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We would like to present a way of doing of short extenders forcings without forcing first

with a preparation forcings of type P ′ of [1]. The main issue with short extenders forcings is to

show that κ++ and cardinals above it are preserved in the final model. In [1] the preparation

forcing (which added a structure with pistes) was used eventually to show κ++-c.c. of the

main forcing. A negative side of this preparation forcing is that it is only strategically closed

which is not enough in order to preserve large cardinals like a supercompact. Actually it

adds a version of the square principle which is incompatible with supercompacts [2].

Carmi Merimovich [5] used for the gap 3 a variation of Velleman’s simplified morass [7]

instead. κ++-c.c. break down but he was able to show κ++–properness instead. The forcing

adding a simplified morass is directed closed enough in order to preserve supercompacts

cardinals. Unfortunately generalizations (at least those that we considered) of Merimovich’s

idea of first adding a simplified morass and then to use a properness instead of a chain

condition of the main forcing, run into server difficulties already for Gap 4.

Here we suggest an other way. The main forcing will be used directly over V without a

preparation. Actually a simple version of the preparation forcing of [1] will be incorporated

directly into the main forcing. Again as in [5] κ++-c.c. will break down and we will show a

properness instead.

1 Gap 4.

We deal here with the first new case - Gap 4.

Assume GCH.

1.1 Structures with pistes.

We present here a simple variation of the preparation forcing P ′ of [1].
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Let us start with the main definition. It will be rather long, but one of the reasons of

this is that we will treat each size (there will be three sizes) separately repeating similar

properties. We hope that this way the matter will become more clear and intuitive.

Definition 1.1 Let δ < κ be cardinals and δ is a regular. A δ-structure with pistes over κ is a

set ⟨⟨A0κ+
, A1κ+

, A1κ+lim, Cκ+⟩, ⟨A0κ++
, A1κ++

, A1κ++lim, Cκ++⟩, ⟨A0κ+3
, A1κ+3

, A1κ+3lim, Cκ+3⟩⟩
such that the following conditions hold.

Start with requirements on models of the maximal size κ+3. The structure of this models

is the simplest one among the three sizes present. In contrast with two other sizes (κ+, κ++)

they are linearly ordered by inclusion.

1. A0κ+3 4 ⟨H(χ),∈,≤ ⟩, for some large enough regular χ (over κ we can take χ = κ+4

as well). It will be the largest model of size κ+3.

2. |A0κ+3| = κ+3,

3. A0κ+3 ∈ A1κ+3
,

4. A1κ+3
is a closed chain of at most δ elementary submodels of A0κ++

,

5. each member of A1κ+3
has cardinality κ+3. It will be convenient to identify sometimes

X ∈ A1κ+3
with an ordinal X ∩ κ+4.

6. A1κ+3lim ⊆ A1κ+3
. We refer to its elements as potentially limit points. Require the

following:

(a) if X ∈ A1κ+3lim, then X is a successor point of A1κ+3
,

(b) if X ∈ A1κ+3lim, then cof(X ∩ κ+4) = κ+3,

or cof(X ∩ κ+4) = κ++,

or cof(X ∩ κ+4) = κ+,

(c) if X ∈ A1κ+3lim, then cof(X∩κ+4)>X ⊆ X.

The idea behind A1κ+3lim is to provide places where A1κ+3
can be extended. Note, that

in contrast with [1], the set A1κ+3
has a small cardinality and so its further extensions

will be not only end-extensions.

7. If X ∈ A1κ+3lim, cof(X ∩ κ+4) = µ, for some µ, then there is an increasing continuous

chain ⟨Xi | i < µ⟩ of elementary submodels of X such that
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(a)
∪

i<µ Xi = X,

(b) |Xi| = κ+3,

(c) Xi ∈ X,

Turn now to Cκ+3
.

8. dom(Cκ+3
) = A1κ+3

,

9. for every B ∈ dom(Cκ+3
), Cκ+3

(B) = (A1κ+3 ∩B) ∪ {B}.
The function Cκ+3

provides just initial segments of A1κ+3
. It is included only in order

to provide a similarity with cases of κ+, κ++ in which the corresponding functions are

non-trivial.

10. If X ∈ A1κ+3 \ A1κ+3lim is a non-limit model, then κ++
X ⊆ X.

11. If X ∈ A1κ+3
is a non-limit model, X ̸∈ A1κ+3lim, A ∈ A1κ+ ∪ A1κ++

and X ∈ A, then

all immediate predecessors of X are in A (actually there is at most one immediate

predecessor).

Note that we do not require this closure property for X ∈ A1κ+3lim in order to allow

further to add new elements below X.

12. If X ∈ A1κ+3
is a limit model, A ∈ A1κ+ ∪ A1κ++

and X ∈ A, then

X =
∪

{Z ∈ Cκ+3

(X) | Z ̸= X,Z ∈ A}.

Note that we do not require that Cκ+3
(X) ∈ A, but rather an unboundedness. The

reason is that if we do so then Cκ+3
(Y ) for Y ∈ A1κ+3lim ∩A, will be in A as well, and

then the immediate predecessor of Y will be in A– the thing that we like to avoid.

13. If A ∈ A1κ+ ∪ A1κ++
, X ∈ A1κ+3lim, cof(X ∩ κ+4) = κ+3 and X ∈ A, then there is an

increasing continuous chain ⟨Xi | i < κ+3⟩ of elementary submodels of X such that

(a) ⟨Xi | i < κ+3⟩ ∈ A,

(b)
∪

i<κ+3 Xi = X,

(c) |Xi| = κ+3,

(d) Xi ∈ X,

(e) the model XA :=
∪

i∈AXi is in Cκ+3
(X) ∩ A1κ+3lim.
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Note that

• A∩X = A∩XA, since clearly A∩X ⊇ A∩XA, and if Z ∈ A∩X, then for some

i ∈ A, Z ∈ Xi, and so Z ∈ A ∩XA.

• If ⟨X ′
i | i < κ+3⟩ ∈ A is an other chain which satisfies all the conditions above,

then XA = X ′
A. This follows from the continuity of the chains, unboundedness

and elementarity of X.

In particular, XA is uniquely definable from X and A.

• If XA ⊆ Z ⊆ X, then A ∩ Z = A ∩X.

14. As the previous condition but for cof(X ∩ κ+4) = κ++ and cof(X ∩ κ+4) = κ+. The

length of the chain of Xi’s are changed accordingly.

15. Let A ∈ A1κ+ ∪ A1κ++
, X ∈ A1κ+3lim and X ∈ A. If Z ∈ Cκ+3

(XA), then there is

Z ′ ∈ Cκ+3
(XA) ∩ A such that Z ′ ⊇ Z.

16. Let Y be a successor element of A1κ+3
and Y0 be its immediate predecessor. If X ∈

(A1κ+ ∪ A1κ++
) ∩ Y , then

• Y0 ∈ X

or

• X ∈ Y0

or

• X ⊂ Y0, X ̸∈ Y0 and then Y0 is a limit point of A1κ+3
or Y0 is a potentially limit

point, i.e. Y0 ∈ A1κ+3lim. In addition we require in this situation that also X is a

limit point or a potentially limit point of A1κ+
or of A1κ++

, and∪
{Z ∈ Cκ+3

(Y0) � Y0 | Z ∈ X} = Y0.

17. If X ∈ A1κ+ ∪ A1κ++
and X ̸⊆ A0κ+3

, then A0κ+3 ∈ X.

Let us state the requirements on A1κ++
. They will be similar to those on A1κ+3

, but

the structure of models inside will not be anymore linear.

18. A0κ++ 4 ⟨H(χ),∈,≤ ⟩,

19. |A0κ++| = κ++,

20. A0κ++ ∈ A1κ++
,
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21. A1κ++
is a set of at most δ elementary submodels of A0κ++

,

22. each element A of A1κ++
has cardinality κ++ and A ∩ κ+3 is an ordinal,

23. if X, Y ∈ A1κ++
then X ∈ Y iff X  Y ,

24. A1κ++lim ⊆ A1κ++
. We refer to its elements as potentially limit points. Require the

following:

(a) if X ∈ A1κ++lim then it is a successor point of A1κ++
,

(b) if X ∈ A1κ++lim then cof(X ∩ κ+3) = κ++ or cof(X ∩ κ+3) = κ+,

(c) if X ∈ A1κ++lim then cof(X∩κ+3)>X ⊆ X,

(d) X has at most one immediate predecessor in A1κ++
.

25. dom(Cκ++
) = A1κ++

,

26. for every B ∈ dom(Cκ++
), Cκ++

(B) is a closed chain of models in A1κ++ ∩ (B ∪ {B})
such that the following holds:

(a) B ∈ Cκ++
(B),

(b) if X ∈ Cκ++
(B), then Cκ++

(X) = {Y ∈ Cκ++
(B) | Y ∈ X ∪ {X}},

(c) if B has immediate predecessors in A1κ++
, then one of them is in Cκ++

(B),

27. If X ∈ A1κ++ \ A1κ++lim is a non-limit model, then κ+
X ⊆ X.

28. If X ∈ A1κ++
is a non-limit model, X ̸∈ A1κ++lim, A ∈ A1κ+

and X ∈ A, then all

immediate predecessors of X are in A.

Note that we do not require this closure property for X ∈ A1κ++lim in order to allow

further to add new elements below X.

29. If X ∈ A1κ++
is a limit model, A ∈ A1κ+

and X ∈ A, then

X =
∪

{Z ∈ Cκ++

(X) | Z ̸= X,Z ∈ A}.

Note that we do not require that Cκ++
(X) ∈ A, but rather an unboundedness. The

reason is that if we do so then Cκ++
(Y ) for Y ∈ A1κ++lim ∩A, will be in A as well, and

then the immediate predecessor of Y will be in A– the thing that we like to avoid.

30. If A ∈ A1κ+
, X ∈ A1κ++lim, cof(X∩κ+3) = κ++ and X ∈ A, then there is an increasing

continuous chain ⟨Xi | i < κ++⟩ of elementary submodels of X such that
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(a) ⟨Xi | i < κ++⟩ ∈ A,

(b)
∪

i<κ++ Xi = X,

(c) |Xi| = κ++,

(d) Xi ∈ X,

(e) the model XA :=
∪

i∈AXi is in Cκ++
(X) ∩ A1κ++lim.

Note that

• A∩X = A∩XA, since clearly A∩X ⊇ A∩XA, and if Z ∈ A∩X, then for some

i ∈ A, Z ∈ Xi, and so Z ∈ A ∩XA.

• If ⟨X ′
i | i < κ++⟩ ∈ A is an other chain which satisfies all the conditions above,

then XA = X ′
A. This follows from the continuity of the chains, unboundedness

and elementarity of X.

In particular, XA is uniquely definable from X and A.

• If XA ⊆ Z ⊆ X, then A ∩ Z = A ∩X.

31. The same as previous condition only with cof(X ∩ κ+3) = κ+. The length of the chain

of Xi’s is κ
+.

32. Let A ∈ A1κ+
, X ∈ A1κ++lim and X ∈ A. If Z ∈ Cκ++

(XA), then there is Z ′ ∈
Cκ++

(XA) ∩ A such that Z ′ ⊇ Z.

33. If X ∈ A1κ++
is a non-limit model, then either

(a) X is a minimal under ∈ or equivalently under ),
or

(b) X has a unique immediate predecessor in A1κ++
,

or

(c) X has exactly two immediate predecessors X0, X1 in A1κ++
and X,X0, X1 form a

∆–system triple relatively to some F0, F1 ∈ A1κ+3
which means the following:

i. F0  F1 (or F1  F0),

ii. X0 ∈ F1 (or X1 ∈ F0),

iii. F0 ∈ X0 and F1 ∈ X1,

iv. X0 ∩X1 = X0 ∩ F0 = X1 ∩ F1,
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v. the structures

⟨X0,∈, X0 ∩ A1κ++

, X0 ∩ A1κ++lim, X0 ∩ A1κ+3

, X0 ∩ A1κ+3lim,

(Cκ++ � X0 ∩ A1κ++

) ∩X0, (C
κ+3 � X0 ∩ A1κ+3

) ∩X0⟩

and

⟨X1,∈, X1 ∩ A1κ++

, X1 ∩ A1κ++lim, X1 ∩ A1κ+3

, X1 ∩ A1κ+3lim,

(Cκ++ � X1 ∩ A1κ++

) ∩X1, (C
κ+3 � X1 ∩ A1κ+3

) ∩X1⟩

are isomorphic over X0 ∩X1.

Further we will refer to such X as a splitting point.

34. Let Y be a successor element of A1κ++
with a unique immediate predecessors Y0. If

X ∈ A1κ+ ∩ Y , then

• Y0 ∈ X

or

• X ∈ Y0

or

• X ⊂ Y0, X ̸∈ Y0 and then Y0 is a limit point of A1κ++
or its potentially limit

point. In addition we require in this situation that also X is a limit point of A1κ+

or its potentially limit point respectively, and, if limit∪
{Z ∈ Cκ++

(Y0) � Y0 | Z ∈ X} = Y0.

35. If X ∈ A1κ++
, Y ∈ A1κ+ ∪A1κ++ ∪A1κ+3

and Y ∈ X, then Y is a piste reachable from

X, i.e. there is a finite sequence ⟨X(i) | i ≤ n⟩ of elements of A1κ++
which we call a

piste leading to Y such that

(a) X = X(0),

(b) for every i, 0 < i ≤ n, X(i) ∈ Cκ++
(X(i − 1)) or X(i − 1) has two immediate

successors X(i−1)0, X(i−1)1 with X(i−1)0 ∈ Cκ++
(X(i−1)), X(i) = X(i−1)1

and Y ∈ X(i− 1)1 \X(i− 1)0 or Y = X(i− 1)1,

(c) Y = X(n), if Y ∈ A1κ++
and if Y ∈ A1κ+ ∪ A1κ+3

, then Y ∈ X(n), X(n) is a

successor point and Y is not a member of any element of X(n) ∩ A1κ++
.
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36. If A ∈ A1κ+
, X ∈ A1κ++

, A ∈ X and X is a splitting point, then A ∈ X ′, for some

immediate predecessor X ′ of X.

So elements of small cardinality are not allowed in between a splitting points and their

immediate predecessors.

37. If X ∈ A1κ+
and X ̸⊆ A0κ++

, then A0κ++ ∈ X.

38. Either A0κ++ ∈ A0κ+3
and then A1κ++ ⊆ A0κ+3

or

A0κ+3 ∈ A0κ++
and then A1κ+3 \ {XA0κ++ | X ∈ A1κ+3lim ∩ A0κ++} ⊆ A0κ++

,

or A0κ++ ∈ A1κ++lim, A0κ+3 ∈ A1κ+3lim, A0κ++ ⊆ A0κ+3
and sup(A0κ++ ∩ κ+4) =

sup(A0κ+3 ∩ κ+4).

Finally let us state the requirements on A1κ+
.

39. A0κ+ 4 ⟨H(χ),∈,≤ ⟩, for some fixed large enough χ,

40. |A0κ+| = κ+,

41. A0κ+ ∈ A1κ+
,

42. A1κ+
is a set of at most δ elementary submodels of A0κ+

,

43. each element A of A1κ+
has cardinality κ+ and A ∩ κ++ is an ordinal,

44. if X, Y ∈ A1κ+
then X ∈ Y iff X  Y ,

45. A1κ+lim ⊆ A1κ+
. We refer to its elements as potentially limit points. Require the

following:

(a) if X ∈ A1κ+lim, then it is a successor point of A1κ+
and cof(X ∩ κ++) = κ+,

(b) X has at most one immediate predecessor in A1κ+
.

46. dom(Cκ+
) = A1κ+

,

47. for every B ∈ dom(Cκ+
), Cκ+

(B) is a closed chain of models in A1κ+ ∩ (B ∪{B}) such
that the following holds:

(a) B ∈ Cκ+
(B),

(b) if X ∈ Cκ+
(B), then Cκ+

(X) = {Y ∈ Cκ+
(B) | Y ∈ X ∪ {X}},
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(c) if B has immediate predecessors in A1κ+
, then one of them is in Cκ+

(B).

48. If X ∈ A1κ+
is a non-limit model, then κX ⊆ X.

49. If X ∈ A1κ+
is a non-limit model, then either

(a) X is a minimal under ∈ or equivalently under ),
or

(b) X has a unique immediate predecessor in A1κ+
,

or

(c) X has exactly two immediate predecessors X0, X1 in A1κ+
and then either

i. X,X0, X1 form a ∆–system triple relatively to some F0, F1 ∈ A1κ++
which

means the following:

A. F0  F1 (or F1  F0),

B. F0 ∈ X0 and F1 ∈ X1,

C. X0 ∩X1 = X0 ∩ F0 = X1 ∩ F1,

D. the structures

⟨X0,∈, X0∩A1κ+

, X0∩A1κ+lim, X0∩A1κ++

, X0∩A1κ++lim, X0∩A1κ+3

, X0∩A1κ+3lim,

(Cκ+ � X0∩A1κ+

)∩X0, (C
κ++ � X0∩A1κ++

)∩X0, (C
κ+3 � X0∩A1κ+3

)∩X0⟩

and

⟨X1,∈, X1∩A1κ+

, X1∩A1κ+lim, X1∩A1κ++

, X1∩A1κ++lim, X1∩A1κ+3

, X1∩A1κ+3lim,

(Cκ+ � X1∩A1κ+

)∩X1, (C
κ++ � X1∩A1κ++

)∩X1, (C
κ+3 � X1∩A1κ+3

)∩X1⟩

are isomorphic over X0 ∩X1.

Further we will refer to such X as a splitting point.

Or

ii. there are G,G0, G1 ∈ X ∩A1κ++
which form a ∆-system type triple such that

A. X0 ∈ G0,

B. X1 ∈ G1,

C. X1 = πG0G1 [X0],
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D. πG0G1 � X0 is the isomorphism between the structures

⟨X0,∈, X0∩A1κ+

, X0∩A1κ+lim, X0∩A1κ++

, X0∩A1κ++lim, X0∩A1κ+3

, X0∩A1κ+3lim,

(Cκ+ � X0∩A1κ+

)∩X0, (C
κ++ � X0∩A1κ++

)∩X0, (C
κ+3 � X0∩A1κ+3

)∩X0⟩

and

⟨X1,∈, X1∩A1κ+

, X1∩A1κ+lim, X1∩A1κ++

, X1∩A1κ++lim, X1∩A1κ+3

, X1∩A1κ+3lim,

(Cκ+ � X1∩A1κ+

)∩X1, (C
κ++ � X1∩A1κ++

)∩X1, (C
κ+3 � X1∩A1κ+3

)∩X1⟩

. Note πG0G1 is identity on X0 ∩ X1, since it is the identity on G0 ∩ G1

and X0 ∩X1 ⊆ G0 ∩G1.

Further we will refer to such X as a splitting point of higher order.

50. If X ∈ A1κ+
, Y ∈ A1κ+ ∪ A1κ++ ∪ A1κ+3

and Y ∈ X, then Y is a piste reachable from

X, i.e. there is a finite sequence ⟨X(i) | i ≤ n⟩ of elements of A1κ+
which we call a

piste leading to Y such that

(a) X = X(0),

(b) for every i, 0 < i ≤ n, X(i) ∈ Cκ+
(X(i − 1)) or X(i − 1) has two immediate

successors X(i− 1)0, X(i− 1)1 with X(i− 1)0 ∈ Cκ+
(X(i− 1)), X(i) = X(i− 1)1

and Y ∈ X(i− 1)1 \X(i− 1)0 or Y = X(i− 1)1,

(c) Y = X(n), if Y ∈ A1κ+
and if Y ∈ A1κ++ ∪ A1κ+3

, then Y ∈ X(n), X(n) is a

successor point and Y is not a member of any element of X(n) ∩ A1κ+
.

51. Either A0κ+ ∈ A0κ+3
and then A1κ+ ⊆ A0κ+3

or A0κ+3 ∈ A0κ+
and then A1κ+3 \ {XA0κ+ | X ∈ A1κ+3lim ∩ A0κ+} ⊆ A0κ+

,

or A0κ+ ∈ A1κ+lim, A0κ+3 ∈ A1κ+3lim, A0κ+ ⊆ A0κ+3

and sup(A0κ+ ∩ κ+4) = sup(A0κ+3 ∩ κ+4).

52. Either A0κ+ ∈ A0κ++
and then A0κ+ ⊆ A0κ++

or A0κ++ ∈ A0κ+
and then A1κ++ \ {XA0κ+ | X ∈ A1κ++lim ∩ A0κ+} ⊆ A0κ+

,

or A0κ+ ∈ A1κ+lim, A0κ++ ∈ A1κ++lim, A0κ+ ⊆ A0κ++

and sup(A0κ+ ∩ κ+4) = sup(A0κ++ ∩ κ+4).

53. It is allowed that A1κ+i
= ∅, for i ∈ {1, 2, 3}.
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Remark 1.2 1. < δ–structure with pistes over κ is defined the same way only requiring

that the cardinality δ is replaced by cardinality less than δ.

2. It is possible to define a structure without pistes by requiring directness below limit

models. This way it will be a direct generalization of Merimovich’s fake morass [5].

3. In contrast with [1] pistes for models of different cardinalities need not go into the

same direction here.

Thus for example it is possible to have a ∆-system type triple X,X0, X1 with X0 ∈
Cκ++

and models A,B of cardinality κ+ such that B ∈ Cκ+
(A), B ∈ X1 \ X0 and

X ∈ A.

4. Also in we do not require here that onceX,X0, X1 is a ∆-system type triple of models of

cardinality κ++, A ∈ X0 of cardinality κ+, then the image of A under the isomorphism

πX0X1 of X0, X1 is in A1κ+
.

Such requirement complicated the matters a lot and was crucial in [1] since without it

after forcing the preparation 2κ
++

will be κ+4. Here this does not matter since there

will be no preparation forcing at all. Still, a weaker property 1.1(49(c)ii) of this type

seems still to be needed for properness (as well as for a chain condition).

So the pistes used here are bit more complicated than the blue pistes of [1]. Let us

refer to them as red pistes.

Let us define the intersection property.

Definition 1.3 (Models of size κ++). Let ⟨⟨A0κ+
, A1κ+

, A1κ+lim, Cκ+⟩, ⟨A0κ++
, A1κ++

, A1κ++lim,

Cκ++⟩, ⟨A0κ+3
, A1κ+3

, A1κ+3lim, Cκ+3⟩⟩ be a δ-structure with pistes over κ.

Let A,B ∈ A1κ++
. By ip(A,B) we mean the following:

1. A ⊆ B,

or

2. B ⊆ A,

or

3. A ̸⊆ B, B ̸⊆ A and then either

• there is X ∈ A ∩ A1κ+3
such that A ∩B = A ∩X,

or
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• there are X ∈ A ∩ A1κ+3
, A′ ∈ A ∩ A1κ++

such that A ∩B = A ∩ A′ ∩X.

Definition 1.4 (Model of size κ+ with a model of size κ++). Let ⟨⟨A0κ+
, A1κ+

, A1κ+lim, Cκ+⟩,
⟨A0κ++

, A1κ++
, A1κ++lim, Cκ++⟩, ⟨A0κ+3

, A1κ+3
, A1κ+3lim, Cκ+3⟩⟩ be a δ-structure with pistes

over κ.

Let A ∈ A1κ+
, B ∈ A1κ++

. By ip(A,B) we mean the following:

1. B ∈ A,

or

2. A ⊂ B,

or

3. B ̸∈ A, A ̸⊂ B and then either

• there is B′ ∈ A ∩ A1κ++
such that A ∩B = A ∩B′,

or

• there is X ∈ A ∩ A1κ+3
such that A ∩B = A ∩X,

or

• there are B′ ∈ A ∩ A1κ++
, X ∈ A ∩ A1κ+3

such that A ∩B = A ∩B′ ∩X.

Definition 1.5 (Intersection with models of size κ+3). Let ⟨⟨A0κ+
, A1κ+

, A1κ+lim, Cκ+⟩,
⟨A0κ++

, A1κ++
, A1κ++lim, Cκ++⟩, ⟨A0κ+3

, A1κ+3
, A1κ+3lim, Cκ+3⟩⟩ be a δ-structure with pistes

over κ.

Let A ∈ A1κ+
or A ∈ A1κ++

and Y ∈ A1κ+3
. By ip(A,B) we mean the following:

1. Y ∈ A

or

2. A ⊂ Y

or

3. there is Y ′ ∈ A ∩ A1κ+3
such that A ∩ Y = A ∩ Y ′.

Definition 1.6 (Models of size κ+). Let ⟨⟨A0κ+
, A1κ+

, A1κ+lim, Cκ+⟩,
⟨A0κ++

, A1κ++
, A1κ++lim, Cκ++⟩, ⟨A0κ+3

, A1κ+3
, A1κ+3lim, Cκ+3⟩⟩ be a δ-structure with pistes

over κ.

Let A,B ∈ A1κ+
. By ip(A,B) we mean the following:

12



1. A ⊆ B,

or

2. B ⊆ A,

or

3. A ̸⊆ B, B ̸⊆ A and then either

• there is X ∈ A ∩ A1κ++
such that A ∩B = A ∩X,

or

• there are X ∈ A ∩ A1κ++
, A′ ∈ A ∩ A1κ+

such that A ∩B = A ∩ A′ ∩X,

or

• there are Y ∈ A ∩ A1κ+3
, X ∈ A ∩ A1κ++

, A′ ∈ A ∩ A1κ+
such that A ∩ B =

A ∩ A′ ∩X ∩ Y .

If both ip(A,B) and ip(B,A) hold, then we denote this by ipb(A,B).

Lemma 1.7 Let ⟨⟨A0κ+
, A1κ+

, A1κ+lim, Cκ+⟩, ⟨A0κ++
, A1κ++

, A1κ++lim, Cκ++⟩,
⟨A0κ+3

, A1κ+3
, A1κ+3lim, Cκ+3⟩⟩ be a δ-structure with pistes over κ. Assume A ∈ A1κ++

and

X ∈ A1κ+3
. Then ip(A,X).

Proof. Assume that A ̸∈ X and X ̸∈ A. Let us split the proof into two cases.

Case 1. X ∈ A0κ++
.

Consider the pistes from A0κ++
to X and to A. Let B be the last common point of this pistes.

Then B is a successor model. Let B0 be its immediate predecessor such that A ∈ B0∪{B0}.
Then X ̸∈ B0. Also X ̸⊇ B0, by the assumption.

Subcase 1.1. There are elements of A1κ+3 ∩B0 above X.

Let Z be the least like this. Then Z must be in A1κ+3lim. Thus if Z ̸∈ A1κ+3lim is a successor

point of A1κ+3
, then by 1.1(11) its immediate predecessor is in B0. If Z is a limit point of

A1κ+3
, then by 1.1(12), Z cannot be the least.

Consider ZB0 of 1.1(14). Then X ̸⊆ ZB0 , by 1.1(15). So ZB0 ⊆ X ⊆ Z. Then, by 1.1(14)

B0 ∩X = B0 ∩ Z. Hence

A ∩X = A ∩B0 ∩X = A ∩B0 ∩ Z = A ∩ Z,

and we can apply the induction to A,Z, since the common part of pistes to them is longer

and so the last common model is smaller.

13



Subcase 1.2.There are no elements of A1κ+3 ∩B0 above X.

Assume first that there are elements of A1κ+3
which include B0. Pick Z to be the least such.

Clearly Z ⊃ X, since X ̸⊇ B0. Then, by 1.1(16), Z should be a limit model and there should

be elements A0κ+3 ∩B0 above X. Contradiction.

Hence there are no elements of A1κ+3
which include B0. In particular, B0 ̸⊆ A0κ+3

. But

then 1.1(17) implies that A0κ+3 ∈ B0, which gives the contradiction, since clearly X ⊆ A0κ+3
.

Case 2. X ̸∈ A0κ++
.

If A0κ+3 ∈ A0κ++
and X = A0κ+3

A0κ++ , then

A ∩X = A ∩ A0κ++ ∩X = A ∩ A0κ++ ∩ A0κ+3

A0κ++ = A ∩ A0κ++ ∩ A0κ+3

= A ∩ A0κ+3

,

and we are in the situation of Case 1.

So, then A0κ++ ∈ A0κ+3
. Pick the least element Z ∈ A1κ+3

which includes A0κ++
. If

X ⊇ A0κ++
then X ⊇ A. So, X ̸⊇ A0κ++

. Hence X ∈ Z. Then by 1.1(16), A0κ++∩A1κ+3 ̸= ∅.
Let Y ∈ A0κ++ ∩ A1κ+3

be the least element which includes X. By 1.1(11,12), Y should be

in A1κ+3lim. Then A0κ++ ∩X = A0κ++ ∩ Y , as was pointed out in Subcase 1.1. But

A ∩X = A ∩ A0κ++ ∩X = A ∩ A0κ++ ∩ Y = A ∩ Y,

and Y ∈ A0κ++
. So we are in the situation considered in Case 1.

�

Lemma 1.8 Let ⟨⟨A0κ+
, A1κ+

, A1κ+lim, Cκ+⟩, ⟨A0κ++
, A1κ++

, A1κ++lim, Cκ++⟩,
⟨A0κ+3

, A1κ+3
, A1κ+3lim, Cκ+3⟩⟩ be a δ-structure with pistes over κ. Assume A ∈ A1κ++

, B ∈
A1κ++

. Then ipb(A,B).

Proof. Induction on pistes length.

�

Lemma 1.9 Let ⟨⟨A0κ+
, A1κ+

, A1κ+lim, Cκ+⟩, ⟨A0κ++
, A1κ++

, A1κ++lim, Cκ++⟩,
⟨A0κ+3

, A1κ+3
, A1κ+3lim, Cκ+3⟩⟩ be a δ-structure with pistes over κ. Assume A ∈ A1κ+

and

X ∈ A1κ+3
. Then ip(A,X).

The proof repeats those of Lemma 1.7.

Lemma 1.10 Let ⟨⟨A0κ+
, A1κ+

, A1κ+lim, Cκ+⟩, ⟨A0κ++
, A1κ++

, A1κ++lim, Cκ++⟩,
⟨A0κ+3

, A1κ+3
, A1κ+3lim, Cκ+3⟩⟩ be a δ-structure with pistes over κ. Assume A ∈ A1κ+

and

X ∈ A1κ++
. Then ip(A,X).

14



Proof. Assume that A ̸∈ X and X ̸∈ A.Let us split the proof into two cases.

Case 1. X ∈ A0κ+
.

Consider the pistes from A0κ+
to X and to A. Let B be the last common point of this pistes.

Then B is a successor model. Let B0 be its immediate predecessor such that A ∈ B0∪{B0}.
Then X ̸∈ B0. Also X ̸⊇ B0, by the assumption.

Subcase 1.1. There are elements of A1κ++ ∩B0 above X.

Let Z be the least like this. Then Z must be in A1κ++lim. Thus if Z ̸∈ A1κ++lim is a successor

point of A1κ+3
, then by 1.1(28) all of its immediate predecessors are in B0. If Z is a limit

point of A1κ++
, then by 1.1(29), Z cannot be the least.

Consider ZB0 of 1.1(30). Then X ̸⊆ ZB0 , by 1.1(32).

If ZB0 ⊆ X, then, by 1.1(30) B0 ∩X = B0 ∩ Z. Hence

A ∩X = A ∩B0 ∩X = A ∩B0 ∩ Z = A ∩ Z,

and we can apply the induction to A,Z, since the common part of pistes to them is longer

and so the last common model is smaller.

Suppose now that ZB0 ̸⊆ X. Apply ip(ZB0 , X) and find Y ∈ ZB0 ∩ A0κ+3
, Z ′

B0
∈ (ZB0 ∪

{ZB0}) ∩ A0κ++
such that ZB0 ∩X = Z ′

B0
∩ Y . Then

A ∩X = A ∩ Z ∩X = A ∩ ZB0 ∩X = A ∩ Z ′
B0

∩ Y.

If Z ′
B0

= ZB0 , then A ∩ Z ′
B0

= A ∩ Z and the induction applies. If Z ′
B0

∈ ZB0 , then, by

1.1(32), we can apply induction to A and Z ′
B0
.

Subcase 1.2. There are no elements of A1κ++ ∩B0 above X.

Assume first that there are elements of A1κ++
which include B0. Pick Z to be the least such.

Clearly X ̸⊇ Z, since X ̸⊇ B0. If Z ⊃ X, then, by 1.1(34,36), Z should be a limit model

and there should be elements A0κ++ ∩B0 above X. Contradiction.

Now use ip(Z,X). There are Z ′ ∈ Z ∪ {Z}, Y ∈ A1κ+3
such that Z ∩X = Z ′ ∩ Y . Then

A ∩X = A ∩ Z ∩X = A ∩ Z ′ ∩ Y.

If Z ′ = Z, then A ∩ Z ′ ∩ Y = A ∩ Y and ip(A, Y ) applies. If Z ′ ∈ Z, then Z ′ ⊂ Z and then

there will be elements of A0κ++ ∩ B0 above Z ′, by 1.1(34,36). So we are in the situation of

Subcase 1.1.

Suppose now that there are no elements of A1κ++
which include B0. But then 1.1(52)

gives the contradiction.
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Case 2. X ̸∈ A0κ+
.

If A0κ++ ∈ A0κ+
and X = A0κ++

A0κ+
, then

A ∩X = A ∩ A0κ+ ∩X = A ∩ A0κ+ ∩ A0κ++

A0κ+ = A ∩ A0κ+ ∩ A0κ++

= A ∩ A0κ++

,

and we are in the situation of Case 1.

So, then A0κ+ ∈ A0κ++
, by 1.1(52). Pick the least element Z ∈ A1κ++

which includes

A0κ+
. If X ⊇ A0κ+

then X ⊇ A. So, X ̸⊇ A0κ+
. Clearly, X ̸⊇ Z. If X ∈ Z, then, by

1.1(16), A0κ+ ∩ A1κ++ ̸= ∅. Let T ∈ A0κ+ ∩ A1κ++
be the least element which includes X.

By 1.1(28,29), T should be in A1κ++lim. Then A0κ+ ∩X = A0κ+ ∩ T ,

or A0κ+ ∩X = A0κ+ ∩ T ′ ∩ Y , for some Y ∈ A1κ+3 ∩ TA0κ+ , T ′ ∈ TA0κ+ as was pointed out in

Subcase 1.1. In the former case we have

A ∩X = A ∩ A0κ+ ∩X = A ∩ A0κ+ ∩ T = A ∩ T,

and T ∈ A0κ+
. So we are in the situation considered in Case 1.

In the later case–

A ∩X = A ∩ A0κ+ ∩X = A ∩ A0κ+ ∩ T ′ ∩ Y = A ∩ T ′ ∩ Y.

By 1.1(32), there will be P ∈ A0κ+ ∩ Cκ++
(TA0κ+ ) which includes T ′. Hence we in the

situation considered in Subcase 1.1 with B0 replaced by A0κ+
and X by T ′.

Suppose now that X ̸∈ Z. Apply ip(Z,X). There are Z ′ ∈ Z ∪{Z}, Y ∈ A1κ+3
such that

Z ∩X = Z ′ ∩ Y . Then

A ∩X = A ∩ A0κ+ ∩ Z ∩X = A ∩ Z ′ ∩ Y.

If Z ′ = Z, then A ∩ Z ′ ∩ Y = A ∩ Y and ip(A, Y ) applies.

If Z ′ ∈ Z, then we are in the situation considered in the previous paragraph with X replaced

by Z ′.

�

Lemma 1.11 Let ⟨⟨A0κ+
, A1κ+

, A1κ+lim, Cκ+⟩, ⟨A0κ++
, A1κ++

, A1κ++lim, Cκ++⟩,
⟨A0κ+3

, A1κ+3
, A1κ+3lim, Cκ+3⟩⟩ be a δ-structure with pistes over κ. Assume A ∈ A1κ+

, B ∈
A1κ+

. Then ipb(A,B).

Proof. Induction on pistes length. Let us only check the point related to red piste. Thus

suppose that X is the last common point of pistes from A0κ+
to A and to B, and suppose that
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X is a splitting point of higher order. Let X0, X1 be its immediate predecessors, G,G0, G1

be a ∆-system triple in X ∩ A1κ++
which witness this. Suppose that A ∈ X0 ∪ {X0} and

B ∈ X1 ∪ {X1}. Then

A ∩B = A ∩X0 ∩B ∩X1 = A ∩G0 ∩G1 ∩B.

There is Y0 ∈ G0 ∩A1κ+3
such that G0 ∩G1 = G0 ∩ Y0. Set B0 = πG1G0 [B]. Then B ∩G0 =

B0 ∩ Y0, since πG1G0 � G0 ∩G1 is the identity. So,

A ∩B = A ∩G0 ∩B0 = A ∩B0 ∩ Y0.

The induction applies to A,B0.

�

Lemma 1.12 Let ⟨⟨A0κ+
, A1κ+

, A1κ+lim, Cκ+⟩, ⟨A0κ++
, A1κ++

, A1κ++lim, Cκ++⟩,
⟨A0κ+3

, A1κ+3
, A1κ+3lim, Cκ+3⟩⟩ be a δ-structure with pistes over κ. Suppose that A ∈ A1κ+

is

a non-limit point and A ∩ A1κ++ ̸= ∅. Then there is X ∈ A ∩ A1κ++
which includes every

element of A ∩ A1κ++
.

Proof. If there is no elements of A1κ++
which include A, then A0κ++ ∈ A, by 1.1(37), and we

are done. Otherwise let as pick Z ∈ A1κ++
to be a least which (under inclusion or just the

least point of the piste leading to A) includes A. Then Z must be a successor point, since

A is a successor. So, by 1.1(36), Z has a unique predecessor Z0. Now, by 1.1(34), since A is

non-limit we must have Z0 ∈ A.

�
Next two lemmas are similar.

Lemma 1.13 Let ⟨⟨A0κ+
, A1κ+

, A1κ+lim, Cκ+⟩, ⟨A0κ++
, A1κ++

, A1κ++lim, Cκ++⟩,
⟨A0κ+3

, A1κ+3
, A1κ+3lim, Cκ+3⟩⟩ be a δ-structure with pistes over κ. Suppose that A ∈ A1κ+

is

a non-limit point and A ∩ A1κ+3 ̸= ∅. Then there is X ∈ A ∩ A1κ+3
which includes every

element of A ∩ A1κ+3
.

Lemma 1.14 Let ⟨⟨A0κ+
, A1κ+

, A1κ+lim, Cκ+⟩, ⟨A0κ++
, A1κ++

, A1κ++lim, Cκ++⟩,
⟨A0κ+3

, A1κ+3
, A1κ+3lim, Cκ+3⟩⟩ be a δ-structure with pistes over κ. Suppose that A ∈ A1κ++

is a non-limit point and A ∩ A1κ+3 ̸= ∅. Then there is X ∈ A ∩ A1κ+3
which includes every

element of A ∩ A1κ+3
.
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Notation. Denote the set of δ-structures with pistes over κ by Pκδ and similar the set

of < δ-structures with pistes over κ by Pκ,<δ.

Let us define a partial order over Pκδ (Pκ,<δ).

Definition 1.15 Let

p0 = ⟨⟨A0κ+

0 , A1κ+

0 , A1κ+lim
0 , Cκ+

0 ⟩, ⟨A0κ++

0 , A1κ++

0 , A1κ++lim
0 , Cκ++

0 ⟩, ⟨A0κ+3

0 , A1κ+3

0 , A1κ+3lim
0 , Cκ+3

0 ⟩⟩,
p1 = ⟨⟨A0κ+

1 , A1κ+

1 , A1κ+lim
1 , Cκ+

1 ⟩, ⟨A0κ++

1 , A1κ++

1 , A1κ++lim
1 , Cκ++

1 ⟩, ⟨A0κ+3

1 , A1κ+3

1 , A1κ+3lim
1 , Cκ+3

1 ⟩⟩
be in Pκδ. Then p0 ≤ p1 (p1 extends p0) iff

1. A1κ+i

0 ⊆ A1κ+i

1 , for every i ∈ {1, 2, 3},

2. let A ∈ A1κ+i

0 , for some i ∈ {1, 2, 3}, then A ∈ A1κ+ilim
0 iff A ∈ A1κ+ilim

1 .

The next item deals with a property called switching in [1]. In the present context it

is much simpler due to simplicity of splittings and since we do not require that pistes

of different cardinalities go the same way.

3. For every A ∈ A1κ+i

0 , Cκ+i

0 (A) ⊆ Cκ+i

1 (A), for every i ∈ {1, 2, 3},
or for some i’s, i ∈ {1, 2, 3} there are finitely many splitting (or generalized splitting)

points B(0), ..., B(k) ∈ A1κ+i

0 with B(j)′, B′′(j) the immediate predecessors of

B(j) (j ≤ k) such that

(a) B(j)′ ∈ Cκ+i

0 (B(j)),

(b) B(j)′′ ∈ Cκ+i

1 (B(j)).

4. If A ∈ A1κ+i

0 is a successor point and it is not in A1κ+i lim
0 , then A has the same

immediate predecessors in A1κ+i

1 .

So, by 1.15(4), potentially limit points are the only places where not end-extensions are

allowed.

Notation. Let p = ⟨⟨A0κ+
, A1κ+

, A1κ+lim, Cκ+⟩, ⟨A0κ++
, A1κ++

, A1κ++lim, Cκ++⟩,
⟨A0κ+3

, A1κ+3
, A1κ+3lim, Cκ+3⟩⟩ be a δ-structure with pistes over κ.

Let A ∈ A1κ+ ∪ A1κ++ ∪ A1κ++
.

1. Denote by (A)κ+i , i ∈ {1, 2, 3} the maximal B ∈ (A1κ+i ∩ (A ∪ {A})), if such B exists.

Note that by 1.12,1.13,1.14, if A is a non–limit model and A ∈ A1κ+
then both

(A)κ++ , (A)κ+3 exist, and if A ∈ A1κ++
, then (A)κ+3 exists.
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2. Suppose that (A)κ+i exists, for each i, i ∈ {1, 2, 3}. Denote then by p � A the set

⟨⟨(A)κ+ , A1κ+ ∩ A,A1κ+lim ∩ A, (Cκ+ � A1κ+ ∩ A) ∩ A⟩,

⟨(A)κ++ , A1κ++ ∩ A,A1κ++lim ∩ A, (Cκ++ � A1κ+ ∩ A) ∩ A⟩,

(A)κ+3 , A1κ+3 ∩ A,A1κ+3lim ∩ A, (Cκ+3 � A1κ+3 ∩ A) ∩ A⟩⟩.

Lemma 1.16 Let p = ⟨⟨A0κ+
, A1κ+

, A1κ+lim, Cκ+⟩, ⟨A0κ++
, A1κ++

, A1κ++lim, Cκ++⟩,
⟨A0κ+3

, A1κ+3
, A1κ+3lim, Cκ+3⟩⟩ be a δ-structure with pistes over κ. Suppose that A ∈ A1κ+ ∪

A1κ++ ∪ A1κ++
is a non-limit point. If (A)κ+i , i ∈ {1, 2, 3} exist, then p � A is in Pκδ and

p � A ≤ p.

Proof. Follows from 1.1, 1.15.

�

1.2 Suitable structures.

We reorganize here the structures with pistes of the previous section in order to allow iso-

morphisms of them over different cardinals.

Definition 1.17 Let δ < κ be cardinals and δ is a regular. A structure X = ⟨X,E,Elim, C,∈
,⊆ ⟩, where E ⊆ [X]2 and C ⊆ [X]3 is called a δ-suitable (or < δ) structure with pistes over

κ iff there is

p(X) = ⟨⟨A0κ+
(X), A1κ+

(X), A1κ+lim(X), Cκ+
(X)⟩, ⟨A0κ++

(X), A1κ++
(X), A1κ++lim(X), Cκ++

(X)⟩,
⟨A0κ+3

(X), A1κ+3
(X), A1κ+3lim(X), Cκ+3

(X)⟩⟩ a δ-structure (or < δ) with pistes over κ such

that

1. X = A0i(X), where i(X) ∈ {κ+, κ++, κ+3} is such that if j ∈ {κ+, κ++, κ+3}, then
A0j ∈ X or A0j ⊆ X,

2. ⟨a, b⟩ ∈ E iff a ∈ {κ+, κ++, κ+3} and b ∈ A1a(X),

3. ⟨a, b⟩ ∈ Elim iff a ∈ {κ+, κ++, κ+3} and b ∈ A1alim(X),

4. ⟨a, b, d⟩ ∈ C iff a ∈ {κ+, κ++, κ+3}, b ∈ A1a(X) and d ∈ Ca(X)(b).

Let us refer to X for shortness as a δ-suitable (or < δ) structure once κ is fixed.

Note that p(X) is uniquely defined from X and from p ∈ Pκδ it is easy to define a δ-suitable

structure.

Definition 1.18 Let X,Y be δ-suitable structures. Set X ≤ Y iff p(X) ≤ p(Y).
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1.3 Forcing conditions.

Let κ be a limit of an increasing sequence of cardinals ⟨κn | n < ω⟩ with each κn being

κ+n+2+4
n + 1–strong as witnessed by an extender En.

For every n < ω define Qn0.

Definition 1.19 Let Qn0 be the set of the triples ⟨a,A, f⟩ so that:

1. f is a partial function from κ+4 to κn of cardinality at most κ,

2. a is an isomorphism between a < κn–suitable structure X over κ and a < κn–suitable

structure X′over κ+n
n such that

(a) X ′ is above every model which appears inA1τ (X′)\{X ′}, for some τ ∈ {κ+, κ++, κ+3}
in the order ≤En , (or actually after codding X ′ by an ordinal),

(b) if t ∈ A1κ+
(X′) ∪A1κ++

(X′) ∪A1κ+3
(X′), then for some k, 2 < k < ω, t ≺ H(χ+k),

with χ big enough fixed in advance.

Further passing from Qn0 to P we will require that for every k < ω for all but

finitely many n’s the n-th image t of a model from X will be elementary submodel

of H(χ+k).

The way to compare such models t1 ≺ H(χ+k1), t2 ≺ H(χ+k2), when k1 ̸= k2, say

k1 < k2, will be as follows:

move to H(χ+k1), i.e. compare t1 with t2 ∩H(χ+k1).

3. A ∈ EnX′ ,

4. for every ordinals α, β, γ which code models in A1κ+
(X′) ∪ A1κ++

(X′) ∪ A1κ+3
(X′), we

have

α ≥En β ≥En γ implies

πEn
αγ (ρ) = πEn

βγ (π
En
αβ (ρ)),

for every ρ ∈ π′′
X′αA.

Definition 1.20 Let ⟨a,A, f⟩, ⟨b, B, g⟩ be in Qn0. Set ⟨a,A, f⟩ ≥n0 ⟨b, B, g⟩ iff

1. dom(a) ≥ dom(b),

2. ran(a) ≥ ran(b),

3. a ⊇ b,
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4. f ⊇ g,

5. πEn

max(ran(a)),max(ran(b)“A ⊆ B.

Definition 1.21 Qn1 consists of all partial functions f : κ+3 → κn with |f | ≤ κ. If f, g ∈
Qn1, then set f ≥n1 g iff f ⊇ g.

Definition 1.22 Define Qn = Qn0 ∪Qn1 and ≤∗
n=≤n0 ∪ ≤n1.

Let p = ⟨a,A, f⟩ ∈ Qn0 and ν ∈ A. Set

p⌢ν = f ∪ {⟨α, πmax(ran(a)),a(α)(ν) | α ∈ A1κ+3

(dom(a)) \ dom(f)}.

Note that here a contributes only the values for α’s in dom(a) \ dom(f) and the values on

common α’s come from f . Also only the ordinals in A1κ+3
(dom(a)) are used to produce non

direct extensions, the rest of models disappear.

Now, if p, q ∈ Qn, then we set p ≥n q iff either p ≥∗
n q or p ∈ Qn1, q = ⟨b, B, g⟩ ∈ Qn0 and

for some ν ∈ B, p ≥n1 q
⌢ν.

Definition 1.23 The set P consists of all sequences p = ⟨pn | n < ω⟩ so that

1. for every n < ω, pn ∈ Qn,

2. there is ℓ(p) < ω such that

(a) for every n < ℓ(p), pn ∈ Qn1,

(b) for every n ≥ ℓ(p), we have pn = ⟨an, An, fn⟩ ∈ Qn0,

(c) if ℓ(p) ≤ n ≤ m, then dom(an) ≤ dom(am),

(d) if ℓ(p) ≤ n ≤ m, then max(dom(an)) = max(dom(am)).

3. For every n ≥ m ≥ ℓ(p), dom(am) ⊆ dom(an),

4. for every n, ℓ(p) ≤ n < ω, and X ∈ dom(an) we have that for each k < ω the set

{m < ω | ¬(am(X) ∩ H(χ+k) ≺ H(χ+k))} is finite.] (Alternatively require only that

am(X) ⊆ λm but there is X̃ ≺ H(χ+k)) such that am(X) = X̃ ∩ λm. It is possible to

define being k-good this way as well).

5. For every n ≥ ℓ(p) and α ∈ dom(fn) there is m,n ≤ m < ω such that α ∈ dom(am) \
dom(fm).
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6. There is a κ-structure with pistes p over κ such that

(a) p ≥ dom(an), for every n, ℓ(p) ≤ n < ω,

(b) if a model A appears in p, then A appears in dom(an) for some n, ℓ(p) ≤ n < ω

(and then in a final segment of them),

(c) max(dom(an)) = max(p) (actually this follows from the previous condition).

Note that p of 1.23(6) is uniquely determined by p. Let us refer to it further as the

κ-structure with pistes over κ of p.

Lemma 1.24 ⟨Qn0,≤n0 ⟩ is < κn-strategically closed.

Lemma 1.25 ⟨P ,≤∗ ⟩ does not add new sequences of ordinals of the length < κ0.

Lemma 1.26 ⟨P ,≤∗ ⟩ satisfies the Prikry condition.

Lemma 1.27 Let p ∈ P and α < κ+4, then there are q ≥∗ p and β, α < β < κ+4 such that

β = M ∩ κ+4, for some M which appears in Q.

Proof. Pick some M ≺ H(κ+4) of size κ+3 which is above the maximal model of p (say

p ∈ M) and such that M ∩ κ+4 > α. Add it to p. Let q be the resulting condition. Then it

is as desired.

�
The next lemma follows now:

Lemma 1.28 Let G be a generic subset of ⟨P ,≤ ⟩. Then in V [G] there are cof((κ+4)V )–

many ω–sequences of ordinals below κ.

Define → on P as in [1].

κ++–c.c., κ+3–c.c. and even κ+4–c.c. break down here for the forcing ⟨P ,→ ⟩. Following
C. Merimovich [5] we replace them by properness.

1.4 Properness.

The following basic definition is due to S. Shelah [6]:

Definition 1.29 Let η > ω be a regular cardinal and P a forcing notion. P is called η–

proper iff for every p ∈ P and M ≺ H(λ) (for large enough λ) with |M | = η, η>M ⊆ M ,
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P, p ∈ M there is p′ ≥P p such that for every dense open D ⊆ P,D ∈ M , p′ 
 “D∩G∼∩M ̸=
∅.” Such p′ is called (M,P )-generic.

The following is obvious:

Lemma 1.30 If P is η-proper, then it preserves η+.

Our tusk will be to prove the following three lemmas:

Lemma 1.31 ⟨P ,→ ⟩ is κ+-proper.

Lemma 1.32 ⟨P ,→ ⟩ is κ++-proper.

Lemma 1.33 ⟨P ,→ ⟩ is κ+3-proper.

Proof of 1.31. Let p ∈ P and M ≺ H(λ) (for large enough λ) with |M | = κ+, κM ⊆ M ,

P, p ∈ M .

Let M̃ be a model of cardinality κ++ which is the union of a chain of models ⟨Mi | i < κ+⟩
such that

• Mi ∈ M ,

• Mi ≺ H(κ+4),

• ∪i<κ+Mi ∩M = M ∩H(κ+4).

Let ˜̃M be a model of cardinality κ+3 which is the union of a chain of models ⟨M̃i | i < κ+⟩
such that

• M̃i ∈ M ,

• M̃i ≺ H(κ+4),

• Mi ⊆ M̃i,

• ∪i<κ++M̃i ∩M = M ∩H(κ+4).

Set M ′ := M ∩H(κ+4).

Then M ′ ⊆ M̃ ⊆ ˜̃M and sup(M ′ ∩ κ+4) = sup(M̃ ∩ κ+4) = sup( ˜̃M ∩ κ+4).

Extend p by adding M ′,M̃ and ˜̃M as the largest models and also make them potentially

limit points.

The role of M̃ and ˜̃M is to separate points of cardinalities κ++, κ+3 which will be added
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below in M from those above M . This is needed in order to satisfy 1.1(16). In the final

stage of the argument after moving from M outside one may need points of of cardinalities

κ++, κ+3 in order to satisfy 1.1(16) and M̃ , ˜̃M are such points. M ′ insures 1.1(34).

Let p′ be the resulting condition. We claim that p′ is (M,P )–generic.

Let q ≥ p′ and D ∈ M be a dense open. Let us show that there is an element of D ∩ M

which is compatible with q. Consider q the κ–structure with pistes over κ of q. Now, q � M ′

is κ–structure with pistes over κ, by 1.16, since (M ′)κ++ , (M ′)κ+3 exist by 1.12,1.13.

Pick some M ′′ ≺ H(κ+4) of size κ+, M ′′ ∈ M ′ and such that q � M ′ with M ′ removed is in

M ′′. Add M ′′ to q � M ′. It is possible, since M ′ is a potentially limit model. Denote the

result by q′ and a corresponding condition by q′ (i.e. we extend q in order to incorporate

M ′′).

Set q′′ = q′ � M ′′. Then, as above it is a κ–structure with pistes over κ. Let q′′ ∈ M be

a corresponding condition. Pick r ∈ M ∩ D above q′′. Combine r with q passing to an

equivalent condition and moving models under isomorphisms of splitting points if necessary.

The result will be as desired.

�
Proof of 1.32.

Let p ∈ P and M ≺ H(λ) (for large enough λ) with |M | = κ++, κ
+
M ⊆ M , P, p ∈ M . Let

M̃ be a model of cardinality κ+3 which is the union of a chain of models ⟨Mi | i < κ++⟩ such
that

• Mi ∈ M ,

• Mi ≺ H(κ+4),

• ∪i<κ++Mi ∩M = M ∩H(κ+4).

Consider M ′ := M ∩H(κ+4). Extend p by adding M ′ and M̃ as the largest models and also

make them potentially limit points.

The role of M̃ is to separate points of cardinality κ+3 which will be added below in M from

those above M . This is needed in order to satisfy 1.1(16). In the final stage of the argument

after moving from M outside one may need points of cardinality κ+3 in order to satisfy

1.1(16) and M̃ is such a point. M ′ insures 1.1(34). 1

1Note that it is possible to have an extension of p′ in which there is A of cardinality κ+, M ′, M̃ ∈ A
such that A is not potentially limit point. Moreover it has an immediate predecessor A0 ∈ M . Still this
does not prevent further extensions of p′ which contain models B of cardinality κ+ with A0 ∈ B ∈ M ′. Just
reflections of A (or bigger models) to M ′ and then creation of ∆–system triples can be used for this purpose,
as it will be done further in the proof.
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Let p′ be the resulting condition. We claim that p′ is (M,P )–generic.

Let q ≥ p′ and D ∈ M be a dense open. Extending if necessary, we can assume that q ∈ D.

Let us show that some condition in D ∩M which is compatible with q.

Consider q the κ–structure with pistes over κ of q. Extending if necessary, we can assume

that A0κ+
(q) is the maximal model of q. Consider also q � M ′. Note that it need not be

κ–structure with pistes over κ, since there may be no single maximal model of size κ+ inside.

Let us reflect A0κ+
(q) and q down to M over A0κ+

(q)∩M , i.e. we pick some A′ ∈ M and q′

which realizes the same k-type (for some k < ω sufficiently big) over A0κ+
(q)∩M as A0κ+

(q)

and q do in a rich enough language which includes D as well. 2 In particular q′ ∈ D ∩M .

Now q′ is compatible with q. Just pick some model A of cardinality κ+ which includes

all relevant information, i.e. A0κ+
(q), A′, q, q′,M ′ etc. The triple A,A0κ+

(q), A′ will form a

∆–system triple relatively to M ′ and the model which corresponds to M ′ in A′. Combine

q, q′ together adding A as the maximal model and replacing models in the range of q by

equivalent ones in order to fit with the range of q′.

�
Proof of 1.33. The argument repeats those of 1.32. Just M is picked of cardinality κ+3,

there is no need in M̃ and here so called red pistes apply 1.1(49(c)ii).

�

2 Arbitrary gaps.

We will extend here the setting of the previous section from gap 4 to an arbitrary gap.

2.1 Structures with pistes–arbitrary gaps.

Assume GCH.

Definition 2.1 Let δ < η < θ be regular cardinals.

δ (or < δ) structure with pistes over η of the length θ (our main application will be to the case

when η = κ+, so let us steak below to this situation) is a set ⟨⟨A0τ , A1τ , A1τlim, Cτ ⟩ | τ ∈ s⟩
such that

1. (Support) s is a closed set of cardinals from the interval [κ+, θ] (and once θ < ℵκ++ we

can restrict ourself to regular cardinals only) satisfying the following:

2We follow here a suggestion by Carmi Merimovich to include D into the language which simplifies the
original argument considerably.
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(a) |s| ≤ δ, (or |s| < δ in case of < δ–structure),

(b) κ+, θ ∈ s,

(c) if ρ+ ∈ s and ρ > κ, then ρ ∈ s,

(d) if ρ ∈ s is singular, then s is unbounded in ρ and ρ+ ∈ s.

2. (Models) For every τ ∈ s the following holds:

(a) A0τ 4 ⟨H(χ),∈,≤ ⟩,

(b) |A0τ | = τ ,

(c) A0τ ∈ A1τ ,

(d) A1τ is a set of at most δ (or less than δ in case of < δ–structure) elementary

submodels of A0τ ,

(e) each element A of A1τ has cardinality τ , A ⊇ τ and A ∩ τ+ is an ordinal,

(f) if X,Y ∈ A1τ then X ∈ Y iff X  Y ,

(g) (Potentially limit points) A1τlim ⊆ A1τ . We refer to its elements as potentially

limit points. Require the following:

i. if τ is a regular cardinal and X ∈ A1τlim then it is a successor point of A1τ

and κ+ ≤ cof(X ∩ τ+) ≤ τ ,

ii. cof(X∩τ+)>X ⊆ X,

iii. X has at most one immediate predecessor in A1τ .

iv. there is an increasing continuous chain ⟨Xi | i < cof(X ∩ τ+)⟩ of elementary

submodels of X such that

A.
∪

i<cof(X∩τ+)Xi = X,

B. |Xi| = τ ,

C. Xi ∈ X.

(h) (Piste function) dom(Cτ ) = A1τ ,

(i) for every B ∈ dom(Cτ ), Cτ (B) is a closed chain of models in A1τ ∩ (B ∪ {B})
such that the following holds:

i. B ∈ Cτ (B),

ii. if X ∈ Cτ (B), then Cτ (X) = {Y ∈ Cτ (B) | Y ∈ X ∪ {X}},
iii. if B has immediate predecessors in A1τ , then one of them is in Cτ (B),
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(j) If X ∈ A1τ \ A1τlim is a non-limit model, then cof(τ)>X ⊆ X.

(k) If X ∈ A1τ is a non-limit model, X ̸∈ A1τlim, A ∈ A1τ ′ , for some τ ′ ∈ s, τ ′ ̸= τ ,

and X ∈ A, then all immediate predecessors of X are in A.

Note that we do not require this closure property for X ∈ A1τlim in order to allow

further to add new elements below X.

(l) If X ∈ A1τ is a limit model, A ∈ A1τ ′ , for some τ ′ ∈ s, τ ′ < τ , and X ∈ A, then

X =
∪

{Z ∈ Cτ (X) | Z ̸= X,Z ∈ A}.

Note that we do not require that Cτ (X) ∈ A, but rather an unboundedness. The

reason is that if we do so then Cτ (Y ) for Y ∈ A1τlim ∩ A, will be in A as well,

and then the immediate predecessor of Y will be in A– the thing that we like to

avoid.

(m) If τ is a regular cardinal, A ∈ A1τ ′ , for some τ ′ ∈ s, τ ′ < τ , X ∈ A1τlim and

X ∈ A, then there is an increasing continuous chain ⟨Xi | i < cof(X ∩ τ+)⟩ of

elementary submodels of X such that

i. ⟨Xi | i < cof(X ∩ τ+)⟩ ∈ A,

ii.
∪

i<cof(X∩τ+)Xi = X,

iii. |Xi| = τ ,

iv. Xi ∈ X,

v. the model XA :=
∪

i∈AXi is in Cτ (X) ∩ A1τlim.

Note that

• A ∩X = A ∩XA, since clearly A ∩X ⊇ A ∩XA, and if Z ∈ A ∩X, then for

some i ∈ A, Z ∈ Xi, and so Z ∈ A ∩XA.

• If ⟨X ′
i | i < cof(X ∩ τ+)⟩ ∈ A is an other chain which satisfies all the

conditions above, then XA = X ′
A. This follows from the continuity of the

chains, unboundedness and elementarity of X.

In particular, XA is uniquely definable from X and A.

• If XA ⊆ Z ⊆ X, then A ∩ Z = A ∩X.

(n) Let τ is a regular cardinal, A ∈ A1τ ′ , for some τ ′ ∈ s, τ ′ < τ , X ∈ A1τlim and

X ∈ A. If Z ∈ Cτ (XA), then there is Z ′ ∈ Cτ (XA) ∩ A such that Z ′ ⊇ Z.

(o) If X ∈ A1τ is a non-limit model, then either
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i. X is a minimal under ∈ or equivalently under ),
or

ii. X has a unique immediate predecessor in A1τ ,

or

iii. X has exactly two immediate predecessors X0, X1 in A1τ and X,X0, X1 form

a ∆–system triple relatively to some F0, F1 ∈ A1τ∗ , τ ∗ = min(s\ τ +1), which

means the following:

A. F0  F1 (or F1  F0),

B. X0 ∈ F1 (or X1 ∈ F0),

C. F0 ∈ X0 and F1 ∈ X1,

D. X0 ∩X1 = X0 ∩ F0 = X1 ∩ F1,

E. the structures

⟨X0,∈, ⟨X0 ∩ A1ρ, X0 ∩ A1ρlim, (Cρ � X0 ∩ A1ρ) ∩X0 | ρ ∈ (s \ τ) ∩X0⟩⟩

and

⟨X1,∈, ⟨X1 ∩ A1ρ, X1 ∩ A1ρlim, (Cρ � X1 ∩ A1ρ) ∩X1 | ρ ∈ (s \ τ) ∩X1⟩⟩

are isomorphic over X0 ∩X1.

F. X ∈ A0τ∗ .

Further we will refer to such X as a splitting point.

Or

iv. there are G,G0, G1 ∈ X ∩A1µ, for some µ ∈ s \min(s \ τ + 1), which form a

∆-type triple with witnessing models in X such that

A. X0 ∈ G0,

B. X1 ∈ G1,

C. X1 = πG0G1 [X0].

D. X ∈ A0µ,

E. X ∈ A0µ∗
, where µ∗ = min(s \ µ+ 1).

Further we will refer to such X as a splitting point of higher order.

(p) Let Y be a successor element of A1τ with a unique immediate predecessors Y0. If

X ∈ A1τ ′ ∩ Y , for some τ ′ ∈ s, τ ′ < τ and τ ∈ X, then
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i. Y0 ∈ X and then X ∈ A1τ ′lim implies that also Y ∈ A1τlim.

We did not require that there is no overlapping of potentially limit point of

small cardinality with non-limit point of higher cardinality in the gap 4 case.

It is possible to do without to do without this once θ < κ+δ. Non-existence of

such overlapping was crucial for the properness arguments, see Lemma 1.32.

It was arranged easily since there was only three possible sizes of models

involved. Here the number of possible sizes may be much bigger than δ.

Or

ii. X ∈ Y0

or

iii. X ⊂ Y0, X ̸∈ Y0 and then Y0 is a limit point of A1τ or its potentially limit

point. In addition we require in this situation that also X is a limit point of

A1τ ′ or its potentially limit point accordingly, and∪
{Z ∈ Cτ (Y0) � Y0 | Z ∈ X} = Y0.

(q) Let Y be a successor element of A1τ with a unique immediate predecessors Y0. If

X ∈ A1τ ′ ∩ Y , for some τ ′ ∈ s, τ ′ < τ and τ ̸∈ X, then

i. X ∈ Y0,

or

ii. X ⊂ Y0, X ̸∈ Y0 and then Y0 is a limit point of A1τ or its potentially limit

point. In addition we require in this situation that also X is a limit point of

A1τ ′ or its potentially limit point accordingly, and∪
{Z ∈ Cτ (Y0) � Y0 | Z ∈ X} = Y0.

Or

iii. There are µ < τ, µ ∈ X ∩ s and an increasing continuous sequence ⟨Y0(α) |
α ∈ Card ∩ [µ, η]⟩ ∈ X, where η = min(X ∩ s \ τ) such that

A. Y0(α) ∈ A1α, if α ∈ s,

B. Y0(τ) = Y0,

C.
∪
{(Y0(α))X | α ∈ Card ∩ [µ, η] ∩X \ {η}} is in A1 sup(Card∩[µ,η]∩X\{η}).

Note that then the sequence ⟨(Y0(α))X | α ∈ Card ∩ [µ, η]⟩ (defined as in

2m) is continuous as well and X ∩ Y0 = X ∩ Y0(η) =
∪
{(Y0(α))X | α ∈

Card ∩ [µ, η] ∩X \ {η}}.
Require again here that X ∈ A1τ ′lim implies that also Y ∈ A1τlim.
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(r) If X ∈ A1τ ′ , for some τ ′ ∈ s, τ ′ < τ , and X ̸⊆ A0τ , then A0τ ∈ X.

(s) If X ∈ A1τ , Y ∈
∪

ρ∈sA
1ρ and Y ∈ X, then Y is a piste reachable from X, i.e.

there is a finite sequence ⟨X(i) | i ≤ n⟩ of elements of A1τ which we call a piste

leading to Y such that

i. X = X(0),

ii. for every i, 0 < i ≤ n, X(i) ∈ Cτ (X(i − 1)) or X(i − 1) has two immediate

successorsX(i−1)0, X(i−1)1 withX(i−1)0 ∈ Cτ (X(i−1)), X(i) = X(i−1)1

and Y ∈ X(i− 1)1 \X(i− 1)0 or Y = X(i− 1)1,

iii. Y = X(n), if Y ∈ A1τ and if Y ∈ A1ρ, for some ρ ̸= τ , then Y ∈ X(n), X(n)

is a successor point and Y is not a member of any element of X(n) ∩ A1τ .

(t) If A ∈ A1τ ′ , τ ′ ∈ s, τ ′ < τ , X ∈ A1τ , A ∈ X and X is a splitting point, then

A ∈ X ′, for some immediate predecessor X ′ of X.

So elements of small cardinality are not allowed in between a splitting points and

their immediate predecessors.

3. Let η < ρ, η, ρ ∈ s and Z ∈ A1η.

If Z ̸∈ A0ρ, then A0ρ ∈ Z and A0ρ \ {XZ | X ∈ A1τlim ∩ Z} ⊆ Z.

4. Let τ ′ < τ, τ ′, τ ∈ s. Then either A0τ ′ ∈ A0τ and then A1τ ′ ⊆ A0τ

or A0τ ∈ A0τ ′ and then A1τ \ {XA0τ ′ | X ∈ A1τlim ∩ A0τ ′} ⊆ A0τ ′

or A0τ ∈ A1τlim, A0τ ′ ∈ A1τ ′lim, A0τ ′ ⊆ A0τ and sup(A0τ ′ ∩ θ) = sup(A0τ ∩ θ).

5. There is a regular τ ∈ s such that for every ρ ∈ s, ρ ̸= τ we have

A0ρ ∈ A0τ or A0τ ∈ A1τlim, A0ρ ∈ A1ρlim and then

(a) sup(A0ρ ∩ θ) = sup(A0τ ∩ θ),

(b) if τ < ρ, then A0τ ⊆ A0ρ,

(c) if ρ < τ , then A0ρ ⊆ A0τ .

6. It is allowed that A1τ = ∅, for τ ∈ s.

Let us define the intersection property.

Definition 2.2 (Models of different sizes). Let ⟨⟨A0τ , A1τ , A1τlim, Cτ ⟩ | τ ∈ s⟩ be a δ

structure with pistes over κ of the length θ.

Let A ∈ A1τ , B ∈ A1ρ and τ < ρ. By ip(A,B) we mean the following:
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1. B ∈ A,

or

2. A ⊂ B,

or

3. B ̸∈ A, A ̸⊂ B and then

• there are η1 < ... < ηm in (s \ ρ) ∩ A and X1 ∈ A1η1 ∩ A, ..., Xm ∈ A1ηm ∩ A such

that A ∩B = A ∩X1 ∩ ... ∩Xm.

Definition 2.3 (Models of a same size). Let ⟨⟨A0τ , A1τ , A1τlim, Cτ ⟩ | τ ∈ s⟩ be a δ structure

with pistes over κ of the length θ.

Let A,B ∈ A1τ . By ip(A,B) we mean the following:

1. A ⊆ B,

or

2. B ⊆ A,

or

3. A ̸⊆ B, B ̸⊆ A and then

• there are η1 < ... < ηm in (s \ τ) ∩ A and X1 ∈ A1η1 ∩ A, ..., Xm ∈ A1ηm ∩ A such

that A ∩B = A ∩X1 ∩ ... ∩Xm.

If both ip(A,B) and ip(B,A) hold, then we denote this by ipb(A,B).

Lemma 2.4 Let ⟨⟨A0τ , A1τ , A1τlim, Cτ ⟩ | τ ∈ s⟩ be a δ structure with pistes over κ of the

length θ. Assume A ∈ A1τ , B ∈ A1ρ, for some τ ≤ ρ, τ, ρ ∈ s. Then ip(A,B) and if τ = ρ,

then also ipb(A,B).

Proof. Assume that A ̸= B,A ̸∈ B and B ̸∈ A. If A ̸∈ A0ρ, then, by 2.1(3), A ⊃ A1ρ and

B ∈ A.

So suppose that A ∈ A0ρ.

Let X ∈ A1ρ be a least element of A1ρ which includes both A and B.

Let us assume first that X is a splitting point. Proceed by induction on rank (X).

So A ∩ B = A ∩ B0 ∩H0, for some H0 ∈ X ∩ A1η, η ∈ s \ ρ + 1. Consider a least model Z

of A1η which includes X. Then H0 ∈ Z and it must have a unique immediate predecessor.
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Denote it Z0. Then Z0 ∈ X and Z0 ⊇ H0. Z ⊇ X implies A ∈ Z. Then Z0 ∈ A or A ∈ Z0.

In the later case the induction applies to A,H0, since rank(X) >rank(Z0).

Suppose now that X does not split. Let X0 be its immediate predecessor. Then B = X0

or B ∈ X0. If A ∈ X0 then B = X0 is impossible by the initial assumptions and B ∈ X0

will contradict the minimality of X.

Suppose that X0 ∈ A. Then B ̸= X0, and hence B ∈ X0. Let Z ∈ A ∩A1ρ be a least model

with B ∈ Z (piste from Z to B as far as it runs in A). Then Z ∈ A1ρlim.

Consider ZA of 2.1(2m). Then B ̸⊆ ZA, by 2.1(32).

If ZA ⊆ B, then, by 2.1(2m) B ∩ A = A ∩ ZA = A ∩ Z.

Suppose now that ZA ̸⊆ B. It is enough to show ip(B,ZA), since A ∩ B = A ∩ ZA ∩ B and

once the intersection with B is replaced by intersections with members of ZA–induction can

be applied.

Apply ip(ZA, B) (the induction applies to ⟨ZA, B⟩, since the rank of Z is smaller than

the rank of X) and find η1 < ... < ηm in (s \ ρ)∩ZA and Z1 ∈ A1η1 ∩ZA, ..., Zm ∈ A1ηm ∩ZA

such that ZA ∩B = ZA ∩ Z1 ∩ ... ∩ Zm.

Then

A ∩B = A ∩ Z ∩B = A ∩ ZA ∩B = A ∩ ZA ∩ Z1 ∩ ... ∩ Zm = A ∩ Z ∩ Z1 ∩ ... ∩ Zm.

By 2.1(2n), we can apply induction to A and Z1, ..., Zm.

Consider now the last possibility when ρ ̸∈ A and the case 2.1(2(q)iii) holds. Then there

are µ < ρ, µ ∈ A∩ s and an increasing continuous sequence ⟨X0(α) | α ∈ Card∩ [µ, η]⟩ ∈ A,

where η = min(A ∩ s \ ρ) such that

1. X0(α) ∈ A1α, if α ∈ s,

2. X0(τ) = X0,

Also the sequence ⟨(X0(α))A | α ∈ Card ∩ [µ, η]⟩ is continuous and A ∩X0 = A ∩X0(η) =∪
{(X0(α))A | α ∈ Card ∩ [µ, η] ∩ A \ {η}}.

Now, if B ⊇
∪
{(X0(α))A | α ∈ Card∩ [µ, η]∩A\{η}}, then we are done. Suppose that B ̸⊇∪

{(X0(α))A | α ∈ Card∩ [µ, η]∩A\{η}}. Denote
∪
{(X0(α))A | α ∈ Card∩ [µ, η]∩A\{η}}

by Y . Apply ip(Y,B). The induction applies to ⟨Y,B⟩, since the rank of X0 is smaller than

the rank of X. Find η1 < ... < ηm in (s \ ρ) ∩ Y and Z1 ∈ A1η1 ∩ Y, ..., Zm ∈ A1ηm ∩ Y such

that Y ∩B = Y ∩ Z1 ∩ ... ∩ Zm.

Then

A ∩B = A ∩X0(η) ∩B = A ∩ Y ∩B = A ∩ Y ∩ Z1 ∩ ... ∩ Zm = A ∩ Z ∩ Z1 ∩ ... ∩ Zm.
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By 2.1(2n), we can apply induction to A and Z1, ..., Zm.

�

Lemma 2.5 Let ⟨⟨A0τ , A1τ , A1τlim, Cτ ⟩ | τ ∈ s⟩ be a δ structure with pistes over κ of the

length θ. Suppose that τ, ρ ∈ s, τ < ρ, A ∈ A1τ is a non-limit point and A ∩ A1ρ ̸= ∅. Then

there is X ∈ A ∩ A1ρ which includes every element of A ∩ A1ρ.

Proof. If there is no elements of A1ρ which include A, then A0ρ ∈ A, by 2.1(3), and we are

done. Otherwise let us pick Z ∈ A1ρ to be a least which (under inclusion or just the least

point of the piste leading to A) includes A. Then Z must be a successor point, since A is

a successor. So, by 2.1(2t), Z has a unique predecessor Z0. Now, by 2.1(2p), since A is

non-limit we must have Z0 ∈ A.

�
Notation. Denote the set of δ structure with pistes over κ of the length θ by Pθκδ, and

similar the set of < δ-structures with pistes over κ by Pθκ<δ.

Let p = ⟨⟨A0τ , A1τ , A1τlim, Cτ ⟩ | τ ∈ s⟩ ∈ Pθκδ (or in Pθκ<δ).

Denote further A0τ by A0τ (p), A1τ by A0τ (p), A1τlim by A1τlim(p), Cτ by Cτ (p) and s by s(p).

Call s the support of p.

Let us define a partial order over Pθκδ (Pθκ<δ).

Definition 2.6 Let

p0 = ⟨⟨A0τ
0 , A1τ

0 , A1τlim
0 , Cτ

0 ⟩ | τ ∈ s0⟩, p1 = ⟨⟨A0τ
1 , A1τ

1 , A1τlim
1 , Cτ

1 ⟩ | τ ∈ s1⟩ be a δ structure

with pistes over κ of the length θ. Then p0 ≤ p1 (p1 extends p0) iff

1. s0 ⊆ s1,

2. A1τ
0 ⊆ A1τ

1 , for every τ ∈ s0,

3. let A ∈ A1τ
0 , then A ∈ A1τlim

0 iff A ∈ A1τlim
1 .

The next item deals with a property called switching in [1]. In the present context it

is much simpler due to simplicity of splittings and since we do not require that pistes

of different cardinalities go the same way.

4. For every A ∈ A1τ
0 , Cτ

0 (A) ⊆ Cτ
1 (A),

or

there are finitely many splitting (or generalized splitting) points B(0), ..., B(k) ∈ A1τ
0

with B(j)′, B′′(j) the immediate predecessors of B(j) (j ≤ k) such that
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(a) B(j)′ ∈ Cτ
0 (B(j)),

(b) B(j)′′ ∈ Cτ
1 (B(j)).

5. if A ∈ A1τ
0 is a successor point and it is not in A1τ lim

0 , then A has the same immediate

predecessors in A1τ
1 .

So, by 2.6(5), potentially limit points are the only places where not end-extensions are

allowed.

Remark 2.7 We are not going to force with Pθκδ or with Pθκ<δ, but rather to use them

as domains of conditions of a further forcing. However, the forcing with it may be of an

interest. Thus, as was stated in the beginning of Definition 2.1, a regular cardinal η can

be used instead of κ+, and, for example Pη,ω,<ω may be of an interest on its own since the

forcing with it will add a club subset to ℵω+1 by finite conditions which runs away from

every countable set in the ground model.

Let G ⊆ Pη,ω,<ω be a generic. The argument that cardinals are preserved in V [G] is a bit

easier version of one for the main forcing in the next section. Let us find a club C ⊆ η which

does not include any countable set of V . Proceed as follows. Pick some A ∈ A1ηlim(p) for

some p ∈ G. Let E ⊆ A ∩ η+ be a club in V of order type η. Set

F = {B ∩ η+ | ∃q ≥ p, q ∈ G such that B ∈ A ∩ (A1η(q) \ A1ηlim(q))}.

Then F is an unbounded subset of A ∩ η+, by density arguments since A is a potentially

limit model. Let F ′ be the closure of F . Set C = E ∩ F ′. We claim that it is as desired.

Thus suppose that x ∈ V is a countable subset of E. Let as argue that x ̸⊆ C. Work in

V . Let q ≥ p be a condition. q is finite, so we can extend it to some q′ by adding models

B,B0 in A ∩ (A1η(q′) \ A1ηlim(q′)) such that B0 is the unique immediate predecessor of B

and B0 ∩ η+ < sup(x) < B ∩ η+. Then now elements of F will be able to entre the interval

(B0 ∩ η+, B ∩ η+). Hence q′ will force that C does not contain x.

Notation. Let p = ⟨⟨A0τ , A1τ , A1τlim, Cτ ⟩ | τ ∈ s⟩ be a δ structure with pistes over κ of

the length θ.

Let A ∈
∪

τ∈s A
1τ .

1. Denote by (A)ρ, ρ ∈ s the maximal B ∈ (A1ρ ∩ (A ∪ {A})), if such B exists.

Note that by 2.5, if A is a non–limit model and A ∩ A1ρ ̸= ∅ then (A)ρ exists.

2. Suppose that (A)ρ exists, for ρ ∈ s. Denote then by p � A the set ⟨⟨(A)ρ, A1ρ ∩
A,A1ρlim ∩ A, (Cρ � A1ρ ∩ A) ∩ A⟩ | ρ ∈ A ∩ s⟩.
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Lemma 2.8 p = ⟨⟨A0τ , A1τ , A1τlim, Cτ ⟩ | τ ∈ s⟩ be a δ structure with pistes over κ of the

length θ.

Let A ∈
∪

τ∈s A
1τ . Suppose that A ∈

∪
τ∈s A

1τ is a non-limit point. If (A)ρ, ρ ∈ s ∩ A exist,

then p � A is in Pθκδ and p � A ≤ p.

Proof. Follows from 2.1, 2.6.

�

2.2 Suitable structures – arbitrary gaps.

We reorganize here the structures with pistes of the previous section in order to allow iso-

morphisms of them over different cardinals.

Definition 2.9 Let δ < κ < θ be cardinals and δ, θ is a regular. A structure X =

⟨X,E,Elim, C, S,∈,⊆ ⟩, where E ⊆ [X]2 and C ⊆ [X]3 is called a δ-suitable (or < δ)

structure with pistes over κ of the length θ iff there is a δ structure with pistes over κ of the

length θ

p(X) = ⟨⟨A0τ (X), A1τ (X), A1τlim(X), Cτ (X)⟩ | τ ∈ s(X)⟩ such that

1. X = A0η(X), where η ∈ s(X) is such that for every τ ∈ s(X) we have then A0τ (X) ∈ X

or A0τ (X) ⊆ X,

2. S = s(X),

3. ⟨a, b⟩ ∈ E iff a ∈ S and b ∈ A1a(X),

4. ⟨a, b⟩ ∈ Elim iff a ∈ S and b ∈ A1alim(X),

5. ⟨a, b, d⟩ ∈ C iff a ∈ S, b ∈ A1a(X) and d ∈ Ca(X)(b).

Let us refer to X for shortness as a a δ-suitable (or < δ) structure once κ, θ are fixed.

Note that p(X) is uniquely defined from X. Also, it is easy to define a δ-suitable structure

from p ∈ Pκδθ.

Definition 2.10 Let X,Y be δ-suitable structures. Set X ≤ Y iff p(X) ≤ p(Y).
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2.3 Forcing conditions–arbitrary gaps.

Let κ be a limit of an increasing sequence of cardinals ⟨κn | n < ω⟩ with each κn being strong

up to the least Mahlo cardinal λn above κn as witnessed by an extender En.

For every n < ω define Qn0.

Definition 2.11 Let Qn0 be the set of the triples ⟨a,A, f⟩ so that:

1. f is a partial function from θ+ to κn of cardinality at most κ,

2. a is an isomorphism between a < κn–suitable structure X over κ of the length θ and a

< κn–suitable structure X′over κ+n
n of the length λn such that

(a) X ′ is above every model which appears in (
∪

τ∈s(X′) A
1τ (X′)) \ {X ′}, in the order

≤En , (or actually after codding X ′ by an ordinal),

(b) if t ∈ A1κ+
(X′) ∪A1κ++

(X′) ∪A1κ+3
(X′), then for some k, 2 < k < ω, t ≺ H(χ+k),

with χ big enough fixed in advance.

Further passing from Qn0 to P we will require that for every k < ω for all but

finitely many n’s the n-th image t of a model from X will be elementary submodel

of H(χ+k).

The way to compare such models t1 ≺ H(χ+k1), t2 ≺ H(χ+k2), when k1 ̸= k2, say

k1 < k2, will be as follows:

move to H(χ+k1), i.e. compare t1 with t2 ∩H(χ+k1).

3. A ∈ EnX′ ,

4. for every ordinals α, β, γ which code models in
∪

τ∈s(X′) A
1τ (X′), we have

α ≥En β ≥En γ implies

πEn
αγ (ρ) = πEn

βγ (π
En
αβ (ρ)),

for every ρ ∈ π′′
X′αA.

Definition 2.12 Let ⟨a,A, f⟩, ⟨b, B, g⟩ be in Qn0. Set ⟨a,A, f⟩ ≥n0 ⟨b, B, g⟩ iff

1. dom(a) ≥ dom(b),

2. ran(a) ≥ ran(b),

3. a ⊇ b,
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4. f ⊇ g,

5. πEn

max(ran(a)),max(ran(b)“A ⊆ B.

Definition 2.13 Qn1 consists of all partial functions f : κ+3 → κn with |f | ≤ κ. If f, g ∈
Qn1, then set f ≥n1 g iff f ⊇ g.

Definition 2.14 Define Qn = Qn0 ∪Qn1 and ≤∗
n=≤n0 ∪ ≤n1.

Let p = ⟨a,A, f⟩ ∈ Qn0 and ν ∈ A. Set

p⌢ν = f ∪ {⟨α, πmax(ran(a)),a(α)(ν) | α ∈ A1κ+3

(dom(a)) \ dom(f)}.

Note that here a contributes only the values for α’s in dom(a) \ dom(f) and the values on

common α’s come from f . Also only the ordinals in A1θ(dom(a)) are used to produce non

direct extensions, the rest of models disappear.

Now, if p, q ∈ Qn, then we set p ≥n q iff either p ≥∗
n q or p ∈ Qn1, q = ⟨b, B, g⟩ ∈ Qn0 and

for some ν ∈ B, p ≥n1 q
⌢ν.

Definition 2.15 The set P consists of all sequences p = ⟨pn | n < ω⟩ so that

1. for every n < ω, pn ∈ Qn,

2. there is ℓ(p) < ω such that

(a) for every n < ℓ(p), pn ∈ Qn1,

(b) for every n ≥ ℓ(p), we have pn = ⟨an, An, fn⟩ ∈ Qn0,

(c) if ℓ(p) ≤ n ≤ m, then dom(an) ≤ dom(am),

(d) if ℓ(p) ≤ n ≤ m, then max(dom(an)) = max(dom(am)).

3. For every n ≥ m ≥ ℓ(p), dom(am) ⊆ dom(an),

4. for every n, ℓ(p) ≤ n < ω, and X ∈ dom(an) we have that for each k < ω the set

{m < ω | ¬(am(X) ∩ H(χ+k) ≺ H(χ+k))} is finite.] (Alternatively require only that

am(X) ⊆ λm but there is X̃ ≺ H(χ+k)) such that am(X) = X̃ ∩ λm. It is possible to

define being k-good this way as well).

5. For every n ≥ ℓ(p) and α ∈ dom(fn) there is m,n ≤ m < ω such that α ∈ dom(am) \
dom(fm).
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6. There is a κ-structure with pistes p over κ such that

(a) p ≥ dom(an), for every n, ℓ(p) ≤ n < ω,

(b) if a model A appears in p, then A appears in dom(an) for some n, ℓ(p) ≤ n < ω

(and then in a final segment of them),

(c) max(dom(an)) = max(p) (actually this follows from the previous condition).

Note that p of 2.15(6) is uniquely determined by p. Let us refer to it further as the

κ-structure with pistes over κ of p.

Lemma 2.16 ⟨Qn0,≤n0 ⟩ is < κn-strategically closed.

Lemma 2.17 ⟨P ,≤∗ ⟩ does not add new sequences of ordinals of the length < κ0.

Lemma 2.18 ⟨P ,≤∗ ⟩ satisfies the Prikry condition.

Lemma 2.19 Let p ∈ P and α < θ+, then there are q ≥∗ p and β, α < β < θ+ such that

β = M ∩ θ+, for some M which appears in Q.

Proof. Pick some M ≺ H(θ+) of size θ which is above the maximal model of p (say p ∈ M)

and such that M ∩ θ+ > α. Add it to p. Let q be the resulting condition. Then it is as

desired.

�
The next lemma follows now:

Lemma 2.20 Let G be a generic subset of ⟨P ,≤ ⟩. Then in V [G] there are cof((θ+)V )–many

ω–sequences of ordinals below κ.

Define → on P as in [1].

κ++–c.c. and even θ+–c.c. break down here for the forcing ⟨P ,→ ⟩.
Following C. Merimovich [5] we replace them by properness.

2.4 Properness–arbitrary gaps.

The following basic definition is due to S. Shelah [6]:

Definition 2.21 Let η > ω be a regular cardinal and P a forcing notion. P is called η–

proper iff for every p ∈ P and M ≺ H(λ) (for large enough λ) with |M | = η, η>M ⊆ M ,
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P, p ∈ M there is p′ ≥P p such that for every dense open D ⊆ P,D ∈ M , p′ 
 “D∩G∼∩M ̸=
∅.” Such p′ is called (M,P )-generic.

The following is obvious:

Lemma 2.22 If P is η-proper, then it preserves η+.

Our tusk will be to prove the following two lemmas:

Lemma 2.23 ⟨P ,→ ⟩ is κ+-proper.

Lemma 2.24 ⟨P ,→ ⟩ is η-proper, for every regular η, κ+ ≤ η ≤ θ.

The proofs are similar to those of Section 1.

Proof of 2.23. Let p ∈ P and M ≺ H(λ) (for large enough λ) with |M | = κ+, κM ⊆ M ,

P, p ∈ M .

Set M ′ := M ∩H(κ+4). Extend p by adding M ′ as the largest model, make it potentially

limit point. We use 2.1(2p(i),2q(iii)) to insure that there are can be no overlapping of M ′

with non-potentially limit models of bigger cardinalities. This is needed at the final stage of

the argument in order to show compatibility.

Let p′ be the resulting condition. We claim that p′ is (M,P )–generic.

Let q ≥ p′ and D ∈ M be a dense open. Let us show that there is an element of D ∩ M

which is compatible with q. Consider q the κ–structure with pistes over κ of q. Now, q � M ′

is κ–structure with pistes over κ of the length θ, by 2.8, since (M ′)τ ’s exist by 2.5.

Pick some M ′′ ≺ H(κ+4) of size κ+, M ′′ ∈ M ′ and such that q � M ′ with M ′ removed is

in M ′′. Add M ′′ to q � M ′. It is possible by 2.1(2p), since M ′ is a potentially limit model.

Denote the result by q′ and a corresponding condition by q′ (i.e. we extend q in order to

incorporate M ′′).

Set q′′ = q′ � M ′′. Then, as above it is a κ–structure with pistes over κ. Let q′′ ∈ M be

a corresponding condition. Pick r ∈ M ∩ D above q′′. Combine r with q passing to an

equivalent condition if necessary. The result will be as desired.

�
Proof of 2.24.

Let η be a regular cardinal such that κ+ < η ≤ θ. Suppose that p ∈ P and M ≺ H(λ) (for

large enough λ) with |M | = η, η>M ⊆ M , P, p ∈ M .

Set M ′ := M ∩H(θ+). Extend p by adding M ′ as the largest model, make it potentially

limit point We use 2.1(2p(i),2q(iii)) to insure that there are can be no overlapping of M ′
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with non-potentially limit models of bigger cardinalities. This is needed at the final stage of

the argument in order to show compatibility.

Let p′ be the resulting condition. We claim that p′ is (M,P )–generic.

Let q ≥ p′ and D ∈ M be a dense open. Extending if necessary, we can assume that q ∈ D.

Let us show that some condition in D ∩M which is compatible with q.

Consider q the κ–structure with pistes over κ of q. Extending if necessary, we can assume

that A0κ+
(q) is the maximal model of q. Consider also q � M ′. Note that it need not be

κ–structure with pistes over κ, since there may be no single maximal model of size κ+ inside.

Let us reflect A0κ+
(q) and q down to M over A0κ+

(q)∩M , i.e. we pick some A′ ∈ M and q′

which realizes the same k-type (for some k < ω sufficiently big) over A0κ+
(q)∩M as A0κ+

(q)

and q do in a rich enough language which includes D as well. 3 In particular q′ ∈ D ∩M .

Now q′ is compatible with q. Just pick some model A of cardinality κ+ which includes

all relevant information, i.e. A0κ+
(q), A′, q, q′,M ′ etc. The triple A,A0κ+

(q), A′ will form a

∆–system triple relatively to M ′ and the model which corresponds to M ′ in A′. Combine

q, q′ together adding A as the maximal model and replacing models in the range of q by

equivalent ones in order to fit with the range of q′.

�
Finally, combining together Lemmas 2.17, 2.18, 2.20, 2.23, 2.24, we obtain the following:

Theorem 2.25 Let G be a generic subset of ⟨P ,→ ⟩. Then V [G] is cofinalities preserving

extension of V in which 2κ = κω = θ+.
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