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Abstract

We continue the work done in [6],[2],[3]. We prove that for every set A in a Magidor-

Radin generic extension using a coherent sequence such that oﬁ(/-i) = k, there is C' C
Cg, such that V[4] = V[C'].

1 Introduction

In this paper we consider the version of Magidor-Radin forcing for 0(7(/{) = k. The major
difference when we let oﬁ(/{) — K, is that we cannot split M[U] to the part below Olj(/i) and
above it. As proven in [3], this decomposition provided the ability to run over all possible
extension types. In terms of Cg this means that we cannot split C¢ below k in a way that
will determine what are the measure which we use in the construction of Cz. The classic

example for such a sequence is

K05 Krgs g s -+
in which every element in the sequence is taken from a measure which depends of the previous
element in the sequence. This suggest that some sort of tree construction is needed in order
to refer to such sequences in the ground model.

In context of [3] and [2], we are working by induction on k. In Sections 2,3 we will
assume that oY (k) < kT and in 4,5 the assumption is that o%(k) = k. In the results of

Sections 2,3 and 4.1,4.2, there are no restrictions on oV(d) for § < k. In Sections 4.3,4.4,5

we assume that Vo < k. 0Y(a) < a. Most of the claims in those section are proven without

=

the restriction on oY (), in order to provide basis for future work.

The main result of this paper is:

*The work of the second author was partially supported by ISF grant No.1216/18.



Theorem 1.1 Let U be a coherent sequence such that for every a < K, o ( ) < a. Then
For every V-generic filter G C M[U], and every A € VI[G], there is C' C Cqg such that
V[A] = VI[C].

Distinguishing from the case where o ( ) <min(A| 0 <o ()\)), we do not have a classifica-
tion of what are exactly the subforcings which generates the models V[C’]. Let us give some

examples of sub forcing of M[U] in the case of 0¥ (k) = k.

Example 1.2 Let G be a generic with ,Cs be the generic club added by M[(j |, consider
the increasing continuous enumeration of Cg, (Cg(i) | i < k). Assume that Cs(0) > 0, and
consider again the sequence (k, | n < w) which is defined as follows:

Ko = Og(O), Rp+1 = C(;(l{n)
Consider the following tree of measures:
W= (Wx | @€ [s]™)

where W5 = U(k, max(@)). Note here the since Oﬁ(ﬁ) = K, this is well defined. It is not hard
to check the Mathias criteria for the tree-Prikry forcing with W, given in [1], to conclude
that (k, | n < w) is a tree-Prikry generic sequence with respect to W. Note that, since the
sequence of measures (U(k,7) | i < k) is a discrete family of normal measure, this tree-Prikry
forcing falls under the framework of [10] and therefore the model V[(Fan | n < w)] is minimal

above V. This phenomena does not occur in generic extensions of M[U] with o (k) < k.

Example 1.3 The previous example can be made more complex. Let f : [k]<“ — k be any
function. Then (a, | n < w) is defined as follows: ay = Cg(()) and a,41 is obtained by
applying f to some finite C,, € [Ce]<¥ i.e. ani1 = Ca(f(Ch)).

All the notations and basic definitions can be found in [3] section 2.

2 Fat Trees
Definition 2.1 Let U be a coherent sequence of normal measures and 6; < ... < 6, be
measurables with 0¥ (6;) > 0. A U — fat tree on 6, < ... <8, is a tree (T, <7) such that

1. TClh,)="and ()eT.
2. <7 is end-extension i.e. t <p s <t =sNmax(t) + 1

3. T is downward closed in end-extension.



4. For any t € T one of the following holds:

(a) Thereis 5 < Oﬁ(e‘t|+1) such that {a | t™(a) € T} € U041, 5).
(b) [t]=n

We will use some usual notations of trees:

e Succr(t) = {a|t™{a) € T}.

e Note that if the measures in U can be separated i.e. there are (X (a,f) | (o, 8) €

—

Dom(U)) such that X; € U;AVj # iX; ¢ Uj, then we can intersect each set of the form
Sucer(t) with appropriate X; and define Ut(T) = U(Op11, B) if sucp(t) € U(O41, )
(We drop the script (7) when there is no risk of confusion).

o We will assume that if 6; < 6;;; then for every ¢ € lev;(T"), min(sucr(t)) > 6;.
o hi(t)=otp(seT |s<rt)

o lev,(T)={t €T | ht(t) =1i}.

e The height of a tree is ht(T) = max({n < w | lev,(T) # 0}).

e For t € T the tree above t is Ty = {s € T | t <r s}.

e The set of all maximal branches of T" is denoted by mb(T) = levp (7).

o Let JC{0,1,....ht(T)} then T | J = |Jlev;(T)

jeJ
Propositign 2.2 Let T be a U'—fat tree on GL < ... < 0,, Then there is a 01-complete
ultrafilter Up on [[  6; such that mb(T') € Ur.

1<i<ht(T)

Proof. by induction on ht(T'), If ht(T) = 1 just take sucy(()). Let T be a tree with ht(T) = n,
Let a € sucp(()) then by hypothesis there is Ur,. For X C H?L(IT) 0;

XeUpe{a<b|X,clp}el,

where X, = X N ({a} x Hfi(QT) 0;). By definition mb(T) € Ur,. It is routine to check that
U'T is a #1-complete ultrafilter.
|

For any t,t" € mb(T'), the of set t Ut' naturaly orders in one of finitely many orders. For
example, if t = (v, ., ag) and t' = (], afy, o) the following is a possible such interweaving:

<o) =g <oy < ag<ag
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Definition 2.3 An interweaving p is a pair of order embedding (g, ¢’) where g,¢' : ht(T) —
{1,...,k} so that Im(g) U Im(g') = {1,...,k}. Denote A, = Im(g), A, = Im(g') and k = [p|.

Define the iteration associated with p, j, in the following way: the length of the iteration

is |p|, start with the pair (0,0), set AfDO’O) = A§°’°> = (). Assume that we are at some stage
with the pair (ny,ns) and we have performed the mth iteration with critical points k1, ..., K.
Also assume inductively that

(ki i€ Aynm+1) € ji(T), (ki | i € A,Nm+1) € j,(T)

—

If m+1€ A,\ A}, then perform the ultrapower by ji,(U) (x,jicA,nm+1y Which is an ultrafilter
OVer Kmy1 = Jm(0n,) where g(n;) =m+1. lf m+1 € A\ A, we act in a similar manner.
Note that it is impossible that k,,,; is less then some x; by the assumption we made that
for t € lev;(T), min(sucy(t)) > 0;. If m+1 = g(n;) = ¢'(n2) there are two possibilities,
either . .

jm(U)<Hi|’iEApﬂm+l> 7é jm(U)(mljeA;,mmH)
In this case we stop, and declare that the iteration is undefined. Otherwise

—

Im(U) milieaprm+1y = Ju(U) ;1€ AL nm+1)
perform the ultrapower with this measure,

Proposition 2.4 Let T be a lj-fat tree, where U is a discrete family of normal measures.
For any interweaving p

1. If j, is defined, then there is a U-fat tree, Sp, with ht(S,) = |p| and for every s €
mb(Sy), s | Ap,s [ A, € mb(T') interweave as in p. Moreover, Ut = Ur(apmht(r) or
(sp) _ 77(T)
UT r= Ur{A;ﬂht(r)'

2. For any formula ®(X,y1,...,yp) and any parameter f € V we have
M ): q)(jp(f)7 R1y .0y I{|p\) ~ {62 € ["i]lm ’ (I)(f7 &)} € USp
3. We can shrink T to R such that mb(R) € Uy and if t,t' € mb(R) interweave as in p
thent Ut € S,

4. If in p o} < o, then we can shrink T to R such that mb(R) € Ur and for every
t € mb(R) and o € Succg(({)) Nmin(t) there is t' € mb(T) such that t,t" interweave as
p and min(t') = «a.

5. If the iteration j, is not defined then there is S such that mb(S) € Ur and there are
no t,t'" € mb(S) interweaving as in p.



Proof. Let 6; be the meausrables of the interweaving i.e. j,(0;) = ;. Prove 1,2 simultane-
ously, by induction on k we will define S,(,k)— a tree of height k which correspond to step k of
the iteration. S,go) = {0}, and 515” =T | 1 which satisfy 1,2 by Los theorem. Assume that
S;m) is defined and 1,2 hold. Consider the mth step of the iteration. If m +1 € A, \ A)
define S [m = S{™ and for every @ € Lev,,(S5™) define

T)
I

Succsz()mm(o?) = sucp(a@ [ ApNm+1)\ (max(d) +1) € Ué Ayomt1

If m+1€ A\ A, the definition is similar. Assume that m +1 = g(n,) = ¢'(ny), since jj, is
defined

Im(U) mitieaprma1y = Jm(U) w; )5 A nma1)

By 2 of the induction hypothesis it follows the

Levm(SI(,m“)) = {O_Z S Levk(SI(,m)) | ﬁ&[Apm(m+1) = ﬁ&[A;)ﬁ(m_kl)} S USI(,m)

For @ € Levy, (S5™Y) define

SuCCSZ()erl)(O_Z) = Sucep(a [ Ay N (m+1)) Nsucp(@ [ A, N (m+1)) € ﬁ&apm(mﬂ)

To see that 1,2 hold, 1 follows directly from the definition of S}(,mﬂ). For 2, Let (X, y1, ..., Y1)
be any formula and f € V, then

—

Mm+1 ): q)(jm—l-l(f)a K1, 'H)lim—i—l) < Mm ): {04 < Km+1 | cb(]m(f)) K1,y /{maa)} € jm(U)(niﬁeAp}
= {a € [0m]=™ | {a < Omst | ®(f,d,0)} € Usta,nim+1)} € Usém) «{d"a | ®(f,d,a)} € Usémm

Finally, S, = 55" is as wanted.

To see 3, for every @ € Levy,41(S,) define t(@) € T to be & [ A,Nm+ 1 and t/(@) = & |
A, Nm + 1. From 1 it follows that if m + 1 € A, then sucg, (@) € Uyg) and similarly for
m+1¢€ A} Define R inductively, let k; = min(A,), k» = min(A}) then

. - T
sucr(()) = AaeLew, (5,)5UCs, (A) N AgeLen,, (5,)5Ucs, (@) € U<(> )

Assume r € Lev,,(R) is defined, let g(m) = ny and ¢’(m) = ny. Define

- A )N A ) e UM
SUCR(T) a€Levn, (Sp),t(o?):rSUCSp (Oé) aeLevn, (Sp)7t/(d'):rsuc‘5p (Oé) <o

So R € Up. To see 4, suppose that o] < ay and A, = {ny,...,nt}. Define a sequence
inductively, let 7, = (B, ..., Bn,—1) € Sp. Then by 1, sucg (71) € U<(>T), thus

K1 € ji(sucs, (1)) = sucj,s,)(7)



Consider 77, (k1) € levy, (j1(Sp)), pick any 7, such that 77, (k1) "7 € lev,,—1(71(Sy)), then

sucy, (s, (T (k1) ") € 1 (D)) = ky € sucyys,) (T (k1) ")

continuing in this fashion we end up with a witness for the statement
M, = 3t € mb(j,(T)) s.t. (K1, ..., kn),t interweave as in p
Since (3 € sucg, (()) = sucr(()) was arbitrary, it follows that
M, = VB € sucj, () (()) Nr13t € mb(jn(T)) s.t. min(t) = BA (K1, ..., ky), t interweave as in p

By 2,3, we can find R as wanted. To prove 5, we apply 1,2, 3 to first level of the iteration
which is not defiend.

The following lemmas are generalizations of the combinatorical property that were proven
in [2] for product of measures. They can be stated for more general trees but we will restrict
our attention to our needs.

Lemma 2.5 Let U be a sequence of mormal measures and let T" be a ﬁ—fat tree on 01 <
Oy < ... <0,. Forany A < 0y and f : mb(T) — X there is a U-fat tree T" C T such that
mb(T") € Ur and f | mb(T") = const.

Proof. By induction on the heigth of a tree. If ht(T') = 1 it is the case of one measure, Uy,
which is well known. Assume the lemma holds for n and fix T, f such that ht(T) = n + 1.
For @ = (ag,...an—1) € lev,(T) consider sucr(d) € Uz. Define fz : sucp(d) — A by
fa(B) = f(@™ ). Then there exist Hy € Uz homogeneous for fz with color cgz. Consider
the function
g:mb(T [n+1) =X g(d) =ca

Since ht(T' [ n+ 1) = n we can apply the induction hypothesis to g, solet 7" C T [ n+ 1 be
an homogeneous U-fat subtree. Extend T" by adjoining Hg as the successors of @ € mb(T"),
denote the resulting tree by 7*. Note that by the induction, T is a U-fat tree with ht(T*) =

n + 1. It is routine to check that T is as wanted.
[ |

Lemma 2.6 Let T be a ﬁ—fat tree on 01 < ... <0, and f: mb(T) — B where B is any set.
Then there is a U-fat tree ' C T, with mb(T") € Up I C {1,...,ht(T)} such that for any
t,t" € mb(T")

tiI=t11xs f(t)=f({)

We call the set I- a set of important coordinates.



Note that the condition t [ I =t' [ [ < f(t) = f(t') ensures that f is well defined modulo
this relation and the induced function is 1 — 1. We denote this function by f;.

Proof. Again we go by induction on ht(T). For ht(T) = 1 it is well known. Assume
ht(T) =n+ 1 and fix a € levy(T") consider the function

- -

Ja: mb(T<Oé)) — B fa(ﬁ) = f(aA/B)

By the induction hypothesis there is T, C T(oy and I, C {2,...,n + 1} for which the lemma
holds. Shrink lev (T to H € Uy so there is I’ such that I, = I’ for « € H. Let S be the tree
with levy(S) = H and for every o« € H, (5), = T.,. Our strategy is to go over all possible
interweaving of counter examples for the lemma and shrink the tree S to try eliminate them.
A counter example is two elements ¢ = (o, ..., pq1), t' = (o], ..., 1) € mb(S), such that

tTIU{ly £ TTU{I}A () = f(T)

Note that if min(t) = min(t') then by the construction of S, ¢,# cannot be a counter example,
hence a counter example is one with min(t) # min(t'). Fix any interweaving p with ay # o/,
and consider the corresponding iteration, j,. If this iteration is undefined then by 2.4(5) we
can shrink S such that we have eliminated this kind interweaving. If the iteration is defined,
compare j,(f)({x; | 7 € Ap)), jp(f)((k; | j € A)). Suppose the interweaving is such that for
some i € I', a; # o} we claim that

Jo(N ki i€ Ap)) # Jp(f) ({5 | 1 € A))

Otherwise by 2.4(2), we can shrink S so that any ¢,# which interweaves as p, satisfy f(t) =
f(). WLOG suppose that o) < a;and let ¢ = ¢(i), in particular ¢ € A,. We construct
recursively two maximal branches of S, pick any element in ¢t € lev,_;(S,), pick t, < r, €
sucs,(t). Assume that t;, 7, are defined such that for any j € A, N (k+ 1), t; = r;. If
k+1€ A} then Ut(ffzzl._'m, ﬁt(fféilmm depends only on t7(t;, ..., 1) [ A =t (ry,...,m) [ A,
so we can choose

thp1 = Thy1 € sucs, (t (t...tx)) N sucs, (t (r...1x))

If k+1¢€ Ay, extend t,r; randomly. Eventually we obtain t*,7* € mb(S,) with t* [ A =
r* | A, = & and min(¢*) = min(r*) = min(¢). Hence t* [ Ay, r* [ Ay, @ € mb(S), note that
both t* [ A,,&" and r* | A,,d" interweave as in p. Consequently,

F@E 1 Ap) = f(@) = f(r" [ Ap)

This means we found a counter example with the same first coordinate with is a contradiction,
concluding that j,(f)((ki | i € Ap)) # Jp(f)({r; | J € A})) . By 2.4(2) we can shrink S so
that for every ¢,¢' which interweaves as p, f(t) # f(t'), in other words, we have eliminated



all such counter examples which coresponds to p. Next, consider p in which a; = o/ for every
el If
Jo(N) ki | i € Ap)) = Jp(f) (K | 1 € Ap))
then we can shrink S so that whenever ¢, € mb(S) interweave as p, f(t) = f(t'). By 2.4 (4)
we can shrink S further to S* so that for evert ¢ € mb(S*) and o < min(t) there is s € mb(.S)
so that min(s) = a A t, s interweave as in p. We claim that 1 is not an important coordinate
i.e. I' =1 is a set of important coordinate. To see this, assume that ¢,#' € mb(S*). WLOG
assume that min(#') = o < min(¢), by the construction of S*, there is t” € mb(S) such that
t,t" interweave as in p and min(t') = o = min(¢"), also ¢t [ I =¢" [ I. Hence f(t) = f(t")
and
fO)=ft) e« ft)=ft)et"TI=tTTet]I=t]]

Finally if j,(f)((xi | i € Ap)) # Jp(f)((k; | j € A})) then we shrink S and eliminate counter

examples of the form p. Obviously, if we went through all possible interweaving of a counter
examples and eliminated them, then I = I’ U {1} will be a set of important coordinate. H

Given F' : mb(T) — k as in the last lemma, and important coordinates I, it is possible
that the reason for a specific ¢ to be in [ is that for every @, d" € mb(T) if o; # o then for
some j € I, i # j and o # o In this case it is possible to drop i from I since

Gll=d|ledlI\{i}=al1\{i}

In general we can pick I so that no matter how we shrink 7" to S with mb(S) € Ur, for every
i € I there are @, € mb(S) such that & [ I\ {i} =& | I\ {i} and «o; # ). Call such
I minimal set of important coordinates. In the next lemma we will also need the following
definition mb(T) [ I ={t [ I |t € mb(T)}.

Lemma 2.7 LetT and S be lj—fat trees on 0y < ... < 0, k1 < ... < Ky, respectively. Suppose
F :mb(T) — k and G : mb(S) — Kk are any functions with minimal sets of important
coordinates I, J respectively. Then there exists lj—fat subtrees T*, S* with mb(T™*) € Ur and
mb(S*) € Ug such that one of the following holds:

1. mb(T*) [ T =mb(S*) [ J, (F | mb(T*))r,(G | mb(S*)); are well defined on this set
and

(£ [ mb(T7))r = (G | mb(S5%)).s
2. Im(F | mb(T*)) N Im(G | mb(S*)) =0

Proof. The proof is similar to case of product of measures. By induction on (ht(T"), ht(S)),
If ht(T) = ht(S) = 1 then we are in the case of product of measures. If k; < 6; assume
that min(sucy(())) > k1 and if 6; < k; assume that min(sucr(())) > ;. assume that
(ht(T), ht(S)) >rex (1,1). Assume WLOG that k1 > 0y, if ht(T) = 1 define

-, -

Hy : sucr({)) x mb(S) — {0,1}, Hi(a,p) =1« F(a) =G(5)
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Since sucy(()) % S is again a U-fat tree we can shrink S, T to trees so that H; is constantly
c1. As in the case of product of sets, if ¢; = 1 then F,G are constant on large sets, thus
I = J =0 and we are done. Assume that ¢; = 0. If ht(T) > 1, for every a € sucy(()) define
the functions

F,:mb(T,) — X, F,(d)=F(a,d)

Use the induction hypothesis for F,,, G (which have important coordinates I* = I'\ {1}, J* =
J) to obtain T7¥, S* for which mb(T) € Ur,,mb(S®) € Ug such that one of the following:

Lomb(TZ) [ I* = mb(S*) [ J* and (F,, | mb(T2))r~ = (G [ mb(S*)) j«.
2. Im(Fy, | mb(T*)) N Im(G | mb(S®)) = 0.

denote by i, € {1,2} the relevant case. There is H C sucp(()) Uy-large such that i, is
constantly i*. Let 7" be the tree such that sucp(()) = H and T, = T* then T’ € Ur. Let S’
be the tree define as follows:

sucs'(()) = A sucsa(())

aEA;

(Since #; < k; we can take the diagonal intersection) and for every § € sucs/(())
S = Na<p(5%)s

then S’ € Ug. If i* = 1 the we can shrink sucy(()) even more to stabilize the value of
I, = 1% J, = J* Note that I = I* and J* C J, to see this is suffices to prove that 1 ¢ I,
otherwise, fix a # o/ € suer/(()), by the assumption

mb(T?) | I* = mb(S®) | J*

take some § € mb(S,) N mb(Sy) thus § | J* € mb(T) | I* N mb(T%) | I* there are
a e mb(Ty) ,c;’ € mb(T%) such that @ [ I* = o | I* = 3] J*. On one hand, since 1 is
an important coordinate, a # o — F(d) # F(d’). On the other hand, & [ I* = &' | I*
and F(d@) = G(8) = F(&), contradiction. Thus 1 ¢ I. Let (o, @), (o/,@) € mb(T") with
G I*=a | I*, then @ | I* € mb(S") | J* and

F(0,@) = Fa(@) = (F) (@ 1 1) = Gpo(@ | I*) = (Fa) - (@ 1 I) = Far(@) = F(o/, @)

consequently Fi- is a well defined function on mb(T”) and (F | mb(T"))« = (G | mb(S")) j=,
so we may assume that assume ¢* = 2. We repeat the same process only this time we use G
and fixing F', denoting jsz the relevant case, shrink the sets so that j* is constant. In case
j7* = 1 the proof is the same as i* = 1. So we assume that ¢* = j* = 2, meaning that for
every (a,a@) € mb(T"), (8, 5) € mb(S") if @ < S then (3, 5) € mb(S*) and @ € mb(T), by
=2

-,

Fa, @) = Fo(d) # G(B, B)



Similarly, if 8 < a then (o, @) € mb(T?) and § € mb(Ss), hence F(a,d) # G(B, ) by

7% = 2, so the only possibility for equality is o = . If the measures U <(>T ), U are different

we can just separate the sets sucy/ (()), sucs/({)) and avoid the case a = 3, we conclude that
Im(F | mb(T")) N Im(G | mb(S")) =0

If U<(>T) = U<(>S) we can shrink to sucy (()) = sucs/(()) and for every a € sucy (()) we apply the
induction hypothesis to the functions F,, G, this time denoting the cases by r*. If r* = 2,
then we have eliminated the possibility of F(«,d) = G(a,g), together with i* = 2,j* = 2
we are done. Finally, assume 7* = 1, namely that for I\ {1} = I* C{2,...,ht(T)}, J\ {1} =

J* C{2,...,ht(S)}, and every a € sucy(())
mB(TL) 1 1 = mb(S,) [ A (Fy [ mb(TL))r = (Ga | mb(SL).s
It follows that
mb(T") T I" U {1} = Uaesucy (()Mb(T) T I" = Unesueg (0)mb(S,) [ J*=mb(S") [ J* U {1}
Moreover, for every (a, @) [ I*U {1} € mb(T") | I* U {1},
Fropyen@ 1 T U ) = (Fa)io(@ 1 1) = (Ga)oo (@ 1 %) = Gropy(on@ | I U{1})

qu {gé I then I = I* and Fj is well dﬁeﬁned. We claim that 1 ¢ J, to see this, take some
B, " € mb(S’) such that 5y # ] and 5 | J* = ' | J*. there exists such by minimality of .J.

- —

It follows that G(5) # G(5'). Moreover,
B 17" €mb(Sy,) 1 T Nmb(Sy) | J*=mb(T}) | T nmb(Th)

there are @ € mb(T}, ), @ € mb(T},) such that & [ [ = | J* and @ | I = §' | J*. Since F

is well defined on [ it follows that F'(d) = F(&”’) which is impossible since F'(&) = G(/) and

F(d)=G(p'). Sol¢ J. In a similar way, we conclude that 1 € [ iff 1 € J. In any case we
are done. W

3 The proof for short sequences

Let us turn to the theorem for Magidor forcing with oﬁ(m) = k. The analog of the set X (p)
would be the notion of tree of extensions.

—

Definition 3.1 Let p € M[U] be a condition. As usual assume that the large sets in the

condition are separated i.e. B;(p) = H  Bij(p). A tree of extension of p is a U-fat
§<0% (ki(p))

tree T such that each t € T is a legal extension of p i.e. p~t € M[[j |. Moreover we require

that for every ¢ € T\ Levyyr)(T) there exist i < I(p) + 1 and j < 0oY(k;(p)) such that
Sucer(t) C B, j(p)

10



Note that by definition of tree of extensions, if t1,ty € mb(T') are different then p~t, p~ty are
incompatible. To see this, assume ¢ | i = t5 [ ¢ and with out loss of generality ¢;(7) < t2(4).
Then there are j < I(p)+1 and & < oY (k;(p)) such that ¢,(i), (i) € Sucer(t; [ i) C Bje(p),

in particular Oﬁ(t2<i)) = oY(t1(i)) = & Thus t1(i) ¢ () B (p)) N (t2(i — 1),t9(i)) and
J<¢
therefore p~t1, p~ty are incompatible.

—

Proposition 3.2 Let p € M[U] be a condition and T a tree of extensions for p. Then there
exists p* >* p such that T is also a tree of extensions for p* and

Dy = {p""t|t € mb(T)}

is a maximal antichain above p*. In particular, for any generic G with p* € G, |GNDr| = 1.

Proof. Fix (v, A) in p and i < o¥(v). For every t € T N [V]<¥ if sucr(t) € U(v,i) then let
B; = sucp(t), otherwise B; = A. Define

A} = Nernp<e Br N A € U(v, 1)

*

also let A* =U,_5.,A;. Extend (v, A) to (v, A*), doing so for every v in p defines p <* p*.
Now we turn to the proof that D; is a maximal antichain above p*. In the discussion
preceding this lemma we saw that Dr forms a antichain. To see it’s maximality we will use
induction on ht(7T). For ht(T) = 1 we are in the case of extension types. Assume that it
holds for ht(T") = k, And let T be a tree of height k£ + 1. Set

T =T\ mb(T)

then T’_’is a tree of height k. Let p* < ¢, by induction hypothesis there exists ¢t € T" and
r € M[U] such that p*~t,¢q < r. Consider i, v such that sucr(t) € U(v,i) and let v/ > max(t)
be minimal appearing in 7 such that i < oﬁ(u’ ), obviously, v/ < wv. If oﬁ(y’ ) =i, then v/ € A}
therefore v € sucy(t) so we can take t~v" € T'. If follows that ¢, p* = (t~v') < r. If OU(I/,) > 1,

there is B such that (//, BY in r and B € NU(//), in particular
B; C A7 N (max(t),v) C sucy(t)

then any choice v € B; will witness that p* = (t77),q¢ < r™7.
]

Proposition 3.3 LetT be a (j—fat tree of extensions of p. Suppose that for every t € mb(T)
there is a condition py >* p~t. Then there is p* >* p and T* with mb(T*) € Ur such that
for every t € mb(T*), every q > p*~t is compatible with p;.

Proof. The proof is similar to the case o (k) < &, by induction on ht(T). For ht(T) = 1,
this is simply what we have already proved in [3]. The proof of the induction step is the
same. W
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Lemma 3.4 Let p € M[(j] and (A, B) in the steam of p. Consider the decomposition,
p = {(q,r), where g € M[U] [ AANr € M[U] | (\,k). Let g be a name for an ordinal. Then
there is r <* r* such that for any ¢' > q if

da I > d). (¢ ) ||z
then there is a tree of extensions of r*, Ty, such that

vt € mb(T,). {d.r" 1) la

Proof. In order to simplify notation assume p has empty steam i.e. p = ((k, A)) where
A= Y A Fix¢ >qgandn < w. Let @ = (o, ...,an) € [K]<¥, such that r—(a) is a
i<o[7(/{)

condition and i < 0(7(%;). Set
AN@) ={a € A\ (o + 1) | I =" r7(d,0) ((¢,7") |l 2)}, A3 (@) = A\ A}(@)

only one of A%(@), A} (@) is in U(k,4). Denote it by A;(@) and let C;(a@) € {0,1} such that
Ai(@) = AY9(&). Define

(2

Al = ﬁ Aj(@)NAeU(k,i)
aelk]<w
so far Af has the property that for @ € [x]|<“ if Ja € A} and ' >* r(d, ) deciding z then

every a € A7 there is v’ deciding z. For every j < Oﬁ(:‘i) define D](-l)(oq, e Qo1 k) LAY =
{0, 1} by

D](-l)(al, o1, @) = 0 < Fi < oY(k) Cilay, .., an_1,a) =0
There is an homogeneous Agl)(al, iy Q1) € U(K, j) with color C§1)(a1, sy Q1) , as before,

denote the diagonal intersection over all sequences of length n — 1 by A;(l) € U(k,j). In
similar fashion, define recursively for £ < n

D](-k)(al, iy Q) =0 Fi < Oﬁ(K,) C-(k_l)(al, ey Qg ) =0

(2

find homogeneous A§k) € U(k,j) with color C’j(k)(al, wy g ). Eventually, set

:ﬂAZ(k), A/—ﬂA € U(k,i) and A" = U Al

k<n n<w i<ol (k)

Let r), = ((r, A")) >* r. Assume that there exists 7" > r}, such that ( )
(@,a) € [A']=¥ such that r;,A(d’, a) <* r”. Thus, for some i < oY(k), a € A} and iy, .., i,
such that @ = (ay, ..., 1) € A} x Al x ... x A, . It follows that A;(d@) = AY(&). Hence,

M|z. There is

Ci(@) = 0= DM (ay,..;a,) = 0= CV(ay, oy 1) = 0= DP) (g, .00 1) =0 =

12



CP (ay,yom ) =0= .= DM () =0=C™M(() =0
Define the tree T,,: ht(T,,) = n+ 1 we initiate the definition by Succz, ({)) = Aj . Since A}
q
(0
1
takes the color 0 on Aj . Let Sucer (o) = A, keep defining the other levels similarly.
q
The tree T}, has the property that for every t € mb(T},) there is r; >* r;,“t such that (¢, r;)
decide x. By proposition 3.3 we can amalgamate all those r;’s and find r; >* r/ and shrink
T, to Ty such that for every t € Ty, every ¢ > 7,7t is compatible with r;. It follows that
727 t]|z. Finally, since |Q| is small enough we can find 7* > r} and shrink 7} accordingly.
|

is homogeneous, D, ’(a) = 0 for every a € Al , hence, there is i,, such that Dg:l_l)(ozl, *)

117

Lemma 3.5 Assume that |A| < k. Then there ezists C' C Cq such that V[A] = V[C"].

Proof. Let A = (a; | i < A\) where A = |A| < k be an enumeration of A. In V, Pick a
name for A, (g; | i < A). We proceed by a density argument, let p € M[U] | (A, k) be any
condition, using lemma 3.4, find an <*-increasing sequence (p; | i < \) above p and maximal
antichains Z; C M[U] | A such that for every ¢ € Z; there is a U — fat tree T,; such that

any extension of p; from mb(T, ;) together with ¢ decides a;. Since p; € M[U] | (A, k), we
can find p* such that for every ¢ < A p; <* p*. Define the function F,; : mb(T, ;) — On by:

F(d)=~y & (¢pTa)lkFa=7

*k

By lemma 2.6, we can find p* <* p** and restrict F,; to extensions from p** such that
there exists I,; C {1,...,ht(T},;)}, minimal sets of important coordinates of F,;. For any
¢.¢ € Z; use lemma 2.7 for the functions F;, F,,; and shrink T, ; T, ; so that either
Im(Fqﬂ-) N Im(Fq@i) = @ or mb(Tqﬂ) r IQJ‘ = mb(Tq/7Z~) r Jqlﬂ' and (Fq,i)lq,i = (Fq/7i)1q/,i'
Extend p** <* p,, using proposition 3.2. Since |M[(7] [ A| is small enough there is p/
above these p, . By density find such p’ € G, the continuation is identical to the proof for
Oﬁ(,‘i) < K.

|

Corollary 3.6 Suppose that p € I\\/JI[U'] and z is a name such that p - 2 € Cq. Then there
is p* >* p either p*||z or there is a a U-fat tree, T such that Vb € mb(T) p~b - z = max(b).

Moreover, in the later case, if o¥ (k) = r then for every b € mb(T)

p~ (0 {maxb})||o (z)

Proof. Assume that there is no p* >* p which decides z. By 3.4 find 7" with minimal ht(7T)
so that for every t € mb(T') p~t||z. Assume that {v1,...,v,,} are the ordinals appearing in

13



p, denote z; the forced value and shrink 7" so that the function

f@z{i "

n+1 xt%{yla“wyn}

is constant. if f would be constantly some ¢ < n then there is p* >* p such that p* IF z = 15,
contradiction. So we may assume that z; ¢ {v1, ..., v, }. Keep shrinking 7" so that there is a
unique i < ht(7T'), such that x; € [t(i),t(i + 1)) (where t(ht(T) + 1) = k). If i < ht(T) then
for every t € Lev;(t), the function g; : mb((T);) — &, define by ¢;(s) = z;~, is regressive and
therefore can be stabilized on some S; C T;. so that for every t € Sy, x4~y = 34, depending
only on t. Thus the tree T | i already decides z, contradiction the minimality of ht(T).
Hence it most be that z; > t(ht(7T')) = max(t). Again we shrink the tree so that z; > max(t)
or z; = max(t). Toward a contradiction, assume that x; > max(t), then x; ¢ {v1,...,v,,} Ut
so we can shrink the sets in p~t so that p~t IF z = x; ¢ Cg, contradiction. Hence for every

t € mb(T) p~t IF x = max(t). Finally, if Oﬁ(/{) — k then the measures in U are separated

using oﬁ(u), so for every t € mb(T)
0™ — ~ 5 sucr(t\ {max(t)}) € U(k,~)

and therefore . . B
p~(b\ {maxb})||o” (z)

The following lemma is analogous to a lemma proven in [1] for Prikry forcing.
Lemma 3.7 Let {d; | i < A < k} € V[C¢]| be some set of ordinals such that
Con{d; i<} =10

then there is X € () U(k,1) such that

i<o(k)

Proof. Let us start with a single name of an ordinal g and p € G such that p IF 2 ¢ Cq.
Assume that p = (r, (k, A)), then by 3.4 there is A} C A and a maximal antichain Z C

M[[j [ max(q)| such that for every ¢ € Z there is a tree T, for which every be mb(T,),

-

(g, 4;) b1k 2 = f,(b)
For every b, f,(b) ¢ b hence it falls in one of the intervals

(0> bl), (51, bz)> ooy (bht(Tq)a /f)

let ny be the number of this interval. Using lemma 2.5 there we can take A;* C A} and a

-

tree Ty C T, on which the value nj is constantly n* now we can find A>** such that f,(b)
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depends only on by, ...,b,» and f,(b1,...,by+) > b+ hence T; [ n* =5, decides g. Finally
we can find B, C A7™, such that every d € [B,]<“ is a legal extension. It must be that
fq(b1, ..., bpe) & By \ bys, otherwise, the condition (g, (k, By)) " (b1, ..., bpx, fy(b1, ..., bn+)) IF 2 €
C¢ contradiction. Also f,(by,...,by+) > by« and we conclude that f,(by,...,b,+) ¢ B,. Let
A, = () B,, we claim that

q€Z
p<"(r(r,A)) IFz ¢ Ay
Otherwise, there is ¢ € Z, b € mb(S,) and p’ such that
(g, (5, AN B <P Ik z € A,

-

but also p' |-z = f,(b) so f,(b1,...,b,+) € A, C B, which is a contradiction. Now the lemma
follows easily, Let {d; | i < A < k} € V[C¢| be some set of ordinals such that

CGm{di|i<)\}:®

then we can take names {d; | © < A} and some p forcing Vi < A\d; ¢ C¢, as before we can
define the sets A; and find an increasing <* sequence (r, p;), find p* which bounds all of them
and A* = () A4;, then p* forces that Vi < X d; ¢ A*. By density argument we can find such

<A
in G.
[ |

4 The proof for subsets of x

In the proof of Oﬁ(l{) < K we use the fact that |Cg| < , which is no longer true if o” (k) > x.

4.1 Stabilization of Subsets of s

Let us start by proving a lemma which will help us code the information we need into one
sequence.

Proposition 4.1 IfC* C Cg be any subset and C"" C Cg be countable, then there is C' C Cg
such that C* U C" C C" and C*,C" € V[C']

Proof. To find such C’, we start with names C*, (¢, | n < w) for C* and C"” respectively and

pIFEC (e | n<w) CCa

15



We proceed by a density argument, let p € M[U’ | denote by %(LO) = Cp, fy,(fﬂ) be a name such

that
p Iy = sup({z € C* Ny | o¥(2) > 0" (1 M)} U {0})

enumerate (’yr(bk) | n,k <w)= (| n<w). Note that for every n,k < w

plEy =0V € Cg and 4 < 4

n n

This is since C¢ is closed and for every a € Cq there is & < a such that for every 7 €

Can (& a), oV(y) < oﬁ(a). Suppose that (85 | n < w) is defined and there is p <* pj, such
that
Vn < w pg Ik 6% € Cq

Use corollary 3.6 to find pp <* pgi1, trees T¥ such that for every b€ mb(Ték)) pkﬁrlg I+

é,(lk) — max(b). consider the function FF Lev, (quk)) — K

(TF)—1
F®(@) = B pra - o7 (5%) = 3

)

Shrink 7,¥ , extend py1 accordingly and find important coordinates 11", For every j € o

let fy?(fj)» be a name for the unige jth ordinal in a branch that ends with §§Lk) in the tree T7.
As before let 4™

. ) be a name name such that

m+1 * m 7 7 m
Pt IF s = sup({z € € N | o7 (x) > o (1)} U {0})

enumerate <77(173) | n,j,m < w) as (65 | n < w). Note that pey IF 753) € Cg. Use

o-closure to find p, <* p, and shrink all the trees to be extension tree of p,. By density
there is such p,, € G. Define

C. = {(8")c | n.k < w)
Since p,, I+ §7(1k) € Cg, C. C Cg. We claim that C, € V[A]. Work inside V[A], recall that
C".C* € V[A] therefore ((6%))¢ | n < w) is definable in V[A]. Assume we have defines
((5@ | n < w), choose D,, € Fﬁo)’_l[{(@(ﬁ))g}] (definable in V[A]). Similar to 3.5, it follows
that j € I\ (Ynj)a = Dn(j). Again, since C* € V[A4] it follows that (65 Ng | n < w) is
definable in V[NA]. So we conclude that C, € V[A]. Define

C'=C"UC, € V[A]

We claim that C, € V[C'], So it remains to prove that C, € V[C’] let (\; | i < otp(Cy)), be
a countable increasing enumeration of C* and let (); | i < otp(C\)) re numerate

O | nym < w)

accordingly. Note that this order is in V' since no new reals are added. More over the
relation of ), ..., \;, are the branch of ); and ); is a name for sup({z € C* N \; | oY (z) >
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oﬁ(g\i)} U {0}) can be coded as a real hence we can extend p, to a condition p € G that
forces all this information. Also let I = I(C, \ C*,C,) C otp(C,), so I € V. Work in V[C"],
Inductively we will define (8; | i < otp(C.)). Bo = Ao, Assume that (8; | j < i) is defined, in

particular the indices of the branch of )\; = (57(Lk), is 47 < ...ip < 1 and ¢* < 7 is the index of
the supremum. Define

B; =min({z € C'\{8; | j € INi} | &> B Ao”(x) > (FM) 00(Biy, s B )} U{O})

This is a legitimate definition in V[C"]. Let us prove that §; = \;, inductively assume that
(Bj 1§ <i)=(\]j<i)then

{Biljelni}=(CA\C)NN

and therefore \; € C"\ {B; | i € I Np}, also \; > \;, = 5= and Fqgk)(ﬁil, o Biy) = olj()\i)
hence \; > B;. If B; < \; then B; € (\i+, \;) with oﬁ(ﬁi) > oﬁ(/\i) which is a contradiction
to the definition of A;«. Thus C, € V[C’]. From this it will follow that C, \ C*,C" € V[C']
since they are all subset of a countable set in V[C'], therefore C* = C" \ (C* \ C,) € V[

which is what we needed.
[ |

—

Lemma 4.2 Assume oV (k) = k and let A € V|G|, sup(A) = k. Assume that 3C* C Cg
such that
1. C* € V[A] andVa < k ANa € V[C*]

2. cfV(k) < K

Then 3C" C Cq such that V[A] = V[C].

Proof. 1If |C*| < k then we can proceed as in the case when 0(7(/4) < k. Assume that |C*| = &,

since C* C Cg and oY(k) = K, we can construct a cofinal sequence (o, | n < w) € V[C*]
unbounded and cofinal in k. we define in V[A] as before (J, | n < w) that codes AN a,
in V[C*], by the previous section we can find C” C Cg such that |C”| = w such that
VI(0n | n < w)] = V[C"]. By proposition 4.1, in V[A] we can find some C’ C C¢ such that
C*,C" € VIC'], then V[A] =V[C']. &

Consider the crucial set
Xa={v <k|visacardinal cf’ (v) > cfM(v)}

which is defined in V[A]. Note also that X4 C Lim(Cg), and that is not necessarily closed:
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Example 4.3 If there is o € Cg such that 0(7(04) = a™, then « stays regular in V[G]. Set
A = Cg, then X4 N« will be unbounded in «, but a ¢ X 4.

However, a final segment of X4 is closed:

Lemma 4.4 Suppose that Oﬁ(li) = K, and let K* < K be such that for every £ € CoN(Kk*, k),
oY(€) <&, then X4\ k* is closed.

Proof. Since the only cardinals that changed cofinality in V' [G] are limit points of the Magidor
club, X4 C Lim(Cs). Moving to V[G], assume that

Co = (ka | @ < K)

is the increasing enumeration. For every o < k with oY(a) = «, there is in C; a maximal
member o* < a such that oY (kq+) > k-, hence if we define the sequence:

Qg = ka*—‘rl; Opt1 = Ra,

it must be unbounded in «, otherwise it’s limit, o/, would be a point of the Magidor club
which satisfy oY (o) > o contradicting the maximality of a*. If a € Cg and oY(a) < «,
then otp(Ce N k,) < K,. We will prove that X4 \ k, is a club. To it is closed, note that is
sup(X4 N (kp, ) = a, then a € Lim(Cg) and therefore o € C¢ \ k), hence otp(X4 Na) <
otp(Ce N a) < a, hence cf(a) < a as witnnessed by X, N a, which implies that o € X 4.
|

There are trivial examples in which the set X4 is bounded. We will use a new kind of
"freshness” of sets A € V[G], to see get that X4 is unbounded.

Definition 4.5 Let A C On, we say that A stabilizes if there is § < k such that Va <
sup(A), Ana e V|G| ]

Proposition 4.6 Suppose that oﬁ(m) =k, A € VIG] is a set of ordinals and (AN « |
a < sup(A)) does not stabilize and for every a < sup(A) there is C' C Cq such that
VIANa] =V[C"?. Then X4 is unbounded in . In particular, then cfVl (k) < k.

Proof. To see that it is unbounded, let § < k, take some [ such that ANS ¢ V|G | max(6, k,)
which exists by our assumption that A does not stabilize, By the inductive assumption, there
exists C' C Cg such that

VIC'|=V[ANB] CVI[A]

'In fact, we can also prove it for oﬁ(f) < €F
2This assumption is simply an inductive assumption about sup(A4). We have this assumption if A C x by
the part for short sequences.
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It is impossible that C" \ (Cs N max(d, x,)) is finite, otherwise
ANpeVI[C' CVIG | max(0,k,)]

which contradicts the choice of 8. There is a limit point v of C" above max(4, x,,), it is clear
that v € X4 \ k,. If otp(X4) < k then s changes cofinality in V[A], otherwise

Xa=(zp[B<r)

As before define inductively

Yo = min(Xa \ K*), Yn+1 = Ty,

So sup(y, | n < w) = K and cfV¥ (k) = w.

4.2 Subsets of kK which stabilizes

In this section we assume that A C k and |A| = x and the sequence (AN« | o < k) stabilizes,
which means that there is £* < k such that

Va <k ANa e V[CqeNEK

Note that if A € V[CgN A for some A < & then we can use the induction, so we also assume
that A is fresh with respect to the models V[Cg N A]. We will use freshness and work a little
bit to prove cfY(k) < k while finding C” is easy. Then we use of lemma 4.2.

Lemma 4.7 There is C" C Cg such that C' € V[A] and Va <k ANa e V[C].

Proof. Let {(a; | i < cfYl(k)) € V[A] be unbounded in . Pick (D; | i < cfV(k)) € V[A]
such that V[D;] = V[A N «;] and each D; is generic. Then, D; C* Cg N k*. Assume that
D; C k*. If k is singular in V[A], we can code the sequence {«; | i < cfV4(k)) as a bounded
subset of k and use previous results. If « is regular in V[A] (In the rest of this section we will
see that this situation is impossible), then there is £ C k unbounded and D, C x* generic
such that for every i € E, D; = D,. It is routine to check that C' = D, N Cq € V]A] is as
wanted. W

It remains to prove that x changes cofinality in V[A]. Let us settle first a simple case:

Lemma 4.8 Assume that A is such that V5 < k there is & < k such that AN« ¢ V[ANS],
then cfV M (k) < k.
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Proof. Define a sequence («; | ¢ < 8), in the following way, ap = 0, for limit ¢ a5 = sup(as |
f < d). In successor stage let

agir =min(y | ANy ¢ V[AN ag))

this is well defined by our assumption about A. In V|G|, each ¢ < € can be mapped to
C,, € Cq N K" thus || < 2% < k.
|

For general A, we fix C' C k* N Cq such that V3 < k AN G € V[C']. Find a subforcing

P of M[U] | & for which C" is generic [8] and let Q = (M[U] | £*)/C". It remains to force
above V[C"] with Q x M[U] | (s*, ). Note for every x* < o < k& with 0¥ (o) > 0 we have

1Q x M[U] | (k% @)|] < min(v > a | oﬁ(y) =1)

Let A be a name for A in the forcing Q x M[U] | (s*, %) and assume that I+ "Vor AN is old”.

— —

Lemma 4.9 Let p € M[U] | (k*, k) and @~ «a € [K]<¥ such that p~d"a € M[U] | (k*, k)
and oY (a) = 0. Consider the decomposition of

pma"a = (pca; @, p>a)
then there is Zgo C Q x M[U] | (k*, max(&)) Mazimal Anti chain and psq <* pa.a such that

Vq € Zzo (¢, 0, paa)| ANa

Proof. Fix @, a as in the statement, For each ¢ € Q x M[U] I (k*, max(d)) we will find ¢ < ¢

—

and pe, <* p, € M[U] | (o, k) such that (¢, a, ps)||A N a. Take some generic
H CQxM[U] | (x*, max(a))

—

with ¢ € H, and denote (A)g the M[U] | («, k)-name in V[C'][H] derived from A. We use
the Prikry condition to find p-, <* p, such that p, I (4)g N = X for some X € V[C'][H],
it is possible to find such X since above «, the order <* is a-closed. Note that, X € V[’
since we assumed I "Va A N« is old” Hence there is ¢ < ¢’ such that

¢ F(pFANa=X)

—

Thus (¢, o, py) F ANa = X. Again by a-closure of <* above a and since Q x M[U] |
(k*, max(d)) is of small cardinality, we can find ps, such that for p, <* ps, for every q.

The definition of Zz, is a simple use of by Zorn’s lemma and the property of ps q.
[

Assume that pz o = ((v1, B1), ..., (Un, By), (K, B)) and that v; < max(d) < v;41, then for
every i+ 1 < j shrink the sets B;(0) so that Zz, does not depend on « nut only on & and
J. We denote these antichains by Zg ;.
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—

Lemma 4.10 For every p € M[U]| | (k*, k) there is p <* p* such that for all "« € [K]<¥

—

such that p*~ad"a € M[U]| | (k*, k) with oﬁ(a) =0, pao <" p%,. In particular

Vq c Z&JVO& S B](()) <Q7057p>;a>|| A Na

Proof.  Assume p = ((v1, By), ..., (Vn, By)(k, B)). For every d,a < v; there is a pair
(v;, Bi(@, ) in pg o, define

B = A Bya,a)enU(y)

! a,a<v
it follows that p* = ((v1, BY), ...(v,, B), (k, B*)) is as wanted.
|

Lemma 4.11 There is p* <* p** = ({11, By), ..., (Un, By), (K, B)) and sets A;(q,d) for d €

—

[K]<¥ and q € Zz ;, such that for every o € B;(0), such that p*~a~a € M[U]| | (k*, k) and

(g, a,pS) IF ANa=A;(¢,d)Na

Proof. Fix d@ and ¢ € Zz;. By the previous lemma, for every o € Bj(0), we can find
aj(q, @, a) C o such that
(g, Oz,pio) FANa= aj<q7 a, a)

By ineffability of v; there is B}(0) C B;(0) in U(v;,0) and Aj(q, @) such that
Va € Bj(0) Aj(q,d@) Na = aj(q, d, o)

Shrink B} to B’ so obtain p**.
[

Lemma 4.12 Assume that 0[7(&) =k, then cfYM (k) < k.

Proof. Work in V[A], by density find p** € G | (k*, k) with the properties described in
lemma 4.11. There is Some £ < k such that

Oy IF Vo € Ca \ &, oﬁ(a) <a

Assume that £ = 0, otherwise just work above &. In V[G], let (k; | ¢ < k) be the enumeration
of Cg, let us define in V[A] a sequence (yy | A < 6) where < k. vy = Ko + 1, at limit
point 0 < k, denote by 5 = sup(yx | A < 0) < k. if 75 = & then define § = ¢ and stop the
definition, in this case we are done since cfV(xk) < § < k. Assume that 75 < &, define
vs =75 + 1. At successor stage, assume that § = A+ 1, let

n(q,d) = max(min(AAA; (¢, @)), ...,min(AAA,(q,d))) < Kk
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this is well define since A;(¢) € V[C'] and by freshness assumption on A, A ¢ V[C’], in
particular it must be that A # A;(¢, @). Define

75 =sup(n(q,@) | ¢ € Zzi, @ € [\]™) < &

If v5 = Kk as before we stop the definition since we found a short cofinal sequence in &,
otherwise, define 75 = 75 + 1. Assume that the definition goes up to x and (7, | A < k)
is defined. Let us show that VA <k vy, > ky. At 0 and limit stage it is an clear from the
definition and continuity. Assume that vy > Ky, since 41 is successor in Cg, oV (kx41) = 0,
so find C, such that p**~Ckapy € G | (5%, k). There is j such that k4 € B5*(0)

6,5 SQxMU] | (v, max(C.))

—

By the induction hypothesis max(C\) < ky < . Zg, ; is a maximal anti chain so there is

q€ Zg. i such that t* = (q, kKay1, P;ZHJ € G and t* IF ANk = Aj(q, Ci) N kx4 but then
it must be that ANk 1 = A;j(q, @) N kx41. This means that kx4 < n(g, é*) < Va1 <M
as wanted. Let us define an w-sequence unbounded in &, ay = v and @, 41 = Va, , by the
assumption about ¢ at the beginning of the proof, it follows that k = sup(ka, | n < w) <
Sup(,yan I n < CL)) S K.

4.3 Subsets of k which does not stabilize

Assume that A does not stabilize. By proposition 4.6, since we assume that oﬁ(ﬁ) = K, then
X4 is a club, and & changes cofinality in V'[A].

It doesn’t have to be the case that cfVl (k) = w, but c¢fV (k) most be some member
of the generic club that will eventually change it’s cofinality to w. For example, using the
enumeration Cg = (k; | ¢ < k) and the canonical sequence «,, that was defined in the last
lemma, we can define in V[G] the set

A= U{’{an—i—a | @ < K}

n<w

then A does not stabilize. Moreover, we cannot construct the sequence («, | n < w) or any

other w-sequence unbounded in & inside V[A] since A is generic for the forcing M[U | (k, k)]
(k) <K

[
which does not change the cofinality of x to w. For this kind of examples the case oV
suffices.

Definition 4.13 A set D is generic if for every § € Lim(D), 6 € X4 and for every Y €
U(9) there is £ < § such that DN (£,5) C Y.
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Lemma 4.14 If D € V[G] is generic then D\ Cg is finite. In particular, if sup(D) is limit,
then sup(D) € Lim(Cg).

Proof. Otherwise there let 6 < sup(D) be minimal such that |D N ¢\ Cg| > w then
d € Lim(D). So there most be some infinite {d,, | n <w} C D\ Cg unbounded in §. By 3.7
there is Y € (U (0) such that Y N {d, | n <w} = 0 contradicting the condition of D.1

We denote X C* YV if X \ Y is finite. Also define X =* YV if X C* Y AY C* X,
equivalently, if X A'Y is finite.

Lemma 4.15 Let (D; | i < 0) € V[A] be a sequence of generic subsets of k such that for
every i < 6 min(D;) > 0 and 0 is reqular in V[A]. Then there is (D} | i < 0) € V[A] such
that:

1. UDys is generic.
i<0

2. Vi < 0,D; =* D} C sup(D;).

Proof. By removing finitely many elements from every D;, we can assume that otp(D;) is a

limit ordinal and therefore sup(D;) € X4. Denote D = |J D; and v* = sup(D) > 6. Note
<A

that v* € X4, since Cg is closed, and v* = sup(sup(D;) | ¢ < A). Proceed by induction on

v*, By lemma 4.14, D; \ C¢ is finite, it follows that |D \ Cg| < 6. We would like to remove

the noise in D by intersecting it with a large set, define a sequence (Y, | &« < A\ < v*") of

sets such that

1. Vi < vt Y, e NU®W).

2. For every i < j < A Y;\Y, is bounded in v*.

If for every Y € NU(v*) D\ 'Y is bounded in v*, define A = 0. Otherwise, let Yy € NU (v*)
such that D\ Yj is unbounded in v*. Assume that (Y, | a < ) is defined and satisfy 1,2
for some B < v*t. If a+ 1= B let Y =Yj. If B is limit, find (8; | i < cfV(B) <v*) €V a
sequence cofinal in 3. The sequence (Y, | i < ¢fV(83)), might not be in V, but by v*T-c.c.
there is a sequence (Z; | i < v*) covering it. In particular,
Y = A Z el
i<v*

Note that for every j < 8 there is 3; such that j < ;, hence Y, \ Y; is bounded by some
a < v*. Moreover, there is p < v* such that Y3 = Z,, and by the definition of diagonal
intersection, Y\ Y3, C p < v*. It follows that

YOV, = [(Y 0 Ya) \ YUY\ Ye) \ V3] € (Y5 \ V) U (Y'\ V5,) € max(a,i) < v
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thus Y’ \ Y] is bounded in v*. If for every Y € NU(v*), DNY’\ 'Y is bounded in v*, stop
the recursion at A = f3, else let Y be some set witnessing the opposite, define Y3 =Y NY".
To see that this process reaches the halting condition before v**, assume otherwise, then we
have defined a sequence (Y; | i < v**). For every a < v*", DNY, \ Y,11 is unbounded in
v*. Also there is an ordinal £ < v* such that Cg N (&, v*) C Y, thus

DNY,\Yar1 CEU(D\Cg)

There only v* many such subsets, since |D \ Cg| < 6 and v* € Lim(C¢) and thus a strong
limit. Moreover, the the function

OéHDﬂYa\Ya+1

is 1 — 1 since if & < f < v*" then Y \ Y41 is bounded by some ¢ < v*. Take some
v € DNY,\ Yar1 above € then v ¢ Y3 and in particular not in DN Y} \ Ys44, contradiction.
So the halting condition must be reached at some A\ < v*". Let (A, | @ < cfY()\)) € V be
some sequence cofinal in A. Find a covering sequence (Z; | i < v*), and define

Y*= A ZenU®Ww), D'=DNY*

<v*

By the definition of the halting condition:
Claim 1 For every Y € " U(v*), D*\ Y is bounded in v*

Claim 2 D*\ Cg is bounded in v*.

Proof. Toward a contradiction, assume there is an infinite {3; | i < cfVI4(v*)} C D*\ Cq
and sup(3; | i < cfV(v*) = v*. Since v* € Xy, cfV(v*) < v* and by 3.7, there most
be Zy € (U (v*) such that Zy N {B; | i < v*} = 0. But then {f; | i < v*} C D*\ Z, which
contradicts claim 1.
.claim 2
In V[A], let & < v* be an ordinal such that D* \ & is generic. By claim 2 such a & exists.
Consider the set

ZO —{v < | Y Nnvenlv)}

to see that Z© e NU(v*), let i < oﬁ(y*), then ju-»(Y*)Nv* =Y* e NU(V*§). By
£<i

coherency, the order of v* in jy (-« (U) is ¢, which implies that

DU =niD)w)
By definition v* € j(Z©) thus Z© € U(v*,i) for every i < oY (v*) and Z© € NU(v*). By
claim 2, we can find & < v* such that Lim(D*)\ & C Z©. Let ny = max(&1,&) < v*.

The sets D; Ny are also generic, so we may apply the induction hypothesis to the sequence
(D;Nmo | i <0) to find (D] | i < ) such that
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1. |JD; is generic.
<6

Define
D =D;w(D; Y™\ )

Claim 3 D; =* D; C sup(D;) for every i < .

Proof. It is clear that D} C* D,. Toward a contradiction,assume that there is i < 6 and
0 < sup(D;) minimal such that

(D;Nd)\ (DfNd)| >w

By the definition of D}, § > 1y and § € Lim(D;). By the definition of 1, 6 € Z(® which
means that § N Y* € (U(J). Since D; is generic, there is £ < ¢ such that D; N (£,d) C Y™,
in particular

D;N(§0) =D;NnY*N (&) =DiN(,0)
So (D;N6)\ (DfNé)=(D;NE)\ (Df NE), this is a contradiction to the minimality of J.
.claim 3
'UeD;F =D*\ny U (}U@Dg) is generic as the union of two generics.
1< 1<

.lemma4.15

Lemma 4.16 Assume that A\ = cfY (k) and for every 0 < a < k, o(a) < a. Then there
is a sequence (f; | i < \) € V]A] such that

1. (Bi | i < A) is increasing and continuous of elements of X 4.
2. Bp =min(X,), sup(f; | i < A) = k.

3. If D C B; is generic then for any Y C otp(D), Y € V[A], there is j < i and Dy C j;
such that VY] = V[Dy].

4. B; € Xa (Recall that X4 is the set of all measurables in V' that changed cofinality in
V[A]).

Proof. Fix in V[A] some cofinal sequence (o; | i < ) such that {a; | i < A} € X4. Since we
assumed V0 < a < K, o(a) < «, we have that otp(Ce N ;) < ;. We would like to bound
in V[A] the order type of D’s which deviate from Cg N« at finitely many places. For every
a denote

& = sup(otp(D) | D C «is generic)
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By lemma 4.14, every D participating in the sup deviates from Cg at finitely many places,
and therefore @ < otp(Cg N ) + w, if @ € Lim(Cg) then & < otp(Cg N a) < a. Define in
VIA]
a ' =max((@+1)NX4) < a
o~ ) — max((ofzz/k +1)NXy) < ak

Since for every k, a™* € X4 C Lim(Cg) we have a~**1) < o~* and this definitions reach 0
after finitely many steps. Define a new sequence: fy = min(X,). From «q find the last kg
such that g™ > B, and define

-1
/81 = Oy 07 ceey Bko =Qy , ﬁko-‘rl = Oy

Continuing in this fashion, assume «; = f; is defined such that i < j <i+w, let k; < w be
last such that ozi_ff > o; and define

_k. —1
5j+1 =0, e 5j+k¢ = Q;1, 5j+ki+1 = Q41

and i +1 < j <7+ 1+w. At limit points we want to stay continuous so f; is defined to
be the limit, it is clear o; = ;. Claim that (3; | i < \) is as wanted. (1), (2), (4) are trivial,
assume D C §; is generic, then otp(D) < ;' < 8. If i is limit then otp(D) < $; for some
J < i and we use can use the last section. Otherwise i = j + 1, again, if otp(D) < f3; we are
done, so assume that otp(D) > f;, it follows that from the definition of 5;;; that

max(X4 Notp(D)) = f;

let Y C otp(D), there is C C Cg Notp(D), such that V[Y] = V[C]. There cannot be a limit
point y of C" above §; since C' € V[Y] C V[A] thus v € X4, which contradicts the definition

of ;. So removing finitely many ordinals we can assume that C' C ; is a suitable generic.
[

From now on the sequence (f; | i < ) is fixed.

Proposition 4.17 Let D, D’ € V[A] be generic sets, bounded in . Then there is D* C
sup(D U D’) also generic such that D* € V[A], D, D" € V[D*] and DU D" C D*.

Proof. By induction on sup(D U D') = v < k. For v < fy this is trivial since we can just
take the union and the indices are in V. Assume that it is true for every a < v, define
Dy = DUD" € V[A] and consider I(D, Dy), (D', Dy) € V[A]. Let i < A be minimal such
that ; > v By the property in lemma 4.16 of ; and genericity of Dy, there is some j < ¢
and a generic £ C f3; such that I(D, D), (D', Do) € V[E] C V[A]. Use the induction
hypothesis to find D; € V[A] good for E, Dy N B;. Define D* = Dy U (D, \ ;) € V[A], then
sup(D*) = v. It is routine to see that D* is as wanted.

|
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Lemma 4.18 Assume that 0 < k is a regular cardinal in V[A] and (D; | i < 0) € V[A] is
a sequence of generic sets such that D; C 0; < k and 0;’s are non decreasing. Then there is
(D; | i< 0) € V[A] such that

1. UDy is generic.
<6

2.1 <i — Df C*Dj,.

Proof. Work in V[A], define D = Dy. At successor stage, define use proposition 4.17 to
find D}, generic such that D} U Doy C D}, and Dyy1 € V[D},]. At limit stage 0,
consider & = cfV(§) and §* = max(X 4 N ¢'). Since cfV4(0) is regular in V[A] it follows
that §* < ¢'. Let (d; | i < ¢’) be cofinal in §. Then Dj, N 0* stabilizes in =* at some i*. To
see this, note that |Cg N §*| < 0* and §* stays strong limit in V'[G], hence

{Dj né i< &} <219 [5)< = 6" < &

Thus there is a value D, = Dj 0" repeating cofinally many times. Since the sequence is
C*-increasing, for every ¢ > ¢* there is j > ¢ such that D;;j N §* = D,, therefore

D. C* D; 6" C* D; N&* =" D,

So DifN¢* =* D,. Use lemma 4.15 for the sequence (Ds, \ 0’ | i < ¢’) and obtain the sequence
(E; | i < d'). Note that by genericity, Dj M (6%, ¢') must be finite, otherwise there is dome
limit point of D; in the interval (0*,¢’). Now limit points of D; are also in X4, this is a
contradiction to the definition of 6*. Define E = igyEi C sup(bs, | i < ¢') < 05, then E is

generic and for every i < ¢', Dy \ ¢’ C* E C 5. Let
D' =D,wWE C0bs

Then D' is generic and Dj, C* D'. Finally, Dj is defined by proposition 4.17 and the generics
D', Ds. 1t is clear that Ds C* D5 C 6, that it is generic and that Ds € V[D3]. Let oo < 9,
find o < §; < ¢ then

D; € D5, = D5 No"w D5 \ 6" C" D'N 6" w B € Dj

So the sequence (D} | i < #) is defined. The union my not be generic so we use lemma 4.15
again in the same way as in the limit stage, let 0* = sup(X4N#). Since V[A] = 0 is regular,
0* < 6. Consider the C*-increasing sequence (D N 6* | i < ), it =*-stabilizes from some i*
on the va;ue D,. Use lemma 4.15 for the sequence (D \ 6 | i < 0) which yield the sequence
(E; | i <0). For every i < 6 define

F=D:ND,wE;
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We note that Df =* F¥. So V[D}] = VI[F}|, D; C* F} C §; and

<6 j<o

which is the union of two generics. The sequence (F; | i < #) is still C*-increasing since
Di=*Fr m

The following theorem is what we need to finish the proof of the main result for subsets
of k which does not stabilize.

Theorem 4.19 Assume that for every o < k, 0% (o) < o Let (D; | i < A) € V[A] be a
sequence of generics such that for every i < \, D; C ;. Then there is (D} | i < \) € V[A]
such that

1. Vi <\, D;,Df € V[ D?].
<A

2. \J Dy is generic.

i<
3. D; C* Dy C B;.

4. (Df | i< \) is C*-increasing.

Proof. Use 4.18 to get (DY | i < ) such

1. i< — DYC* DY
2. D; C* D) C 5

3. DY is generic.

<A

4. D; € V[DY].
Define sequences <Df | i < A) for £ < kT recursively such that for every i < A,

1. & <& — DS ¢ D
2. Vi < j.D; C* DS
3. D; C f;

£ . .
4. U D; is generic.
J<A

28



5. DY € V[D;).

6. there is p; < 4 such that I(Df, 'U/\Df- N ;) € VIDSM]
j<

At successor stage, assume (Df* | i < \) is defined, since Df is generic, there is p; < j such
that 1(D$, (U Df*) N B;) is coded by a generic subset Y* C 3,.. We need to pick p; carefully
<A

since at 3,, we wont be able to code more the 3, many sets. To do this, we make use of the
following subsequence of the f;’s:

Yo = 607 Yn+1 = 5%

the sequence 7, reaches A\ after finitely many steps, otherwise we would have found some
point below x with oV («) > « which i a contradiction. Now for the choice of p;, for successor
Jj p;j = j — 1. For limit j, assume v, < j < 41 then choose o < p; < j. Note that for a
specific 7, <@ < ey, {7 | pj =i} C 1 = By, < Bic Code (Y | pj = 4) as a single subset
X; of ;. Pick some sequence (E; | i < \) of generic sets E; C 3; and V[X;, Df] = V[E,|’s
and find for each ¢ < X using 4.17 a generic F; such that E; U D C F; and E;, D{ € V[F}].
By lemma 4.18 we may find (D! | i < \) such that

1. U D is generic.
<A

2. F, € V[DoH].
3. F, C* D¢t C

4. i <i — DIt Cr Dyt

For limit § < %, pick a cofinal sequence (§; | i < cfVI4(4)). Note that &' = cfVI(§) < .
For every j < A apply lemma 4.18 to the sequence <D§E | £ < ¢') and obtain (D¢ | € < &)
and let

F; = §L<_J§/Dj7€
Then F; C f3; is generic. As in the successor stage, apply proposition 4.17 to Ff and D;-) and
get (G; | j < A) generic such that F; C G; C f; and DY € V[G]]. Define (D} | j < A) using
4.18 on the sequence (G; | j < A). Let a < 0, there is £ < ¢’ such that j < J¢ then

« * 6 * * 1
Hence the sequence <D§ | j < A) is defined. For every j < A, (Df | £ < kT) is a C*-increasing

sequence of subsets of f3;, thus there is {; < " from which this sequence stabilizes. Let
& =supl&; | j < ) < .
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Denote by D} = Df*, and let us prove that D} is as wanted. By the construction of
the sequence (2), (3), (4) of the theorem follows directly. To see (1), for every £* < ¢ < k™
and for every ¢« < A\, D} =* Dg In particular Df“ =* D?. By induction we will show
that D7 € V[ D;]. For j = 0 this is trivial since I(Dg, U D; N By) € V. Assume that

D:eVIU D;*]Zfzhen D$* e V[ D;] and therefore I(D ]H,KO DiNBj) € VIUD;. I jis
limit, pjlz\j is such that I(D7, Z(<O D?)NB;) is coded by Derl by induction Di</\6 ViU Dy
and therefore D5Jr1 e ViU D] xj\j}f\lch finishes the induction. Finally, for every i < A, KZ;O
VIDf] C V[U/\Dj] SO <D§<|/\z < A) is as wanted.

i<

Corollary 4.20 If A C &, such that A € V|G| and AN« does not stabilize, then there is a
generic C' C Cg such that Va < k. ANa € V(']

Proof. By the previous section, find generic sets (D; | i < A) € V[A] such that V[D;] =
VIANG;] and D; C f3;. Use 4.19 to find (D | i < A) and set D* = U Dy. Then D* is generic
and therefore D* C* Cg. Let C' = Cq N D*. Hence C' =* D* and therefore VIC'l = V[D*.

Now for every o < k, find i < X such that « < ;. By the properties of D*, D; € V[D*],
hence, AN B; € V[D*]. Note that ANa = (AN S;) Na and therefore ANa € V[D*] = V[

as wanted.ll

4.4 Removing the assumption that « is the first such that oﬁ(m) > K

So far we have proved that if 0¥ (k) = x, and for every a < &, oﬁ(oz) < «a. Then for every
A C &, there is C" C Cg such that V[A] = V[C']. We can use the techniques of this section

to inductively remove the assumption that every a < x, o (a) < a. More precisely, we will
assume that Vo < k.0Y(a) < o® We will use the fact that if oV (x) = &, then there are only
finitely many points o € Cg such that o¥(a) = a.

We prove by induction on the number of point @ < k, such that oﬁ(a) = «, that for
every A C k, there is V[C"] such that V[A] = V[C']. The first lemma in which we assumed
that x is the first was 4.16, we will change this definition, and then prove the rest of the
claims 4.17-4.20 with will be our inductive assumption.

What we proved so far in the induction basis, when x is the first such point. Note that

3most of the results are actually true under the assumption that oﬁ(,«;) = k, and for every a < k,

oY (a) < at.

30



beside 4.16-4.20 we did not restrict oﬁ(n) to be the first so we will can use them without
having to prove them again.

Let k* < Kk be the last such that k* € Cg A oﬁ(ﬁa*) = k*. Note that x* satisfy the
induction hypothesis.

The definition of the sequence (5; | i < \) will start above * instead min(X,4):

Lemma 4.21 In V[A] there is a sequence (f; | i < ), such that:

1. (B; | i < A) is increasing and continuous of elements of X .
2. Bo=min(X4 \ ), sup(B; | t < A) = k.

3. If D C B; is generic then for any Y C otp(D), Y € V[A], there is j < i and Dy C f;
such that VY] = V[Dy].

4. B; € Xa (Recall that X 4 is the set of all measurables in V' that changed cofinality in
VIA]).

By the induction hypothesis, lemma 4.17 holds for x*, let us prove that the lemma holds
also for unbounded generics of k*. Note that once we finish the induction, this lemma will
also hold for k.

Lemma 4.22 Let D, E € V[A] be generic subsets of k*. Then there is F' € V[A] generic
such that DUE C* F and D, E € V[F].

Proof. 1t |D|, |E| < k* then |D U E| < k* and therefore I(D, D U FE), I(D U E) is bounded
in k*. Therefore, there is a bounded in xk* generic T  such that

V[T = V[I(D,DUE),I(DUE)]

Let v = sup(7T) < k*. By proposition 4.17 applied to x*, we can find a generic F, C v such
that
(DUE)Nv|UT C F, and (DUE)Nv,T € VI[F,]

Let F =[(DUFE)\v|]UF,. Then F € V[A] generic, and (DU E) \ v,T € V[F]. Moreover,
(DUE)Nv,T € V[F]. Hence I(D,DUE),I(DUE),DUE € V[F]. It follows that
D, E € V[F] and obviously, DUE C F.

If |D| = x* V |E| = £*, then necessarily cf"4(x*) = w. Let (a, | n < w) € V[A] be
cofinal in x*, and consider D N «,,, F N «a,. Again by proposition 4.17, there is F,, C «,
generic with

DnNna,, ENa, € V[F,] and (DNa,)U(ENa,) CF,

31



By 4.19, we can find a generic F' such that for every n < w, F,, C* F and F,, € V[F]. Tt follows
that U, F, Cf, Fie. F'\ (Up<oFy) is at most countable. Moreover, D U E C U, [,
hence |(DUE) \ F| < RXy. Denote this set by (v, | n < w). Now proposition 4.1, we can find
a generic H such that

F.(DUE)\FeV[H], and FUDUE CH

In V[H], we have F, and therefore we have F},’s (not as a sequence), therefore we have DNay,
and F N, for every n < w. As usually, to have the sequences

(DNay | n<w),(ENa, | n<w)

Code these subsets by ordinals (4, | n < w) and (p, | n < w), then we use 4.1 again, to find
a generic D* € V[A] such that

(On [0 <w), {pn | n <w) € VD]
and H C D*. So in V[D*] we can find also D, F' ad wanted.l
Now we can prove 4.17 for k:

Corollary 4.23 Let D, E C k be bounded such that D, E € V[A]. Then there is F € V[A]
generic, such that
DUE CF Csup(DUE)

and D, E € V[F].

Proof. 1f sup(D U E) < k* then we use 4.22. Then the induction step is the same as 4.17.1

Now lemma 4.18 follows, since the proof only used lemma 4.17 and 4.15, which are known
at this point for k. Finally, let us prove 4.19:

—

Theorem 4.24 Assume that for every a < k, oY (a) < a. Let (D; | i < \) € V[A] be a
sequence of generics such that for every i < \, D; C ;. Then there is (D} | i < \) € V[A]
such that

1. Vi< \ D;,Df e VI D;].
<A
2. \J Dy is generic.
<A

3. D; C* Dy C B;.

4. (D5 | i< \) is C*-increasing.
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Proof. Work in V[A], list all the generic sets D C x*. This is definable in V[A] and so the
list is in V[A]. The is a list of length at most 2*". Since 8, € X4, and 8 > [y = &%, it is a
strong limit, hence 2% < 3;. Hence there is C' C Cg bounded in f3; such that every generic
D C k* in V[A] belongs to V[C'], and C" € V[A].

As in 4.19, we construct for every £ < kT, a sequence of generics <Df | i < A) such that
for every ¢ < A:

1. & < & — DY C* D
2. Vi < j.D; C* DS
3. Df C B

£ . .
4. U D> is generic.
J<A

5. DY € VDS

6. there is p; < i such that [(Df,jg}\Dﬁ N ;) € VIDSH]

This can be done since we use already proved everything used in this lemma. Again by
regularity of x*, we can find &* < k%, such that for every & < ¢ < k™, and for every
< A Df* =* Dfl. Let v* = sup(C’) < [y, use 4.22 to find D, C v* such that that
UicxDi nv*, C" € VID,], and U;cpxDf Nv* U C" C D,. Define Dy, = D, N «* and for
0<i<A,

D;,=D,U(D;\v")

Let us show that D, ; is as wanted, (2), (3), (4) are clear by the definition. To see (1), first
we denote D* = U;\D,;. Note that since D* Nv* = D, and D* \ v* = U;.,\D} \ v* so in
V[D*] we have D, and therefore we have C’ and U;,D; Nv*. It follows that

Uica D} = ( Uica D N y*) U ( Uiex DI\ u*) e V[D"]

We claim that D} € V[D*] for every i < A (and therefore also D; and D, ;). For i = 0,
note that I(D§, U;<nDf N k*) € V[A] and is coded by a generic subset of x* in V[A]. Thus
I(D§,U;cxDiNk*) € V[C'] and also in V[D*]. So in V[D*] we have both I(Dg, U;<xD; NK*)
and U;<,\D} N k*, which implies that D§ € V[D*]. The prove for 0 < i < X is exactly as in
4.19.1

This proves the induction step. We conclude as in 4.20 the following:

Theorem 4.25 If for every a < k, oV(a) < «, then for every A C k in VI[G], there is
C" C Cg such that V[A] = VI[C].
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5 The proof for subsets of x*

We start with have two easy observations:

Proposition 5.1 If A € V[G], such that A C k™ is of cardinality k, then there is C' C Cg
such that V[A] = V[C"].

Proof. Let sup(A) < 6 < x*. In V find a bijection from 7 : & — . Consider A, = 7~ [A] C
k. Apply the last section to A, then there is C' C Cg such that V][A,] = V[C’]. Since
m €V, it is clear that V[A] = V[A,], hence C” is as wanted.l

Lemma 5.2 If there is § < k such that for every a < k7, ANa € V[G | 5], then there is
C" C Cg such that V[A] = V[C']

Proof. In this situation we claim that A € V[G | ] as well. To see this, Note that the

—

forcing completing V[G | B] to V[G] is simply M[U] | (8, k) which is x*-c.c. in V[G]
(since k7 is regular in V[G]). Therefore, A cannot be a fresh set with respect to the models

vigrgcvic.m

Claim 4 If AN« does not stabilize, then cfV(k) < .

Proof. Simple corollary of 4.4.1

Proposition 5.3 Let A € V[G] be any subset of k™ such that AN« does not stabilize. Then
there is a sequence (D, | a < k) such that:

1. (D, | a < kT) e V[A].
2. Va < k', D, C* Cg.
3. (Dy | a < k) is C*-increasing.

4. ANa € V[D,]

Proof. Work in V[A]. For every oo < k™, by the last section, there is a generic set D!, C Cg
such that V[ANa] = V[D.]. Then 1,2, 4 hold but 3 might fail. Let us construct the sequence
(Dy | a9 < a < k™) more carefully to insure condition (3): We go by induction on f < k%
Assume the sequence (D,, | o < () is defined. If 5 = « + 1, then use lemma 4.22 with D,
and Dj to find Dgyy such that D, C Dg and Djy € V[Dg]. If 8 is limit, let A = cfVI4(p).
Since k is singular in V[A], then A < k. By lemma 4.18, for every a < 3, D, N A is bounded
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in A and we can find D, C X such that the sequence (D, N A | o < ), =*-stabilizes of D,.
As for the sequence (D, \ A | a < ) we can use 4.14 to find a single D* € V[A] generic,
such that D, \ A C* D*.

Consider now the two sets D* U D, and D/B' Use lemma 4.22 to find Dg such that
D*U D, C Dg and Dj € V[Dg]. Clearly the sequence (D, | a < k) is as wanted.l

In the next theorem we will prove that the sequence (D; | i < k) must stabilize, we will
use the Erdés-Rado theorem[11], which is stated here for the convenience of the reader.

Theorem 5.4 If 0 is a reqular cardinal then for every p < 0

(2" = (0);

i.e. for every function f: [(2<9)*]% — p there is H C 0 such that |H| = 0 such that f | [H]?
1s constant.

Proof. see [9, Theorem 7.3].H

The next theorem is stated in general settings but will be used for the specific sequence

defined in 5.3.

Theorem 5.5 Let k be a singular strong limit cardinal, and (D, | o < k) be any C*-
increasing sequence of subsets of k. Then the sequence =*-stabilizes i.e. there is a* < k™
such that for every o* < a < k%, Dy =* Dgx.

Proof. Toward a contradiction, assume that the theorem fails, then there is Y C T such
that |Y| = k* and for every o, 8 € Y, if @ < § then D, C* Dg and |Dg \ D,| > w. Denote
A =cf(k) < k. Fix (n; | i < A) be cofinal in x. For every i < A, there is E; C Cg N1; such
that The set

Xi={v<k"|D,Nn =E;}

is unbounded in k", set a; := min(X;). Since D; is C*-increasing, for every a; < a < Kk,
D, Nn; =" F;. To see this, find § € X, such that a; < a < 3, then

Dai g* Da g* D,B

Hence
B :Daiﬁm cr D, N c* Dﬁmni:Ei

Therefore, E; =* Dy N [0, 1i11)-
Set E* = U;yE; and o* = sup(w; | i < A). Clearly, o* < k™.

Claim 5 For every 0 < k and every o* < ) < 2 < k%, [(Dg, N0)A(Dg, NI)| <w
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Proof. (of claim 5) Let i < A be such that n; > 4. Since Sy, B > o > o,
(D5, N8)A(Ds, N)| < (D, ) AD, V)| < (D, M) AE) U (D N0 i )| <

Wiaime
Claim 6 For every o* < 1 < By < k%, Dy, =, Dg,.
Proof. (of claim 6) Otherwise there are fy, 82 such that |Dg ADg,| > N;. Then there is
d < k such that |Dg, N0ADg, NJ| > w. Contradiction to the last claim. M.qims
Let x = (2*")" and let X C Y be such that | X| = y. Enumerate X, (D,, | i < x).
Define the partition f : [x]* — A:

Let i < j < x. Since D; C* Dj, there is ;; < A such that (Dg, \ 7,,) € (Do, \ 1y:,)-
Simply pick some 7, ; above finitely many elements in D,, \ D,,. Then set

f(%]) = Yi,j

By Erdés-Rado theorem, we can find I C x such that |X| = A" which is homogeneous with
color v* < A. This means that for any i < j in I, Do, \ 7+ € Dq; \ 1.

>

Let (i, | p < A™) be the increasing enumeration of /. We will prove that [ Do, \ D
wr, and since «;,, o, > o, this is a contradiction to claim 6.

Oéio

Indeed for every £ < w;, pick any J¢ € (D%+1 \ 774 ) \ ( Do, \ 7y+). Such 6, exists, since
by claim 5, Dai§+1 N7y =* Daig 0.777*- .Si'nce Qig, e, €Y, then w < |Dai§+1ADai5|. So
w < |(D%+1 \nw*)A(D% \ 7y+)|. Since ig,ie4q € 1, Daig \ 74+ C D%Jrl \ 75+, it follows that
|(Doéi€+1 \ 7)) \ (DoéiS \ 7y+)| = w. The map £ — & is a bijection from wy to Do, \ Da,
contradiction.ll

Corollary 5.6 There is C' C Cg such that C'" € V[A] for every a < K, ANa € V[C']

Proof. Consider the sequence (D,, | a < k1) from proposition 5.3, then use theorem 5.5 to
find o* < kT such that for every o* < 8 < k™, Dy =* D,. In particular, V[Ds] = V[D,].
Define C" = D, N Cg, let us prove that C’ is as wanted. Since D, is generic, C" =* D,
then

VIC' =V[Dy| =V[ANa*| CVI]A]

Let a < k™, if a < a*, then

AnaeViAna] = V[D.] = V("]
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If o > o*, then D, =* D, =* C" and therefore
ANnaeVID,] =V|C
[ |

As usual we would like to conclude that A cannot be fresh with respect to the models
V[C"] C V[C¢], and for this we need to dill with the quotient forcing,.

Definition 5.7 Let ¢’ be a M[U]-name such that C}, = C’. Define Pc/, the complete

—

subalgebra of RO(M[U]) generated by the conditions X = {||la € C'|| | « < k}.

By [8, 15.42], V[C'] = V[H] for some V-generic filet H of Pcr. In fact
C'={a<kl||leel]|e XNG}
Definition 5.8 Define the function 7 : M[U] — Por by

m(p) = inf(be€Pg | b=p)
It not hard to check that 7 is a projection i.e.

1. 7 is order preserving.

2. Vp € M[UVn(p) < ¢Fp' > p.x(t) > q.
3. I'm(r) is dense in Per.

Definition 5.9 Let 7 : P — Q be any projection, let H C QQ be V-generic, define

P/H=n"H

We abuse notation by defining M[U]/C’ = M[U]/H, where H is some generic for P¢r such
that V[H| = V[C"].

It is known that G is V[C"]-generic for M[U]/C" and V[G] = V[C"][G].
It is important to note that M[U]/C” depends of the choice of the name .

Example 5.10 It is tempting to try and discard this name and define M[U]/C’ to consist

of all p such that there is a V-generic H C M[U], with p € H and ¢’ C Cy. Such a forcing
is not k*- c.c. even above V[C']. Indeed, we take for example any {c, | n < w} C Cq
“

unbounded in &, such that for every n, 0" (c,) = 0. Basically, it is a Prikry sequence for the
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measure U(k,0). Now V[C'] = k¥ =kt so let (f; | i < kT) € V[C'] be an enumeration of
all function from w to k. we can factor the forcing to first pick ¢ < s, then the rest of the
forcing ensures that C(fi(n) + 1) = ¢,, this means that f;, determined the places of ¢,’s in
the sequence Cg. Since no choice of i # j can be compatible, the first part is not x*-c.c.
and therefore also the product.

Example 5.11 Let us consider another possible simplification of M[U]/C",

M[U]" = {q € M[U] for every finite a C & there is g, > ¢, o IF c, = C,, for every o € a}

First we define an M[U]—name C'" of a subset {c], | @ < k} of a generic sequence Cg. For
every a < K, let .
X, ={v<k|d(v)=al.

Pick some different p°, p* € Xy. The play would be between two conditions

P’ = (", (k6 \ p’ + 1)) and p' = (p', (k,x\ p' + 1))

Above p° we do something simple - for example, let '« be a name just the first element of
X, in the generic sequence Cg.

Now above p!, let us do something more sophisticated. We will build a xk—tree with each
of its branches corresponding to an extension of p! and such conditions will be incompatible
in M[U]/C", where C" := (" and H C M[U] is a V-generic filter with p° € H.

Start with a description of the first level:
Fix Y7 € U(k, 1), such that Y] C X; and Z; = X, \ Y] has cardinality . Split Z; into two
disjoint non-empty sets Z; ¢, Z; 1.

Now, let p! extended by an element of Y; produces ¢ to be different from those which
p° defines, for example, let it be the the first element of X5 in C¢.

For i = 0,1, let p' extended by an element of Z; ; produces c1 to be the same as ¢} by
0

p°.

The idea behind is to insure that for every i, p'~Zy; U'Y; will be in M[U]/C", but only
because of Zy;. So, if @ # j are different then we will have incompatibility since Z;; and Z;
are disjoint. Continue in a similar fashion to define the rest of the levels, the a-th level we
Take Y, C X, such that Z, := X, \ Y, has size x, and we split Z, into two disjoint non
empty sets Z, 0, Za,- The definition of ¢/, is such that p! extended by elements of Y,, forces
fc\’J « to be the first member of X, in Cy. While p! extended by elements of Z, will force
the same value as p° did.

Note that the construction is completely inside V.
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Finally, there are x*—branches of length x in 7. Let p" denotes an extension of p' which
corresponds to a k—branch h i.e. p" = (p1, (k, U Yo W Zap))-

a<k
Let hy, he be two different branches. Let av < k be the least such that hy(a) # ha(«).

Then p™ and p" are incompatible in M[U]/C". This follows from the choice of ¢/, and the
definitions of conditions at the level a.

Note that every p” is in I\\/[[[lj ]’ since for every finite a C &, we can extend p” to some g,
using the elements from Z, j(q)-

The problem here however is that the conditions p are not in M[U]/C’, thus M[U]’ #
M[U]/C". Otherwise, by the next proposition, there is a generic H such that {(o)n | @ <
k} = C’ with p" € H. Since Y* := |JY, € NU(k), then by the Mathias criteria there is

a<k

§ < r such that Cy \ € C Y*. It follows that the interpretation (c,)y must be different
from the one p° made, contradiction

Proposition 5.12 For every q € M[U], ¢ € M[U]/C" iff there is a generic G' for M[U] such
that Cj, = C".

Proof. Let q € M[U]/H, let G’ be any V [C"]-generic for M[U]/H with ¢ € G/, then G C M[U]
is a V-generic filter. To see that Cf,, = C’, denote C” := (., toward a contradiction assume
that s € C"\ C”, then there is ¢ < ¢’ € G’ such that ¢’ IF s ¢ C’, hence 7(¢’) ¢ H, this is a
contradiction since G/ € M[U]/H. Also if s € C"\ (", then there is ¢ < ¢’ € G such that
¢ IFse ' Since s ¢ C’, then ||s € C'|| ¢ H, hence ¢’ ¢ H which is again a contradiction.

—

For the other direction, if ¢ € G’ for some G’ for M[U] such that Cj, = C’, then
XNG =XNG. Let a € G, if m(a) ¢ H, then there is o € C’ such that 7(a) and ||a € ||
are incompatible, hence || € C'|| ¢ G, but ||a € C'|| € X N G, contradiction.l

Definition 5.13 A uniform ultrafilter on a regular cardinal s is called p-point, if for every
function f : kK — k which is not constant (modU) is almost 1 —1 (modU) i.e. Thereis A € U
such that for every d < k,

{v <w|flv)=0} <k

Proposition 5.14 Let U be a p-point ultrafilter on k, let (X; | i < k) a sequence of sets in
U. Consider w: k — k such that 7]y = k then:

Xi={v<k|Vi<n(v).veX}eU

Proof. Assume otherwise, there the set £ = {v < x| 3i < n(v).v ¢ X;} € U. For every
v € E fix i, < m(v) witnessing v € E. The function f(v) =i, is below 7, in the < order.
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Since [7]y = k, There is € < k such that [f|y = [C¢]y. It follows that E* = {v | i, =} € U.
For every v € E*, v ¢ X¢, thus, X, N E* = {), contradiction.l

First we need a generalization of Galvin’s theorem (see [7], or [5, Proposition 1.4]):

Proposition 5.15 Suppose that 2<% = k and let F' be a normal filter or a p-point ultrafilter
over k . Let (X; | i < k™) be a sequence of sets such that for every i < k™, X; € F, and let
(Z; | i < k) be any sequence of subsets of k. Then there is Y C k™ of cardinality , such
that

L Ney Xi € F.

2. there is a €Y such that [Z.] C Uicy (o) [Zi]

Proof. (of proposition) For every 7 € [k]<¥, @ < kT and £ < k&, let
Hyeo={i<r" | X;NE= X, NEATV E[Z,])}

Claim 7 There is a* < k% such that for every { < k and U € [Z,+], |Hore5| = k7T

Proof. (of claim) Otherwise, for every a < k™ there is £, < k and 7, € [Z,]<* such that
|Hogo5.] < k. There is X C kT, U* € [k]<¥ and £* < k, such that | X| = T and for every

Va€X, Uy =i Ny =¢

Since k is strong limit and £ < k, there are less than x many possibilities for X, N¢&*. Hence
we can shrink X to X’ C X such that |X’| = k™ and find a single set E* C £* such that for
every a € X' X, NE&* = E*. It follows that for every o € X"

Ha,{a,ﬁa - Haf*?ﬁ* - {Z < HJ+ | Xz ﬂ f* - E* /\ ﬁ* c [ZZ]<w}

Hence the set H,¢, 5, does not depend on ¢, which means it is the same for every ao € X'.
Denote this set by H*. To see the contradiction, note that for every o € X', o € Hp ¢, 5, =
H*, thus X’ C H*. Bt then

kT =X < |H| <k

contradiction.m ;i
End of proof of proposition: Let a* be as in the claim. Let us define Y C x* that will

witness the lemma. First, enumerate [Z,«|<“, (; | i < k) (Recall that the cardinality of Z,-
is by the assumption. Let 7 : K — & be the function representing  i.e. 7]y = x* Since U

4If U is normal 7 = id.
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is p-point or normal, there is a set X € U such that for every o < k X N7 "« is bounded
in k. So for every a < k, we find p, > sup(rm~!"[a + 1]).

Then by recursion, define f3; for i < k. At each step we pick f; € Her p41.5, \ {55 | J < i}
It is possible to do so since the cardinality of Hy« p 415 \ {8; | 7 < i} is kT, and so far we
have defined less than x* many ordinals. Let us prove that Y = {f; | i < K} U {a*} is as
wanted. Indeed, by definition, it is clear that |Y| = k. Also, if 7 € [Z,+]<¥, then v = IJ; for
some i < k. By definition, f; € Hux , 41,5, hence 7 € [Z3,]<%, so

Finally, we need to prove that (7,.,, X; € F. By proposition 5.14 (or normality),

Xo- NAI Xs €F

1<K

Let ¢ € X, N A}, Xpg,, then for every i < 7(¢), ¢ € Xp,. For i > 7(¢), by definition of p;,

1<K
¢ < p;. Since fB; € Hox p11,5

Xor N (pi +1) = X, 0 (pi + 1)

Also, ( € Xo+N(p;i+1), hence ¢ € X,. We conclude that ¢ € [ oy Xo. Hence [, oy Xo € F.
|

Now for the main theorem of this section

—

Theorem 5.16 Let of 7 : M[U] — P be a projection. Let G C M[U] be V-generic and
H = 7[G] be the induced generic for P, then V|G| = M[U]/H is k" -c.c.

Proof. Assume otherwise, and let (p; | i < k%) € V[G] be an anthichain in M[U]/H. Let
(pi | i < KT) be a sequence of names for them and r € G such that

r Ik (pi | i < ") is an antichain in M[U]/H
Work in V, for every i < k™, let r < r; € M[(j] and & € I\\/H[ﬁ] be such that r; IF p; = &.

—

Claim 8 Vi < k™Vr' > r;3q > &NV > " > ' 7" Ik g e MU/ H

Proof. (of claim) Otherwise, there is ¢ and 7’ > r;, such that for every g > &;, there is ¢’ > ¢
such that every v > v/, " I} ¢ € M[U]/H. In particular, the set
E={g2&|¥"2ru"f g€ MIUJ/H}
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—

is dense above &;. To obtain a contradiction, let G’ be any generic for M[[U] such that ' € G'.
Since ' > r; > r, r,r; € G' and there for §; = p; v € M[U]/Hg. Denote H' = Hgr. Then,

—

there is a V-generic filter G” for M[U] such that & € G” and Hgr = H'. By density of E,
there is ¢ € E N G” and in particular, ¢ € M[U]/H’. Thus, there is 1/ < " € G’ such that
r" Ik q € M[U|/H’, contradicting ¢ € E.Bqim

By the claim applied to ' = r;, for every i < k™, there is ¢; > &; such that
(*); V¢ >q. 3" >rir" k¢ e M[U]/H

Denote ¢; = (ti1, ..., tin,, (k, A(g;))) and r; = (Si1, -, Sim,, (K, A(r;))). Stabilize the sequences
(tit, .o tin,) and (si1, ..., 8im,) ie. find X C &t such that |X| = kT and £ = (t1,..,t,),5 =
(81, ..., Sm) such that for every i € X

<ti1, 7t1nl> = <t1,..,tn>, and <3i17-~-73imi> = <81,...,8m>

This means that for every i € X, ¢; = t"(r, A(¢;)) and r; = " (kA(r;)). By lemma 5.15,
there is Y C X of cardinality s, such that

L. mieY A(Qz) € mi<n U("ﬁ Z)
2. There is a® € Y such that [A(ra)]~ C Uy o [A(r:)] =

Consider the set A = (V,oy A(qi). For every i € Y, ¢; < t(r, A) =: ¢*. Consider a* € Y
which is guaranteed by 5.15. Then there is r” > 74+ such that v IF ¢* € M[U]/H. Hence
there is 7 € [A(rq+)]<* such that r_ .0/ <* r”. Denote

" = (81, .0y Sy (U1, B1), ooy (U, Bi), (K, A(r")))
By the property of o, 7/ € Ujey\{a}[A(r;)]=¥ and so there is j € Y such that 7 €

[A(r;)]<“. Since ro+ and r; have the same lower part, and v € [A(r;)]<¥, it follows that r”
and r; are compatible by the condition:

o <817 vees Sy <7/17 Bl N A(T’j)>7 ~--<Vk7 Bk M A(rj)>7 <Ii, A(Tj) N A(T//)>>
To see the contradiction, note that since r* > 74+, 7; and 7,
7 IF por = &ax, p; = & are incompatible in M[U']/C’

But since r* > r”,

—

r* I ¢* € M[U)/H

Since ¢* > o+ > &+ and ¢* > q; > &, then 7" IF p,-, p; are compatible, contradiction.l
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Note that for M[U]/C’ be k*-c.c. in V[C'], we can use a more abstract and direct
argument:

Suppose we have an iteration P * () of forcing notions. It is a classical result about the
iteration that if for a regular cardinal X we have

1. P has A—c.c.,
2. IFp @ has A — c.c.,

then P * () satisfies A—c.c..

Also, if P has A\—c.c., P * (Q has A—c.c., then IFp Q has A — c.c..
Namely, suppose otherwise. Then there are p € P and a sequence of P—names (g, | a < \)
such that ~

plFp (qa | @ < A) is an antichain in Q.
Consider now {(p, ¢o) | @ < A} C P* Q. By A—c.c., there are a, 8 < A\, # (3 such that
(p, ¢o) and (p, q 3) are compatible. Hence, there are (p, ¢') > (p, qa), (p, ¢ 5). But then
p' IFp ¢’ is stronger than both ¢, q 3,

which is impossible, since p’ forces that them are members of an antichain.
However, in 5.16, we address a different question:

Suppose that P * Q) satisfies A—c.c.. Let G x H be a generic subset of P x Q. Consider
the interpretation Q of Q in V|G, H]. Does it satisfies \—c.c.? ~

Clearly, this is not true in general. The simplest P be trivial and @) be the forcing for
adding a branch to a Suslin tree. Then, in V¥, @ will not be c.c.c. anymore.

—

Our attention in theorem 5.16 is to subforcings and projections of M[U], however the
argument given is more general:

Theorem 5.17 Suppose that P is either Prikry or Magidor or Magidor-Radin or Radin or
Prikry with a p-point ultrafilter forcing and Q is a projection of P. Let G(P) be a generic
subset of P. ~

Then, the interpretation ofg in VIG(P)], satisfies kT —c.c. there.

We do not know how to generalize this theorem to wider classes of Prikry type forcing
notions.
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For example the following may be the first step:

Question 5.18 s the result valid for a long enough Magidor iteration of the Prikry forcings?

The problem is that there is no single complete enough filter here, and so the Galvin Theorem
(or its generalization) does not seem to apply.

Question 5.19 To Which ultrafilters does Galvin’s theorem hold?

One particular example is a fine normal ultrafilter on P,(\) which is used in the super-
compact Prikry forcing (see [4] for the defintiion).

Question 5.20 Assume that A< = \. Is every quotient forcing of the super compact Prikry
forcing also A*-c.c. in the generic extension?

The problem here in generalizing Galvin’s theorem to fine normal ultrafilter on P, (\), is
the following:

A set X is bounded in P,(A) if for some £ < A there is no P € X with £ € P. Such X
may be of cardinality \. However, over x if X is bounded, then X C ¢ and so | X| < &.

In the Galvin’s argument, the possibility to stabilize intersections with bounded sets was
essential. In the context of P,(\) such stabilization is just impossible, since if a bounded set
has cardinality ), then there are 2* subsets of it, and not < & as in the argument for x.

Theorem 5.21 Let W |= ZFC and T C P be any W-generic filter and let X be a reqular
cardinal in W[T]. Assume P is X\-c.c. in W[T|. Then in W[T| there are no fresh subsets of
A with respect to W.

Remark 1 Note that it s crucial that P is A-c.c. in the generic extension, otherwise there
are trivial examples which contradict this. Namely, The forcing which Adds a branch through
a Suslin tree, is c.c.c., but the branch added is a fresh subset of w;.

Proof. Toward a contradiction, assume that A € W[T]\ W is fresh subset of A. Let A be a
name for A in P. For every o < A define in W

Xo={BCall[Ana=B|#0}

where the truth value is taken in RO(P)- the complete boolean algebra of regular open
sets for P. Different B’s in X, yeild incompatible conditions of P and we have A-c.c by
assumption, thus (even in W[T)

Va < A [ Xa| < A
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For every B € X, define b(B) = ||[A N« = B||. Assume that B’ € X3 and a < f then
B =B nNae X,. Moreover b(B') <p b(B) (we Switch to boolean algebra notation p <g ¢
means p extends ¢q). Note that for such B, B" if b(B’) <p b(B), then there is

0 <p<p (b(B)\b(B)) <p b(B)
Therefore
pNb(B') <p (b(B) \b(B')) Nb(B') =0
meaning pLb(B’). Work in W[T], denote A, = AN «a. By freshness

Va< N\ A, €W

thus A, € X,. Consider the <g-non-increasing sequence (b(A,) | @ < A). If there exists
some v* < A\ on which the sequence stabilizes, define

A= JBCA|3abAy)lFAna=B}eW
Claim that A’ = A, notice that if B, B’, a, ¢’ are such that
b(Ay)IFANa=B, b(As)IFANnd =B

With out loss of generality, o < ' then we must have B’ N o = B otherwise, the non zero
condition b(A,+) would force contradictory information. Consequently, for every { < A there
exists £ < 7 < A such that b(A,) IF ANy = AN~, hence A/ Ny = AN~. This is a
contradiction to A ¢ M. We conclude that the sequence (b(A,) | & < A) does not stabilize.
By regularity of A, there exists a subsequence (b(A;,) | @ < A) which is strictly decreasing.
Use the observation we made to find p, <p b(A;,) such that p, Lb(A;_,,). Since b(A;,) are
decreasing, for any 8 > a poLb(A;;) thus poLpg. This shows that (p, | @ < X) € W[T] is
an antichain of size A which contradiction.

[

Theorem 5.22 A € V[C'] and V[A] = V[C"].
Proof. Otherwise A would have been a fresh subset of Kt with respect to the models V[C'] C

V[C]|G] which is a generic extension of the x*-c.c. forcing M[U]/C” in V[C']|G] contradiction
the last theorem.Hl

Following theorem 5.21, we state here another result related to fresh subsets in Prikry-
type models.

Sets of ordinals above x*: By induction on sup(A) = A > x*. It suffices to assume
that A is a cardinal.

casel: cfVI€l()\) > k, the arguments for x* works.
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case2: ¢fVI6)(\) < k and since k is singular in V[G] then ¢fYI€}(\) < k. Since M[U]
satisfies kT — c.c. we must have that v := ¢fV(\) < k. Fix (| i < v) € V cofinal in .
Work in V[A], for every ¢ < v find d; C k such that V[d;] = V[A N ~;]. By induction, there
exists C* C Cg such that V[(d; | i < v)] = V[C"], therefore

1. Vi<v AN~ € V[C¥]

2. C* e V[A]
Work in V[C*], for i < v fix (X;5 | 0 < 2%) = P(y;) then we can code A N~; with some
9; such that X;; = AN~ By the previous metheods, we can find C"” C Cg such that
VIC"] = V[{§; | i <v)] finally we can find C" C Cg such that V[C'] = V[C*,C"], it follows

that V[A] = V[C']
|

Let us conclude another resault about fresh subsets in Prikry, Magidor, Magidor-Radin
forcings.

Theorem 5.23 Assume that o' (k) < k and let G C M[U] be V-generic. If A € V[G] is
fresh subset with respect to V, then cfV [ (sup(A)) = w

Proof. By induction on . Let A be a fresh subset, then if A € V[Cg N al for some a < &,
we are done. Assume that A ¢ V[Cs N @], in particular sup(A) > k. Let us start with
sup(A) = k. Toward a contradiction assume that A := c¢fVI%(k) > w, since we assume that

oY (k) < kT, then w < XA < k. Also find Let (c, | @ < \) be a cofinal continuous subsequence

of Cg such that co > A. Let (c'o | @ < A) be a sequence of names for it. Also let A a name
for A.

Let p € G | (A, k) be such that
pl- Ais fresh A (o | @ < A) is a cofinal continuous subsequence of C

As in 3.4, for every i < A find a condition p <* p(® such that if there is @ € [k]<“ and
A(d) € max(d) such that

pD°a - AN max(d) = A(@) A max(ad) = i
then there is a U-fat tree of extensions of p®, T}, with @ € mb(T;), such that
vt € mb(T;). FA(t) C max(t). p 7t I ANmax(t) = A(t) A ¢; = max(t)

To see that there is such @, find any @ and ¢ such that p~a@ <* ¢ and ¢ IF max(ad) = s
and then above max (&) there is enough closure to decide A N max(&). Hence there is an
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q f (max(c_i),/f) <r Gmax(d)< and q f max(&) < d<max(q) such that <qgmax(62)anax(62)<> Is as
wanted.

By recursion, define A’ for s € T; \ mb(T;). Let s € Levpyry)—1(T;), then we can shrink
Succr, (s) and find A% such that for every a € Sucer,(s), A(s"a) = AL N «a. Note that if
n; & I;, then AL = A(s"a) for every o € Sucer,(s).

Generally, take s € T; and assume that for every « is Sucer, (s), Aiﬂa is defined. We can
find a single A% and shrink Succr,(s) such that for every o € Sucer,(s), A°. Na = A Na.

Now we move to V[A], for every i, define recursively pi for k < n; = ht(T}). Let
py = min(AAA}) + 1.

Let & € mb(T;) such that p*)°¢; € G, let us argue that for every k < n;, pi. > (&)
By construction of the tree T;, ANc¢; = Alc;i N ¢;. now for every j < n,,
AN (E;)] = A’é(gi)m-“v(é‘i)j—ﬁ N <5’)]
In particular, AN (¢)o = Ay N (G)o. Since A N ply # Ay N pj, it follows that (¢;)o < pf.
Assume that (&;); < p} for every j < k. Since Aé(£i)0,~~~7(€i)k> N (G)rr1 = AN (C)gy1, then

(@)1 < min(Af gy, @)0AA) < P

It remains to see that pj, < k. Again by induction on k, p{ < r since A # Ay, as Ay €
VICeN Al but A ¢ V[Ce N Al

Toward a contradiction assume that pf, .1 = k. Back to V[Ce N ], consider the collection
{A§a0,~--,ak> ‘ Qo < p67 vy Qg < p;g}

Then for every v < & pick any distinct @y, @, such that A% # A%, but AL Ny = AL N7.
To see that there are such ai,ap, by assumption that p; , = & there is @; such that
m1 = min(AAAL ) >, hence AL Ny = AN~y. Let d; be such that min(AAA% ) > 7, In
particular, A% # A% but AL Ny = ANy = AL N~. Since this is all in V[Cg N A], where
k is still measurable, then we can find unboundedly many ~’s with the same &y, @y, which is
clearly a contradiction.

So we found a sequence (p, | i < A) € V[A] such that p}, > ¢;. Let Z be the closure of
{pi | © < A}. Since A > w, there is some a limit o < A such that ¢, < & is a limit point of Z.

To see the contradiction, note that on one hand, ANc¢, € V, and therefore the set ZNc, is
defined in V', on the other hand, ¢, > A is measurable in V', and |Z N¢,| = A, contradiction.
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For general A, if A\ := cfV(sup(4)) < k then there is a fresh set X C X such that
V[A] = V[X]. To see this, pick in V' a cofinal sequence (n; | ¢ < A) in sup(A). Then By
kt-c.c, there is F' € V, such that

1. Dom(F) = \.

2. For every i < \, |F(i)] = k.

For each i < A, find in V, an enumeration (z} | j < ) of F(i), such that for every W € F(i),
{j < w |z} =W} is unbounded in .
Move to V[A], inductively define (v; | i < A) increasing such that 2!, = AN ;.

Set o = min(j | xg-’ = ANmng). Assume that 7; was defined for every i < k < A,
define 511 = min(j > v | xf“ = ANney1). Note that at limit stage 0, the sequence
(7i | i < 9) is definable using only the enumeration and A N ns which is all available in V.
hence 5 = sup(7y; | © < 6) < x and we define v5 = min(j > ~5 | 2§ = ANns).

Let X = {v; | i < A} C k. Since (y; | i < A) is increasing, cf¥I%(sup(X)) = cfVIE(N),
V[A] = V[X] and X is fresh. It follows by the proof for subsets of x that cfV[¢(X) = w,
hence cf"[%(sup(A)) = w.

Finally, if A > k™, by theorems 5.17,5.21 there cannot be a fresh subset of with ¢ f(sup(A)) >
.0

6 Open problems

Let us conclude with some related open problems:

—

Distinguishing from the case where oY (k) < k, we do not have here a classification of the
subforcings of M[U].

Question 6.1 What are the subforcings of M[ﬁ] 7

Using theorem 1.1, it remains to consider models of the form V[C'] for some C" C Cg,
and try to classify the forcings which generates these models.

Our conjecture is the following
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— —

Conjecture 6.2 Let G C M[U] be a V-generic filter, where oY (k) = k. If V. C M C V|G|
is a transitive ZFC model, then either it is a finite iteration of Magidor like forcings as
in [3], or there is a tree T C [k]<% in V such that ht(T) = w and for every t € T and

every o € Succp(t), there is a name M[U]Y. =~ for a Magidor-like forcing, such that if H is

V-generic filter for the forcing adding a branch through the tree T" along with the forcings
MIUJ:.  corresponding to the branch, then M = V[H].

[2NeY

~

Question 6.3 Suppose that 0[7(&) = kt. Is still every set of ordinals in the extension
equivalent to a subsequence of a generic sequence?

Note that the situation here is more involved since k stays regular in V|G| and there is
no way to identify the measure associated to a member of the generic Cg.

Question 6.4 The same as 2, but with Oﬁ(/ﬁ) > kT,

Question 6.5 What can we say about other Prikry type forcing notions ¢

Probably the simplest would be to deal a long enough Magidor iteration of the Prikry
forcings and to analyze its subforcings.
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