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Abstract

We generalize [5] and introduce structures with pistes which may have different
number of models in every cardinality.

1 Structures with pistes–general setting.

Assume GCH.

As in [5], the first part (1.1) describes this ”linear” part of conditions in the main forcing.

It is called a wide piste and incorporates together elementary chains of models of different

cardinalities. The main forcing, defined in 1.2, will be based on such wide pistes and involves

an additional natural but non-linear component called splitting or reflection.

Definition 1.1 Let η < θ be regular cardinals, S be a function from the set {τ | η ≤ τ ≤
θ and τ is a regular cardinal } to θ, such that for every τ ∈ dom(S),S(τ) is a cardinal < τ 1.

Assume also that S(τ) ≤ S(θ), for every τ ∈ dom(S).

A (θ, η,S)−wide piste is a set 〈〈Cτ , Cτlim〉 | τ ∈ s〉 such that the following hold.

Let us first specify sizes of models that are involved.

1. (Support) s is a closed set of regular cardinals from the interval [η, θ] satisfying the

following:

(a) |s| < η,2

∗The author was partially supported by Israel Science Foundation Grant No. 58/14.
1The requirement S(τ) < τ is essential for properness arguments. Once S(τ) = τ , then we are basically

in a situation of [1] and arguments around chain condition and strategic closure replace properness.
2We need the ability to cover s by models of the least possible size, so s of cardinality above η is not

allowed. Also, models of the least allowed cardinality η are not more than < η−closed, so it puts an additional
restriction on the size of the support.
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(b) η, θ ∈ s.
Which means that the minimal and the maximal possible sizes are always present.

2. (Models) For every τ ∈ s and A ∈ Cτ the following holds:

(a) A 4 〈H(θ+),∈,≤,S, η〉,

(b) |A| = τ ,

(c) A ⊇ τ ,

(d) A ∩ τ+ is an ordinal,

(e) elements of Cτ form a closed ∈ −chain with a largest element of a length < S(τ),

(f) if X ∈ Cτ \Cτlim is a non-limit model (i.e. is not a union of elements of Cτ ), then
τ>X ⊆ X.

(g) if X, Y ∈ Cτ then X ∈ Y iff X  Y ,

3. (Potentially limit points) Let τ ∈ s.
Cτlim ⊆ Cτ . We refer to its elements as potentially limit points.

The intuition behind is that once extending it will be possible to add new models

unboundedly often below a potentially limit model, and this way it will be turned into

a limit one.

Let X ∈ Cτlim. Require the following:

(a) X is a successor point of Cτ .

(b) (Increasing union) There is an increasing continuous ∈ −chain

〈Xi | i < cof(sup(X ∩ θ+))〉 3 of elementary submodels of X such that

i.
⋃
i<cof(sup(X∩θ+))Xi = X,

ii. |Xi| = τ ,

iii. Xi ⊇ τ ,

iv. Xi ∈ X,

v. τ>Xi+1 ⊆ Xi+1.

(c) (Degree of closure of potentially limit point)

Either

3This models need not be in Cτ , but rather allow to add in future extensions models below X
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i. τ>X ⊆ X

or

ii. cof(sup(X ∩ θ+)) = ξ for some ξ ∈ s ∩ τ and then

A. ξ>X ⊆ X,

B. there are Xθ ∈ Cθlim, Xξ ∈ Cξlim such that X ∩ θ+ = sup(Xξ ∩ θ+) =

sup(X∩θ+) and there is a sequence 〈Xi | i < cof(sup(X∩θ+))〉 witnessing

3(b) which members belong to Xξ.

Further the condition (9(b)) will imply that X ′ ⊇ X ⊇ X ′′. Eventually

(once extending) for every regular µ, τ ≤ µ ≤ θ there will be X ′′′ ∈
Cµlim, X ⊆ X ′′′ ⊆ X ′.

Note that if 〈Xi | i < cof(sup(X ∩ θ+))〉 and 〈X ′i | i < cof(sup(X ∩ θ+))〉 are

two sequences which witness (3b) above, then the set {i < cof(sup(X ∩ θ+)) |
Xi = X ′i} is closed and unbounded.

It is possible using the well ordering ≤ to define a canonical witnessing se-

quence 〈Xi | i < cof(X ∩ θ+)〉 for X.

Let first do this for X such that cof(X ∩ θ+) = τ (or for Xξ of (3c(ii)(B))

above). Fix the well ordering 〈xν | ν < τ〉. We proceed by induction. Once

i < τ is a limit then set Xi =
⋃
i′<iXi′ . Pick Xi+1 to be the least elementary

submodel of X such that

• xi ∈ Xi+1,

• Xi ∈ Xi+1,

• |Xi| = τ ,

• Xi ⊇ τ ,

• τ>Xi+1 ⊆ Xi+1.

By (3b), it is possible to find such Xi+1.

Clearly
⋃
i<τ Xi = X.

Suppose now that cof(X ∩ θ+) = ξ ∈ s ∩ τ . Then let us use the canonical

sequence 〈Xiξ | i < ξ = cof(X ∩ θ+)〉 for Xξ in order to define the canonical

sequence 〈Xi | i < cof(X ∩ θ+)〉 for X.

Proceed by induction. Once i < τ is a limit then set Xi =
⋃
i′<iXi′ . Pick

Xi+1 to be the least elementary submodel of H(θ) such that

• Xi+1 ∈ Xξ,

• Xiξ ∈ Xi+1,
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• Xi ∈ Xi+1,

• |Xi| = ξ,

• Xi ⊇ ξ,

• ξ>Xi+1 ⊆ Xi+1.

By (3c(ii)B), it is possible to find such Xi+1 inside Xξ.

Note that the existence of such canonical sequences implies that X itself is

definable from Xξ.

The next condition prevent unneeded appearances of small models between big ones.

4. If B0, B1 ∈ Cρ, for some ρ ∈ s, B1 is not a potentially limit point and B0 is its

immediate predecessor, then there is no potentially limit point A ∈ Cτ with τ < ρ

such that B0 ∈ A ∈ B1.

It is possible to require that no A at all, i.e. potentially limit or not, appears between

B0 and B1. The requirement that B1 is not a potentially limit point is important here.

Once dealing with potentially limit points, we would like to allow reflections which

may add small intermediate models.

Next condition is of a similar flavor, but deals with smallest models.

5. If B ∈ Cρ, for some ρ ∈ s, is not a potentially limit point and it is the least element of

Cρ, then there is no potentially limit point A ∈ Cτ with τ > ρ such that A ∈ B4.

Both conditions 4 and 5 are desired to allow to add new models below potentially limit

points which will be essential further for properness of the forcing.

The next condition deals with with closure and is desired to prevent some pathological

patterns.

6. Let B ∈ Cρ, for some ρ ∈ s, be a non-limit point of Cρ. If there are models A ∈
⋃
ξ∈sC

ξ

with sup(A ∩ θ+) < sup(B ∩ θ+), then there is A ∈ B ∩
⋃
ξ∈sC

ξ such that

(a) sup(A ∩ θ+) < sup(B ∩ θ+),

(b) for everyA′ ∈
⋃
ξ∈sC

ξ with sup(A′∩θ+) < sup(B∩θ+), sup(A′∩θ+) ≤ sup(A∩θ+).

4If we drop the requirement τ > ρ, then it may be impossible further to add models of sizes > η once a
potencially limit point of size η is around.
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Such A is the ”real” immediate predecessor of B. Further, in the definition of the

order, we will require that once B is not a potentially limit point, then no models E

such that A ∈ E ∈ B can be added.

The purpose of the next two conditions is to allow to proceed down the pistes without

interruptions at least before reaching a potentially limit point.

7. Let τ, ρ ∈ s, τ < ρ, A ∈ Cτ , B ∈ Cρ and B ∈ A. Suppose that B is not a potentially

limit point and B′ is its immediate predecessor in Cρ, then B′ ∈ A.

8. Let τ, ρ ∈ s, τ < ρ, A ∈ Cτ , B ∈ Cρ and B ∈ A. Suppose that B is a limit point

in Cρ. Let 〈Bν | ν < ν∗ < δ〉 be Cρ ∩ B. Then a closed unbounded subsequence of

〈Bν | ν < ν∗〉 is in A.

9. (Linearity) If τ, ρ ∈ s, τ < ρ, A ∈ Cτ , B ∈ Cρ, then

(a) sup(A ∩ θ+) < sup(B ∩ θ+) implies A ∈ B,

(b) sup(A ∩ θ+) = sup(B ∩ θ+) implies A ⊆ B.

10. If τ, ρ ∈ s, τ < ρ, A ∈ Cτ , B ∈ Cρ, sup(A ∩ θ+) > sup(B ∩ θ+) and B ∈ A, then for

every X ∈
⋃
µ∈sC

µ, sup(X ∩ θ+) = sup(B ∩ θ+) and |X| ∈ A implies X ∈ A.

11. (Immediate successor restriction) Let τ, ρ ∈ s, τ < ρ, A ∈ Cτ , B ∈ Cρlim,cof(sup(B′ ∩
θ+)) > τ and B ∈ A. Suppose that there a model B′ ∈ B∩Cρ such that sup(B′∩θ+) >

sup((A ∩ B) ∩ θ+), then the least such B′ is a potentially limit model. I.e., if there is

a model in Cρ between A ∩ B and B, then the least such model is a potentially limit

model.

It is designed to prevent the situation when there is E ∈ A ∩ Cρ which has a non-

potentially limit immediate successor E ′′ in B but not in A. Also it prevents a possi-

bility that the least element Y of Cρ is a non-potentially limit point which belongs to

B is above A ∩B.

This condition is needed further for τ−properness argument.

12. (Covering) If τ, ρ ∈ s, τ < ρ, B ∈ Cτ , D ∈ Cρ and sup(B ∩ θ+) > sup(D ∩ θ+), then

there is D∗ ∈ B ∩Cρ∗ such that D∗ ⊇ D5, where ρ∗ = min((B \ ρ)∩Regular), i.e. the

least regular cardinal in the interval [ρ, θ] which belongs to B. In particular, ρ∗ ∈ s6.
5Note that the least such D∗ must be a potentially limit point by 7, 8 above.
6Note that the set Z := {µ ≤ θ | µ is a regular cardinal } belongs to B, by elementarity. If its cardinality

is at most τ , then Z ⊆ B. So, in this case ρ∗ = ρ.
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The last condition describes a very particular way of covering and it is crucial for the

properness arguments.

13. (Strong covering) Let B ∈ Cτ , D ∈ Cρ, ρ > τ and

sup(D ∩ θ+) < sup(B ∩ θ+). Then either

(a) D ∈ B,

or

(b) D 6∈ B and the least D∗ ∈ Cρ∗ ∩ B,D∗ ⊃ D is closed under < ρ∗− sequence of

its elements, where ρ∗ = min((B \ ρ) ∩Regular). Then B ∩D∗ ⊆ D and

{D′ ∈ D∗ | (|D′| = ρ∗) ∧ (∃n < ω)(∃Zn−1 ∈ ... ∈ Z0 ∈ B)

((∀k < n)(|Zk| < ρ∗)) ∧D′ ∈ B ∪
⋃
k<n

Zk))} ∈ D7.

Or

(c) D 6∈ B and the least D∗ ∈ Cρ ∩B,D∗ ⊃ D is not closed under < ρ− sequence of

its elements.

Let cof(sup(D∗ ∩ θ+)) = ξ for some ξ ∈ s ∩ ρ and let E ∈ Cξlim such that

sup(E ∩ θ+) = sup(D∗ ∩ θ+) (such E exists by 3c(b) and E ∈ B by 10, since

D∗ ∈ B).

Then either

i. D ∈ E, B ∩D∗ ⊆ D and

{D′ ∈ D∗ | (|D′| ≤ ρ∗) ∧ (∃n < ω)(∃Zn−1 ∈ ... ∈ Z0 ∈ B)

((∀k < n)(|Zk| < ξ)) ∧D′ ∈ B ∪
⋃
k<n

Zk))} ∈ D.

ii. D 6∈ E, and then, let be the least D∗∗ ∈ Cρ∗∗ ∩ E with D∗∗ ⊃ D, where

ρ∗∗ = min((E \ ρ) ∩ Regular). If D∗∗ is closed under < ρ∗∗− sequence of its

elements, then B ∩D∗ ⊆ D,E ∩D∗∗ ⊆ D and

{D′ ∈ D∗∗ | (|D′| ≤ ρ∗∗) ∧ (∃n < ω)(∃Zn−1 ∈ ... ∈ Z0 ∈ B)

((∀k < n)(|Zk| < ρ∗∗)) ∧D′ ∈ B ∪
⋃
k<n

Zk))} ∈ D

7Note that GCH is assumed, so the cardinality of this set is less than ρ. Then it is in D∗, once D∗ is
closed under < ρ−sequences of its elements.
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If D∗∗ is not closed under < ρ∗∗− sequence of its elements, then the process

repeats itself going down below D∗∗. After finitely many steps we will either

reach D or D will be above everything related to B. Let us state this formally.

So suppose that D∗∗ is not closed under < ρ− sequence of its elements.

Then are n∗ < ω, {ξn | n ≤ n∗} ⊆ s \ η + 1, 〈En | n ≤ n∗〉, 〈Dn | n ≤ n∗〉 such

that for every n ≤ n∗ the following hold:

A. D0 = D∗,

B. E0 = E,

C. ρ0 = ρ∗,

D. Dn ∈ Cρn ,

E. Dn ⊇ D,

F. Dn+1 ∈ Dn,

G. cof(sup(Dn ∩ θ+)) = ξn,

H. En ∈ Cξn ,

I. sup(Dn ∩ θ+) = sup(En ∩ θ+),

J. Dn+1 ∈ En is the least in Cρn+1 ∩ En with Dn+1 ⊃ D and

ρn+1 = min((En \ ρ) ∩Regular).
K. B ∩D0 ⊆ D,

L. En ∩Dn+1 ⊆ D,

M. {D′ ∈ Dn+1 | (|D′| = ρn+1) ∧ (∃m < ω)(∃Zm−1 ∈ ... ∈ Z0 ∈ B)

((∀k < m)(|Zk| < ξn)) ∧D′ ∈ B ∪
⋃
k<m Zk))} ∈ D,

N. Dn∗ = D or, we have, D ∈ Dn∗ ,
ρn∗Dn∗ ⊆ Dn∗ ,

{D′ ∈ Dn∗ | (|D′| = ρn∗) ∧ (∃m < ω)(∃Zm−1 ∈ ... ∈ Z0 ∈ B)

((∀k < m)(|Zk| < ρn∗)) ∧D′ ∈ B ∪
⋃
k<m

Zk))} ∈ D.

14. (An addition to the strong covering condition) Let B ∈ Cτ , D ∈ Cρ, ρ > τ and

sup(D∩θ+) < sup(B∩θ+). Suppose that there is X ∈ Cθ with sup(B∩θ+) = X ∩θ+.

Then either

(a) D ∈ B,

or
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(b) D 6∈ B and (b),(c) of (13) hold with B replaced by any model Y,B ⊆ Y ⊆ X of a

regular cardinality µ ∈ s, τ < µ < ρ which is definable in 〈H(θ+),∈,≤, δ, η〉 with

parameters from the set B ∪ (µ+ 1) ∪ {B}8.

The next conditions are the versions of a strong covering used for chains of models.

They are essential further for showing properness.

15. (Strong covering for chains of models) Let B ∈ Cτ , ρ > τ, ρ ∈ B, 〈Di | i ≤ α〉 is an

initial segment of Cρ, for some α < S(ρ), and

sup(Dα ∩ θ+) < sup(B ∩ θ+). Then either

(a) 〈Di | i ≤ α〉 ∈ B,

or

(b) there is α∗ < α such that 〈Di | i ≤ α∗〉 ∈ B and the models of 〈Di | α∗ < i ≤ α〉
satisfy 13(b,c), 14(b) with D∗ ∈ Cρ ∩B the least above Dα.

16. (Strong covering for chains of models of size outside) Let B ∈ Cτ , ρ > τ, ρ 6∈ B,

〈Di | i ≤ α〉 is an initial segment of Cρ, for some α < S(ρ), and

sup(Dα ∩ θ+) < sup(B ∩ θ+). Let D∗ ∈ Cρ∗ ∩B the least above Dα.

Then either

(a) the sequence 〈Di | i ≤ α〉 satisfy 13(b,c), 14(b),

or

(b) there are α∗ < α and a closed chain 〈D∗i | i ≤ α∗〉 of members of Cρ∗ such that

i. 〈D∗i | i ≤ α∗〉 ∈ B,

ii. 〈D∗i | α∗ < i ≤ α〉 satisfy 13(b,c), 14(b),

iii. for every i ≤ α∗, if D∗i ∈ B, or equivalently i ∈ B, then D∗i is the least

member of B which covers Di.

Now we are ready to give the main definition.

Definition 1.2 Let η < θ be regular cardinals, S be a function from the set {τ | η ≤ τ ≤
θ and τ is a regular cardinal } to θ, such that for every τ ∈ dom(S),S(τ) is a cardinal < τ .

8Note that the total number of such Y ’s for a fixed regular µ ∈ s, τ < µ < ρ is |B| = τ . Hence, there are
less than ρ possibilities for Y ’s. Also, note that the model X is definable from B, as it was observed above
in (3)
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A (θ, η,S)−structure with pistes is a set 〈〈A0τ , A1τ , A1τlim, Cτ 〉 | τ ∈ s〉 such that the

following hold.9

Let us first specify sizes of models that are involved.

1. (Support) s is a closed set of regular cardinals from the interval [η, θ] satisfying the

following:

(a) |s| < δ,

(b) η, θ ∈ s.
Which means that the minimal and the maximal possible sizes are always present.

2. (Models) For every τ ∈ s the following holds:

(a) A0τ 4 〈H(θ+),∈,≤, δ, η〉,

(b) |A0τ | = τ ,

(c) A0τ ∈ A1τ ,

(d) A1τ is a set of less than δ elementary submodels of A0τ ,

(e) each element A of A1τ has cardinality τ , A ⊇ τ and A∩ τ+ is an ordinal and it is

above the number of cardinals in the interval [η, θ].

3. (Potentially limit points) Let τ ∈ s.
A1τlim ⊆ A1τ . We refer to its elements as potentially limit points.

The intuition behind is that once extending it will be possible to add new models

unboundedly often below a potentially limit model, and this way it will be turned into

a limit one.

4. (Piste function) The idea behind is to provide a canonical way to move from a model

in the structure to one below.

Let τ ∈ s.
Then, dom(Cτ ) = A1τ and

for every B ∈ dom(Cτ ), Cτ (B) is a closed chain of models in A1τ ∩ (B ∪ {B}) such

that the following holds:

(a) B ∈ Cτ (B),

9If for some regular δ ≤ η, S(τ) = δ, for every τ , then it is just a δ−structure with pistes over η of the
length θ.
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(b) if X ∈ Cτ (B), then Cτ (X) = {Y ∈ Cτ (B) | Y ∈ X ∪ {X}},

(c) if B has immediate predecessors in A1τ , then one (and only one) of them is in

Cτ (B),

5. (Wide piste) The set

〈Cτ (A0τ ), Cτ (A0τ ) ∩ A1τlim | τ ∈ s〉

is a (θ, η,S)−wide piste.

Next two condition describe the ways of splittings from wide pistes. This describes the

structure of A1τ and the way pistes allow to move from one of its models to an other.

6. (Splitting points) Let τ ∈ s. Let X ∈ A1τ be a non-limit model (but possibly a

potentially limit), then either

(a) X is a minimal under ∈ or equivalently under ),

or

(b) X has a unique immediate predecessor in A1τ ,

or

(c) X has exactly two immediate predecessors X0, X1 in A1τ , non of X,X0, X1 is a

limit or potentially limit points and X,X0, X1 form a ∆–system triple relatively

to some F0, F1 ∈ A1τ∗lim, for some τ ∗ ∈ s \ τ + 110, which means the following:

i. F0  F1 and then F0 ∈ Cτ∗(F1), or F1  F0 and then F1 ∈ Cτ∗(F0),

ii. τ∗>F0 ⊆ F0 and τ∗>F1 ⊆ F1,

iii. X0 ∈ F1 (or X1 ∈ F0),

iv. F0 ∈ X0 and F1 ∈ X1,

v. X0 ∩X1 = X0 ∩ F0 = X1 ∩ F1,

vi. τ>X0 ⊆ X0 and τ>X1 ⊆ X1,

vii. the structures

〈X0,∈, 〈X0 ∩ A1ρ, X0 ∩ A1ρlim, (Cρ � X0 ∩ A1ρ) ∩X0 | ρ ∈ s ∩X0〉〉

and

〈X1,∈, 〈X1 ∩ A1ρ, X1 ∩ A1ρlim, (Cρ � X1 ∩ A1ρ) ∩X1 | ρ ∈ s ∩X1〉〉
10If there are only finitely many cardinals between η and θ, then we can take τ∗ to be just τ+.
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are isomorphic over X0 ∩ X1. Denote by πX0,X1 the corresponding isomor-

phism.

viii. X ∈ A0τ∗.

Further we will refer to such X as a splitting point.

Or

(d) (Splitting points of higher order) There are G,G0, G1 ∈ X ∩ A1µ, for some µ ∈
s\min(s\ τ + 1), which form a ∆-system triple with witnessing models in X such

that

i. X0 ∈ G0,

ii. X1 ∈ G1,

iii. X1 = πG0G1 [X0].

iv. X is not a limit or potentially limit point,

v. X ∈ A0µ,

vi. (Pistes go in the same direction) Gi ∈ Cµ(G)⇔ Xi ∈ Cτ (X), i < 2.

Further we will refer to such X as a splitting point of higher order.

7. Let τ, ρ ∈ s, X ∈ A1τ , Y ∈ A1ρ. Suppose that X is a successor point, but not

potentially limit point and X ∈ Y . Then all immediate predecessors of X are in Y , as

well as the witnesses, i.e. F0, F1 if (6c) holds and G0, G1, G if (6d) holds.

8. Let τ ∈ s. If X ∈ A1τ , Y ∈
⋃
ρ∈sA

1ρ and Y ∈ X, then Y is a piste reachable from X,

i.e. there is a finite sequence 〈X(i) | i ≤ n〉 of elements of A1τ which we call a piste

leading to Y such that

(a) X = X(0),

(b) for every i, 0 < i ≤ n, X(i) ∈ Cτ (X(i − 1)) or X(i − 1) has two immediate

successors X(i− 1)0, X(i− 1)1 with X(i− 1)0 ∈ Cτ (X(i− 1)), X(i) = X(i− 1)1

and Y ∈ X(i− 1)1 \X(i− 1)0 or Y = X(i− 1)1,

(c) Y = X(n), if Y ∈ A1τ and if Y ∈ A1ρ, for some ρ 6= τ , then Y ∈ X(n), X(n) is a

successor point and Y is not a member of any element of X(n) ∩ A1τ .

In particular, every Y ∈ A1τ is piste reachable from A0τ .

In order formulate further requirement, we will need to describe a simple process of
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changing the wide pistes. This leads to equivalent forcing conditions once the order

will be defined.

Let X ∈ A1τ . We will define X−wide piste. The definition will be by induction on

number of turns (splits) needed in order to reach X by the piste from A0τ .

First, if X ∈ Cτ (A0τ ), then X−wide piste is just 〈Cξ(A0ξ), Cξ(A0ξ) ∩ A1ξlim | ξ ∈ s〉,
i.e. the wide piste of the structure.

Second, if X 6∈ Cτ (A0τ ), but it is not a splitting point, then pick the least splitting

point Y above X. Let Y0, Y1 be its immediate predecessors with Y0 ∈ Cτ (Y ). Then

X ∈ Yi ∪ {Yi} for some i < 2. Set X−wide piste to be the Yi−wide piste.

So, in order to complete the definition, it remain to deal with the following principle

case:

X ∈ A1τ a splitting point with witnesses F0, F1 ∈ Cτ∗(A0τ∗). Let X0, X1 be its

immediate predecessors with X0 ∈ Cτ (X). Assume that X−wide piste 〈Cξ
X , C

ξlim
X |

ξ ∈ s〉 for X is defined and assume that Cτ (X) is an initial segment of Cτ
X .

Let the X0−wide piste be 〈Cξ
X , C

ξlim
X | ξ ∈ s〉.

Define X1−wide piste 〈Cξ
X1
, Cξlim

X1
| ξ ∈ s〉 as follows:

• Cξ
X1

= Cξ
X , for every ξ ≥ τ ∗.

I.e. no changes for models of cardinality ≥ τ ∗.

• Cξlim
X1

= Cξ
X1
∩ A1ξlim, for every ξ ∈ s.

Models that were potentially limit remain such and no new are added.

• Cτ
X1

= (Cτ
X \X) ∪ Cτ (X1).

Here we switched the piste from X0 to X1.

• Cξ
X1

= {Z ∈ Cξ
X | sup(Z ∩θ+) > max(sup(X0∩θ+), sup(X1∩θ+))}∪{πX0,X1(Z) |

Z ∈ Cξ
X ∩X0}, for every ξ ∈ s ∩ τ ∗11.

Now we require the following:

9. Let τ ∈ s and X ∈ A1τ . Then X−wide piste is a wide piste, i.e. it satisfies 1.1.

The problem is with (3c) of 5 which, in general, is not preserved while splitting.

Final conditions deal with largest models.

11In particular, due to this, the next condition implies that for ξ ∈ s ∩ τ∗, if Z ∈ CξX , sup(Z ∩ θ+) >

max(sup(X0 ∩ θ+), sup(X1 ∩ θ+)), then {πX0X1
(Z ′) | Z ′ ∈ CξX ∩X0} ⊆ Z.
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10. (Maximal models are above all the rest) For every τ ∈ s and Z ∈
⋃
ρ∈sA

1ρ, if Z 6∈ A0τ ,

then there is µ ∈ s such that Z = A0µ.

Recall that by 5, maximal models A0τ , τ ∈ s are linearly ordered as top parts of the

wide piste 〈Cτ (A0τ ), Cτ (A0τ ) ∩ A1τlim | τ ∈ s〉.

This completes the definition of (θ, η,S)−structure with pistes.
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1.1 The intersection property.

Recall two definitions from [5].

Definition 1.3 (Models of different sizes). Let 〈〈A0τ , A1τ , A1τlim, Cτ 〉 | τ ∈ s〉 be

a (θ, η,S)−structure with pistes.

Let A ∈ A1τ , B ∈ A1ρ and τ < ρ.

By ip(A,B) we mean the following:

1. B ∈ A,

or

2. A ⊂ B,

or

3. B 6∈ A, A 6⊂ B and then

• there are η1 < ... < ηm in (s \ ρ) ∩ A and X1 ∈ A1η1 ∩ A, ..., Xm ∈ A1ηm ∩ A such

that A ∩B = A ∩X1 ∩ ... ∩Xm.

Definition 1.4 (Models of a same size). Let 〈〈A0τ , A1τ , A1τlim, Cτ 〉 | τ ∈ s〉 be

a (θ, η,S)−structure with pistes.

Let A,B ∈ A1τ . By ip(A,B) we mean the following:

1. A ⊆ B,

or

2. B ⊆ A,

or

3. A 6⊆ B, B 6⊆ A and then

• there are η1 < ... < ηm in (s \ τ) ∩ A and X1 ∈ A1η1 ∩ A, ..., Xm ∈ A1ηm ∩ A such

that A ∩B = A ∩X1 ∩ ... ∩Xm.

If both ip(A,B) and ip(B,A) hold, then we denote this by ipb(A,B).

Lemma 1.5 Let 〈〈A0τ , A1τ , A1τlim, Cτ 〉 | τ ∈ s〉 be a (θ, η,S)−structure with pistes. Assume

A ∈ A1τ , B ∈ A1ρ, for some τ ≤ ρ, τ, ρ ∈ s. Then ip(A,B) and if τ = ρ, then also ipb(A,B).

The proof repeats those of the corresponding lemma of [5].
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1.2 Forcing with structures with pistes of different sizes.

Definition 1.6 Define PθηS to be the set of all

(θ, η,S)−structures with pistes.

Let p = 〈〈A0τ , A1τ , A1τlim, Cτ 〉 | τ ∈ s〉 ∈ PθηS.

Denote further A0τ by A0τ (p), A1τ by A0τ (p), A1τlim by A1τlim(p), Cτ by Cτ (p) and s by s(p).

Call s the support of p.

Let us define a partial order on PθηS as follows.

Definition 1.7 Let

p0 = 〈〈A0τ
0 , A

1τ
0 , A

1τlim
0 , Cτ

0 〉 | τ ∈ s0〉, p1 = 〈〈A0τ
1 , A

1τ
1 , A

1τlim
1 , Cτ

1 〉 | τ ∈ s1〉 be two elements

of PθηS.

Set p0 ≤ p1 (p1 extends p0) iff

1. s0 ⊆ s1,

2. A1τ
0 ⊆ A1τ

1 , for every τ ∈ s0,

3. let A ∈ A1τ
0 , then A ∈ A1τlim

0 iff A ∈ A1τlim
1 .

The next item deals with a property called switching in [1]. It allows to change piste

directions.

4. For every A ∈ A1τ
0 , Cτ

0 (A) ⊆ Cτ
1 (A),

or

there are finitely many splitting (or generalized splitting) points B(0), ..., B(k) ∈ A1τ
0

with B(j)′, B(j)′′ the immediate predecessors of B(j) (j ≤ k) such that

(a) B(j)′ ∈ Cτ
0 (B(j)),

(b) B(j)′′ ∈ Cτ
1 (B(j)).

5. If A ∈ A1τ
0 is a splitting point or a splitting point of higher order in p0, then it remains

such in p1 with the same immediate predecessors.

6. Let B ∈ A1τ
0 be a successor point, not in A1τ lim

0 and with a unique immediate prede-

cessor. Consider the wide piste that runs via B (in p0). Let A be as in 1.1(6). Then

there is no model E in p1 such that A ∈ E ∈ B.

This requirement guaranties intervals without models, even after extending a condition.
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By 1.7(6), potentially limit points are the only places where not end-extensions can be

made.

Next two lemmas will insure that generic clubs produced by PθηS run away from old sets

of corresponding sizes. Their proofs repeat those of [5].

Lemma 1.8 Let p = 〈〈A0τ , A1τ , A1τlim, Cτ 〉 | τ ∈ s〉 be an element of PθηS. Let X ∈ A1ρlim,

for some ρ ∈ s.
Assume that if cof(sup(X ∩ θ+)) < ρ, then ρ ∈ B, where B ∈ A1 cof(sup(X∩θ+))lim is the model

with sup(B ∩ θ+) = sup(X ∩ θ+) (exists by 1.1(3)(c)B))12.

Suppose that for every t ∈ X there is D � X such that

1. D ∈ X,

2. t ∈ D,

3. |D| = ρ,

4. D ⊇ ρ

5. ρ>D ⊆ D,

6. D is a union of a chain of its elementary submodels which satisfy items 1-5 13.

Then for every β < sup(X ∩ θ+) there is T of size ρ with

sup(T ∩ θ+) > β, T ∈ X such that adding T as a potentially limit point and reflecting it

through ∆−system type triples gives an extension of p.

Lemma 1.9 Let p = 〈〈A0τ , A1τ , A1τlim, Cτ 〉 | τ ∈ s〉 be an element of Pθηδ. Let X ∈ A1ρlim,

for some ρ ∈ s.
Assume that if cof(sup(X ∩ θ+)) < ρ, then ρ ∈ B, where B ∈ A1 cof(sup(X∩θ+))lim is the model

with sup(B ∩ θ+) = sup(X ∩ θ+) (exists by 1.1(3)(c)B)).

Suppose that for every t ∈ X there is D � X such that

1. D ∈ X,

2. t ∈ D,

3. |D| = ρ,

12We will see further that it is possible to remove this assumption at least in interesting cases.
13The issue here is to satisfy 1.1(3(b)).
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4. D ⊇ ρ

5. ρ>D ⊆ D,

6. D is a union of a chain of its elementary submodels which satisfy items 1-5.

Let β < sup(X ∩ θ+) and T be a potentially limit point of size ρ with

sup(T ∩ θ+) > β, T ∈ X added by the previous lemma 1.8. Then for every γ, sup(T ∩ θ+) <

γ < sup(X ∩ θ+) there is T ′ of size ρ with

sup(T ′ ∩ θ+) > γ, T ′ ∈ X such that adding T ′ as a non-potentially limit point and reflecting

it through ∆−system type triples gives an extension of the previous condition.

Lemma 1.10 Let p = 〈〈A0τ , A1τ , A1τlim, Cτ 〉 | τ ∈ s〉 be an element of Pθηδ. Let X ∈ A1ρlim,

for some ρ ∈ s.
Assume that cof(sup(X ∩ θ+)) = τ < ρ, ρ 6∈ B, for B ∈ A1 cof(sup(X∩θ+))lim such that

sup(B ∩ θ+) = sup(X ∩ θ+). Let Y ∈ A1θlim with Y ∩ θ+ = sup(X ∩ θ+) (it exists by

1.1(3(c)B)). Suppose that for every t ∈ Y there is D � Y such that

1. D ∈ Y ,

2. t ∈ D,

3. |D| = θ,

4. D ⊇ θ

5. θ>D ⊆ D,

6. D is a union of a chain of its elementary submodels which satisfy items 1-5.

Then for every β < sup(X ∩ θ+) there is T of size ρ with

sup(T ∩ θ+) > β, T ∈ X such that adding T as a potentially limit point and reflecting it

through ∆−system type triples gives an extension of p.

We turn now to properness of PθηS. The arguments are similar to those of [5], but require

a certain addition which allow to deal with unbounded chains.

Lemma 1.11 The forcing notion 〈PθηS,≤ 〉 is η−proper
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Proof. If S(τ) ≤ η, for every τ ∈ dom(S) then the proof completely repeats those of [5].

Suppose that it is not the case and suppose that S(θ) > η.

Let p ∈ PθηS. Pick M to be an elementary submodel of H(χ) for some χ regular large

enough such that such that

1. |M| = η,

2. M ⊇ η,

3. PθηS, p ∈M,

4. η>M ⊆M.

Set M = M ∩H(θ+).

Clearly, M satisfies 1.1(3(b)). Moreover, using the elementarity of M, for every x ∈M there

will be Z ∈M such that

• Z � H(θ+),

• |Z| = θ,

• Z ⊇ θ,

• θ>Z ⊆ Z,

• x ∈ Z.

This allows to find a chain of models 〈Ni | i < η〉 of size θ which members are in M , witnesses

1.1(3(b)) for N :=
⋃
i<ηNi and N ⊇M .

Extend p by adding M as a new A0η, N as a new A0θ and, in addition we add now the

sequence 〈Ni | i < η〉. Require M,N,Ni+1, i < η to be potentially limit points. Denote the

result by p_{M,N, 〈Ni | i < η〉}.
We claim that p_{M,N, 〈Ni | i < η〉} is (PθηS,M)−generic. So, let p′ ≥ p_{M,N} and

D ∈M be a dense open subset of PθηS. It is enough to find q ∈M∩D which is compatible

with p′.

Pick i < η big enough such that D ∈ Ni+1. Now we pick M ′ � Ni+1 of size η, inside M

such that

1. η>M ′ ⊆M ′
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2. D ∈M ′,

3. all components of p′ which belong to Ni+1 ∩M are in M ′.

Note that S(τ) ≤ τ , and, so S(τ) ≤ θ, for every τ ∈ dom(S). Hence, models of p′ which

belong to Ni+1 are bounded there. Remember that θ>Ni+1 ⊆ Ni+1. So, the set of models of

p′ which belong to Ni+1 is a member of Ni+1. Using (15, 16) of 1.1, η>M ⊆M and since the

support of p′, s(p′), has cardinality < η, by 1.1(1(a)), it is possible to satisfy the requirement

3 above.

Now we continue as in [5], only replacing M there by M ′.

�

Our next tusk will be to show that the forcing notion 〈PθηS,≤ 〉 is τ−proper for every

regular τ, η ≤ τ ≤ θ. The proof follows closely those of [5]. Let us address only a new point

which appears in the present context.

Lemma 1.12 The forcing notion 〈Pθηδ,≤ 〉 is τ−proper for every regular τ, η ≤ τ ≤ θ.

Proof. Let τ be a regular cardinal in the interval [η, θ]. We would like to show that 〈Pθηδ,≤ 〉
is τ−proper. If τ = η, then this follows by the previous lemma (1.11). Suppose that τ > η.

Let p ∈ Pθηδ. Pick M to be an elementary submodel of H(χ) for some χ regular large enough

such that such that

1. |M| = τ ,

2. M ⊇ τ ,

3. PθηS, p ∈M,

4. τ>M ⊆M.

Set M = M ∩H(θ+).

Clearly, M satisfies 1.1(3(b)). Moreover, using the elementarity of M, for every x ∈M there

will be Z ∈M such that

• Z � H(θ+),

• |Z| = θ,

• Z ⊇ θ,
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• θ>Z ⊆ Z,

• x ∈ Z.

This allows to find a chain of models 〈Ni | i < τ〉 of size θ which members are in M , witnesses

1.1(3(b)) for N :=
⋃
i<τ Ni and N ⊇M .

Extend p by adding M as a new A0η, N as a new A0θ and, in addition we add now the

sequence 〈Ni | i < τ〉. Require M,N,Ni+1, i < η to be potentially limit points. Denote the

result by p_{M,N, 〈Ni | i < η〉}.
We claim that p_{M,N, 〈Ni | i < η〉} is (PθηS,M)−generic. So, let D ∈M be a dense open

subset of PθηS and p′ ≥ p_{M,N} be in D.

Extend p′ further in order to achieve the following:

• for every ξ ∈ s(p′), there is a model B on the wide piste of p′ of cardinality ξ such that

M ⊆ B ⊆ N .

In particular, sup(M ∩ θ+) = sup(B ∩ θ+) = N ∩ θ+. Denote such B by Mξ.

Let us denote such extension of p′ still by p′.

Pick now A � H(θ+) which satisfies the following:

• |A| = η,

• A ⊇ η,

• A ∩ η+ is an ordinal,

• η>A ⊆ A,

• p′ ∈ A.

In particular every model of p′ belongs to A.

Extend p′ to p′′ by adding A as new largest model of cardinality η, i.e. p′′ = p′_A.

Pick i < η big enough such that D ∈ Ni+1. Now we pick M ′ � Ni+1 of size τ , inside M

such that

1. η>M ′ ⊆M ′

2. D ∈M ′,

3. all components of p′′ which belong to Ni+1 ∩M are in M ′.
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Note that S(τ) ≤ τ , and, so S(τ) ≤ θ, for every τ ∈ dom(S). Hence, models of p′ which

belong to Ni+1 are bounded there. Remember that θ>Ni+1 ⊆ Ni+1. So, the set of models of

p′ which belong to Ni+1 is a member of Ni+1. Using (15, 16) of 1.1, η>M ⊆M and since the

support of p′, s(p′), has cardinality < η, by 1.1(1(a)), it is possible to satisfy the requirement

3 above.

We reflect A = A0η(p′′) down to M ′ over over A0η(p′′) ∩M ′, i.e. we pick some A′ ∈ M ′

and q which realizes the same k-type (for some k < ω sufficiently big) over A0η(p′′) ∩M ′ as

A0η(p′′) and p′′. Do this in a rich enough language which includes D as well.

Now we continue as in [5], only replacing M there by M ′.

�

The next lemma is straightforward.

Lemma 1.13 The forcing notion 〈PθηS,≤ 〉 is < min({S(τ) | τ ∈ dom(S})−strategically

closed.

Combining together Lemmas 1.11,1.12, 1.13, we obtain the following:

Theorem 1.14 The forcing notion 〈PθηS,≤ 〉 preserves all cardinals ≤ min({S(τ) | τ ∈
dom(S}) and all cardinals > η.

In particular, if δ = min({S(τ) | τ ∈ dom(S}), then all cardinals are preserved.

As in [5], it is possible to use PθηS for adding clubs and for blowing up the power of a

singular cardinal.
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