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Abstract

We deal with some natural properties of ultrafilters which trivially fail for normal
ultrafilters.

Throughout the paper all ultrafilters considered are non-principal.
If U is a k—complete ultrafilter over k, then denote by iy : V. — My =~ Ult(V,U) the
corresponding elementary embedding and the transitive collapse of the ultrapower.
If W is a k—complete ultrafilters over x and (W, | @ < k) is a sequence of k—complete
ultrafilters, then W — lim (W, | @ < k) is a k—complete ultrafilter over x which consists of
all X C k such that
{a<k| XeW,}eW

Let us address first the following natural question asked by Eyal Kaplan:

Is it possible to have a k—complete ultrafilter F' over k such that for some sequence of
k—complete ultrafilters (W, | o < k) over k different from F we have
F=F—-lim(W,|a<k)?

Note that this is clearly impossible once F' is normal. Also, this is impossible once the
family (W, | a < k) is discrete, i.e. there is a sequence (A, | a < k) which consists of
pairwise disjoint sets such that A, € W,, for every a < k.

However, it turns out that the situation occurs quit often.

Theorem 0.1 Let F = W — lim (W, | a < k), for some discrete (or discrete mod W)
family of k—complete ultrafilters W, < k, over k. Then there is a family (E, | v < k) of

k—complete ultrafilters over k different from F such that
F=F—-lim(E, |v<k).

*The work was partially supported by Israel Science Foundation Grant No. 58/14. We are grateful to
Eilon Bilinski who drew our attention to the subject, to Tom Benhamou and Eyal Kaplan for stimulating
questions and discussions.



Proof. Consider iy : V. — My Let iy (W, | @ < k) = (W) | @ < iw(k)). Take now the
ultrapower of My, by W[’id]w. Let

o:=1tw. My —N
lid]yy

be the corresponding elementary embedding. The family (W, | a < k) is discrete, so it is
not hard to see that Wy, —differs from iy (F') and

ooty =i and N = Mp.

Consider now o(Wy ). 1t is a ip(k)—complete ultrafilter over ip(x) in Mp different from
ip(F). In V, we pick a sequence (E, | v < k) of k—complete ultrafilters over x which
represents o (W, ) in the ultrapower Mp.

Let ir((Ey | v < k) = (B}, | v <ip(k)). Then oc(Wiy ) = Ejy,.-

Now,
ZeF—-lm(E, |v<k)ye{v<k|ZeE} el &

ir(Z2) € By, = c(Wig,,) & oliw(2)) € c(Wiy,,) &
iw(Z) € Wi, ©{a<r|ZeWo}eW e ZeW —lim(W, |a<k)=F
So, (E, | v < k) is as desired.

0

Remark 0.2 1. Note that the family (F, | ¥ < k) have same ultrafilters, i.e. the function
v — FE, is not one-to -one. Moreover, it cannot be one-to -one on a set of v’s in F.
2. We do not know to achieve F' = F — lim (E, | v < k) with a family consisting of different

ultrafilters. Clearly this is impossible once the family is discrete.

Let show now the following negative result.

Proposition 0.3 Suppose that U W and (E, | o < k) are k—complete ultrafilters over r
such that U =p_i E, and U # E,, for every a < k. Then U # W —lim (E, | a < k).

Proof. Suppose otherwise. Then U = W — lim (E,, | a < k).
Observe first that if U =g_ U, then

U'=W —lim(E, | a < k),



for some (£} | 8 < k). Thus, let U" =z x U and let h : K — & be a one to one function
witnessing this, say h,U = U’. Set E!, = h,E,, for every a < k.
Let Y C k. Then

YeU &h"Y=XcUs{a<r|XeB,}eW &

{a<k|Y=WXehE,}eW&{a<k|Y€eE =hkE,} W

Next, consider iy : V — My ~*V/U. Set i := iy and M := My. Let n = [id]y.
If there is < n and f,y : kK — & such that i(f,/)(n) = n, then let n* be the least such 7'.
Note that then there will be no 1" < n* such that for some f : k — &, i(f)(n') = n*, since
otherwise i(f,- o f)(n') = n, which contradicts the minimality of n*.

For every § < i(k), denote by Uy the ultrafilter {X C x| 6 € i(X)}.
Then U,» >p_k U, as witnessed by f,-, but also U,» <p_g U, since U, is defined from ¢.
Hence Uy« =r_g U.

By the observation above, we can replace then U by U,-. Assume for simplicity that
already U = U,-.
Let a < k. Consider E,. Pick 0, < i(r) such that E, = {X C k|, € i(X)}.
We have E, =g_x U, so there is h, : K — K one to one such that d, = i(h,)(n). Then
n =1i(h_")(d,) which implies by the choice of n that d, > 7.

Let m : kK = k be a projection of U to the normal measure U,,. Consider now the following

set:

Z={v<kr|W <wWa<rv)(h,() #v)}

Then, by the choice of n, Z € U, since for every h : kK — k and in particular for every
he,a < K, we have i(h)(n') # n, whenever ' < n, and so, n € i(Z).
On the other hand,

i(k\ Z) ={v <i(k) | W <via <i(r)(v)(i(h).(v) =v)}.

So, if a < k, then k \ Z € E,, provided i(m)(d,) > «, since i(hy)(n) = 0, and n < J,. In
particular, this holds if 7 is not a constant function mod E,,.
Unfortunately, we do not see a reason why this should be the case.

In order to overcome the problem, let us use more involved argument. The idea would
be to replace Z by another, similar set, but without 7.

An ordinal o < i(k) is called a generator of the embedding i iff for every n,1 < n < w,

every g : [k]" — k and for every v € [a]", i(g)(V) # .
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Now, either 7 is a generator or there are an increasing sequence of generators (1o, ..., ;1)
below 7 and a function g, : [k]" — k such that n = i(g,)("n0, ..., Tm—1). Let us deal with the
later case. The former one is similar and a bit simpler.

There may be several possibilities for sequences of generators and functions g, as above.
Pick first nj < n to be the least generator such that there is a finite sequence of generators
a € [ng
Next, let 7 < 71 to be the least generator < n;, such that there is a finite sequence of generators
a € [m]*

further by recursion. After finitely many steps, we will construct a sequence n, > ny > ... >

]<“ such that for some function g : [x]l*! — & we have n = i(g)(a"n}).

“ such that for some function g : [s]/%*? — k we have n = i(g)(a™ {1}, 75)). Continue

n._, of generators such that each member is the smallest possible (in the above sense) and

for some function g : [k]" — Kk we have n =i(g)((N),_1, ..., 7}))-

Set NOW 71 1= 1)), .oy o = Nhy_1-
Claim 1 n=n,_1 +1p_2 + ... + no.

Proof. First note that n < n,_1 +n,_2 + ... + 19, since it is easy to find f : K — k such that
i(f) (M1 + Moz + .. £ 1m0) = 1.
Next let n = &,,-1 + ... + & be the Cantor normal form of 1. By the minimality of n,_1,
we must have 7, 1 = &,,_1. Then again, minimality of 7,_s implies that also n,_o = &,,_2.
Finally, we will have n = m and ny = &.
O of the claim.

By the claim then, for almost all & < &, o = 15_1 +15_o+...4+1§, since U = U —lim (E,, |
a < k), and ¥ | > n,_1, since n < d,. Assume that this holds for every a < k.
Let m : kK — Kk be the projection of an ordinal to its largest component in the Cantor normal
form, i.e. 1 (§m-1 + &m—2+ .. + &) = Em_1. Then i(m)(n) = ny—1 and i(7')(ds) = %4, for
every o < k. Also note that © < n,_1 <ny_,, for every a < k.

Suppose first that for almost all a < K, 17,1 < n5_;.
Then, also n < n%_,. Thus, 7,-1 is a generator, and hence, it cannot be written as a finite

sum of smaller ordinals. Namely,
Y={v<r|Vm<wVé <..<&a<m)(&m1+...+& <7 (v)}eU,
and so, Y € E, for almost every a < k. This means, in M, that
Vm < wVéy < ... < &1 < T (W) (Emat + oo + & < Mo_1),

and in particular, 7 = 0,1 + ... + 10 < N5_;.



Now we are ready to redefine Z. Set

Z'=Av <k | W <mw)Va < 7' (v)(ha(V) # v)}.
Then

i(k\Z") ={v <i(k) | W <i(m)v)Ia <i(m)w)(h, (V) =v)},

where (b, | @ <i(k)) = i((ha | @ < K)).

Now, if @ < k, then K\ Z € E,, since i(m)(0a) = 01 > Kk > «, i(ha)(n) = 6, and
1 < i(m)(0a) = 151

Let us argue that 2’ € U.

Claim 2 7' € U.

Proof. We show that for every o < m,_1 and every ' < n,_1, hl,(n') # n. It will be enough
to argue that h. (1) # n,_1, since if A/, (') = n, then the projection to the largest component
of the Cantor normal form will give n,_;.

Consider the extender GG derived from ¢ using ordinals below 7,1, i.e.
G = (Uala€ mma]™)

and its ultrapower i : V — Ng.

Another way of stating this is to consider the transitive collapse of

{i(9)(a) | a € ]~}

Let k : Ng¢ — M be the natural embedding, i.e. k(ig(g)(a)) =i(g)(a). Then, crit(k) = n,_1,
since 1,1 is a generator, and so, 1,1 # i(g)(a), for a € [,_1]<¥, g : [k]!* — &, but every
1 < n is trivially of such a form, and so does not move by k.

Consider (h, | @ < k). Let ig((ha | @ < K)) be (R? | @ < ig(k)). Let a < 1,-1 and
7" < Nu—1. Consider h!(n') = p. Apply k to it. Then k(hL(1)) = hL(n') = k(u), since
neither o < 1,1 nor ' < n,,_1 are moved by k. Now, if k(1) = 7, then 1, will in the range
of k as the image the projection to the largest component of the Cantor normal form of p,
which is clearly impossible. So, k(u) # n, which means that h. (") # n whenever a < 1,
and 7' < np_1.
[ of the claim.



Suppose now that that for almost all o < w, 7,1 =n5_;.

Let us assume for simplicity that n = 2 and for almost all o < w, 71 < 7 and 7, = ng.
Assume that this holds for every a < k.

The crucial is that there is no f : kK — & such that n; = i(f)(72), since if this was the case,
then we were able to reduce 7.

Let m : kK — Kk be the projection of an ordinal to its second largest component in the
Cantor normal form, ie. m(&n_1 + &no + ... + &) = &n2. Then i(m)(n) = 12 and
i(m2)(00) = ng, for every a < k. Also note that k < 1y < g, for every o < k.

Set

Zy ={v <k | W < mW)Va < m(v)(ha(m (v) + V') # 1)}
Then

i(r\ Za) ={v < i(k) | I/ <i(m2)(v)Fa <i(me)(v)(ho(i(m)(v) + V) =v)},
where (b, | @ < i(k)) = i((hs | @ < K)).
Now, if a < k, then kK \ Zy € E,, since i(m)(ds) = 15 > Kk > «, i(ha)(n) = d4 and

n="mn2+m +n0,m +n < i(m2)(da) = i
Let us argue that Z, € U.

Claim 3 Z, € U.

Proof. We show that for every a < my and every ' < ny, hl (e +1') # 1.

Consider the extender H derived from ¢ using ordinals below 7; and {1}, i.e.
H = (Uay, | @ € [m]™)

and its ultrapower iy : V — Np.

Another way of stating this is to consider the transitive collapse of

{i(9)(a™n2) [ a € [m]™}.

Let k : Ny — M be the natural embedding, i.e. k(ig(g)(a™n5)) = i(g)(a"n2), where 1} is
the image of 1, under the transitive collapse.

Then, crit(k) = 1, since by the smallnest assumptions we made on 7y, 71 # i(g)(a"1n32), for
]<w

a € [m]<¥, g : [5]?*' — K, but every 5/ < n, is trivially of such a form, and so does not

move by k.



Consider (h, | @ < k). Let ig((ha | @ < Kk)) be (B2 | @ <ig(k)). Let a < my and ' < ;.
Consider b/ (nh +n') = p. Apply k to it. Then k(h (7)) = hl,(n2 +1') = k(u), since neither
a < m nor ' < ny are moved by k. Now, if k(x) = 1, then 7, will in the range of k as the
image the projection to the second largest component of the Cantor normal form of y, which
is clearly impossible. So, k(i) # 1, which means that A/ (92 + 1) # 1 whenever o < 1; and
n <m.

[ of the claim.
OJ

We address now the following issue, raised by Eyal Kaplan:

Let F' be a k—complete ultrafilter over k and n,0 < n < w. How many ways to project
F" onto F are?

(Clearly, we have the projections to each of n many coordinates. But are there any other
projections?

It is not hard to see that once F' is normal, then - no.
Let us deal with general F’s.
Start with n = 1.

Proposition 0.4 Let U be a k—complete non-principal ultrafilter over k, iy : V. — My ~
"V /U the corresponding elementary embedding. For each o <iy(k), let Uy ={X C k| €
iv(X)}. Then U, =U iff a = [id]y.

Proof. Suppose otherwise. Let o < iy(k), a # [id]y be such that U, = U. Denote [id]y by
n. Pick f: k — k which represents « in My, i.e. [f]lv = iv(f)(n) = a. Then f is one to one
on a set in U, since U, = U, and so, the ultrapower by U, is the same as those U, i.e. M.

Suppose for simplicity that f is one to one on k. Then either
{v<k|flv)>vielU

or
{v<k|flv)<v}el.

Suppose that
{v<k|flv)>v}el,

i.e. f is increasing on a set in U. If the second possibility occurs then we can just replace f
by f~! and proceed as in the former case.
Let
A={v<k|flv)>v}el.
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Note that for every B € U, we have f"B € U, =U.
For every n < w, define a set A™ € U by induction as follows. Set A = A, A+D) = 7 A()

Let
A=) A™.

n<w

Then A* € U.

Pick any v € A*. Then v € AW hence there is v; € A such that f(v;) = v. This v, is
unique, since f is one to one. Also, v; < v, since f is increasing on A.

Now, v € A® hence there is 15 € A such that f(f(v2)) = v. Then f(vy) = v, since f is
one to one, and v, < vy, since f is increasing on A.

Continue further by induction. We will obtain an infinite decreasing sequence
V>V >V > ...

which impossible.
Contradiction.
O
Consider now n = 2.
Note that intuitively, if we have say three copies of F inside F' x F' at different places, then
their envelope (the ultrafilter they generate) should be F3. But F? is not Rudin - Kiesler
below F?.
However, it turns out that it is possible to have three (and much more) copies of an ultrafilter

inside its square, as will be shown below.

Theorem 0.5 Let (W, | a < k) be a discrete family of k—complete ultrafilters over k and
W be a k—complete ultrafilters over k. Assume that W >gr_x Wy, for every a < k.

Let F =W —lim (W, | o < k).

Then there is a function g : [k]> — K such that

1. g.F x FF=F, 1.e. g projects ' x F' to F,

2. g is different (mod F') from the projections of F' x F to the first and to the second

coordinate.

Proof. We preserve the notation of Theorem 0.1. The discreteness of the family (W, | o < k)
implies that F' >r_x W. Hence F' >r_x W,, for every a < k. Then, in My, iw(F) >r_x



W[’Z.d]w. Applying o, we get that ip(F) >gp_g U(W[/id]w)‘
Pick some h : ip(k) — ip(k) witnessing this.
Now, we form the second ultrapower by taking the ultrapower of Mg by ip(F). Clearly,
My p is this ultrapower and ipyp = 1;,(r) 0 iF.
Set n = [hli, (7). Then ip(F) >p-x 0(Wy, ) implies that ip(k) < n # [id]ipr).
Now
ZeFes{la<k|ZeW,}eWsiw(Z) € Wiy,

= O'(Zw(Z>) c U(W[/zd]w) = ZF(Z) S U(W[/id]w) =N e ZzF(F)('LF(Z)) =ne ZFXF(Z)

Pick a function g : [k]*> — k which represents 7 in Mpyp. Then g, F x F = F. Namely,
let A€ FxFand Z = ¢g"A. We have [id|pxr € ipxp(A). But, ipxr(9)([idlpxr) =1, so
N € ipxr(Z), and then, by above Z € F.

Clearly, [id]p < n and we argued that due to <gp_g, also n # [id];, ).

So we are done.

O

The theorem has the following somewhat curious corollary:

Corollary 0.6 Let F be as in the previous theorem. Let Pg be the Prikry forcing with F
and 5 a Prikry sequence. Then, in V[g] there is another Prikry sequence 1] for F(over V)

which s disjoint from E

Proof. Let us use g of the theorem to construct 77 from 5’ Set n, = g(&on, Eant1), for every
n < w. The properties of g imply that the sequence 77 is as desired.
O

Note that the sequence 7 is not maximal, i.c. V[7] # V[¢].

Clearly the above situation is impossible once F' is normal.

Theorem 0.7 Let (W, | a < k) be a discrete family of k—complete ultrafilters over k and
W be a k—complete ultrafilters over k. Let s,1 < s < w. Assume that W >p_x W2, for
every a < K.

Let F =W —lim (W, | o < k).

Then there is a function g : [k]* — [k]* such that

1. g is different (mod F') from the projections of F' x F' to the first and to the second

coordinate.



2. g.F x F is a k—complete ultrafilter over [k|* such that for every ¢,1 < € < s, the (—th
component of g.F x F, i.e. the projection of g.F x F to its {—th coordinate

(ZCk |V €qF xF(Z=1{v| v, .ve,...v)) €Y1,

18 equal to F'.

Proof. We proceed as in Theorem 0.5. The discreteness of the family (W, | @ < k) implies
that F' > g W. Hence F' >p_x W, for every a < k. Then, in My, iw(F) > g W[;.fi]
Applying o, we get that ip(F) >r_k U(W[;Z]W) = (J(W[;.d]w))s.

w'

Pick some h : ip(k) = [ir(k)]® witnessing this.

Now, we form the second ultrapower by taking the ultrapower of Mg by ip(F). Clearly,
My p is this ultrapower and ipxp = ;,(F) 0 ip.

Set (N1, ...,ns) = [h]ip(r). Then ip(F) >p_k J(W{i“;ﬂw) = (U(W[;d]w))s implies that

ip(k) <m <..<n<..nand n # [id);, ), for every £,1 <0 <s.

Now, for every /,1 < { < s,

ZeFas{a<r|ZeWeWsiw(Z)e Wy,

& o(iw(2)) € oWy, ) © ir(Z) € oW, ) © e € tip(r) (ir(Z)) & 0 € irxr(Z).

Pick a function g, : [k]*> — & which represents 7, in Mpyr. Then (g,).F x F = F. Namely,
let A€ Fx Fand Z = g"A. We have [id]rxr € irxr(A). But, ircr(ge)([id]pxr) = ne, s0
Me € ipxr(Z), and then, by above Z € F.

Clearly, [id]r < 1, and we argued that due to <z_g, also ny # [id];, ().

Set g = (g1, ...,9s). Then it is as desired.

[

The theorem has somewhat curious corollaries:

Corollary 0.8 Let s,1 < s < w. Then there are k—complete ultrafilters F over k and F

over [k|* such that
1. all projections of F to its coordinates are F,
2. FxF>pgF.

Clearly, if s > 1 then F' cannot be the product of its coordinates.
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Corollary 0.9 Let F be as in the previous theorem. Let Pr be the Prikry forcing with
F and E a Prikry sequence. Then, in V[E] there are s pairwise disjoint Prikry sequences
(7 | 1 <0< s) for Flover V) which are also disjoint from .

Proof. Let us use g,’s of the theorem to construct 7, from 5 Set Mo = go(Ean,y Eont), for
every n < w. The properties of g, imply that the sequence 7; is as desired.
O

Let us replace a finite s by an infinite. In order to do so we will need to go beyond just
measurability of k. Consider the case s = k, i.e. we aim will be to construct F' such that
F x F has k—many different projections to F.
A similar argument (with canonical functions) can be used to obtain k¥ —many.
The analog of Corollary 0.9 with k—many disjoint Prikry sequences will follow.
It is possible to produce such a model by forcing over a model with o(x) = k. Instead, let
us make a stronger assumption and proceed without forcing.
Assume, for simplicity GCH. Suppose that there is a (x, x™3)-extender E with ultrapower

closed under k—sequences of its elements, i.e.
there is j: V. — M ~ Ult(V, E)) such that

1. k is the critical point of j,
2. M 2 Vfi-l—?n
3. "M C M.

For every a < j(k), set
E,.={ZCk|acj(Z)}.

The number of ultrafilter over s is k™. So, there is u* < k3 such that for every
py 1 < < k13 the ultrafilter £, appears £ many times below £*2.

Pick now an increasing sequence (ug | € < k) such that
Low* < pe < kT3, for every € < k13,
2. E, # B, , whenever § # (.

Note that the family (FE,, | { < &) is discrete, since each of E,,’s is a P—point.

There is a set A = {7, | v < k- K} C [u*, k%) of order type & - k such that E, = E,,
for all v € [k- &, k- &+ k). Using the k—closure of M, find 4, sup(A) < § < 13 which codes
A, and so, E5 >r_i E,, for every v € A.
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Now let W be Es and W, = E,,_, for every o < k.
Repeat the argument of Theorem 0.7. We will obtain F over s and F over []® such that

1. all projections of F' to its coordinates are F,
2. FXF>p g F.
This implies:

Corollary 0.10 Let Pr be the Prikry forcing with F and E a Prikry sequence. Then, in

—

V€] there are k pairwise disjoint Prikry sequences (5, | 1 < v < k) for F (over V) which

are also disjoint from E
Let us show it is possible to have two disjoint maximal Prikry sequences once a normal

measure is replaced by a non-normal.

Theorem 0.11 Let U be a normal measure over k and let Pyyy be the Prikry forcing with

U x U. Then in VIvxU there disjoint maximal Prikry sequences for Pyyy, i.e. there are

sequences 7= (N, | n < w), 7 = (n, | n <w) such that

1o A{nn [ n<whn{n, |n<w}=0,
2. 1 is Pyxy generic over V,

3. 17 is Pyxy generic over V,
4. VI = VIl

Proof.
Recall that
XeUxUs{a<kr|{f<k|(a,pB)eX}eU}el.

So,
[K]? ={(a,B) |a < B} € UxU.

Force with Pyyy. Let
77: <77n | n < w)

be a generic Prikry sequence.

Assume for simplicity that all its members come from [k]%.
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Let for every n < w,n, = (Mno, n1)-

Define now a new sequence
_g/

7=, |n<w)
as follows:

set 1y, = (N1, Mnt10), for all n < w.
Clearly, V[77] = V[if] and 7,7 are disjoint as the sets.

Claim 4 17 is a Prikry sequence for Py over V.

Proof. Let A € U x U. We need to show that a final segment of 77/ is contained in A. Let
(t,T) be any condition. Assume for simplicity that ¢ is just empty and 7' C A.
Consider U* = (U x U) x (U x U)). Tt can be written as U x (U x U) x U. Let

a3 : [k]* — [K]? be the projection to 2,3 coordinates, i.e.

7T23(a7ﬁ7776) = (ﬁ77)

Then o3 will project U* to U2 = U x U.
In particular, B := my3"Ax A€ U x U. So, C:= BNA€UxU. Let D = 7,;”C. Then

{(e, 8) € [6]* [{(7,0) € [x]* | (e, 8,7.6) € D} e U x U} € U x U.

Set
X ={(a,8) € [)* [ {(7,9) € []" | (o, 8,7,0) € D} € U x U}

and

Yiap) = {(7,0) € [6]* | (o, 8,7,0) € D},
for every (a, ) € X. Consider

Y = A?a,ﬁ)GX}/(avﬁ) - {(776) € [H]2 | \V/(Oé,ﬁ) € X(ﬁ < i — (775) € Yr(oc,,@))}‘
Then Y € U x U, since in the ultrapower by U x U we have
(I{7 Kl) S iUXU(Y>(a,ﬂ)7
for every (a, ) € ivxy(X) with f < &, where k1 = iy (k). Hence,
(li, lil) S Z'UXU(Y)'

Take finally Z:=XNY NC.
Then the condition ((), Z) will force that 7 will be contained in A.
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(] of the claim.
O
Note that once FF' =V xU and V <gr_x U, then it is easy to produce g that satisfies the
conclusion of 0.5.
Namely, let s be a projection of U on V.

Define g : [k X k]> = Kk x K as follows:

9((e, B), (7,0)) = (s(8), 0).

We would like to argue that this is basically the only possibility provided the set {o(«a) |
a < k} is bounded in & in the core model.

Start with the following observation:

Theorem 0.12 Assume that r is a measurable cardinal and the set {o(a) | a < K} is
bounded in k in the core model. Let U be a k—complete ultrafilter over k. Then the number

of Rudin-Keisler non-equivalent ultrafilters which are <p_g U 1is strictly less than k.

Proof. Denote the core model by K. Consider j := iy [ K. Then, by Mitchell [5], j is an
iterated ultrapower of K by its measures. The number of generators! of j is less than &,
since the set {o(a) | @ < k} is bounded in & in the core model, every generator is a critical
point of one of the embeddings forming j and "My C My.
Denote the set of generators of j by Gen(j).

Now suppose that (U, | a < k) is a sequence of pairwise different k—complete ultrafilters
over Kk which are <p_x U.

Then, for every a < k there is p,, k < po < j(K), such that
Uy ={X Ck|pa €iv(X)}.

Now, the number of generators is less than x, so all but less than k—many p,’s are not
generators. Suppose for simplicity that non of them is a generator.

Then, for every a < & there is 7, € [Gen(j) N pa]<* and a function f, € K such that

Pa = j(fa)(ﬁa)'

Assume that 7, is such smallest possible set of generators.

Note that due to the smallness of 77,, the function f, can be picked to be one to one, since

lan ordinal 7,k < n < j(k), is called a generator of j iff for every n < w, f : [x]® — x in K and a € [n]",

i(f)(a) #n.
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in IC, the ultrafilters
{YCk|YeKand,€j)}

and
{ZCk|ZeKand p, €j(2)}

have the same ultrapower. Then U, will be Rudin-Keisler equivalent to
Wﬁa = {X ’ ﬁa € ZU(X>}7

as witnessed by f,.
Again, all but less that k—many 7,’s, and so Wy, are the same.

Hence, all but less that k—many U,’s will be Rudin-Keisler equivalent.
O

Theorem 0.13 Assume that k is a measurable cardinal and the set {o(a) | @ < K} is
bounded in k in the core model. Let F,W be k— complete ultrafilters over k such that
G- F X W >p_x F for some function g : [k]* — k which is different (mod F x W) from the
projections of F' x W to the first coordinate. Assume in addition that if W >g_x F then g
is different (mod F x W) from any projection which witnesses this.

Then there are k—complete ultrafilters W', V and {U, | o < K} such that

1. W <p_g W,

2. Uy =p_xg W', for every a < K,
3.V <gp-x F,

4. F=p_xg VxW,

5. F =V —lim (U, | o< k).
Proof. Let g : [k]> — K be such projection. Let p = [g]pxw. Set, in Mg,

U={X Cir(k)|p€ipm)(X)}

Then U D ¢, F. Let the sequence (U, | @ < k) be a sequence of k—complete ultrafilters over

k that represents U in Mp, i.e.

ir((Uy | o < ) ([id]r) =U.
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We have then that
F=F—-limU, | a<k),

since
XeF—-limU, |la<r e{a<k|XeclU,} e Feir(X)eld &

pE iiF(W)(X> = [g]FxW S ZFXw(X) & X e F.

Note that in Mp, U <p_f ir(W), hence, by elementarity, U, <r_x W for almost all a’s
mod F. Assume for simplicity that this is true for every a < k.
By 0.12, then the number of Rudin-Keisler non-equivalent ultrafilters among U,,’s is strictly
less than . So, there is A € F' such that for every a, 8 € A, U, =p_x Us.
Let W' be such that U, =r_x W', for every a € A.
Let us get rid now from same ultrafilters.
For o, € A, set o ~ [ iff U, = Us. Let t be a function that picks one member from each
equivalence class.
If |rng(t)| < k, then there is a* € A such that for almost all « mod F, U, = U,+. Then
F=F—limU, | o < k) will imply F' = U,+. Also, in Mp, ip(F) will be Y. Recall that
Uy <p_xg W. So, F <g_x W. Then, as in Mg, ir(F) will be U, g will be a projection of
W to F. Which contradicts to the assumption of the theorem.

So, |rmg(t)| = k.
Set V = t,F. Then V be k—complete non-trivial ultrafilter over x, V <z_x F' and

F=V—-limU,|a<k).

Now, in Mg,
ir(W') =p-x U <p_r ip(W).

Hence, W’/ <p_x W.
Finally, applying separation, which holds under (anti) large cardinals assumptions made by
[4], to V and (U, | @ < k) and using F' =V — lim (U, | @ < k) it is not hard to see that

Ult(V, F) = MF = Ult(Mv,iV(<ua ’ o < /ﬂ?))([ld]v)) = Ult(My,iV(W/)).

Hence, F =p_g V x W’.
]

Remark 0.14 Note that, as in [3], starting with a measurable x such that the set {o(«) |

a < Kk} is unbounded in it, it is possible to construct a model with k—complete ultrafilters
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W, (W, | a < k) as in 0.5 and in addition a sequence (W, | a < k) is Rudin-Keisler
increasing, or alternatively, it can be made of normal ultrafilters. In this type of situations

the conclusion of 0.13 will be wrong.
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