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Abstract

We deal with some natural properties of ultrafilters which trivially fail for normal
ultrafilters.

Throughout the paper all ultrafilters considered are non-principal.

If U is a κ−complete ultrafilter over κ, then denote by iU : V → MU ' Ult(V, U) the

corresponding elementary embedding and the transitive collapse of the ultrapower.

If W is a κ−complete ultrafilters over κ and 〈Wα | α < κ〉 is a sequence of κ−complete

ultrafilters, then W − lim 〈Wα | α < κ〉 is a κ−complete ultrafilter over κ which consists of

all X ⊆ κ such that

{α < κ | X ∈ Wα} ∈ W.

Let us address first the following natural question asked by Eyal Kaplan:

Is it possible to have a κ−complete ultrafilter F over κ such that for some sequence of

κ−complete ultrafilters 〈Wα | α < κ〉 over κ different from F we have

F = F − lim 〈Wα | α < κ〉?
Note that this is clearly impossible once F is normal. Also, this is impossible once the

family 〈Wα | α < κ〉 is discrete, i.e. there is a sequence 〈Aα | α < κ〉 which consists of

pairwise disjoint sets such that Aα ∈ Wα, for every α < κ.

However, it turns out that the situation occurs quit often.

Theorem 0.1 Let F = W − lim 〈Wα | α < κ〉, for some discrete (or discrete mod W )

family of κ−complete ultrafilters Wα, α < κ, over κ. Then there is a family 〈Eν | ν < κ〉 of

κ−complete ultrafilters over κ different from F such that

F = F − lim 〈Eν | ν < κ〉.
∗The work was partially supported by Israel Science Foundation Grant No. 58/14. We are grateful to

Eilon Bilinski who drew our attention to the subject, to Tom Benhamou and Eyal Kaplan for stimulating
questions and discussions.

1



Proof. Consider iW : V → MW . Let iW (〈Wα | α < κ〉) = 〈W ′
α | α < iW (κ)〉. Take now the

ultrapower of MW by W ′
[id]W

. Let

σ := iW ′
[id]W

: MW → N

be the corresponding elementary embedding. The family 〈Wα | α < κ〉 is discrete, so it is

not hard to see that W ′
[id]W

differs from iW (F ) and

σ ◦ iW = iF and N = MF .

Consider now σ(W ′
[id]W

). It is a iF (κ)−complete ultrafilter over iF (κ) in MF different from

iF (F ). In V , we pick a sequence 〈Eν | ν < κ〉 of κ−complete ultrafilters over κ which

represents σ(W ′
[id]W

) in the ultrapower MF .

Let iF (〈Eν | ν < κ〉) = 〈E ′ν | ν < iF (κ)〉. Then σ(W ′
[id]W

) = E ′[id]F .

Now,

Z ∈ F − lim 〈Eν | ν < κ〉 ⇔ {ν < κ | Z ∈ Eν} ∈ F ⇔

iF (Z) ∈ E ′[id]F = σ(W ′
[id]W

)⇔ σ(iW (Z)) ∈ σ(W ′
[id]W

)⇔

iW (Z) ∈ W ′
[id]W

⇔ {α < κ | Z ∈ Wα} ∈ W ⇔ Z ∈ W − lim 〈Wα | α < κ〉 = F.

So, 〈Eν | ν < κ〉 is as desired.

�

Remark 0.2 1. Note that the family 〈Eν | ν < κ〉 have same ultrafilters, i.e. the function

ν 7→ Eν is not one-to -one. Moreover, it cannot be one-to -one on a set of ν’s in F .

2. We do not know to achieve F = F − lim 〈Eν | ν < κ〉 with a family consisting of different

ultrafilters. Clearly this is impossible once the family is discrete.

Let show now the following negative result.

Proposition 0.3 Suppose that U,W and 〈Eα | α < κ〉 are κ−complete ultrafilters over κ

such that U =R−K Eα and U 6= Eα, for every α < κ. Then U 6= W − lim 〈Eα | α < κ〉.

Proof. Suppose otherwise. Then U = W − lim 〈Eα | α < κ〉.
Observe first that if U ′ =R−K U , then

U ′ = W − lim 〈E ′α | α < κ〉,
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for some 〈E ′β | β < κ〉. Thus, let U ′ =R−K U and let h : κ → κ be a one to one function

witnessing this, say h∗U = U ′. Set E ′α = h∗Eα, for every α < κ.

Let Y ⊆ κ. Then

Y ∈ U ′ ⇔ h−1′′Y = X ∈ U ⇔ {α < κ | X ∈ Eα} ∈ W ⇔

{α < κ | Y = h′′X ∈ h∗Eα} ∈ W ⇔ {α < κ | Y ∈ E ′α = h∗Eα} ∈ W.

Next, consider iU : V →MU ' κV/U . Set i := iU and M := MU . Let η = [id]U .

If there is η′ < η and fη′ : κ → κ such that i(fη′)(η
′) = η, then let η∗ be the least such η′.

Note that then there will be no η′ < η∗ such that for some f : κ → κ, i(f)(η′) = η∗, since

otherwise i(fη∗ ◦ f)(η′) = η, which contradicts the minimality of η∗.

For every δ < i(κ), denote by Uδ the ultrafilter {X ⊆ κ | δ ∈ i(X)}.
Then Uη∗ ≥R−K U , as witnessed by fη∗ , but also Uη∗ ≤R−K U , since Uη∗ is defined from i.

Hence Uη∗ =R−K U .

By the observation above, we can replace then U by Uη∗ . Assume for simplicity that

already U = Uη∗ .

Let α < κ. Consider Eα. Pick δα < i(κ) such that Eα = {X ⊆ κ | δα ∈ i(X)}.
We have Eα =R−K U , so there is hα : κ → κ one to one such that δα = i(hα)(η). Then

η = i(h−1α )(δα) which implies by the choice of η that δα > η.

Let π : κ→ κ be a projection of U to the normal measure Uκ. Consider now the following

set:

Z = {ν < κ | ∀ν ′ < ν∀α < π(ν)(hα(ν ′) 6= ν)}.

Then, by the choice of η, Z ∈ U , since for every h : κ → κ and in particular for every

hα, α < κ, we have i(h)(η′) 6= η, whenever η′ < η, and so, η ∈ i(Z).

On the other hand,

i(κ \ Z) = {ν < i(κ) | ∃ν ′ < ν∃α < i(π)(ν)(i(h)α(ν ′) = ν)}.

So, if α < κ, then κ \ Z ∈ Eα, provided i(π)(δα) > α, since i(hα)(η) = δα and η < δα. In

particular, this holds if π is not a constant function mod Eα.

Unfortunately, we do not see a reason why this should be the case.

In order to overcome the problem, let us use more involved argument. The idea would

be to replace Z by another, similar set, but without π.

An ordinal α < i(κ) is called a generator of the embedding i iff for every n, 1 ≤ n < ω,

every g : [κ]n → κ and for every ~ν ∈ [α]n, i(g)(~ν) 6= α.
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Now, either η is a generator or there are an increasing sequence of generators 〈η0, ..., ηn−1〉
below η and a function gη : [κ]n → κ such that η = i(gη)(η0, ..., ηn−1). Let us deal with the

later case. The former one is similar and a bit simpler.

There may be several possibilities for sequences of generators and functions gη as above.

Pick first η′0 < η to be the least generator such that there is a finite sequence of generators

a ∈ [η′0]
<ω such that for some function g : [κ]|a|+1 → κ we have η = i(g)(a_η′0).

Next, let η′1 < η to be the least generator< η′0 such that there is a finite sequence of generators

a ∈ [η′1]
<ω such that for some function g : [κ]|a|+2 → κ we have η = i(g)(a_〈η′1, η′0〉). Continue

further by recursion. After finitely many steps, we will construct a sequence η′0 > η′1 > ... >

η′n−1 of generators such that each member is the smallest possible (in the above sense) and

for some function g : [κ]n → κ we have η = i(g)(〈η′n−1, ..., η′0〉).
Set now ηn−1 := η′0, ..., η0 = η′n−1.

Claim 1 η = ηn−1 + ηn−2 + ...+ η0.

Proof. First note that η ≤ ηn−1 + ηn−2 + ...+ η0, since it is easy to find f : κ→ κ such that

i(f)(ηn−1 + ηn−2 + ...+ η0) = η.

Next let η = ξm−1 + ... + ξ0 be the Cantor normal form of η. By the minimality of ηn−1,

we must have ηn−1 = ξm−1. Then again, minimality of ηn−2 implies that also ηn−2 = ξm−2.

Finally, we will have n = m and η0 = ξ0.

� of the claim.

By the claim then, for almost all α < κ, δα = ηαn−1+ηαn−2+...+ηα0 , since U = U−lim 〈Eα |
α < κ〉, and ηαn−1 ≥ ηn−1, since η < δα. Assume that this holds for every α < κ.

Let π1 : κ→ κ be the projection of an ordinal to its largest component in the Cantor normal

form, i.e. π1(ξm−1 + ξm−2 + ...+ ξ0) = ξm−1. Then i(π1)(η) = ηn−1 and i(π′)(δα) = ηαn−1, for

every α < κ. Also note that κ ≤ ηn−1 ≤ ηαn−1, for every α < κ.

Suppose first that for almost all α < κ, ηn−1 < ηαn−1.

Then, also η < ηαn−1. Thus, ηn−1 is a generator, and hence, it cannot be written as a finite

sum of smaller ordinals. Namely,

Y = {ν < κ | ∀m < ω∀ξ0 < ... < ξm−1 < π1(ν)(ξm−1 + ...+ ξ0 < π′(ν))} ∈ U,

and so, Y ∈ Eα for almost every α < κ. This means, in M1, that

∀m < ω∀ξ0 < ... < ξm−1 < π′(ν)(ξm−1 + ...+ ξ0 < ηαn−1),

and in particular, η = ηn−1 + ...+ η0 < ηαn−1.
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Now we are ready to redefine Z. Set

Z ′ = {ν < κ | ∀ν ′ < π1(ν)∀α < π′(ν)(hα(ν ′) 6= ν)}.

Then

i(κ \ Z ′) = {ν < i(κ) | ∃ν ′ < i(π1)(ν)∃α < i(π1)(ν)(h′α(ν ′) = ν)},

where 〈h′α | α < i(κ)〉 = i(〈hα | α < κ〉).
Now, if α < κ, then κ \ Z ∈ Eα, since i(π1)(δα) = ηαn−1 ≥ κ > α, i(hα)(η) = δα and

η < i(π1)(δα) = ηαn−1.

Let us argue that Z ′ ∈ U .

Claim 2 Z ′ ∈ U .

Proof. We show that for every α < ηn−1 and every η′ < ηn−1, h
′
α(η′) 6= η. It will be enough

to argue that h′α(η′) 6= ηn−1, since if h′α(η′) = η, then the projection to the largest component

of the Cantor normal form will give ηn−1.

Consider the extender G derived from i using ordinals below ηn−1, i.e.

G = 〈Ua | a ∈ [ηn−1]
<ω〉

and its ultrapower iG : V → NG.

Another way of stating this is to consider the transitive collapse of

{i(g)(a) | a ∈ [ηn−1]
<ω}.

Let k : NG →M be the natural embedding, i.e. k(iG(g)(a)) = i(g)(a). Then, crit(k) = ηn−1,

since ηn−1 is a generator, and so, ηn−1 6= i(g)(a), for a ∈ [ηn−1]
<ω, g : [κ]|a| → κ, but every

η′ < η is trivially of such a form, and so does not move by k.

Consider 〈hα | α < κ〉. Let iG(〈hα | α < κ〉) be 〈h′′α | α < iG(κ)〉. Let α < ηn−1 and

η′ < ηn−1. Consider h′′α(η′) = µ. Apply k to it. Then k(h′′α(η′)) = h′α(η′) = k(µ), since

neither α < ηn−1 nor η′ < ηn−1 are moved by k. Now, if k(µ) = η, then ηn−1 will in the range

of k as the image the projection to the largest component of the Cantor normal form of µ,

which is clearly impossible. So, k(µ) 6= η, which means that h′α(η′) 6= η whenever α < ηn−1

and η′ < ηn−1.

� of the claim.
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Suppose now that that for almost all α < κ, ηn−1 = ηαn−1.

Let us assume for simplicity that n = 2 and for almost all α < κ, η1 < ηα1 and η2 = ηα2 .

Assume that this holds for every α < κ.

The crucial is that there is no f : κ → κ such that η1 = i(f)(η2), since if this was the case,

then we were able to reduce η1.

Let π2 : κ → κ be the projection of an ordinal to its second largest component in the

Cantor normal form, i.e. π2(ξm−1 + ξm−2 + ... + ξ0) = ξm−2. Then i(π2)(η) = η2 and

i(π2)(δα) = ηα2 , for every α < κ. Also note that κ ≤ η2 ≤ ηα2 , for every α < κ.

Set

Z2 = {ν < κ | ∀ν ′ < π2(ν)∀α < π2(ν)(hα(π1(ν) + ν ′) 6= ν)}.

Then

i(κ \ Z2) = {ν < i(κ) | ∃ν ′ < i(π2)(ν)∃α < i(π2)(ν)(h′α(i(π1)(ν) + ν ′) = ν)},

where 〈h′α | α < i(κ)〉 = i(〈hα | α < κ〉).
Now, if α < κ, then κ \ Z2 ∈ Eα, since i(π2)(δα) = ηα2 ≥ κ > α, i(hα)(η) = δα and

η = η2 + η1 + η0, η1 + η0 < i(π2)(δα) = ηα1 .

Let us argue that Z2 ∈ U .

Claim 3 Z2 ∈ U .

Proof. We show that for every α < η1 and every η′ < η1, h
′
α(η2 + η′) 6= η.

Consider the extender H derived from i using ordinals below η1 and {η2}, i.e.

H = 〈Ua_η2 | a ∈ [η1]
<ω〉

and its ultrapower iH : V → NH .

Another way of stating this is to consider the transitive collapse of

{i(g)(a_η2) | a ∈ [η1]
<ω}.

Let k : NH → M be the natural embedding, i.e. k(iH(g)(a_η′2)) = i(g)(a_η2), where η′2 is

the image of η2 under the transitive collapse.

Then, crit(k) = η1, since by the smallnest assumptions we made on η1, η1 6= i(g)(a_η2), for

a ∈ [η1]
<ω, g : [κ]|a|+1 → κ, but every η′ < η1 is trivially of such a form, and so does not

move by k.
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Consider 〈hα | α < κ〉. Let iH(〈hα | α < κ〉) be 〈h′′α | α < iH(κ)〉. Let α < η1 and η′ < η1.

Consider h′′α(η′2 + η′) = µ. Apply k to it. Then k(h′′α(η′)) = h′α(η2 + η′) = k(µ), since neither

α < η1 nor η′ < η1 are moved by k. Now, if k(µ) = η, then η1 will in the range of k as the

image the projection to the second largest component of the Cantor normal form of µ, which

is clearly impossible. So, k(µ) 6= η, which means that h′α(η2 + η′) 6= η whenever α < η1 and

η′ < η1.

� of the claim.

�

We address now the following issue, raised by Eyal Kaplan:

Let F be a κ−complete ultrafilter over κ and n, 0 < n < ω. How many ways to project

F n onto F are?

Clearly, we have the projections to each of n many coordinates. But are there any other

projections?

It is not hard to see that once F is normal, then - no.

Let us deal with general F ’s.

Start with n = 1.

Proposition 0.4 Let U be a κ−complete non-principal ultrafilter over κ, iU : V → MU '
κV/U the corresponding elementary embedding. For each α < iU(κ), let Uα = {X ⊆ κ | α ∈
iU(X)}. Then Uα = U iff α = [id]U .

Proof. Suppose otherwise. Let α < iU(κ), α 6= [id]U be such that Uα = U . Denote [id]U by

η. Pick f : κ→ κ which represents α in MU , i.e. [f ]U = iU(f)(η) = α. Then f is one to one

on a set in U , since Uα = U , and so, the ultrapower by Uα is the same as those U , i.e. MU .

Suppose for simplicity that f is one to one on κ. Then either

{ν < κ | f(ν) > ν} ∈ U

or

{ν < κ | f(ν) < ν} ∈ U.

Suppose that

{ν < κ | f(ν) > ν} ∈ U,

i.e. f is increasing on a set in U . If the second possibility occurs then we can just replace f

by f−1 and proceed as in the former case.

Let

A := {ν < κ | f(ν) > ν} ∈ U.
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Note that for every B ∈ U , we have f ′′B ∈ Uα = U .

For every n < ω, define a set A(n) ∈ U by induction as follows. Set A(0) = A,A(n+1) = f ′′A(n).

Let

A∗ =
⋂
n<ω

A(n).

Then A∗ ∈ U .

Pick any ν ∈ A∗. Then ν ∈ A(1), hence there is ν1 ∈ A such that f(ν1) = ν. This ν1 is

unique, since f is one to one. Also, ν1 < ν, since f is increasing on A.

Now, ν ∈ A(2), hence there is ν2 ∈ A such that f(f(ν2)) = ν. Then f(ν2) = ν1, since f is

one to one, and ν2 < ν1, since f is increasing on A.

Continue further by induction. We will obtain an infinite decreasing sequence

ν > ν1 > ν2 > ...

which impossible.

Contradiction.

�

Consider now n = 2.

Note that intuitively, if we have say three copies of F inside F × F at different places, then

their envelope (the ultrafilter they generate) should be F 3. But F 3 is not Rudin - Kiesler

below F 2.

However, it turns out that it is possible to have three (and much more) copies of an ultrafilter

inside its square, as will be shown below.

Theorem 0.5 Let 〈Wα | α < κ〉 be a discrete family of κ−complete ultrafilters over κ and

W be a κ−complete ultrafilters over κ. Assume that W >R−K Wα, for every α < κ.

Let F = W − lim 〈Wα | α < κ〉.
Then there is a function g : [κ]2 → κ such that

1. g∗F × F = F , i.e. g projects F × F to F ,

2. g is different (mod F ) from the projections of F × F to the first and to the second

coordinate.

Proof. We preserve the notation of Theorem 0.1. The discreteness of the family 〈Wα | α < κ〉
implies that F ≥R−K W . Hence F >R−K Wα, for every α < κ. Then, in MW , iW (F ) >R−K
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W ′
[id]W

. Applying σ, we get that iF (F ) >R−K σ(W ′
[id]W

).

Pick some h : iF (κ)→ iF (κ) witnessing this.

Now, we form the second ultrapower by taking the ultrapower of MF by iF (F ). Clearly,

MF×F is this ultrapower and iF×F = iiF (F ) ◦ iF .

Set η = [h]iF (F ). Then iF (F ) >R−K σ(W ′
[id]W

) implies that iF (κ) ≤ η 6= [id]iF (F ).

Now

Z ∈ F ⇔ {α < κ | Z ∈ Wα} ∈ W ⇔ iW (Z) ∈ W ′
[id]W

⇔ σ(iW (Z)) ∈ σ(W ′
[id]W

)⇔ iF (Z) ∈ σ(W ′
[id]W

)⇔ η ∈ iiF (F )(iF (Z))⇔ η ∈ iF×F (Z).

Pick a function g : [κ]2 → κ which represents η in MF×F . Then g∗F × F = F . Namely,

let A ∈ F × F and Z = g′′A. We have [id]F×F ∈ iF×F (A). But, iF×F (g)([id]F×F ) = η, so

η ∈ iF×F (Z), and then, by above Z ∈ F .

Clearly, [id]F < η and we argued that due to <R−K , also η 6= [id]iF (F ).

So we are done.

�

The theorem has the following somewhat curious corollary:

Corollary 0.6 Let F be as in the previous theorem. Let PF be the Prikry forcing with F

and ~ξ a Prikry sequence. Then, in V [~ξ] there is another Prikry sequence ~η for F (over V )

which is disjoint from ~ξ.

Proof. Let us use g of the theorem to construct ~η from ~ξ. Set ηn = g(ξ2n, ξ2n+1), for every

n < ω. The properties of g imply that the sequence ~η is as desired.

�

Note that the sequence ~η is not maximal, i.e. V [~η] 6= V [~ξ].

Clearly the above situation is impossible once F is normal.

Theorem 0.7 Let 〈Wα | α < κ〉 be a discrete family of κ−complete ultrafilters over κ and

W be a κ−complete ultrafilters over κ. Let s, 1 ≤ s < ω. Assume that W >R−K W s
α, for

every α < κ.

Let F = W − lim 〈Wα | α < κ〉.
Then there is a function g : [κ]2 → [κ]s such that

1. g is different (mod F ) from the projections of F × F to the first and to the second

coordinate.
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2. g∗F ×F is a κ−complete ultrafilter over [κ]s such that for every `, 1 ≤ ` ≤ s, the `−th

component of g∗F × F , i.e. the projection of g∗F × F to its `−th coordinate

{Z ⊆ κ | ∃Y ∈ g∗F × F (Z = {ν` | 〈ν1, ..., ν`, ..., νs〉 ∈ Y })},

is equal to F .

Proof. We proceed as in Theorem 0.5. The discreteness of the family 〈Wα | α < κ〉 implies

that F ≥R−K W . Hence F >R−K W s
α, for every α < κ. Then, in MW , iW (F ) >R−K W

′s
[id]W

.

Applying σ, we get that iF (F ) >R−K σ(W
′s
[id]W

) = (σ(W
′

[id]W
))s.

Pick some h : iF (κ)→ [iF (κ)]s witnessing this.

Now, we form the second ultrapower by taking the ultrapower of MF by iF (F ). Clearly,

MF×F is this ultrapower and iF×F = iiF (F ) ◦ iF .

Set 〈η1, ..., ηs〉 = [h]iF (F ). Then iF (F ) >R−K σ(W
′s
[id]W

) = (σ(W
′

[id]W
))s implies that

iF (κ) ≤ η1 < ... < η` < ...ηs and η` 6= [id]iF (F ), for every `, 1 ≤ ` ≤ s.

Now, for every `, 1 ≤ ` ≤ s,

Z ∈ F ⇔ {α < κ | Z ∈ Wα} ∈ W ⇔ iW (Z) ∈ W ′
[id]W

⇔ σ(iW (Z)) ∈ σ(W ′
[id]W

)⇔ iF (Z) ∈ σ(W ′
[id]W

)⇔ η` ∈ iiF (F )(iF (Z))⇔ η` ∈ iF×F (Z).

Pick a function g` : [κ]2 → κ which represents η` in MF×F . Then (g`)∗F × F = F . Namely,

let A ∈ F × F and Z = g′′A. We have [id]F×F ∈ iF×F (A). But, iF×F (g`)([id]F×F ) = η`, so

η` ∈ iF×F (Z), and then, by above Z ∈ F .

Clearly, [id]F < η` and we argued that due to <R−K , also η` 6= [id]iF (F ).

Set g = (g1, ..., gs). Then it is as desired.

�

The theorem has somewhat curious corollaries:

Corollary 0.8 Let s, 1 ≤ s < ω. Then there are κ−complete ultrafilters F over κ and F̃

over [κ]s such that

1. all projections of F̃ to its coordinates are F ,

2. F × F >R−K F̃ .

Clearly, if s > 1 then F̃ cannot be the product of its coordinates.
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Corollary 0.9 Let F be as in the previous theorem. Let PF be the Prikry forcing with

F and ~ξ a Prikry sequence. Then, in V [~ξ] there are s pairwise disjoint Prikry sequences

〈~η` | 1 ≤ ` ≤ s〉 for F (over V ) which are also disjoint from ~ξ.

Proof. Let us use g`’s of the theorem to construct ~η` from ~ξ. Set η`n = g`(ξ2n, ξ2n+1), for

every n < ω. The properties of g` imply that the sequence ~η` is as desired.

�

Let us replace a finite s by an infinite. In order to do so we will need to go beyond just

measurability of κ. Consider the case s = κ, i.e. we aim will be to construct F such that

F × F has κ−many different projections to F .

A similar argument (with canonical functions) can be used to obtain κ+−many.

The analog of Corollary 0.9 with κ−many disjoint Prikry sequences will follow.

It is possible to produce such a model by forcing over a model with o(κ) = κ. Instead, let

us make a stronger assumption and proceed without forcing.

Assume, for simplicity GCH. Suppose that there is a (κ, κ+3)-extender E with ultrapower

closed under κ−sequences of its elements, i.e.

there is j : V →M ' Ult(V,E) such that

1. κ is the critical point of j,

2. M ⊇ Vκ+3,

3. κM ⊆M .

For every α < j(κ), set

Eα = {Z ⊆ κ | α ∈ j(Z)}.

The number of ultrafilter over κ is κ++. So, there is µ∗ < κ+3 such that for every

µ, µ∗ ≤ µ < κ+3, the ultrafilter Eµ appears κ+3 many times below κ+3.

Pick now an increasing sequence 〈µξ | ξ < κ〉 such that

1. µ∗ ≤ µξ < κ+3, for every ξ < κ+3,

2. Eµξ 6= Eµζ , whenever ξ 6= ζ.

Note that the family 〈Eµξ | ξ < κ〉 is discrete, since each of Eµξ ’s is a P−point.

There is a set A = {τν | ν < κ · κ} ⊆ [µ∗, κ+3) of order type κ · κ such that Eτν = Eµξ ,

for all ν ∈ [κ · ξ, κ · ξ + κ). Using the κ−closure of M , find δ, sup(A) ≤ δ < κ+3 which codes

A, and so, Eδ >R−K Eγ, for every γ ∈ A.
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Now let W be Eδ and Wα = Eµα , for every α < κ.

Repeat the argument of Theorem 0.7. We will obtain F over κ and F̃ over [κ]κ such that

1. all projections of F̃ to its coordinates are F ,

2. F × F >R−K F̃ .

This implies:

Corollary 0.10 Let PF be the Prikry forcing with F and ~ξ a Prikry sequence. Then, in

V [~ξ] there are κ pairwise disjoint Prikry sequences 〈~ηγ | 1 ≤ γ ≤ κ〉 for F (over V ) which

are also disjoint from ~ξ.

Let us show it is possible to have two disjoint maximal Prikry sequences once a normal

measure is replaced by a non-normal.

Theorem 0.11 Let U be a normal measure over κ and let PU×U be the Prikry forcing with

U × U . Then in V PU×U there disjoint maximal Prikry sequences for PU×U , i.e. there are

sequences ~η = 〈ηn | n < ω〉, ~η′ = 〈η′n | n < ω〉 such that

1. {ηn | n < ω} ∩ {ηn | n < ω} = ∅,

2. ~η is PU×U generic over V ,

3. ~η′ is PU×U generic over V ,

4. V [~η] = V [~η′].

Proof.

Recall that

X ∈ U × U ⇔ {α < κ | {β < κ | (α, β) ∈ X} ∈ U} ∈ U.

So,

[κ]2 = {(α, β) | α < β} ∈ U × U.

Force with PU×U . Let

~η = 〈ηn | n < ω〉

be a generic Prikry sequence.

Assume for simplicity that all its members come from [κ]2.
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Let for every n < ω, ηn = (ηn0, ηn1).

Define now a new sequence

~η′ = 〈η′n | n < ω〉

as follows:

set η′n = (ηn1, ηn+1,0), for all n < ω.

Clearly, V [~η] = V [~η′] and ~η, ~η′ are disjoint as the sets.

Claim 4 ~η′ is a Prikry sequence for PU×U over V .

Proof. Let A ∈ U × U . We need to show that a final segment of ~η′ is contained in A. Let

〈t, T 〉 be any condition. Assume for simplicity that t is just empty and T ⊆ A.

Consider U4 = (U × U) × ((U × U)). It can be written as U × (U × U) × U . Let

π23 : [κ]4 → [κ]2 be the projection to 2,3 coordinates, i.e.

π23(α, β, γ, δ) = (β, γ).

Then π23 will project U4 to U2 = U × U .

In particular, B := π23
′′A× A ∈ U × U . So, C := B ∩ A ∈ U × U . Let D = π−123

′′C. Then

{(α, β) ∈ [κ]2 | {(γ, δ) ∈ [κ]2 | (α, β, γ, δ) ∈ D} ∈ U × U} ∈ U × U.

Set

X = {(α, β) ∈ [κ]2 | {(γ, δ) ∈ [κ]2 | (α, β, γ, δ) ∈ D} ∈ U × U}

and

Y(α,β) = {(γ, δ) ∈ [κ]2 | (α, β, γ, δ) ∈ D},

for every (α, β) ∈ X. Consider

Y = ∆∗(α,β)∈XY(α,β) = {(γ, δ) ∈ [κ]2 | ∀(α, β) ∈ X(β < γ → (γ, δ) ∈ Y(α,β))}.

Then Y ∈ U × U , since in the ultrapower by U × U we have

(κ, κ1) ∈ iU×U(Y )(α,β),

for every (α, β) ∈ iU×U(X) with β < κ, where κ1 = iU(κ). Hence,

(κ, κ1) ∈ iU×U(Y ).

Take finally Z := X ∩ Y ∩ C.

Then the condition 〈〈〉, Z〉 will force that ~η′ will be contained in A.
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� of the claim.

�

Note that once F = V ×U and V ≤R−K U , then it is easy to produce g that satisfies the

conclusion of 0.5.

Namely, let s be a projection of U on V .

Define g : [κ× κ]2 → κ× κ as follows:

g((α, β), (γ, δ)) = (s(β), δ).

We would like to argue that this is basically the only possibility provided the set {o(α) |
α < κ} is bounded in κ in the core model.

Start with the following observation:

Theorem 0.12 Assume that κ is a measurable cardinal and the set {o(α) | α < κ} is

bounded in κ in the core model. Let U be a κ−complete ultrafilter over κ. Then the number

of Rudin-Keisler non-equivalent ultrafilters which are ≤R−K U is strictly less than κ.

Proof. Denote the core model by K. Consider j := iU � K. Then, by Mitchell [5], j is an

iterated ultrapower of K by its measures. The number of generators1 of j is less than κ,

since the set {o(α) | α < κ} is bounded in κ in the core model, every generator is a critical

point of one of the embeddings forming j and κMU ⊆MU .

Denote the set of generators of j by Gen(j).

Now suppose that 〈Uα | α < κ〉 is a sequence of pairwise different κ−complete ultrafilters

over κ which are ≤R−K U .

Then, for every α < κ there is ρα, κ ≤ ρα < j(κ), such that

Uα = {X ⊆ κ | ρα ∈ iU(X)}.

Now, the number of generators is less than κ, so all but less than κ−many ρα’s are not

generators. Suppose for simplicity that non of them is a generator.

Then, for every α < κ there is ~ηα ∈ [Gen(j) ∩ ρα]<ω and a function fα ∈ K such that

ρα = j(fα)(~ηα).

Assume that ~ηα is such smallest possible set of generators.

Note that due to the smallness of ~ηα, the function fα can be picked to be one to one, since

1an ordinal η, κ ≤ η < j(κ), is called a generator of j iff for every n < ω, f : [κ]n → κ in K and a ∈ [η]n,
j(f)(a) 6= η.
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in K, the ultrafilters

{Y ⊆ κ | Y ∈ K and ~ηα ∈ j(Y )}

and

{Z ⊆ κ | Z ∈ K and ρα ∈ j(Z)}

have the same ultrapower. Then Uα will be Rudin-Keisler equivalent to

W~ηα := {X | ~ηα ∈ iU(X)},

as witnessed by fα.

Again, all but less that κ−many ~ηα’s, and so W~ηα , are the same.

Hence, all but less that κ−many Uα’s will be Rudin-Keisler equivalent.

�

Theorem 0.13 Assume that κ is a measurable cardinal and the set {o(α) | α < κ} is

bounded in κ in the core model. Let F,W be κ− complete ultrafilters over κ such that

g∗F ×W >R−K F for some function g : [κ]2 → κ which is different (mod F ×W ) from the

projections of F ×W to the first coordinate. Assume in addition that if W ≥R−K F then g

is different (mod F ×W ) from any projection which witnesses this.

Then there are κ−complete ultrafilters W ′, V and {Uα | α < κ} such that

1. W ′ ≤R−K W ,

2. Uα =R−K W ′, for every α < κ,

3. V ≤R−K F ,

4. F =R−K V ×W ′,

5. F = V − lim 〈Uα | α < κ〉.

Proof. Let g : [κ]2 → κ be such projection. Let ρ = [g]F×W . Set, in MF ,

U = {X ⊆ iF (κ) | ρ ∈ iiF (W )(X)}.

Then U ⊇ i′′FF . Let the sequence 〈Uα | α < κ〉 be a sequence of κ−complete ultrafilters over

κ that represents U in MF , i.e.

iF (〈Uα | α < κ〉)([id]F ) = U .
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We have then that

F = F − lim 〈Uα | α < κ〉,

since

X ∈ F − lim 〈Uα | α < κ〉 ⇔ {α < κ | X ∈ Uα} ∈ F ⇔ iF (X) ∈ U ⇔

ρ ∈ iiF (W )(X)⇔ [g]F×W ∈ iF×W (X)⇔ X ∈ F.

Note that in MF , U ≤R−K iF (W ), hence, by elementarity, Uα ≤R−K W for almost all α’s

mod F . Assume for simplicity that this is true for every α < κ.

By 0.12, then the number of Rudin-Keisler non-equivalent ultrafilters among Uα’s is strictly

less than κ. So, there is A ∈ F such that for every α, β ∈ A, Uα =R−K Uβ.

Let W ′ be such that Uα =R−K W ′, for every α ∈ A.

Let us get rid now from same ultrafilters.

For α, β ∈ A, set α ∼ β iff Uα = Uβ. Let t be a function that picks one member from each

equivalence class.

If |rng(t)| < κ, then there is α∗ ∈ A such that for almost all α mod F , Uα = Uα∗ . Then

F = F − lim〈Uα | α < κ〉 will imply F = Uα∗ . Also, in MF , iF (F ) will be U . Recall that

Uα∗ ≤R−K W . So, F ≤R−K W . Then, as in MF , iF (F ) will be U , g will be a projection of

W to F . Which contradicts to the assumption of the theorem.

So, |rng(t)| = κ.

Set V = t∗F . Then V be κ−complete non-trivial ultrafilter over κ, V ≤R−K F and

F = V − lim 〈Uα | α < κ〉.

Now, in MF ,

iF (W ′) =R−K U ≤R−K iF (W ).

Hence, W ′ ≤R−K W .

Finally, applying separation, which holds under (anti) large cardinals assumptions made by

[4], to V and 〈Uα | α < κ〉 and using F = V − lim 〈Uα | α < κ〉 it is not hard to see that

Ult(V, F ) = MF = Ult(MV , iV(〈Uα | α < κ〉)([id]V)) = Ult(MV , iV(W ′)).

Hence, F =R−K V ×W ′.

�

Remark 0.14 Note that, as in [3], starting with a measurable κ such that the set {o(α) |
α < κ} is unbounded in it, it is possible to construct a model with κ−complete ultrafilters
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W , 〈Wα | α < κ〉 as in 0.5 and in addition a sequence 〈Wα | α < κ〉 is Rudin-Keisler

increasing, or alternatively, it can be made of normal ultrafilters. In this type of situations

the conclusion of 0.13 will be wrong.
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