(0)<i(a))>a)” and r consists of models of cardinalities in the interval
(v, 8]. We may assume that £, (and hence also E}) is in By,)[i(p) N Biwy], just removing
some of B,’s if necessary.

Recall that Gy(,) is an N -generic subset of (P'(i(a)))" constructed above. Our next task
will be to consider the projection of (P'(0))Y, over Gy(4) and to claim that certain elements
are in (P’(@))ga/Gi(a).

Claim 3.0.28.1  For each v € T of cofinality a we have i"A, € (P'(0))Y,/Gi(a).
Remark Note that (Gia))>a N A, is a condition in P’ (or just in (P'(i()))"), due to

3.0.21. Our interest is in ((Gja))>a N Ay) " A,. By putting in ¢"A, we actually add all of
i"(((Gi(a))>a N A,) " Ay). The claim basically deals with it rather then only with i"A,.

Proof. Consider C*(A,) [ A,. It is a closed unbounded sequence in A, and since cof (V) = a,
it has a cofinal subsequence (A4, 3|8 < a). Apply 7. Then i((A, 3|8 < a)) will be a cofinal
subsequence of C*¥(B,) = i(C%(A,)). Denote i({A, 3|8 < a)) by (B, 4|8 < i(a)). Clearly,
i"A, C By 4.
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It is enough to show that A, is compatible with every element of G;). Note that
models of cardinalities > o are mapped to generic set over N for (P'(6))>i(a), just this set is
generated by such images. Hence there is no problems with the images (i.e. i(X)) of elements
of A, N (Gi(a))>a- We need only to take care of i"X for X € (A, N (Gia))=a) U {A,}.

Pick any element ¢ of (P'(i(«))™ with A, inside. Assume also that A, is on the central
line of q. Consider i(q). It will consists of models of cardinalities below a and those of
cardinalities at least i(«) (remember that each condition has Easton support). Also B,
appears in i(q) on the central line. We would like to find a common extension of ¢ and i(q)
which includes i”A,. Proceed as follows. Pick first some §*, a < 8* < i(«a), such that Bg- is
a unique immediate predecessor of Bg-;; and there is no models of cardinalities above i(«)
(and so, no models at all) in between. Using elementarity and density argument it is possible
to find such *. Now inside B, g« we pick an increasing continuous sequence (X, |7 € s(q)) of
models (elementary or ¥j-elementary in B, g« ) such that ¢,i"A,,i(q) N B, g«41 € X,+. Then
¢ 1" A, (X T € s(q))"i(g) will be as desired.

O of the claim.

Let vy be the first element of T' of cofinality a. Consider A4,,7i"A,,. By Claim 3.0.28.1,
Ay 1" Ay, € (P'(0))Y /Gia)- Now inside B,, we extend A,,"i"A,, to a condition ¢y in Ej
with the projection to (P'(i(«)))%, inside G-

Claim 3.0.28.2 ¢~ B,, € (P'(0))Y/Gi().

Proof. Again we need to show that gy~ B,, is compatible with every element of Gj().
Let t € Gy There is a common extension g of gy and ¢ with projection in Gy, since
g € (P'(0))" /Gi(a). By elementarity, we can find such ¢ inside B,,. Thus

(P'(i(e)™ € (Vi)™ S By

and, hence

Bl/o [Gz(a)} = B[Gz(a)] = (%[Gl(a)])N

Also, By, [Giy) N (P'())Y = B,, N (P'(0))".

Consider ¢~ B,,. It is almost a condition in (P’(#))" only with maximal models missing
for lot of cardinalities. Extend it to some r € (P’())" for which the projection to (P'(6))"
is defined. Then r > ¢ implies that the projection r’ of r is above the one of ¢. But then
r" >t in (P'(i(a)))”. This means in particular that o™ B,, is compatible with ¢.

O of the claim.

92



We proceed similar at each successor stage. Thus, if for £ < o™, ¢, B,, are defined
g¢ € By, and ¢ By, € (P'(0))"/Gi), then we pick veyy to be the least element of T
above v¢ such that cof (vey1) = a and A,, € C%(4,.,,). As in Claim 3.0.28.1, we will have
q=Av,, " By, € (P'(0)" /G-
Now inside B,,,, we extend ¢ to a condition ge11 in E¢,, with the projection to (P'(i(c)))%,
inside Gy(q). Then, as in Claim 3.0.28.2, we will have ge41" B, € (P'(0))"/Gi

Let us turn to limit stages of the construction. Assume that £ is a limit ordinal. Let
Ve = Ur<elr, Vey1 be the first element of T\ + 1 of cofinality a and ¢ = U{q,|T < £}. This
qe is just the formal union of all ¢;’s constructed at the previous stages. We do not take

unions of the maximal models of ¢,’s etc. Let g ' be obtained from qg by adding " A nd,

verr &
if A,, is in a condition in Gj(q), then also i"A,,.

Claim 3.0.28 ¢ projects to an element of G

Proof. Let us show that for each ¢; € Gy above the projection of g; the following holds:
if t € (P'(i(«)), and t > 1, then there is ¢ > g¢ with the projection to (P'(i(a))¥,
stronger than .
Let t; < ¢ be as above. Then initial segments of ¢¢ project below ¢. Just g¢ projects
to a condition in Gy below ¢; < ¢. Also, the addition of A i" A, is above i(a). So

we can find a common extension r € Bj,,,) of ¢ and ¢f. Using the elementarity of VZ](\; X

Vet1)

i(Vet1)
find 7' € (Vi(a) N (P'(i(a))5a)" realizing the same type as r over r N VZ](\[X) Finally, let ¢ be
obtained from r U’ by adding the maximal models including those of both 7, 7" and this
models via C”(q)’s to those of r’. Then the projection of ¢ to (P'(i(a))¥, is ' >t and we
are done.

O of the claim.

Now we extend g¢ to g¢ € E¢ in By, ,) with the projection to (P'(i(x))%,, inside Gj()

This completes the construction.

Consider finally the resulting sequence (g, | ¥ < a™). Let (¢} | v < a™) be the sequence
obtained from it by removing from each g, models of cardinalities below 6. Then, ¢ € E, for
every v < at. Hence (¢} | v < a™) generates a B[i(p)]-generic subset of ((P'(0)<ia))ss+)".
Nare in Giga) N (P'(i(a) s+ ).

The same is true (again by the construction) for g,’s, i.e. projections to ((P'(i(c)))sq)” are
)

By the construction, the projections of ¢}’s to ((P’'(i(«)))>s+)

in Gia) N (P'(i(@)))>a). Then ¢,’s will be in Bli(p)]-generic subset of ((P'(0)<ia))za)™
generated by Gja) N (P'(i(@))se)Y and (g | v < ™). Moreover, models i”(A,) appear in
¢,’s. Each r € P, which is inside some A, will be moved by i to i(r) € (P'(0)<a)” inside

i"A,. But i"A, is a model inside a condition in generic set, so i(r) is such as well. Hence

93



images of elements from Gy N P., are in the constructed this way N-generic subset of
(P'(0)<a)Y. So we are done.

O of the lemma.
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Chapter 4

Dropping cofinalities-gap 3-single
drop

Our aim is to present constructions in which 2% = k%3 and the cofinality ™ drops down,
i.e. the generator b.++ for the cofinality ™' is far apart from b,+s . Note that in the
usual constructions of models with a singular strong limit cardinal x with 2% = %3, like

Silver-Prikry, Extender Based Prikry etc. (see [2]), we have
bot+ 24N~ | n € bes},

where 7~ denotes the immediate predecessor of 7.

4.1 Preliminary Settings

Let A\g < kg < AN < K1 <..< A\, <Kk, <..,n<w be asequence of cardinals such that

for each n < w
e )\, is AT""2 _strong as witnessed by an extender Ey,
o £, is k"2 - strong as witnessed by an extender E,,

Set & = U,,<,, Fn-
Let us denote by 7y, o 3 the projection map of the extender E), and by 7., o s those of
E., , see [2] for the definitions.

Force with the forcing P’ of Chapter 1. Let G(P’) be a generic subset.
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4.2 Models and types

The main difference in present setting from those of [1], Chapter 1 will be due to the fact
that the cardinalities of models in the range of a condition (i.e. in suitable structures over
Kn's) may be smaller than the number of existing types. So any such model may contain
only a limited number of types. We would like to insure that it will be still sufficiently large.

Fix n < w. Set 6, = k"2, Fix using GCH an enumeration (a, | @ < k,) of [k,]<""
so that for every successor cardinal § < k, the initial segment (a, | @ < §) enumerates
[6]<% and every element of [§]<° appears stationary many times in each cofinality < d in the
enumeration. Let j,((an | @ < Kkn)) = (aq | @ < jn(kn)) where j, is the canonical embedding

)<

of the (ky,0,)-extender E,, . Then (a, | a < 6,) will enumerate [4,]=" and we fix this

enumeration. For each k£ < w consider a structure
k
an,k = <H(X+ )a €, ga S) Enna E)\na )\m Rn, 5na

X (o | < 6,),0,1, ... a,... | a < k™)

n

in the appropriate language £, with a large enough regular cardinal x.

Remark 4.2.1 It is possible to use x " here (as well as in [1]) instead of x*. The point is
that there are only x* many ultrafilters over x,, and we would like that equivalent conditions

use the same ultrafilter. The only parameter that need to vary is k in H(x™).

Let L7, be the expansion of L, by adding a new constant ¢. For a € H(x™*) of
cardinality less or equal than 4, let 2, ;. , be the expansion of 2, ; obtained by interpreting
c as a.

Let a,b € H(x™) be two sets of cardinality less or equal than §,. Denote by tp, x(b) the
L, -type realized by b in 2, ;. Further we identify it with the ordinal coding it and refer
to it as the k-type of b. Let tp,(a,b) be a the L] ,-type realized by b in 2, ;.. Note that

coding a, b by ordinals we can transform this to the ordinal types of [1].
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4.3 The main forcing

We will use A\,,’s (n < w) to generate w-sequences corresponding to ordinals below %" in
the same way as it was done in [1].
The treatment of k™ will be parallel to those of Chapter 1, but with major changes due
to the lack of cardinals between x, and x"*2 that correspond to k™. Here k™2 will
correspond to x*3 and Af"*2 to kT, Recall that in Chapter 1, "™ corresponds to x™
and "2 to kTT.

We will use suitable and suitable generic structures over s as defined in Chapter 1.
The corresponding structures over k,’s will be rather names related to choices made over
An’S.

Fix n < w.

Let give first the following preliminary definition:

Definition 4.3.1 Let n be a cardinal less than A,. A suitable structure ((X,Y),C,€,C )
at the level , (see Chapter 1)is called an n-suitable iff each element of X (i.e. each model)

has cardinality 7.

Note that in Chapter 1 models at the level k,, have cardinality x/"*2. Here it drops

below A, < K,,.

Definition 4.3.2 Let (),,0 be the set consisting of pairs of triples

q={(a, A, f),(b,B,9g))
so that:
1. f is partial function from k2 to A, of cardinality at most &

2. There is a suitable generic structure ((X,Y),C, €, C ) of cardinality less than A, (not
Kn, as in Chapter 1), such that

a is an order preserving function from the set {Z Nk™+ | Z € X} to Af"F2.
Note that by Chapter 1, the set {Z Nkt | Z € X} is a closed subset of 1.

3. a(max(X)NxT") = max(rng(a)) is above all the elements of rng(a) in the order of the

extender E .
4. dom(a) Ndom(f) = 0.
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5. A € Ej, max(rng(a))-
6. min(A) > | X|.

7. For every ordinals «, 3,7 € rmg(a) and p € 7Y (A)

An,maxrng(a),a

a>p, B >g, v implies

7T/\n,anf(:0) = T8,y (7")\”,«1,6 (p))-
8. For every o > (3 in rng(a) and p € A
T \n,max rng(a),a (ﬂ) > 7-‘-)\n,maxrng(a)ﬂ(p)'

Let us turn now to the second component of a condition, i. e. to (b, B, g).
9. g is a function from k™ to k, of cardinality at most &

10. b is a name, depending on (a, A). For each n € A the interpretation b[n] of b

according to 7 satisfies the following conditions.

(a) There is an ((n)°)*""-suitable structure ' ((X,,Y,),C,, €,C ) at the level k,

ns '
such that

i. b[n] is the isomorphism between ((X,Y),C,€,C ) and ((X,,Y;),Cy, €,C),

ii. for every Z € X we have

WAn,max(rng(a)),a(Zﬂn++)(n) = ,Q[”](Z) N ((77)0)-1-71-1—2.

In particular,

b [n](max(X)) N ((n)?)*2.

Further let us identify between b[n](Z) and b (Z)[n].
Note that the domain of b is X and this does not depend on 7.

Ui

(b) (Dependence) Let Z € X. Then b[n](Z) depends on the value of the one element

Prikry forcing with the measure a(Z N k™") over \,. More precisely: let

A<Z) - 7T)\n,maxrng(a),a(Zﬁn++)/,A7

In%, as usual, denotes the projection of 7 to the normal measure of the extender, ie. n° =

T\, ;max(rng(a)),\n (77) .
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then each choice of an element from A(Z) already decides b(Z7), i.e. whenever

M, M2 € A and

™ )\n,maxrng(a),a(Zﬂl-@++)(7]1> =T /\n,maxrng(a),a(Zﬂn++)(772)
we have
b(2)m] = b(Z)[ne].
Further let us denote by 1(Z) the projection of n to a(Z N k™),
i.e. Ty, maxrng(a),a(znet+) (1), for each n € A,.
So b(Z) depends only on members of A(Z) rather than those of A.

The next condition is crucial for the x™*-c.c. of the forcing.
(¢) (Inclusion condition)
Let n,n € A,n <n'. Then
o b(max(X))n] € b(max(X))[n],
o if 7€ X NC(max(X)) and

7T-)\n,maxrng(a),a(Zr‘m""*)(77,) > 1,

then either

b (max(X))[n] € b(Z2)[n]
or
the k-type realized by b (max(X))[n]NH(x™*) isin b (Z)[n], where k < w is
the least such that b (Z)[n] € H(x™*).
The same holds over any element of b(Z)['], i.e. tpi(z, b(max(X))[n] N
H(CH) € b(2)l). for any = € (2]
We require in addition that this & > 2.
Let us allow the above also if b(Z)[n'] € H(x™). In this case we take k to
be any natural number above 2 and require that once we go up to the higher

levels then corresponding k’s increase (with n).

We cannot in general require only that

b (max(X))[n] € b(Z)[n']
since the sequence C' of a new generic suitable structure may go not through the
old maximal model. But still having the type inside Z will suffice.
Note that given 1/ € A the number of possibilities for n € ” N A is bounded by

(7]/0)+n+1’ as 7]/ < (7]/0)+n+2_
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(d) Y Nndom(g) = 0.
(e) For every o € Y andn e A
i. b[n]() is a model of cardinality ;" !,
i /i C b [n)(e),
ifi. cof (sup( b [n](er) N &7 +2)) = (n°)F"+2.
Note that all the cardinals ki, ..., k™ will correspond here to k™. So, we need

to drop down to to the indiscernible (n°)™*2 for A2 in order to get to x*.

(f) For every n € A
E[n] € Enn,max(Xn)-

(g) For every n € A and ordinals «a, 3, which are elements of tng( b )[n] (i.e. actually

the ordinals coding models in rng( b )[n]) we have

a>p, B>p, v implies

W”naav'y(p) - Wﬁn,ﬁ,’y(ﬂ-f{n,a,ﬁ<p))

for every p € (Bnl),

kn,maxrng(b,[n]),a\~5

(h) for every Z € dom(b,) there is k(Z) < w such that for every n € A we have
ba(Z)ln] < H(x).

Note that it is easy to arrange this condition just by shrinking A. Thus for each
n € A there is k, < w such that b,(Z)[n] < H(x™"). Now pick Az C A in
E,, max(mg(a)) and k(Z) < w such that for every n € Az, k, = k(Z). Finally re-
place A by (\{Az | Z € dom(b,)}. Note this intersection is still in E), max(mg(a)),
since |dom(b,)| < An.

Definition 4.3.3 Suppose that ((a, 4, f), (b, B,g)) and ((¢’, A, f'),(b', B',¢')) are two el-

ements of (),9. Define

({a. A 1), (b, B.g)) Zo,, (@' A, ). (V. B'.q))
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3.aDd

4. 7T// (a/)A g A/

An,max(a),max

5. for every v € A we have

b[V] 2 lj[ﬂ-)\n,max(a),max(a/) (V)]

~

This means just that the empty condition of one element Prikry forcing forces the

inclusion.
6. for every v € A we have
T max( Bl max(¥ (7, max(e) manars () D [v] € B'[mx,, max(a),max(@) (V)]
We define now Q1 and (Q,, <,, <} ) similar to those of Chapter 1.
Definition 4.3.4 @), consists of pairs (f, g) such that
1. f is a partial function from x** to A, of cardinality at most &

2. ¢ is a partial function from x*3 to &, of cardinality at most s

(n1 is ordered by extension. Denote this order by <.

So, it is basically the Cohen forcing for adding x* Cohen subsets to x*.

Definition 4.3.5 Set Q,, = Q0 U Qp1. Define <5 =<, U <o, ,.

Define now a natural projection to the first coordinate:

Definition 4.3.6 Let p € Qp. Set (p)o = p, if p € Quy and let (p)o = (a, A, f), if p € Quo is
of the form ({(a, A, f), (b, B, g)).
Let (Qn)o = {(P)o | p € Qn}.

Definition 4.3.7 Let p,q € Q),,. Then p <, ¢ iff either

L.p<iq

or
2. p={((a, A, [),(b,B,g)) € Qno, ¢ = (e, h) € Qn1 and the following hold:
(a) e f
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(b) h2yg
om(e) 2 dom(a)

e(max(dom(a))) € A

) h
(©) d
(d)
e) for every 8 € dom(a), e(88) = T, a(max(dom(a)).a(s) (¢(max(dom(a)))
) dom(h) D dom(b)
) (max(dom(b)) € lj[e(max(dom(a))].

Le., we use e(max(dom(a)) in order to interpret B. Note that by 2d above, it is

(
(t
(g

inside A and so the interpretation makes sense.
(h) for every 8 € dom(é)
h(B) = Ty max(ena(b 10,5 (3w} (P(max(dom(b)),
where v = e(max(dom(a))). Recall that we code models by ordinals.
Definition 4.3.8 The set P consists of all sequences p = (p,, | n < w) so that
1. for every n < w, p, € Qn
2. there is /(p) < w such that
(a) for every n < {(p), pn € Qn1
(b) for every n > U(p), pn = ({an, An, [n), <I)Nn,lzn,gn>) € Qno

(c) for every n,m > {(p), max(dom(a,)) = max(dom(a,,)) and max(dom(b,)) =

max(dom(b,,))

~

~

(d) for every n > m > {(p), dom(a,,) C dom(a,) and dom(b,,)) C dom(b,)

~ ~

(e) for every n, ¢(p) <n < w, and X € dom(a,) the following holds:
for each k < w the set

{m <w | =(an(X)NH(™) < H(x™))}

is finite.

(f) for every n, ¢(p) <n < w, and X € dom(b,) the following holds:

~

for each k£ < w the set
{m <w|3ve An(=(0n(X)[r] N H(x™) < H(x*™))}

is finite.
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We define the orders <, <* as in [3].

Definition 4.3.9 Let p = (p,|n < w),q = (gu|n < w) be in P. Define
1. p > qiff for each n < w,p, >, qn
2. p >* q iff for each n < w,p, >* ¢,

Definition 4.3.10 Let p = (p, | n <w) € P. Set (p)o = ((Pn)o | n < w).
Define (P)o = {(po | p € P}.

Finally, the equivalence relation «— and the order — are defined on (P), exactly as it
was done in [1], or in Chapter 1. We extend — to P as follows:

Definition 4.3.11 Let p = (p, | n < w),q = (g | n < w) € P. Set ¢ — p iff

L. (¢)o = (P)o

2. U(p) > l(q)

3. for every n < {(p), p, extends g,

4. foreveryn > U(p), let p, = ({an, An, fn), (b

Y

ns By gn)) and ¢, = ((ay,, A3, f1), (bn, By an))-
Require the following:

(a) gn 2 g,
(b) there is b such that for every v € A, the following holds:
i. bnv] extends b7 [v]
ii. dom(b;)=dom(b)
B T max( ) max( ) BelV] € BulV'];
where V' = T, max(me(an)).¢(¥) and £ = a,(max(dom(ay,))
iv. tg(t,)[V'] ¢, g(b)[V], where v/ is as above and k,, is the k,’s member
of a nondecreasing sequence converging to the infinity.
v mg(br) [V et =mg(by) V] TR
Here is the main difference between — in the present context and those of [1]
etc. In the present context we deal with assignment functions b,’s which act
over ,’s but are of cardinalities below k,’s (as well as the models in rng(b,)

which are images of those of cardinality «). Thus, assume that n is fixed and
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Z = by(max(dom(b,)), where b, = b,[n] is the interpretation according to some
N < Ay < kn. Then |Z] = (n°)™ 1. Now if we like to realize types inside Z, as it
was done usually in [1] etc., it may be just impossible since Z is too small and so
does not contain all the types.

The way suggested here in order to overcome this difficulty, will be to use 4.3.2(10c¢)
together with the above definition. It turns out that once working with names it
is still possible to prove k*T-c.c. of the final forcing (P, — ). It will be done in
4.4.5.

4.4 Basic Lemmas

In this section we state basic lemmas for the forcing (P, <, <* ). Most of the proofs just

repeat those of Chapter 1 with minor adjustments.

Lemma 4.4.1 Let p € P and ((B*", B D*"), B"*"") € G(P'). Then

1. for every a € B there is ¢ >* p such that a € dom(b,(q)) for all but finitely many

n’s;

2. for every A € BY' there is ¢ >* p such that AN &t € dom(a,)(q) and A €
dom(b,(q)) for all but finitely many n’s. Moreover, if ((AOFT AT ORTY AT >
(B BY' D<), B witnesses a generic suitability of p and A € C* (A7),
then the addition of A does not require adding of ordinals and the only models that
probably will be added together with A are its images under A-system type isomor-

phisms for triples in p.

Lemma 4.4.2 Let n < w. Then (Qno, <o ) does not add new sequences of ordinals of the
length < A\, i.e. it is (\,,00) — distributive.

Lemma 4.4.3 (P, <*) does not add new sequences of ordinals of the length < X.

Lemma 4.4.4 (P, <*) satisfies the Prikry condition.
Let us turn now to the main lemma in the present context:
Lemma 4.4.5 (P,— ) satisfies kT -c.c.
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Proof.
Suppose otherwise. Work in V. Let (p, | & < k™1) be a name of an antichain of the

length x™*. Using the strategic closure of P’, we find an increasing sequence
(((AFT AR, Cam), AYT) a < k1)

of elements of P’ and a sequence (p, | @ < k¥T) so that for every a < k** the following
hold:

(a) (A2, AT Ci) AT IF P < o
(b) Upea AY" = A% if o is a limit ordinal,
(c) "AR%y © AQT,

(d) A% is a successor model,

() (A" | B <a) e A,

(f) for every a < § < k™t we have

C" (A% is an initial segment, of Cg*(A%ﬁ)’

(8) Pa = (Pan | n < w),

(h) for every n > l(pa)
- Ag’fl N k1T is the maximal ordinal of dom(a,,) and Ag’”qu Nkt € dom(ay,),
— A%" is the maximal model of dom( b 4n) and Ag”+ € dom( b an),

a+1

where Pan = <<aoma Aoma .fom>a <,l3_,oma Eana gom>>~
Actually this condition is the reason for not requiring the equality in (a) above.

Let Pan = <<a'omv Aoz’m fom>; <,Qoma Eanngan» for every o < KT+ and n > l(pa)

Let a < k™. Fix some

+ + + ++ + + + ++
<<Bgilﬁ Biﬁ-l? DZ+1>7 Bgfi-l > SP’ <<A2fi-1’ Aiﬁ-lv CZ+1>’ A}x’f&-l >

which witnesses a generic suitability of structure dom(b o,) for each n,l(p,) < n < w, as

in Definition 4.3.2. Note that BY| need not be in C%, (A%") and even if it does, then
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Dgil(Bg’fl) need not be an initial segment of (J;L(Ag*fl). By the definition of the order

<ps there are m < w and By, ..., E,, € AL such that

ot ot vt ot ot ot et ot
SWt(<<Ag+1aA}x+1:Ca+1>7Ai+1 ), B, ..., En) and <<Bg+1aBi+1>Da+1>aB;+1 )

are as in the definition of the order of P’ (Chapter 1, 1.15).

By Lemma 4.4.1 it is possible to add all E;(i = 1,...,m) to dom(aay,), for a final segment
of n’s. By adding and taking non-direct extension if necessary, we can assume that E;’s are
already in dom(agy,), for every n > l(py).

Now we can apply the opposite switch (i.e. the one starting with E,,, then E,,_4, ...,and
finally E; ) to dom(a,,) (and the corresponding to it under a,, to rng(a.,)). Denote the
result still by aqy,.

Finally, ((A%", A" Cx7 ), ALY will witness a generic suitability of structure dom(a,y,)

for each n,l(pn) <n < w.

In particular, we have now that the central line of dom(aay) is a part of C%,, (A%)) and
A% is on it, for every n,l(pa) < n < w.

Shrinking if necessary, we assume that for all o, 8 < k™ the following holds:
(1) €= t(pa) = L(ps),
(2) for every n < ¢, p,, and pg, are compatible in @, i.e. pan Upp, is a function,

(3) for every n, £ < n < w, (dom(fu,) | @ < k) and (dom(gs,) | @ < k1) form a

A-system with the kernel contained in A8"‘+,
(4) for every n, w >n > {, rng(aa,) = rng(ag,),
(5) for every n, w >n > ¥, Au, = Agn,
(6) for every n, w >n >£,n € Aqn, g b an[n] = rng b g, [n],

(7) for every n, w >n > {€,n € Aan, Ban[nl = Benln,

Shrink now to the set S consisting of all the ordinals below x** of cofinality k™. Let «
be in S. For each n,¢ < n < w, there will be $(a,n) < a such that

Kkt KT
dom( b an) NAY C A%(a’n).
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Just recall that dom(b ) is not actually a name and |dom(b4n)| < Ap. Shrink S to a
stationary subset S* so that for some o* < min S* of cofinality k* we will have G(«a, n) < a*,
whenever o € 5%,/ < n < w. Now, the cardinality of Ag’f is k. Hence, shrinking S* if

necessary, we can assume that for each o, 5 € S*,/ <n <w
dom( b an) NAY" = dom(bg,) NAY".

Let us add A%" to each p, with o € S*.

By 4.4.1(2), we can add it without adding ordinals and the only other models that
probably were added are the images of Ag’f under A-system type isomorphisms. Denote
the result for simplicity by p, as well.

Let now 8 < a be ordinals in S*. We claim that ps and p, are compatible in (P, —).
First extend p,, by adding A%’fz. This will not add other additional models or ordinals except
the images of A%’fz under isomorphisms to p,, as was remarked above.

Let p be the resulting extension. Denote pg by ¢. Assume that ¢(q) = ¢(p). Oth-
erwise just extend ¢ in an appropriate manner to achieve this. Let n > {(p) and p, =
(0, Au Fu) b B ). Lt g = ((ah Al £2), (U Blavg1)). Without loss of gencrality
we may assume that the ordinal an(A%*fz NkTT) is k,-good with k,, > 5. Just increase n if
necessary.

Realize the k,, — 1-type of rng(a,) below a, (A%, N Kx*) over a,((AY, N k™) Ndom(a,)),
i.e. above the common part on . Denote the ordinal corresponding to max(rng(a},)) in
this realization by ¢’. Note that an(Ag’fl N xkT*) and § have the same projection to the
common part an((A%’fz NkT) Ndom(ay)).

Fix now n € A,. Set 7 = T, max(mg(an)),5 (1)-

Consider b n(A%’fQ)[n] Again we can assume that it is an elementary submodel of 21, j, with

kn, > 5 (and k, does not depend on 7). Now we have
/i+ K/+ K/+
77, = T\, ,max(rng(an)),d’ (77) <n and A%—i—? eC (Ag+1).

Hence, by Definition 4.3.2(10c), the k, — 1-type realized by b, (A% )] is in b, (A%)[n], as
well as the k, — 1-type realized by b, (A%)[n] over b’ (A% ,Ndom(b,))[n], i.e. the common
part of of the conditions. Realize the k, —1-type of b (A% )] over b ;;(A%’fzﬂdom( b))
in b (AF) ).

Doing the above for each n € A,, will produce a condition p; > p, with ¢, — p} as in
Chapter 1.

O
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4.5 The resulting PCF structure

Force with (P,— ). Let G(P) be a generic set. By the lemmas above no cardinals are
collapsed. Let (v, | n < w) denotes the diagonal Prikry sequence added for the normal
measures of the extenders (E), | n < w) and (p, | n < w) those for (E,, | n < w).? We can

deduce now the following conclusion:
Theorem 4.5.1 The following hold in V[G(P'(0)) x G(P)]:
(1) cof([1,.., vi™2/ finite ) = xt+.

(2) cof (1, pit" 2/ finite ) = k3. Moreover, there is a scale (H, | T < k*?)

n I, pi"t?/ finite with the following special property:

(%) for every T < kT3,

(a) if cof(T) = kT, then H, is an exact upper bound of (H, | p < ) and for all but

finitely many n < w, cof(H,(n)) = v,"2;

(b) if cof(1) < k¥, then for all but finitely many n < w, cof (H,(n)) < v+,

(8) For every unbounded subset a of k consisting of reqular cardinals and disjoint to both
{2 | n <w} and {p;"? | n < w}, for every ultrafilter D over a which includes all

co-bounded subsets of k we have

Cof(H a/D) = r*

Proof. Ttems (1) and (2) follow easily from the construction. Thus, for (1), take the increasing
(under the inclusion) enumeration (X, |7 < k™) of the chain of models given by G(P’(x™1)).
Define a scale of functions (F, | 7 < x*%) in the product [],_ v as follows: let for each

T < KT
FI(n) = u(X), i fu(X,) < 02
and
F!(n) =0, otherwise,

where for some p = (pglk < w) € G(P) with ¢(p) > n we have f, as the first coordinate of
pn- Now let (F,|7 < k*T) be the subsequence of (F!|T < k™) consisting of all F which are

not in V. 3

2See [2] or [1] for more information on such sequences.
3By arguments of [2] or [1] this is a scale.
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Similarly, for (2), take the increasing (under the inclusion) enumeration (Y, |7 < £*3) of
the chain of models of cardinality ™" given by G(P’). Define a scale of functions (H, | 7 <

kT3) in the product [] T2 as follows:

Hl(n) = ga(Y7), if g,(Y;) < pi™*?

and

H!(n) =0, otherwise,

where for some p = (pglk < w) € G(P) with ¢(p) > n we have g, as the second coordinate
of p,. Let (H, | 7 < k™) be the subsequence of (H | 7 < k™) consisting of all H.’s which
are not in V. * The scale (H, | 7 < k™) in [],__ p;i"*?/ finite satisfies the property (*) by
the construction.

Let us turn to (3) which requires a more delicate analyses of the forcing (P, — ). We
deal with

cof(H p 1/ finite ).

nw
The rest of cases are similar or just standard. The crucial observation here is that given
((@n, Ans fn), (B ny By gn)) € Qno, for some n < w, it is impossible to change rng(b,)[v] [
k"1 by passing to an equivalent condition, for any v € A,,. Just the definition 4.3.11(4(b)v)
explicitly requires this.

This means, in particular that

cof(H pim L/ finite ) = cof(H kL) finite ),

n<w n<w

where the connection is provided by b,’s. But note that the cofinality of the last product is
kT, since every function there can be bounded by an old function. So we are done.
O

4.6 Dropping cofinalities-gap 3 with infinite repetitions

We continue here to study dropping cofinalities.
Let as before,

Ao < Ko <A1 < K < ... <Ay < Ky < ...(n < w) be an increasing sequence of cardinals
with a limit .

Assume the following:

4Again, by arguments of [2] or [1] this is a scale.
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o k, is k"2 - strong as witnessed by an extender E, , for every n < w
e )\, is M™% _strong as witnessed by an extender E) , for every n < w

Our aim will be to make 2® = x*3, but so that for each n < w the cofinality over &, that
corresponds to k" may drop down to each of \,,’s with m < n. In particular we will allow
a drop to Ao at each level n < w.

Recall that in the previous section, the drop down from k, was only to \,. By Theorem
4.5.1, there was a scale (H, | T < kT3)
in [T, pi"*2/ finite with the following special property:

(%) for every 7 < kT3,

1. if cof(r) = w*T, then H, is an exact upper bound of (H, | u < 7) and for all but

finitely many n < w, cof(H,(n)) = v"2;
2. if cof (1) < k™, then for all but finitely many n < w, cof(H,(n)) < v"+2.

Where v,,’s and p,,’s are indiscernibles which correspond to the normal measures of extenders
E,, s and E, s respectively.

Here we would like to allow more freedom and to produce a scale (H* | T < k™3)

in [, pi™+2/ finite such that

(xx) for every 7 < k13,

L. if cof(1) = ™", then H is an exact upper bound of (H | u < 7) and for all but

finitely many n < w, cof(H*(n)) = v,™*2 for some m < n;
2. if cof (1) < k™, then for all but finitely many n < w, cof (H*(n)) < v,

3. for every converging to infinity sequence (my, | ¥ < w) (not necessary increasing), there
are unboundedly many 7 < k™3 of cofinality ™ such that for all but finitely many

n < w, cof(HX(n)) = vim+2.

It is a bit simpler probably to consider the setting with only a drop to Ag occurs infinitely
many times, i.e. for every m > 0 a drop to \,, occurs only at x,,. Then )y will be used
infinitely many times and all the rest only once. It will be possible then to make a non-direct
extension at \g and this will bring the situation basically to the usual dropping cofinality
forcing.

If each of \,,’s appears infinitely many times, then the previous trick of taking non-direct
extension over \g will not work. Just we cannot take non-direct extensions at infinitely many

places.

110



All \,’s will correspond to k™1 and &,,’s to k. More precisely indiscernibles for A\"2’s
and for £, "’s will correspond to k™ and to x*3 respectively.

It is possible, using the same method, to replace n dropping points (A, | m < n) for
k, with any finite number. If one likes to replace it with infinitely many, i.e. some strong

enough cardinals (A, | m < w) additional assumption are needed on A,, :=J, __ Aum even

m<w
if K, < Aut10. Just otherwise the indiscernibles for A\"?’s (m < w) will correspond to A"
and Af’s correspond to kT and everything breaks down. The problem here is that once a
non-direct extension is taken over r,, then (A, | m < w) starts to be isolated from the part
above k,. Some connection of this sort is needed for example in order to show the Prikry
condition. Existence of strong enough cardinals between A,, and k,,; allows to generalize

the present arguments to such situation. This will not be elaborated here.
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Let us turn now to the forcing notions.

Force first with the preparation forcing P’(k™3) followed by P’'(k*") of Chapter 1.
It is possible instead of forcing with P’(k*1) just to take the projection of a generic for
P'(kT3) to k7T, ie. intersect each model there with £*7.
Let G(k™3) and G(k™™) be the corresponding generic subsets. Work in V[G(k3), G(kTT)].
We shall redefine the forcing of Section 4.3.

The first small change (actually relevant to all short extenders forcings) will be as follows.

Given a condition p = (p,|n < w), p, = (an, An, fn), for each n > £(p). We require that

1. for each n < {(p), if X € dom(p,), then starting with some m > n we have X €

dom(ay,).

2. for each n > £(p), if X € dom(f,), then starting with some m > n we have X €

dom(ayy,).

This change prevents appearance of old w sequences among those produced by a generic
object.
Recall that the cardinalities of dom(p,) and dom(f,,) are at most x, as well as the cardinality
of Uypy<k<w dom(ax). So it is always possible to spread x-many things among dom(ay,)’s.

Fix some n < w.

Definition 4.6.1 Let (), be the set consisting of pairs

<<<am7Am7fm> | m < n>, <b, b

~ T NY

7_',b\C7§7g>>

so that:

for each m <n
1. f,, is partial function from x*2 to \,, of cardinality at most .

2. There is a suitable generic structure ((X,Y),C,€,C ) for G(k™1) of cardinality less
than )\, such that a,, is an order preserving from X UY (actually here for k™ we have

that X itself consists of ordinals and Y is unneeded) into A2,

3. ay,(max(X)) = max(rng(a,,)) is above all the elements of rng(a,,) in the order of the

extender F .
4. dom(a,,) Ndom(f,,) = 0.
5. Am S E)\m,am(max(X))
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6. min(A4,,) > |dom(a,)|
7. for every «, 5,7 € rng(a,,) we have

a>g, B >g, v implies

T (P) = Tan 84 (T ,a,8(P))
for every p € ﬂ_“)\m,maxrng(am),a(Am)'

8. For every a > (3 in rng(a,,) and p € A,
7T)\m,max(rng(am)),oz (P) > WAm,max(rng(am)),,B(p)~

Let us turn now to the second component of a condition, i.e. to (b . B, g). Main

differences (and complications) appear in this part-namely in the assignment function

b.

~J

9. b is a name, depending on ({am, A,) | m < n), of a partial function of cardinality less

or equal than J,, ., Am.

The following conditions are satisfied:

(a) (Domain) There is a generic suitable structure ((X,Y),C, e, C ) for G(k*3) of
cardinality less than or equal than (J,, ., A such that
i. dom(b)=XUY;
ii. for every Z € X there is m < n such that Z N k%" is in dom(a,,).
(b) ( Maximal model ) max(X) is a maximal (under €) model in dom(b )
Here its image will not necessary be the maximal model of the range. The com-
plication is due to the fact that now we will have models of different sizes in the

range of b and max(X) may correspond to a model of a size A, for some m < n.

In this case the following situation will be allowed:

Z1€Zye Zand 7, & Z.

The choice of a size of b (A), for A € dom(b)NX, will be determined by ANx*.
Thus we require that there is a splitting of ™ into intervals (determined by the

condition) which rule the correspondence of sizes.
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(¢) ( Splitting into intervals ) There is a disjoint partition of k™ into intervals (s; |

i < 9), for some § < \,, such that

e for each i < ¢ there is a unique m(i) < n which is the index of Am(i) cOITe-

sponding to size of models in the sense of the next condition;

e let A € dom(b) be a model of cardinality ™ on the central line. Denote by
i(A) the unique i < 0 such that AN s belongs to s;. b(A) will be a model

of size less than Ap,z(a))-

(d) ( More on the maximal model ) The name b (A) can depend on all (A, | k < n).
But we require that the image of the maximal model max(X) depends only on

)\m(i( AT - This is needed for the chain condition argument.

Note that b (max(X)) need not even contain every model of rng(b) even of car-
dinality Ay, (i(max(x)))-

On the other hand models in the range ( of a bigger size ) can refer to ones of a
smaller sizes and then the last stop to be names for \;’s corresponding to their

size.

Suppose for simplicity that n = 1. Then we have only A\g and A;. So models over
k1 can have sizes < A\g and < A;.

A non-pure extension over )y results in a condition over k; in which b acts in
order preserving (i.e. € preserving) fashion only over the intervals corresponding
to A\1. The behavior on the intervals which correspond to )\g is like the function
g of the condition, i.e. no order preservation is required. The number of models

then is not « like in g, but rather < A;.
If a non-pure extension is made over A;, then we make such extension also over

)\0, Ko and KR1.

(e) ( Weak order preserving condition ) Let A, B be in dom(b). If A € B, then
b(A) € b(B) (forced by the empty condition) or there is C' € B,C € dom(b),
C'Nw** in an interval corresponding to A; and b(A) € b(C) € b(B) (forced by
the empty condition).

(f) Suppose that Z € dom(b) and ZNx** in the interval corresponding to A;. Then
b(Z) depends only on A, i.e. it is a name in the forcing over A; without the

forcing over ).

(g) (Inclusion condition 1)
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Suppose that max(X) N " is in the interval corresponding to A;.

Let n,n" € A;,n < n'. Then

b (max(X))[n] € b (max(X))[n'],
if Z e X NC(max(X)), ZN k™" in the interval corresponding to A\; and

7T-)\n,maxrng(a),a(Zﬁfﬁ"")(n/) >,

then either

or
the k-type realized by b (max(X))[n]NH(x™*) isin b (Z)[n/], where k < w is
the least such that b (Z)[n'] € H(x ™).

The same holds over any element of b(Z)[n'], i.e. tpi(z, b(max(X))[n] N
H() € b(Z)li], for any = € b(Z)].

We require in addition that this & > 2.

Let us allow the above also if b(Z)[n'] € H(x™). In this case we take k to
be any natural number above 2 and require that once we go up to the higher

levels then corresponding k’s increase (with n).

We cannot in general require only that

b (max(X))[nl € b(Z)[n]

since the sequence C' of a new generic suitable structure may go not through the

old maximal model. But still having the type inside Z will suffice.

Note that given 1’ € A; the number of possibilities for n € '’ N A; is bounded
by (7]/0)+n+17 as n/ < (7]/0)+n+2.

(h) If Z € X and ZN k™7 is in the interval corresponding to Ao, then either

1.

ii.

b(Z) does not depend on ;.
In this case we require that there is no models corresponding to A; below Z.

Or

there is 7' € XNC(Z) with Z'Nk™* in the interval corresponding to A; such
that the empty condition forces “b(Z') € b(Z)”. Moreover, if py, ps € Ay

and 7T)\1,max(rng(al)),a(Z’ﬁn**)(,01) = 7T)\1,max(rng(al)),a(Z’ﬁfc**)(/02)7 then for every
v € Ag we have b(Z)[v, p1] = b(Z)[v, pa.
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The intuition behind this condition is that the number of types inside a model of
cardinality below )\j is too small to include all the types that may be generated by
picking different indiscernibles for A;. In order to insure the chain condition will
put together two conditions say by realizing the type of one with smaller index
(in the increasing chain of k**-many) inside an other with a bigger index. This
done as follows: first a model from the central line above the common part which
includes the low condition and below the upper one (except the kernel)should be
added. If Z is inside it, then it is in the common part and the condition below
takes care of such situation. If Z is not inside, then such model is in Z (since they
are on the central line). In this situation, it is enough to preserve on the side of
the images the order (€) only in a weak sense (see the corresponding condition
above). This is easy since the cardinality of the image of Z is above ).

If there were not only \g and A, rather an infinite sequence, then still it possible
to play with this weak order preservation. Thus once we deal with a model of
certain cardinality (i.e. all its interpretations in given cardinality) take a model
of a bigger cardinality which includes all such interpretations, and as a name
depends only on indiscernibles corresponding to its cardinality. Now we are able
to add a model of smaller cardinality as a name which depends only on the last

model of this bigger cardinality.

(Inclusion condition 0)
Suppose that max(X) N« in the interval corresponding to Ag.
Let n,n' € Ag,n <n',€ € A;. Then
o b(max(X))[n, ¢l € b(max(X))[n', ],
e if 7 € X NC(max(X)), ZN k™ in the interval corresponding to Ag, the

maximal model in C'(max (X)) which corresponds to A; belongs to Z and

WAn,nlaxrng(ao),a(Zﬂan*)(n/> > 1,

then either
b(max(X))[n, &l € b(Z)In',¢]
or
the k-type realized by b (max(X))[n,§JNH (x*")isin b(Z)[, €], where k < w

is the least such that b (Z)[n/,&] € H(x ™).
The same holds over any element of b(Z)[n, ], i.e. tpi(z, b(max(X))[n,&]N
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H(x*™)) € b(Z2)[n',€], for any 2 € b(Z)[n', €]

We require in addition that this & > 2.

Let us allow the above also if b (Z)[',&] € H(x™). In this case we take k to
be any natural number above 2 and require that once we go up to the higher

levels then corresponding k’s increase (with n).
(i) ¥ " dom(g) = 0.
(k) For every a« € Y and n € Ay,€ € Ay
i. b[¢, n)(@) is a model of cardinality /"t
i 5" C bE ml(a),
i, cof(sup(b €, n](a) N #3™2)) = (1) F742 or it is (€9)+7+2,

Note that all the cardinals ki, ..., k™ will correspond here to k™. So, we need

2 or (n°) T2 in order to get to KT
Next, let us address b’. First we explain the purpose of introducing it.
Thus let o € Y Ndom(b ), cof (o) = k7 and b () is forced to have a cofinality

which corresponds to the indiscernible for A{"*? ( similarly, it may be a model

to drop down to the indiscernibles (£9)

from a part of the partition corresponding to Ag). In such a case dom(b) may
contain increasing sequences of models of each size k™ with unions bounded in
a. On the other hand the images are unbounded in b (). Note that the order
preserving implies that dom( b ) may contain at most one of such sequences. Now,
it is necessary for the chain condition of the forcing to be able to put together
two conditions both with such « inside but having in their 0’s different sequences
of the type above.

Also suppose that a non-pure extension was made at Ay and the central piste
reflects into . We need to allow a possibility of being unbounded in «, in order
to keep \; closure of the forcing. Assume that we have a condition of this type
(i.e. models corresponding to A; are unbounded in «) and we like to extend the
central piste. How to reflect an extension to a? In this case we just move the
previous cofinal in « sequence (or its part that interferes with the new one) to ¥
and replace it by a new one.

So the role of ' is to allow to keep such different sequences inside a single condition.
Further in the definition of extensions we will allow to change b by replacing the
sequence to o which is inside b by one from ¥'.

At the next level n + 1 all models which appear in b will be required to appear
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in dom(b) of n + 1-th level, and so will have different images.

(1) dom(d) C X UY.

i. If a € dom(V), then for each £ € Ag,n € A; we have cof(sup(b[§,n](a) N
K+n+2)) — (€O)+n+2'
If Z € dom(b'), then for each § € Ag,n € A; we have cof (sup( b [£,n](Z) N

R:n-ﬁ-?)) < (§O)+n+2'

For every w € dom(b’) (an ordinal or a model),

11.

iii.

A.

b'(w) is a function with domain a tree of sequences of models each of
them belongs to (X UY) Nw.

. rng (b’ (w)) is a tree of models over £, with the set of their sup’s unbounded

in b(w).

- dom(b) N Uy edom( gy dom(b'(w)) = 0.

This condition insures that a same model does not correspond to different

ones via b together with b'.

. If b [ w is replaced by one of branches of b’ (w) (i.e. if t is such a branch,

then we take the last model Z of the central line of dom(b [ w) which
is below the first model of the central line of ¢ and replace b [ w by
(b I Z)"t), then the changed b will share the requirements on b stated

above.

. Suppose that w is not limit of elements of dom(b). Let w* be its immediate

predecessor. Then for every &,&" € Ag,n, 1 € Ay with £ <& and n <n/
we require the following:
if b(w*)[§,n = b(w)[¢ 7], then every ¢t € dom(b'(w)[§,n]) we have

te b/(w)gn] and (b (w)€n))(t) = (b (W)€, ') ().

If w is the least element of dom(b), then every ¢t € dom(b'(w)[&,n]) w
have t € b/(w)[¢', '] and (b/(w)[€, n])(t) = (b'(w)[¢', n'])()-

Similar if w’ is any element dom(b), t € dom(b'(w')[§,n]) and w €
w'Ndom(b) has an immediate predecessor w* (or just the least element in
which case w* is unneeded) such that b (w*)[¢,n] = b (w*)[{',7], then t €

b€ n'] and (b (w')[€, n])(E [ sup(w)) = (b/(w)[E', n'])(¢ I sup(w)).

This property allows us to prove x™*-c.c. of the final forcing. Thus

we arrange first the situation where £ < & and n <7’ just as in the ordi-
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nary gap-2 forcing. Now over x,,’s run the argument of 4.4. The crucial
point in it is to replace the value which the condition with a bigger index
obtain with £, and in the present situation with &, 7, by the condition with
a smaller index. This should be done carefully over a common part of this
conditions. The item above insures that the relevant common part does
not change once the condition with a bigger index is evaluated according
to &, 7.

Let us describe an additional relevant situation. It may occur as well
proving the chain condition once at one of the components say in Ay a
non-direct extension was made.

Thus over k,, we may have the following two condition:

both consist of an initial segment corresponding (via the splitting) to
Ao having last models Z and Z’ correspondingly and models M and M’
above for \;. Z and Z’ are different and say Z € 7', the same with M
and M’ (i.e. M € M’). Assume that they have a common part which is
over k,, is unbounded in both Z and Z’. Now a non-direct extension was
made over Ag, so we no way to put Z and Z’ together. Still there is a
need to combine two such conditions together without taking a non-direct
extension over A\ or k,. The way of doing this will be as follows. We
either move Z’ to O/ (of the extension of the second (’)-condition) and
replace it in b by Z together with M, where M is added as already was
described in the case of only direct extensions. Or, alternatively, we keep
7' and add Z with M to b'.

(m) —b"is a subset of X UY such that for each { € Ag,n € A; we have

i. dom(b'[€,n])N=b'[€,n] =0,
il for any & € Ao’ € A€ > &' =y and ¢ € dom(D/[€'.]) \ dom(b/[€.])
we require t € 1 b'[€, 7).

The reason for introducing —b" is to insure the Prikry condition of the forcing.
Thus once running the standard argument for showing the Prikry condition we
take (at each level) non direct extensions and then combine them together into
a direct one. Without the above requirement it is possible to extend a given
forcing condition non directly by picking some £ € Ay, n € A; and then to extend
further by adding to dom(b’[¢,n]) some t which belongs to dom(b'[¢',7']) for
some & € Ag,n € A1, > &, > n. Such addition may now contradict 9(1)iiiE.
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(n) g is the usual one (i.e. as in all short extenders forcings), it is a function from x*3

to K, of cardinality at most k.
(1 is defined in the usual fashion, only we have here more functions.

Definition 4.6.2 (@),; consists of sequences ({f,, | m < n), g) such that
1. for every m < n, f,, is a partial function from x** to A, of cardinality at most x,
2. ¢ is a partial function from x*3 to &, of cardinality at most .

We have here intermediate non direct extensions between @), and @),,;. Just it is possible
to take a non direct extension at each of \,;,’s (m < n).

Turn now to the definition of the main forcing.

Definition 4.6.3 The set P consists of all sequences p = (p,, | n < w) so that
1. for every n < w, p, € @,

2. there is {(p) < w such that

(a) for every 1 < ((p), pn € Qo

(b> fOI' every n Z f(p)7 pn = <<<aﬂm’ Anm? fnm) | m S 7’L>, <bn7 b;w ﬁb/na Bn>gn>> € QnO

(c) for every n,n’ > £(p),m < min(n,n’) max(dom(a,,;,)) = max(dom(a,,,)) and
max(dom(b,)) = max(dom(b,))

(d) for every n > n' > {(p), for every m < n,m’ < n', if m’ < m, then dom(a, /) C
dom(aym,)

(e) for every n,m, {(p) <n <w,m <n, and X € dom(a,,,) the following holds:
for each k < w the set

{(n,m) € W | (@ (X) N H() < H(™))}

is finite.

Turn now to b,’s. Assume that n > £(p).

(f) For every A € dom(b,) U dom(b},) we require that the cardinality of b,.1(A)
(or of b .,(A), if A € dom(b;,)) is above those of b,(A) (or those of b, (A))

respectively).
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(g) If a is as above in (91) at the level n, then the sequences (i.e. models, ordinals
of their domains) of b’ for a are incorporated together (i.e. in order preserving

fashion) inside 0,41 or alternatively inside b ;.

The rest of the requirements are similar to those of 4.4 with obvious adaptations.

Let us define the order <*.

Definition 4.6.4 Let p= (p, | n < w),q = (g, | n <w) € P. Set ¢ <* piff

2. for every n < £(p), gn <q., Pns

3. for every n, {(p) < n < w, the following holds:

Gn = (A @Q)nm, ADnms [(@nm) | m < 1), <,Q(Q)n=N( )n _‘,Q(Q) ( Jns 9(@)n)) <Qno
P = ({(a(P)nm, AP)nms [ (P)um) | m < 1), (b (D)n, b(0)n, 20 (P)n: B(P)n, 9(P)n)), where
<0, 1s defined in the usual fashion with two additions:

~Y

e the partition used in ¢, can be refined (we allow to combine intervals together).
Note that it does not case problems with the chain condition of the forcing since
the number of elements used to define partitions is less than A, and we would like

to have Kkt T-c.c.
e b(p), extends b(q)y,,
o —b(p), extends —b(q),

The orders < and — on P are defined now as in 4.4.

Let us turn to the main issue- the chain condition.

Lemma 4.6.5 The forcing (P,— ) satisfies k™" -c.c.

Proof. The proof mainly repeats the corresponding proof in 4.4. An additional point used
in order to show the compatibility was explained in 4.6.1(9(1)iiiE).
O
Force with (P, — ). Let G(P) be a generic set. By the lemmas above no cardinals are
collapsed. Let (v, | n < w) denotes the diagonal Prikry sequence added for the normal
measures of the extenders (E,, | n < w) and (p, | n < w) those for (E,,
Then the following analog of 4.5.1 holds:

n < w).
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Theorem 4.6.6 The following hold in V[G(P'(0)) x G(P)]:
(1) cof(I],., vii"?/ finite ) = k¥,

(2) co(IT, -, o™/ finite ) = 5.
Moreover, there is a scale (H? | T < kT3)
in [1,-, P72/ finite with the following special property:

(%) for every T < K13,
(a) if cof(1) = k™, then H} is an exact upper bound of (H}; | p < 7) and for all but
finitely many n < w, cof(H*(n)) = vim™2 for some m < n;
(b) if cof(t) < k¥, then for all but finitely many n < w, cof(H*(n)) < v"*2;

(c) for every converging to infinity sequence (my | k < w) (not necessary increasing),
there are unboundedly many T < k™3 of cofinality k™ such that for all but finitely

many n < w, cof(H*(n)) = yfm*2.

(8) For every unbounded subset a of k consisting of reqular cardinals and disjoint to both
{vi 2 | n < w} and {p,"** | n < w}, for every ultrafilter D over a which includes all

co-bounded subsets of k we have

cof(H a/D) = k".
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Chapter 5

Gaps from optimal assumptions

Our aim here will be to present constructions in which the power of a singular cardinal may

be arbitrary large starting from the weakest possible assumption:

JkVn < wla < K(o(a) = a™™).

5.1 N;—gap and infinitely many drops in cofinalities

5.1.1 Preliminary settings

Let x be a singular cardinal of cofinality w such that for each v < k and n < w there is
a,y < a < K, such that o(a) = a™. We fix a sequence of cardinals kg < k1 < ... < K, <

.y < w so that
hd Un<w Kn = R
o for every n < w, K, is k"2 - strong as witnessed by an extender E,,

e for every n < w, the normal measure of E,, concentrates on

7’s which are 772 4 w, - strong as witnessed by a coherent sequence of extenders

(Erels < wi)
Fix also an increasing sequence (\,|n < w) such that
o )\ < Ko
® Ky 1 < Ay < Ky, forevery n,0 <n <w

o for every n < w, A, is AJ"2 - strong as witnessed by an extender E),
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Our aim will be to make 2% = ™1+ There is nothing special here in choosing w;. The
same construction will work if we replace everywhere w; by an ordinal n,n7 < Ag. Actually,
replacing the original Ay by a bigger one, we can deal similar with any n < x. Note that for
finite n’s our assumption is not anymore optimal and for countable 7’s the result was already
known, see the detailed discussion in [5].

Force first with the preparation forcing P’(k**1%1) of Chapter 2 with § = x**1 1. Then

the main forcing will produce the following PCF structure. We assign to st at a level n

+n+2

T2 where 7, is the indiscernible for the normal measure of the extender

the indiscernible 7

E,,. The correspondence between regular cardinals in the interval [x13, k™1 1] will be as

+n+2

follows: we assign to k™! at a level n the indiscernible p;

, where p,, is the indiscernible
for the normal measure of the extender E, . Let (p,.|a < wi) be the Magidor sequence

corresponding to the normal measures of F, the one used in the extender based Magidor

+n+2

forcing ( see [13]) to change cofinality of p, to w;. For every a,1 < o < wy, we assign p,”

to ktott,

The role of A\,,’s is to produce the first drop. It is possible to incorporate them into Magidor

sequences as their first elements. It seems a bit more convenient to separate the first drop.

5.1.2 Projections

Let p = ((A", A7 C™) | 7 € [T, k™1 N Cardinals) € P'(k™*1). Suppose that 1 is a
regular cardinal in [xT, kT, We would like to define p [ n - the restriction of p to 7.
Thus if A € A", 7 € [k",n] N Cardinals, then set A [ n= AN H(n"). Define

AT In={AIn]|Ac A"}, C"In={AIn|AecC},
for every T € [k, n] N Cardinals and
plIn={A" [ n A7 [ n,C" [ n)|7e[xk,n] N Cardinals).

Lemma 5.1.1 Suppose that n is a reqular cardinal in [k, k™' and p € P'(T1*1). Then
plnePn).

Proof. Let p = ((A", A C™) | 7 € [s%, k™| N Cardinals). Note that if A,B <
H(kt1%2) A, B D k™, |A],|B| <npand A € B, then A | n € B | n. Thus, if n = gt
then A n=A B |n=B. If n <k™ ! then H(n") € B, which implies AN H(n") € B,
but |A] <n, hence AN H(n") € H(n").

This implies that (C7 [ n | 7 € [s1,n] N Cardinals) € P”(n), i.e. the restriction of central
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lines of p satisfies the definition of central lines of P’(n), see Definition 2.2.1(Chapter 2).
The rest follows now by induction on complexity of pistes.
0

Note that if G is a generic subset of P'(k™* 1) then G [ n:={p | n | p € G} is never
generic for P’(n), since it is possible to extend an arbitrary condition ¢ € P’(n) to one with
a maximal model (say those of cardinality x*) which is not of the form AN H(n™) for any
A < H(kTert2),

It is possible under the same lines to deal with arbitrary regular # instead of k™ *1. The

following holds:

Lemma 5.1.2 Let p = ((A", A", C™) | 7 € s) € P'(0) and n € s is a reqular cardinal.
Thenp [ neP'(n).

Define now restrictions of suitable structures.
Let X = (X, E,C, €,C ) be a suitable structure, p(X) = ((A°7(X), A7(X),C™(X) | T € 5(X))
the corresponding condition in P’(#)( see Definition 2.4.6)and 7 a regular cardinal in s(X).
Set X [ n to be the suitable structure generated by p(X) [ 7.

5.2 Level n

Fix G(P' (k™1 T1)) be a generic subset of P’(rkT*1+1).

Let n < w. We describe the forcing used at the level n of the construction.

Definition 5.2.1 Let Q0 be the set consisting of pairs of triples ({a, 4, f), (b, B, g)) so
that:

1. f is partial function from x*2 to ), of cardinality at most .

2. There is a suitable generic structure X = (X, F,C,€,C ) with the corresponding
condition p(X) = ((A7(X), A'7(X),C7(X) | 7 € s(X)) and | U, ¢y A7 (X)| < Ay (this
is basically the total number of structures in X), such that

a is an order preserving function from the set {Z Nk | Z € C*" (%)} to A2,

3. a(X N k™) = max(rng(a)) is above all the elements of rng(a) in the order of the

extender F, .
4. dom(a) Ndom(f) =0
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5. A€ E)\n,a(max(a))
6. min(A) > [U, ey AT(%)].
7. for every ordinals «a, 3,7 in rng(a) we have

«>p,, B >g,, 7 implies

7T)\n70477 (p) = ﬂ-)\nyBy’Y (7T)\n7a7/8 (p>>

for every p € 7! (A).

An,maxrng(a),«

Let us turn now to the second component of a condition, i.e. to (b, B, g).

8. ¢ is a partial function from k™1 *! to V. of cardinality at most k.
It will be further convenient to view it as a sequence of functions (g, | 1 < a < wy).
This function as usual is needed to hide the actual correspondence once a non-direct
extension was made. Here, once a non-direct extension was used somewhere over \, or
in the Extender Based Magidor forcing over x,, we will make one which chooses p,,,,
(the wi-th, the largest element of the Magidor sequence for k,,) and from this point g

will be combined with b hiding the information.

9. B= (B, |1 < a<w) such that for every a,1 < a < wy, we have

(a) By € Es, 0., 1€ itis aset of (,-th measure one in the extender E, ,, ! where ¢,
is large enough (in the order of the extender E,, ,) to include all the possibilities
for ng(b ) which will be defined below.

Note that in Chapter 4 we used names sets of measure one instead. It is possible

to do the same there and to work with actual sets just choosing large enough (’s.

10. b = (bs | 1 < a < wi) is a name, depending on (a, A), of a partial functions b, of
cardinality less than \,,.
For each a,1 < a < w, and n € A the interpretation b,[n] of b, according to 7

satisfies the following conditions.

(a) There is a suitable structure X,, at the level x,, (actually at the a-th member p,,

of the Magidor sequence at level n), such that

lin the Merimovich paper [13] a single set is used instead of a sequence B here, but since we deal only
with a small relatively to k number of extenders, the present setting is equivalent to those of [13].

126



i.

ii.

1il.

b o[n] is an isomorphism between X | £7*! and Xo,

for every Z € A™" (% | k***1) we have

7T)\n,max(rng(a)),a(Zﬁf@"""‘)(n) = ,Qa [U](Z) M ((7])0)+n+2.
In particular,
= Dalnl(A™" (X T 7)) 0 ((n)")

for every 7,1 < 7 < a and Z € A¥ (X | k*o*L) we have ba[n](Z) a

+n—+2

Fn+2 (where p,, is the 7-th element of

name of a structure of cardinality p
the Magidor sequence) depending ogly on the the 7-th member of the Magi-
dor sequence at level n which is not yet determined.

If say we have some 8,1 < 8 < 7 and Y € AW (x | xtotl) and
Z €Y, then the name b,[n](Z) should belong to to any interpretation of
ba[n](Y), according to the S-th member of the Magidor sequence, if 5 > 1
and bo)(Z) € bl (V). 1 5 = 1

Note that, say with § = 1, the set of possible values of p, has cardinality &,
which is much larger than the size of the model b .[n] (Yr)v(which is below \,,).
Only the name of the image of Z is inside b,[n](Y), but by the elementar-
ity also the Extender Based Magidor forcing is inside. So, after preforming
the forcing the model b,[n](Y) expends to one which includes the Magidor
sequence and the interpretation of the image of Z.

This way the following connection will be established:

+n+2

P2 where 7, is an indiscernible (one element Prikry) for A,;

kTt ton

kT to pfn 2 for every 7,1 < 7 < a.

nTt

(b) (Dependence) Let Z € A% ™™ for some 7,1 < 7 < o. There are f; < 3 < ... <
B < « such that

e TC {27517 7ﬁk}
e bo(Z) depends on the values of a(Z N k™) over A, and b (Z | k*FH),

i=1,..k

o If Z = A% (% | kTtl), then b o(Z) depends only on the values of a(Z N

£T) in case 7 =2 and on a(Z NKTT), b (Z | £T71),if 7 > 2.

(¢) (Inclusion condition for cardinality x™*) Let 7,1’ € A,n <n'. Then
o ba(A"(X T RT))] € DoA™ (X T KT [],
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o if Z€ CF (X | kT*t1)) and

7T')\n,maxrng(a),a(Zﬁ/*ﬁ"")(77/) >,

then either
DoA™ (X TR ) € balZ2) 01, s Vi)

or
the k-type realized by b (A% (X | kYY) INH (x™*) isin bo(Z2), 1, oo\ Vi),
where v, ..., v, are the elements of the Magidor sequence on which Z depends
and k < w is the least such that b,(Z2)[n,v1,...,vm) © H(xT).

The same holds over any element of b ,(Z)[n, v1, ..., vn], i.e. tpi(2, fl\)Ja(AO”++ E
PN N H (X)) € balZ)[1 11, ..., vm), for any z € bo(Z)[, 11, ..., V).
We require in addition that this £ > 2.

Let us allow the above also if b,(Z)[,v1, ..., vm] € H(x™). In this case we
take k to be any natural number above 2 and require that once we go up to

the higher levels then corresponding k’s increase (with n).

We cannot in general require only that

ba(A"T (X TR ] € bal2)[ v, ey Vi)

~

since the sequence C' of a new generic suitable structure may go not through the
old maximal model. But still having the type inside Z will suffice.
Note that given 1’ € A the number of possibilities for n € ' N A is bounded by

(n/0)+n+1’ as 77/ < (77/0)+n+2'

(d) (Inclusion condition for cardinalities above k1) Let 7,1 < 7 < a be an ordinal.

We formulate a condition similar to the one above, but for structures of size k71,

Let n,n' € A;n<n',p,p € By,p < p'. Then
o bo(A™TT(X T T, p) € ba(A™TT(X T kT)[n, p], we mean by
this the interpretations according the values of a 7-th member of the Magidor
sequence (i.e. p = Pnr OF P = gnT)
o balA™T(E ) AT, p] € ba(AMTT(E T AT, ).
o If Zc C* (X | KTHY)) and

T\, maxrng(b;),b(ZkT7+1) (pl) > p,
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then either

Ba(ATT X TR 0,0 € bal D)0, 0 v, s Vi)
or
the k-type realized by Qa(A0”+T+1(% I kT [, p] N H(x )
is in bo(Z)[n, 0,11, ..., V], Where vy, ..., vy, are the rest of elements of the
Magidor sequence on which Z depends and k£ < w is the least such that
bal( D), o' vr, ey vm] © H(XH).
The same holds over any element of b.(Z)[n, 0, v1, ..., V],
Lo, tpu(z, ba(A™TE T k), 0] OVH(CH) € bal 210l 1y s v,
for any z € bo(Z)[n, p'sv1, s Vin]-
We require in addition that this £ > 2.
Let us allow the above also if b (Z)[n, p',v1, ..., vm] € H(x™). In this case
we take k£ to be any natural number above 2 and require that once we go up
to the higher levels then corresponding k’s increase (with n).

e The previous item with 1 replaced in b,(Z) by 7.
11. For each o, 1 < a < wy, the following holds:

{r <wt*™ |7 edom(ba)} Ndom(g) = 0.

12. For every a,1 < a <wy, v € A, & € Bg,, & € Bg,,&s € Bg,, with 1, 52, 83 < a, and
every ordinals x1, p, 7 which are elements of rng( b o)[v, &1, &2, &3] or actually the ordinals
coding models in rng(b,)[v, &1, &2, &3] we have

2 Erpo P 2 Eepo 1 IMplies
Wnn,u,n@) = Wnn,p,n<7rnn,u,p(5))

for every 6 € 7 (Ba) \ max(&y, &2, &3).

anrﬂaxrng(rbﬂx[V7§11527§3])7M
We define now @, and (Q,, <,, <! ) similar to the corresponding notions of Chapter 4.
The only new point here is that the Extender Based Magidor forcing is used here instead of

a trivial one element Prikry forcing in Chapter 4.

Definition 5.2.2 Suppose that ({(a, A, f),(b, B, g)) and ((a’, A', f'),(b/, B, ¢')) are two el-

ements of (),o. Define

((a, A, 1), (b, B, 9)) Zq., (', A", '), (b, B’ g'))
ifft
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L f2f.

2. For each a,1 < a < wy,

3. a2Dd.

4. 7T// ( /)A g Al.

An,max(a),max(a

5. For each o, 1 < a < wy,

b o extends ¥y,

according to the appropriate projections of measure one sets. This means just that the
empty condition of (one element Prikry forcing followed by Extender Based Magidor)

forces the inclusion.
6. For each a,1 < a < wy, we have

o [B.] € B.,,

K QCnasChe

where (pq, (,, denote the measures of the extender E, , to which B, and B!, belong.

Definition 5.2.3 ),,; consists of triples (f, g,t) such that
1. f is a partial function from x** to A, of cardinality at most x,

2. t is a condition in the Extender Based Magidor forcing of the length w; over some
p(t), An < p(t) < Ky

3. 9={(0a | 1 <a<uw).
For each o, 1 < o < wy, the following holds: g, is function from k™! of cardinality
at most « such that for each { € dom(g,) we have g.(§) = (p, v), for some p < &,
and a name in the extender based Magidor forcing over p corresponding to the a-th
member of the Magidor sequence.
Again, v can be viewed as void if this forcing is undefined or does not have p-th
sequence.

Note that we do not require that necessarily p = p(t).

Define a partial order <; over ).
Definition 5.2.4 Let (f, g,t), (f',¢',t') € Qn1. Then (f, g,t) <y (f', ¢, ') iff
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L f2f,
2. gl O ga, for each o, 1 < a < wy,

3. t' extends ¢ in the Extender Based Magidor forcing.

Definition 5.2.5 Set ), = Q0 U Q1. Define <X=<, U <g,,.

Define now a natural projection to the first coordinate:

Definition 5.2.6 Let p € Q,. Set (p)o = p, if p € Qn1 and let (p)o = (a, A, f), if p € Qno is
of the form ((a, 4, f), (b, B, g)).
Let (Qn)o={(p)o|p € Qn}

Definition 5.2.7 Let p,q € Q,,. Then p <,, q iff either

1.p<q

or
2. p={(a,A, f),(b,B,g)) € Quo, ¢ = (e, h,t) € Qn1 and the following hold:

(a
(b —(a]1<a§w1)andforeacha,l<a§wlwehaveha2ga

c) t extends the Extender Based Magidor part of p, decides p,., and p(t) = pnw,
dom(e) O dom(a)

e(max(dom(a))) € A

(
(d
(e
(
(
(

f) for every § € dom(a),e(B) = T, a(max(dom(a)),a(8) (e(max(dom(a)))
g) for every a, 1 < a < w; we have dom(h,) 2 dom(b,) N AW (grett)

) e
) h
)
)
)
)
)
h)

for every a, 1 < a < wy we require that

o for every 8 € dom(b,) M AW (krotl)
ha(B) = (p(t), the interpretation of b,(8) after p(t) = pn.,
and probably other members of the Magidor sequence are determined in t)

Definition 5.2.8 The set P consists of all sequences p = (p,, | n < w) so that

1. for every n < w, p, € Q,
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2. there is {(p) < w such that

(a) for every n < {(p), pn € Qm
(b) for every n > £(p), pn = ({@n, An, fn), (Ons Bny gn)) € Qno

(c) for every n,m > {(p), max(dom(a,)) = max(dom(a,,)) and max(dom(b,)) =

max(dom( b))
(d) for every n >m > {(p), dom(a,,) € dom(a,) and dom(b,,)) € dom(b,)

(e) for every n, {(p) <n < w, and X € dom(a,) the following holds:
for each k£ < w the set

{m <w | =(an(X)NH(™) < H(x*™))}

is finite.

(f) for every n, £(p) <n <w, and X € dom(b,) the following holds:
for each k£ < w the set

{m <w| 3P, 1< a<w, bl is defined, and (=( b o (X)[FINH (xT*) < H(x™)))}
is finite.
We define the orders <, <* as in the previous chapters.
Definition 5.2.9 Let p = (p, | n < w),q = (¢, | n < w) be in P. Define
1. p > qiff for each n < w,p, >, ¢n
2. p>*qiff for eachn < w,p, >7 qn

Definition 5.2.10 Let p = (p, | n < w) € P. Set (p)o = {(pn)o | n < w).
Define (P)o = {(p)o | pE 7)}

Finally, the equivalence relation «— and the order — are defined on (P)y exactly as it
was done in Chapter 4. We extend — to P as follows:

Definition 5.2.11 Let p = (p, | n < w),q = (g, | n < w) € P. Set ¢ — p iff
L. (g)o — (p)o

2. U(p) > {(q)
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3. for every n < {(p), p, extends g,

4. forevery n > £(p), let pp, = ((an, An, fn), (Dn, Bn, gn)) and ¢, = ((ay,, A, f,,), (b1, By, g7,))-
Require the following;:

(@) gn 2 g,

(b) thereis b7 = (bna | 1 < @ < wi) such that for every a,1 < a < w v,V € A,
the following holds:

i.

ii.

111.

1v.

dom(b,,) = dom(by,)
M0 (Bua) ¢(B) B © B
where ((Bpa),((B),) the indexes of the measures of E,, to which B,, and

B/, belong.

bn[v] extends b7 [v'] and for each ¥/ and its projection V' we have

by 7] extends b, [ /]

rng(f@/%)[u’”‘ﬁ’] — rng(Q%)[u’Aﬁ], where /| 1/ are as above and k, is the

k,’s member of a nondecreasing sequence converging to the infinity.

. rng(rlz,’n)[y/“y_)’] r,{l—n—i—l — rng(b”)[u’“y_}] | Kntl

~n

5.3 Basic Lemmas

In this section we study the properties of the forcing (P, <, <* ) defined in the previous

section.

Lemma 5.3.1 Letp = (py | k <w) € P, pr = ({ag, Ak, fx), (bk, Bk, gx)) for k > €(p) and X
be a model appearing in an element of G(P' (k1 *1)). Suppose that

(@) X & Ugp)<ren dom(by) U dom(g)

(b) X is a successor model or if it is a limit one with cof(otp x|(X) — 1) > &

Then there is a direct extension q = <qk ’ k< w>7 qQx = <<a;€,A;€7fI/g>7 <,-@_,;C7B;§7gk?>> fOT
k > U(q), of p so that starting with some n > ((q) we have X | x*t € dom(a}) and
X [ xtotl ¢ dom(b'rs) for each k >n,1 < a < w.

The proof is similar to those of the corresponding lemma in Chapters 1, 2.

Next three lemmas transfer directly from Chapters 1, 2.
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Lemma 5.3.2 Let n < w. Then (Qno, <o ) does not add new sequences of ordinals of the
length < A, i.e. it is (\,, 00) — distributive.

Lemma 5.3.3 (P, <*) does not add new sequences of ordinals of the length < Ao.

Lemma 5.3.4 (P, <*) satisfies the Prikry condition.

Let us turn now to the chain condition lemma. The proof will be similar to those of 4.4.5.

Lemma 5.3.5 (P,— ) satisfies kT -c.c.

Proof.
Suppose otherwise. Work in V. Let (p, | ¢ < k") be a name of an antichain of the

length x™*. Using the strategic closure of P’, we find an increasing sequence
<<(A27,A27,CZ> | 7€ RegN [xH, kT H1]) | ¢ < kTT)

of elements of P'(k*'*!) and a sequence (p: | ¢ < k™) so that for every ¢ < x** the

following hold:
(a) (AT, Ay, Cli) | 7 € Reg N[t w7 1) IF pe <
(b) Upec AY = AL, if ¢ is a limit ordinal and 7 € Reg N [x7F, 1],
(C> T>A2:—1 g Agj—la
(d) AL, is a successor model,
(e) (((A?f/, A}f’, C;’} | 7/ € RegN [T, k1)) | u< () € Agil, for every 7 € [kT, kT 1],
(f) for every ¢ < 8 < k™t 7 € [k, k71| we have

CZ(A{) is an initial segment of Cj(A}),

(8) pc = (pen | 1 < w),
(h) for every n > l(p¢)

— A% N K™ is the maximal ordinal of dom(a¢,) and A% N k™ € dom(ac,),

— Ag’fl is the maximal model of dom(b ,) and Ag’§+ € dom(bn),
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where Pin = <<aCn7 ACna an>> <,l2,Cn; BCna gCn>>-
Actually this condition is the reason for not requiring the equality in (a) above.

Let Pen = <<a(n7 ACnv an>7 <2an7 Bamgan>> for every C < /{H_ and n 2 l(pC>
Let ( < k™", Fix some

(B&ty, By, Diya) | 7 € Regnls®, 67 M) <pr ((Aly, Afy, Clpy) | 7 € Regn[s™, 1)

which witnesses a generic suitability of structure dom(b¢,) for each n,l(p;) < n < w, as in
Definition 5.2.1, i.e. ((BY],, BTy, D7) | 7 € Reg N [sF, k71 %) = p(X), for some suitable
generic structure X. Note that B¢T, need not be in C7,,(Ag},) and even if it does, then
DZ,,(BZ},) need not be an initial segment of CZ, ; (A¢7,). By the definition of the order <z

there are m < w and E4,..., E,, € UTGRegﬂ[li+,n+“’l+1] A%L such that
swt(((Afl1, A, CLy) | T € RegN [, k7)) By, Ey,) and

<<Bgi1, th Di,,) | 7€ Regn [T, gty

are as in the definition of the order of P’ (Chapter 1,1.1.15, Chapter 2,2.2.6).

By Lemma 5.3.1 it is possible to add all E;(i = 1,...,m) to dom(b,), for a final segment
of n’s. By adding and taking non-direct extension if necessary, we can assume that E;’s are
already in dom( b ¢, ), for every n > I(p¢).

Now we can apply the opposite switch (i.e. the one starting with F,,, then E,, 4, ...,and
finally ) ) to dom(b¢,) (and the corresponding to it under b¢, to rng(b¢y,)). Denote the
result still by 0 ¢p.

Finally, ((AZ,, A{7,,CZ,) | 7 € Reg N [sF, 7 *1]) will witness a generic suitability of
structure dom( b ¢,,) for each n,l(p) <n < w.

In particular, we have now that the central line of dom(b ¢, ;) is a part of CZ, (A% ,) and
AY is on it, for every n,l(p¢) < n < w.

Shrinking if necessary, we assume that for all ¢, £ < x** the following holds:
(1) £=L(pc) = L(pe),
(2) for every n < {, p¢, and pg, are compatible in Q),,1,

(3) for every n, { < n < w, (dom(fs,) | ¢ < k™) and (dom(gc,) | ¢ < k77F) form a

A-system with the kernel contained in A"
(4) for every n, w >n >{, rng(ac,) = rng(as,),
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(5) for every n, w >n >1{, A = Agp,
(6) for every n, w >n>4{, DBe, = Bep,

(7) for every n, w >n > {,n € A¢, and ¥ from appropriate Be,’s we have g b o[, V] =
mg b en[n, 7).
Shrink now to the set S consisting of all the ordinals below x™* of cofinality k™. Let
be in S. For each n, ¢ < n < w, there will be 5(¢,n) < ¢ such that

Kkt KT

Just recall that dom(b¢y,) is not actually a name and |dom(b¢,)| < Ap. Shrink S to a
stationary subset S* so that for some (* < min S* of cofinality x™ we will have 5({,n) < (*,
whenever ¢ € S*,/ < n < w. Now, the cardinality of Ag*’$+ is kT. Hence, shrinking S* if

necessary, we can assume that for each (,& € S*, 0/ <n < w
dom(ben) NAX" = dom(bg,) N AX".

Let us add Ag’f to each p; with ¢ € S*.

By 5.3.1, we can add it without adding ordinals and the only other models that probably
were added are the images of Ag’f under A-system type isomorphisms. Denote the result
for simplicity by p¢ as well.

Let now £ < ¢ be ordinals in S*. We claim that pe and p, are compatible in (P, —).
First extend p¢ by adding Agi;. This will not add other additional models or ordinals except
the images of Agi; under isomorphisms to p¢, as was remarked above.

Let p be the resulting extension. Denote pe by ¢. Assume that ¢(q) = ¢(p). Oth-
erwise just extend ¢ in an appropriate manner to achieve this. Let n > {(p) and p, =
({an, An, fn)s (b, Buygn))- Let g, = ({ay,, A7, f1), (U0, B'nsy gy,)). Without loss of generality

we may assume that the ordinal an(Agi; N kTT) is k,-good with k, > 5. Just increase n if

necessary.
Realize the k,, — 1-type of rng(a!,) below an(Agf; NkT) over an((Agi; NkTt)Ndom(a,)), i.e.
above the common part on £7*. Denote the ordinal corresponding to max(rng(a,)) in this

realization by ¢’. Note that an(Agfl N k1) and ¢’ have the same projection to the common

part a, (A2, N k**) N dom(ay)).
Fix now ne An- Set 7]/ = 7T/\n,max(rng(an)),é’(77)'

Consider first b n72(Agi; | k*%)[n]. Recall that b,> depends only on on the one element
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Prikry forcing over A, and here only on a choice of an element from A,,.
Again we can assume that b,(A%, | £*%)[y] is an elementary submodel of A, with

k., > 5 (and k, does not depend on n). Now we have

H+ :‘€+ f€+
n = T\n max(rng(an)),8’ (1) <nand A2+2 eC (A2+1)~

Hence, by Definition 5.2.1(10c,10d), the k,—1-type realized by b, 2(A% )i/ isin b,2(AY5) 1],
as well as the k, — 1-type realized by !\)Jn’Q(Ag'fi)[ﬁ/] over QZQ(Agf; N dom(b,2))[n], ie.
the common part of of the conditions. Realize the k, — 1-type of rl\)JnVQ(Agii)[T]/] over
i o (AZ (1 dom (b)) i o (AZ5)[1]-

Doing the above for each n € A,, will result in compatibility of the second components
ie. bno's.
Next we deal with ,13, n3 and use the compatibility of a,’s and !\)J n2’s. Continue by induction
all the way to b, .,. This eventually will produce a condition p; > p, with ¢, — p;, as in
Chapter 1.
OJ

Force with (P,— ). Let G(P) be a generic set. By the lemmas above no cardinals
are collapsed. Let (1, | n < w) denotes the diagonal Prikry sequence added for the normal
measures of the extenders (E), | n < w) and (ppa | 1 < o < wy), for each n < w, the Magidor

sequence for the normal measures of E,, . We can deduce now the following conclusion:
Theorem 5.3.6 The following hold in V[G(P'(kT)*...x P/ (k7o) x . x P/ (k111 G(P)]:
(1) cof([Tepyma"*?/ finite ) = k7%

(2) for each a,1 < av < wy,

cof(H P2/ finite ) = o

n<w

The proof follows easily from the construction.
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5.4 Arbitrary Gaps with GCH below

In this section we would like using arguments under similar lines to obtain an arbitrary gap

starting with x such that

for every 7 < k exists a <k o(a) = a™".

Assume that cof(k) = w. Obviously, the least xk as above must have the cofinality w. As

usual we assume GCH in the ground model. Fix a regular cardinal 6 > x. Our purpose will

be to make 2% = # without adding any new bounded subsets to . In particular GCH will

hold below & in the final model. Note that by [5] our initial assumption is the necessary one.
Force the preparation forcing P’(#) of Chapter 2.

Fix an increasing unbounded in x sequence of cardinals (k,|n < w) such that

o Ko is Ky "_strong witnessed by an extender E,

trp—1
n—1

® K, IS Ky - strong witnessed by an extender E,,, for each n,0 < n < w.

We use Ey | k¢ at the level 0. 6% is attached to x¢”. Let p be a cardinal in the interval

[kT,0]. In a typical condition models of size u will be attached to those of size kg . In
particular models of different sizes over x will be connected to models of the same size over
ko. It would not be problematic, since a non-direct extension will be taken over k.
Next we will use indiscernibles created over kg to rule the attachment to the level 1. Thus,
given an indiscernible p which corresponds to one of models (a model will be picked gener-
ically, leaving a bit of freedom this way) connected to those of cardinality p over k, we
+p+2
1

consider the cardinal x and connect it with y over the level 1.

This way different cardinals, say u, 1’ < 6, that were connected at level 0 to ordinals of the
same cardinality, will be connected at level 1 to different cardinals s, *2 and ry? ,+2, where
p' denotes the indiscernible from level 0 which corresponds to ' there.

Let x7"%? correspond to #*. The conditions of the level 1 are similar to those of Chapter
4 only A, is replaced here by kg. In particular size of domain of b is less than ko and the
cofinalities drop at this level below k.

At the next level- level 2 we use the indiscernible p; for x;” *2 as the cardinality of models

which correspond to those of cardinality p at this level. p as a cardinal will be connected

o142 +ri "0t 42

with s . Again let 8T correspond to k, . An indiscernible py for a model of
size p; will be used at the next level (level 3) to determine the cardinal x4 >*2 which will

correspond to u there. The conditions of the level 2 are similar to those of Chapter 4 only As
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is replaced here by r;. In particular size of domain of b, is less than x; and the cofinalities
drop at this level below ;.

Continue to further levels in the same fashion.

At the level 0 we use Ey | sg°. Set o to be g and 1, = &2 We force with E; |
over k1. The size of condition at this level will be below kg. Let n > 1. Set 5, = xm-1+2,

We use E, | n,, over k,. The size of condition at this level will be below k,,_1.

Let us explain the idea behind the above and the necessity of this kind of approach.
At each level n, starting with level 1, we have two types of objects: cardinal above k,, and
models of sizes below k,_;. The indiscernibles for such cardinals will rule sizes of models
to be used at the next level. This is needed in order to guarantee a degree of completeness
of the main forcing. The use of models of small cardinalities (and droppings in cofinalities
that comes with it) is supposed to compensate the number of cardinals at level n that we are
allowed to use (which is smaller than k,). Thus, even if models Z of size k, were allowed,
then all possible cardinals will be inside Z. Assuming that number of cardinals between x
and 0 is k™" or beyond, it is unclear what to do with models over x (say of size £*) which
do not contain all the cardinals of the interval [k, 0], since no Z as above can correspond

to such models.

One complication here (relatively to the constructions of Chapter 2 and those of the
previous section with 28 = k%% for § < k) is that we do not have \,’s which separate &,,’s
one from an other. Namely, once a non-direct extension was made over some J\,, then the
same was done over the corresponding k,, as well. But we cannot do this here, since once
a non-direct extension over kg was made -the same must be done over x; and then over ko,
ete.

Here we will allow to make a non-direct extension at x, without making it at x,;. In this
setting not only rng(b,1) will be a name, but also dom(b,,1). This change is required
now in order to show the Prikry condition. Thus, after picking a non-direct extension at
a level k,, we need be able to keep a possible extension at the level k, ;. The number of
models allowed at this level is below k,. So, we need to deal with such names, in order to
accumulate together all the extensions at the level n + 1 according to all possible non-direct
extensions at the level n.

Still we keep the maximal model explicit and not in a form of a name.

We need to make one change relatively to previous constructions with dropping cofinalities.
Thus, during the standard argument for showing the Prikry condition, say we go through

all the possibilities (non-directly) over a level n. Now, over the next level n + 1, it may be a
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need to add new models (direct extensions here) in order to decide a given statement. But
we do not have a control now over projection of such models to the level n. In previous
setting - once a non-direct extension was made over ), then such an extension was made
over k, as well and there was no further connection to A\,.1, k,+1. So here we may get types
of models that do not appear inside other relevant models (remember that sizes of models
used are small, and so not every type is inside). As a consequence of this the chain condition
argument stops to work.
Let us suggest a way that allows to overcome this difficulty. It is possible to use it in the
previous construction with dropping cofinalities as well.

Let M be an elementary submodel of (H(x™, <, ...) (for x regular large enough which
contains all relevant information) of size x, and which is a union of an elementary chain

(M, | @ < K,) such that for every a < &,
L. |(Mq| < En,
2. Mg | B<a)e My

Now, as images of models of cardinality < let us use only models M,,a < k,, and
models which realize similar types to the types of models of this sequence. Images of models
of bigger size will be models which are elements of models of the sequence or of models which
realize similar types to the types of models of the sequence. As before a choice of 7 in a set
of measure one for a maximal coordinate over k,, will determine the interpretation of 0,41,
i.e. b,y1[n] which a real function and not a name. Once n < 7', let us require that also an
index «(n) which corresponds to the maximal model over k,,; according to 7 is less than
a(n).

Note that this restriction to the sequence (M, | @ < k,) and similar types is not actually

very strict. Namely, the following holds:
Lemma 5.4.1 Let a < k,,. Then
My EVE <wVzy(z € y A (V6 < x3y' (sup(y' Nx) > 0 Atpr(y) = tpr(y)))).
Proof. Suppose otherwise. Then
Mo F Ik <wIrVy(z € y — (30 < x~Ty (sup(y’ N x) > 0 Atpr(y') = tpe(y))))-
Pick k < w and x € M, witnessing this. By elementarity then
H(x™) FVy(z € y — (36 < x—=3y'(sup(y’ N x) > 0 Atpe(y) = tpr(y))))-
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Counsider the set
Z = {tpr(a) | z € a}

of all k-types over x. The size of Z is bounded below y. This means that the same type
should appear y-many times. Which is impossible. Contradiction.

U
In particular, the following holds:

Lemma 5.4.2 For each k < w and x € M, the k-type of My N H(x™*) over x appears
unboundedly often below x.

Proof. Let k,0 < k < w and x € M,. Pick y € M, as in the previous lemma. Then

H(x™) EVS < x3y' (sup(y’ N x) > d Atpe(y') = toe(y)))-

Fix § < x. Find ¢ with sup(y’ N x) > 0 which realizes the same k-type as y over z. Let
t be the k — 1-type realized by M, over y. Then there will be ¢ which realizes the same
k — 1-type over y'. Hence t’ will realize the same k — 1-type as those of M,,.
OJ

Note that on the other hand not every measure of the extender F,,; is in M,, since its
cardinality is just too small.

The next point will be to show x*"-c.c. of the final forcing. The argument mostly
repeats the corresponding one of Chapter 4. The only new element here will be the starting
level for compatibility of two conditions, i.e. the one above which the extension will be a
direct extension.

Thus, suppose we have two conditions p = (p, | n < w) and ¢ = (g, | n < w) of the same
length. For simplicity let ¢(p) = ¢(q) = 1. Also suppose that the ranges at each n > 0 are
the same and the domains form a A-system as in 5.3.5. Let n < £ and A2”+, Ag’# etc. be as
in the proof of 5.3.5. We find a model X (not necessary in Ag’$+ ) which realizes the same
type (more precisely, by one less) over mg(b] | A%") = mg(b; | AZ") as bj(AZ") does
but has a smaller supremum. Note that ¢(p) = 1, so at the level 0 we have a non- direct
extension of say the weakest condition. Hence, at the level 1, the real models and not the
names are used (i.e. the interpretations of the names according the generic object at the
level 0). It is possible to insure the existence of such model X as follows:

we just can assume without loss of generality that sup(b$ (Ag”+)) is an elementary submodel
M (of cardinality s, "***?) of some H(y***1) with k > 5 or so. Then the k-type of bﬁ(Ag"#)

over rng(b§ i Ag’ﬁ) is in M. Using elementarity, it is easy to argue that there will be
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unboundedly many in sup(M) models realizing this type over rng(b§ | Ag"‘+). Then pick X
to be one of them.

Now the measure of the extender E; corresponding to X will be the same as those for
bi(Ag’ﬁ). Let B; be the set of measure one for this measure in the conditions (note that it
is the same set in both. We increase the maximal coordinate in order to catch X in the new
maximal coordinate. Let C be a set of measure one for this coordinate with corresponding
projections to bf(Ag’ﬁ) and to X inside B;. Pick some v € C). Let v/ and v be its
projections to b§ (A2”+) and to X respectively. Then v’ < v/, but further projections to the
common part are the same, since it is inside both b7(A?") and bj(A%").

The model X serves as b?(A2“+) on the ¢’s side. So we replace b’f(Ag"””+) by an equivalent
model. It is likely impossible to put things together at the level 1 in a direct extension
fashion due to a quite arbitrary place of X relatively to bﬁ(Ag’ﬁ). But there is no need here
to make a direct extension. So we will take a non-direct.

It may be (and typically would be once € is much larger than x) that A2”+ and A2“+ have

7

inside models of different cardinalities which are in domains of b7, bﬁ. The images of such

models should be of different cardinalities as well (at least starting from some level). The
+N 1343
number of available cardinals over k; is K, """ The size of X (as those of bf(Ag“)) is

only p¢. Hence most of cardinals are outside.

The choice of X insures that at the next level (level 2) and up cardinalities will be different
from those that appear in b7(A¥")\ X.

There may be a need to apply a similar procedure at level 2, since the cardinals from level 1
corresponding to those over  are determined at level 0 (remember that we assumed ¢(p) = 1).
It is possible that same cardinal over level 1 corresponds to different cardinals over k. So we
need to split between them at level 2, as it was done above.

Finally, given such " and v” we go to the next level (level 2) and put together the conditions
at this level in the usual fashion, as it was done in Chapter 4 and in Lemma 5.3.5. No further

non-direct extension (beyond level 2) is needed here anymore.
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5.5 Arbitrary Gaps from weakest assumptions

In the present section we would like to use ideas of Section 5.1 in order to blow up the power
of k to k! for arbitrary #. Start with a singular cardinal & of cofinality w such that for
each 7 < k and n < w there is o,y < o < &, such that o(«a) = ™. The present assumption
is optimal by [6] and it is clearly weaker than those used in Section 5.4(for each v < x and
T < w there is o,y < a < K, such that o(o) = a™) which is in turn optimal once GCH
holds below &, by [5].

We fix a sequence of cardinals kg < k1 < ... < kK, < ...,n < w so that
i Un<w Kn =K
o forevery 0 <n <w, K,is k" - strong, as witnessed by an extender E,,

e for every n < w, the normal measure of E,; concentrates on

7’s which are 772 4+ (7, n) - strong as witnessed by a coherent sequence of extenders
(Ere | € < n(1,n)) of 7"+ 2-extenders , where n(7,n) is an ordinal above 77"*2 which
is a repeat point (see C. Merimovich [13]).

Such a length insures, by [13], that 7 will remain a measurable after the Extender

Based Radin forcing with the sequence (E¢ | £ < n(7,n)).

Fix also an increasing sequence (\, | n < w) such that

e \y < Ko

® Ky 1 < Ay < Ky, for every n,0 <n <w

e for every n <w, A, is A" - strong as witnessed by an extender E),

We proceed as in 5.2. Instead of the Extender Based Magidor forcing, the Extender
Based Magidor-Radin forcing of [13] is used. This leaves plenty of Mahlo cardinals of the
form p,, below phe (the elements of the generic Magidor-Radin sequence at level n). So for
any regular cardinal u < 6 there will be enough possibilities of a form p "2 to connect with

1 in a way similar to those of 5.2.
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5.6 Down to the first fixed point of the N—function

It is possible to incorporate collapse in the construction of Section 5.4 in a fashion of [4] and
to turn  into the first fixed point of the XN—function. Basically what is needed is to collapse
all unused cardinals.

Set 1o to be kg and 7, = k"2 For n > 1 set 5, = w172,

Denote by p,, the indiscernible for the normal measure of E,. Then the indiscernible which
corresponds to 67 on level n will be pf™=1%2 if n > 1, p® if n = 0 and py™*? if n = 1.

Now the relevant collapses will turn pg into Ry, will preserve pg, pot, pi®, pd*. Then g will

be turned into the immediate successor of pf?, all the cardinals xg,rg ™, k3?, k$* will be

preserved. Next, p; will be turned into the immediate successor of kg 1 the cardinals in
the interval [p1, pi"° "] will be preserved. Then ; will become the immediate successor of
pi*3 and all the cardinals in the interval [k1, 7] will be preserved. py will be turned into
the immediate successor of ;. All the cardinals of the interval [ps, p3 ™ ] will be preserved,
ko will be turned into the immediate successor of pi™*® all the cardinals of the interval
(k2,15 ] will be preserved, and so on.

Let us turn now to a modification of the construction of Section 5.5 which will allow to
finish with the least fixed point of the "—function. Note that here we will lose GCH below x
(and even SCH will break down below). We would like to blow up the power of x to x+*!
for arbitrary 6 starting with a singular cardinal s of cofinality w such that for each v < &
and n < w there is o,y < a < K, such that o(a) = a™. In contrast to Section 5.5, we do not
intend to create too long Magidor or Radin sequences, since having too many indiscernibles
will prevent collapses needed in order to turn x into the first fixed point.

The present assumption is optimal by [6] and it is clearly weaker than those used in Section
5.4(for each v < k and 7 < w there is a,y < a < Kk , such that o(a) = o) which is in turn
optimal once GCH holds below &, by [5].

We fix a sequence of cardinals kg < k1 < ... < K, < ...,n < w so that
hd Un<w kn =K
o forevery 0 <n <w, K,is k"2 - strong, as witnessed by an extender E,,

e for every n < w, the normal measure of E,; concentrates on

7’s which are 772 4+ (7, n) - strong as witnessed by a coherent sequence of extenders
(Ere | € <n(r,n)) of 77" 2extenders , where n(7,n) is k,_1, if n > 0 and n(r,n) = 1,
if n=0.
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The idea behind is like this:
once an indiscernible p,, for the normal measure of the extender E,  was picked, then we use

the coherent sequence (E, ¢ | £ < n(7,n)) in order to change its cofinality to n(r,n) using

+n—+2

Fnt2as well). We have here

the Magidor Extender Based forcing (blowing its power to p
Kn_1 (say n > 0) cardinals available along the Magidor sequence.

Now we use the method of Section 5.4. Just instead of x,_1 over the level n placed
“horizontally” there, we have them placed “vertically” here, i.e. instead of ordinals between
kn and k=1 we use members of the Magidor sequence of p,,.

Finally, since a relatively small number of indiscernibles are generated in the process, it
is possible to define collapses as in the beginning of the section and turn s into the first

repeat point of the R—function. Note that SCH will break at each p,, 0 <n < w.
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