
Two Stationary Sets with Different Gaps of the
Power Function

Moti Gitik

School of Mathematical Sciences
Tel Aviv University
Tel Aviv 69978, Israel
gitik@post.tau.ac.il

August 14, 2014

Abstract

Starting with a strong cardinal a model with a cardinal κ of cofinality ℵ1 such that
both sets {α < κ | 2α = α++} and {α < κ | 2α = α+++} are stationary is constructed.

0 Introduction

The classical theorem of Silver states that if κ is a singular cardinal of uncountable cofinality

and 2κ > κ+, then the set {α < κ | 2α > α+} contains a club. But what if 2κ = κ+, can

both sets

{α < κ | 2α = α+}

and

{α < κ | 2α > α+}

be stationary?

The question is still open. The purpose of the present paper is to construct a model

with a cardinal κ of cofinality ℵ1 such that both sets {α < κ | 2α = α++} and {α < κ |
2α = α+++} are stationary. We start from a regular cardinal κ having a coherent sequence

of (κ, κ+ω+3)−extenders of the length ℵ1. A variation of the extender based Magidor forcing

(see [5], [?]) is used to change its cofinality to ℵ1 blowing up powers of cardinals over the

generic Magidor sequence below. The point will be to arrange a different behaviour on

stationary sets. For this a short extenders forcing will be used.
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1 Preliminary Settings

1.1 Cofinal sequences and stationary set

Let us attach to every δ, 0 < δ < ω1, a successor ordinal δ∗ < δ so that for every successor

ordinal τ < ω1 the set of δ’s with τ = δ∗ is stationary. Clearly, the set

C = {µ < ω1 | µ is limit ordinal and for every successor τ < µ

the set of δ’s below µ with δ∗ = τ is unbounded in µ}

is closed unbounded.

Let S be a subset of lim(lim(C)). It can be nonstationary, but in the interesting cases

S will be stationary, costationary. For every µ ∈ C fix a cofinal sequence ⟨µ′
n|n < ω⟩. Let

µ ∈ C. We define another cofinal sequence ⟨µn|n < ω⟩ as follows:

µ0 = 0, µn+1 = min{δ < µ | δ limit, δ ̸∈ S, δ∗ = µn and δ ≥ µ′
n+1}+ 1 .

The advantage of using such improved cofinal sequences is that once we have µn then

⟨µk|k ≤ n⟩ is uniquely determined without need in µ. Thus µn−1 = (µn − 1)∗, µn−2 =

(µn−1 − 1)∗, etc.

1.2 The extenders sequence

We assume that the ground model satisfies GCH and has a coherent sequence

E⃗ = ⟨E(α, β) | α ≤ κ, α ∈ dom E⃗, β < ω1⟩

such that for every α ≤ κ and β < ω1 the following hold:

(a) E(α, β) is an (α, α+ω+3)-extender over α.

(b) (coherence)

jE(α,β)(E⃗) � (α + 1) = ⟨E(α′, β′) | (α′ < α) or (α′ = α and β′ < β)⟩ ,

where jE(α,β) : V →M ≃ Ult(V,E(α, β)) is the elementary embedding by E(α, β)

(c) there are disjoint subsets ⟨Eα,i | i < ω1⟩ of α such that Eα,β belongs to the normal

measure E(α, β)(α) of E(α, β) and for every γ ≤ α, γ ∈ dom E⃗, i < ω1

Eαi ∩ γ = Eγi ,

where for τ < α+ω+3 the τ -th measure E(α, β)(τ) of E(α, β) is the set {X ⊆ α | τ ∈
jE(α,β)(X)}.
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(d) E⃗ � (α, β) = jE(α,β)(f)(α) for some f ∈ αVα, i.e., essentially it depends on the normal

measure E(α, β)(α), where

E⃗ � (α, β) = ⟨E⃗(α′, β′) | (α′ < α) or (α′ = α and β′ < β)⟩ .

1.3 Types

Previously Short Extenders forcings were used in context of a singular cardinal κ which is a

limit of cardinals κn’s carrying extenders and types were defined over κn’s (say κ+kn+2
n with

sequences ⟨kn | n < ω⟩ converging to infinity). Here κ is a regular cardinal, but we will work

around κ+ω and will use κ+n, n < ω as a replacement.

Let χ be a regular cardinal large enough (thus κ+ω+4 will do it). For k ≤ ω we consider

a structure

Ak = ⟨H(χ+k),∈, E⃗, the enumeration of [κ+ω+3]≤κ, and of [κ+ω+2]≤κ,

⟨χ+n | n ≤ k⟩, κ, 0, 1, . . . , α . . . | α < κ+k⟩

in an appropriate language which we denote Lk.

For an ordinal ξ < χ (usually ξ will be below κ+ω+3) we denote by tpk(ξ) the Lk-type

realized by ξ in Ak.

Let L′
k be the language obtained from Lk by adding a new constant c′. For δ < χ let

ak,δ be the L′
k-structure obtained from ak by interpreting c′ as δ. The type tpk(δ, ξ) is the

L′
k-type realized by ξ in Ak,δ. Further, we shall identify types with ordinals corresponding

to them in some fixed well ordering of P(κ+k).

Definition 1.1 Let k ≤ ω and β < κ+ω+3 (or β < κ+ω+2). β is called k-good iff

1. for every γ < β tpk(γ, β) is realized unboundedly often below κ+ω+3 (or respectively,

κ+ω+2);

2. for every bounded a ⊆ β of cardinality ≤ κ there is α < β corresponding to a in the

enumeration of [κ+ω+3]≤κ (or respectively [κ+ω+2]≤κ).

The next two lemmas are proved in [1].

Lemma 1.2 The set {β < κ+ω+i | β is ω-good} contains a club, for every i < 2.

Lemma 1.3 Let 0 < k ≤ ω and β be k-good. Then there are arbitrarily large k − 1-good

ordinals below β.
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1.4 The Preparation Forcing P ′

The relevant preparation forcing P ′ here will be just P ′ of Gap 3 with κ replaced by κ+ω

(and then κ+ by κ+ω+1, κ++ by κ+ω+2, κ+3 by κ+ω+3). So, models of cardinality κ+ω+1 and

those of cardinality κ+ω+2 (ordinals) will be the only one used. This way the final forcing

will satisfy only κ+ω+2–c.c. and the cardinals of the interval [κ++, κ+ω+1] will be collapsed.

But that is what we actually desire. Thus (κ+ω+2)V will be turned into κ++ and (κ+ω+3)V

into κ+3.

In order to force with P ′ and preserve the desired strongness– the corresponded preparation

should be made below κ.

2 The Main Forcing

The next definition combines the Extender Based Magidor forcing with a certain short

extenders forcing.

The forcing will change the cofinality of κ to ω1 by adding to it a Magidor sequence

⟨κτ | τ < ω1⟩. For each τ < ω1, we will have 2κτ ≥ (κ+ω+2
τ )V . This will be due to the

fact that extenders E(κτ , β), β < τ has length above κ+ω+2
τ and nothing special (like new

assignments and equivalence relations ←→) will be done for measures with indexes below

κ+ω+2
τ . So the correspondence (assignment) will be here the natural one:

ξ < κ+ω+2
τ will correspond the ξ–th measure of the extenders over κτ .

If τ ∈ S, then we would like to have 2κτ = (κ+ω+3
τ )V , and 2κτ = (κ+ω+2

τ )V , whenever τ ̸∈ S.

A new essential point in the present construction will be as follows. Let τ ∈ S. Suppose that

κτ is determined and it is a limit of κν ’s with ν ̸∈ S. We would like that {κ+ω+2
ν | ν ̸∈ S}

correspond to κ+ω+3
τ , i.e. {κ+ω+2

ν | ν ̸∈ S} ⊆ bκ+ω+3
τ

, where bκ+ω+3
τ

is the pcf–generator.

This already requires drops in cofinality. Thus we need some sequence to correspond to

κ+ω+2
τ . We will use ⟨κ+ω+2

τn | n < ω⟩ for this purpose, where ⟨τn | n < ω⟩ is a cofinal in τ

sequence consisting of successor ordinals that was reserved in advance. So not all of the set

{κ+ω+2
ν | ν ̸∈ S} will be a part of bκ+ω+3

τ
, rather only

{κ+ω+2
ν | ν ̸∈ S} \ {κ+ω+2

τn | n < ω}.

Suppose also that for every n < ω we have ηn ̸∈ S, τn < ηn < τn+1 such that κ+ω+2
τn is

connected with κ+ω+2
ηn (i.e. basically κ+ω+2

τn ∈ bκ+ω+2
ηn

). Note that since there are ℵ1 many τ ’s

and both S, ω1 \ S are stationary, situations like above always must occur. Let n < ω. We

have that κ+ω+2
ηn is connected to κ+ω+3

τ , κ+ω+2
τn is connected to κ+ω+2

ηn and κ+ω+2
τn is connected
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to κ+ω+2
τ . This looks like a problem and in the actual setting has to do with the chain

condition (κ+ω+3
τ –c.c. instead of the desired κ+ω+2

τ –c.c.). A way to overcome this difficulty

will be as follows. Once we have two conditions such that in the first some α < κ+ω+3
τ

corresponds to a measure α∗ < κ+ω+2
τ of E(κτ , ηn) and α∗ corresponds to a measure γ∗ of

E(κτ , τn) via the assignment of E(κτ , ηn) (i.e. on a set of measure one for a maximal measure

of the condition for E(κτ , ηn)). In addition some γ < κ+ω+2
τ corresponds to the measure γ∗ of

E(κτ , τn). Suppose the second condition is the same, but instead of α we have some different

ordinal β, say α < β, but α∗ = β∗ and the rest is the same.

We need to be able to put such two conditions into one stronger than both of them in order

to verify the chain condition. Say we like to extend the first condition. So, as usual, we find

some µ > α∗ which realize the same type over the common part and attach it to β instead

of α∗ (which corresponds to β in the second condition). The problem with this is that α∗

corresponds to γ∗, but µ does not.

But let us do the following: attach µ to γ∗ as well. So, in a sense, we loose a one to one

correspondence of the assignment function for κ+ω+2
ηn . In order to compensate this, let us

require that the α∗-th and µ-th sequences to κηn differ all the time above κτn .

The above will be implemented as follows. A non direct extensions of a condition which

determine the value of κτ will be allowed to identify α∗ and µ as above, but then on a set of

measure one for κτ∼
(i.e. with different choices of κτ ) they will be kept different.

Now, since a non-direct extensions can be made only at finitely many places (i.e. a condition

decides only finitely many κτ ’s) the generic omega sequences corresponding from κηn for α∗

and µ will be eventually different.

We do not require that assignments between κ+ω+2
τ and measures of E(κτ , ηn) and between

measures E(κτ , τn) and E(κτ , ηn) are identity. i.e. γ < κ+ω+2
τ corresponds to γ-th measure

of E(κτ , ηn), and γ-th measure of E(κτ , τn) corresponds to γ-th measure of E(κτ , ηn).

Actually, it cannot be the identity once the above was implemented. The assignment func-

tions however will be identity on κ+ω+1
τ .

Let τ < η < ω1. Denote the connection function between levels η and τ by aητ . There

are five possibilities.

1. τ, η ̸∈ S.

Then we connect between κ+ω+2
η and κ+ω+2

τ .

2. τ, η ∈ S.

This implies that τ is not one of ηn’s.

We connect κ+ω+3
η to both κ+ω+2

τ and to κ+ω+3
τ .
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3. η ̸∈ S, τ ∈ S.

Then we connect κ+ω+2
η to both κ+ω+2

τ and to κ+ω+3
τ .

4. η ∈ S, τ ̸∈ S and τ = ηn for some n < ω.

Then we connect κ+ω+2
η to κ+ω+2

τ .

5. η ∈ S, τ ̸∈ S and τ is not one of ηn’s.

Then we connect κ+ω+3
η to κ+ω+2

τ . Dropping in cofinality is used to deal with this case.

In all the cases κ+ω+1
η is connected to κ+ω+1

τ and the connection between them is just the

identity.

Let us explain more the cofinalities drops that will occur here. The complication is due

to the fact that the cofinality from ω1 many places may drop to a same value. Thus, for

example, τ0 may be the first element of the fixed ω-sequence for ω1 many ordinals α < ω1.

So, we will have drops from κ+ω+2
α to κ+ω+2

τ0
for ω1- many α’s. This disturbs completeness of

the forcing (at least direct extensions in it).

Let us deal with this as follows (the explanation continues with τ0, but τ0 may be viewed as

an arbitrary point of the fixed ω-sequence to arbitrary τ ∈ S). Let us assume that τ ′ =: τ0+1

is not in S and is not a member of any of this fixed ω-sequences. Then we would like to add

κ+ω+2
τ ′ -many ω-sequences to κτ ′ . Now require that once κτ0 is determined, i.e. a non-direct

extension of a condition was made over level τ0, then the same was done over τ ′ and κτ ′ is

determined as well. κτ ′ is linked with the rest ω1 many cardinals (not yet determined) κ∼β’s.

We will now ”copy” more or less from κτ ′ to κ∼β’s.

Let us clarify one subtle point in this context (i.e. once there are many drops to a single

cofinality). Suppose for simplicity that ω ∈ S, but n ̸∈ S, for each n < ω. Suppose also that

⟨2n | n < ω⟩ is the fixed sequence for ω. In a generic extension (and we are interested only

in its part below κω) let fi be the generic ω-sequence for i < κ+ω+3
ω . Then fi ∈

∏
n<ω κ

+ω+2
2n+1 ,

for i < κ+ω+3
ω . In addition, if cof(i) = κ+ω+2

ω , then cof(fi(n)) = κ+ω+1
2n , because of dropping

in cofinality.

Let ⟨gj | j < κ+ω+2
ω ⟩ be generic ω-sequences in

∏
n<ω κ

+ω+2
2n , i.e. corresponding to κ+ω+2

ω . Let

V1 = V [⟨gj | j < κ+ω+2
ω ⟩].

Now suppose the following:

(*) for every i < κ+ω+3
ω of cofinality κ+ω+2

ω (or just for stationary many of such i’s) there

is a sequence ⟨s(i, n) | n < ω⟩ ∈ V1 such that for all but finitely many n’s s(i, n) is bounded

in i, but {fj(n) < fi(n) | j ∈ s(i, n)} is unbounded in fi(n).

Work in V1. Consider a function i 7→ sup(∪n<ωs(i, n)). Find a stationary S ⊆ (κ+ω+3
ω )V
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on which it takes a constant value δ. Now, in V1, we still have δκ = κω = (κ+ω+2
ω )V <

(κ+ω+3
ω )V . Hence, there is S1 ⊆ S stationary such that for every i, i′ ∈ S1 we have ⟨s(i, n) |

n < ω⟩ = ⟨s(i′, n) | n < ω⟩.
Let now i < i′ be in S1. Then in the full extension (*) implies that for all but finitely many

n’s we have fi(n) = fi′(n). Which is impossible and hence (*) must fail.

The meaning of this is that in this type of a cofinality dropping it is impossible to relay

completely (i.e. once arranging assignment functions) on points of a drop corresponding to

smaller cofinality. This is a reason of taking κτ ′ and copping from it to relevant κ∼β’s as was

described above.

Let us explain the process of copping and assignment functions that allow it. For each

α < β < ω1, we will have the assignment function aβα which will be as usual an isomorphism

between suitable structures and fβα that is comes from a Cohen part of a condition. As

before the both components will be put together once a non-direct extension which decides

κα, κβ was taken. The new element in the present context will be a commutativity.

Thus suppose that we have in addition γ, β < γ < ω1. We require that

1. aγα = aβα ◦ aγβ,

2. fγα = fβα ◦ fγβ

once non of κi’s is decided. Domains of fij’s are sets of pairs which have the first coordinates

corresponding to potential choices of κ∼i’s.

Suppose now that a non-direct extension was made and as a result κα was decided. Then

aγα and aβα are incorporated into new fγα and fβα respectively in the usual fashion. Now

aγβ, fγβ together with fβα should give fγα.

Assume that we have in addition α′, α < α′ < β such that a dropping occurs from γ to α

and α′ at the same level, i.e. for some n < ω, we have γn < α, α′ < γn+1, where ⟨γn | γ < ω⟩
is the fixed sequence for γ. Assume also that κ∼α′ is not decided yet. Then we use aγβ,fγβ to

pick elements of the level β, i.e. over κ∼β, and then aβα′ to move them down to the level α′.

Note that it is possible that βk < α′ < βk+1, for some k < ω, and κ∼βk
is not decided yet.

Once κβ is decided, then the argument showing κ+ω+2
β –c.c. of the forcing up to κβ turns now

the usual form.

Let us turn to formal definitions. First let us define pure conditions.

Definition 2.1 (Pure conditions) The set P̄ consists of sequences of the form

⟨⟨ξ, pξ⟩ | ξ ∈ s⟩, ⟨Aα | α < ω1⟩, ⟨aγβ, fγβ | β < γ ≤ ω1⟩, ⟨aδβα, f δ
βα | α < β ≤ oE⃗(δ), δ < κ⟩⟩

satisfying the following conditions:
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1. s ⊆ κ+ω+2 such that

(a) |s| ≤ κ,

(b) max(s) exists and it is above every other element of s in the order of each of the

extenders E(κ, ξ), ξ < ω1.

2. pξ is a finite increasing sequence of ordinals below κ,

3. Aα ∈ E(κ, α)(max(s)),

4. aγβ is an assignment function (an isomorphism between suitable structures) over κ.

Let us state the particular properties aγβ related to the fixed stationary set S.

(a) If β, γ ̸∈ S, then aγβ is an isomorphism between a generic suitable structure over

κ+ω+2 and a suitable structure over κ+ω+2.

This eventually will connect κ+ω+2
γ with κ+ω+2

β , where κγ, κβ are γ-th and β-th

elements of a generic Magidor sequence.

(b) β, γ ∈ S, then aγβ is an isomorphism between a generic suitable structure over

κ+ω+3 and a suitable structure over κ+ω+3, but so that ordinals correspond to

models of cardinality κ∼
+ω+2
γn and κ+ω+2 drops down to κ∼

+ω+2
γn where γn is the

maximal member ≤ β of the fixed cofinal in γ sequence ⟨γn | n < ω⟩.
This way we would like to connect κ+ω+3

γ with both κ+ω+3
β and κ+ω+2

β , in addition

κ+ω+2
γ will drop to κ+ω+2

γn .

Note, that due to the dropping, the cardinality of aγβ should be κγn , once we have

κγn is decided. It is bad (Prikry condition) to keep the cardinality of aγβ below

κ and then to choose κγn above it. Instead let us allow the cardinality of aγβ to

be a name which depends on the choice of κγn . Recall that in cofinality drops

rng(aγβ) depends on the choice of a point from Aγn . So, here also the domain is

a name, but both are always subsets of the support of the condition s.

(c) If γ ̸∈ S and β ∈ S, then aγβ is an isomorphism between a generic suitable struc-

ture over κ+ω+2 and a suitable structure over κ+ω+3 so that ordinals correspond

to models of cardinality κ+ω+1.

This way we would like to connect κ+ω+2
γ with both κ+ω+3

β and κ+ω+2
β . Thus, if

ξ ∈ dom(aγβ)∩On then aγβ(ξ) will be a model of the size κ+ω+1. aγβ(ξ)∩ κ+ω+2

will be an ordinal. We have here a kind of splitting where ξ corresponds to both

an ordinal aγβ(ξ) ∩ κ+ω+2 for ω + 2 and a model aγβ(ξ) for ω + 3. No drops are

needed in this case.
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(d) If γ ∈ S and β = γn, for some n < ω (and, in particular, β ̸∈ S), then aγβ is

an isomorphism between a generic suitable structure over κ+ω+2 and a suitable

structure over κ+ω+2.

This eventually will connect κ+ω+2
γ with κ+ω+2

β .

(e) If γ ∈ S, β ̸∈ S and β is not one of γn’s, then aγβ is an isomorphism between a

generic suitable structure over κ+ω+3 and a suitable structure over κ+ω+2, but so

that κ+ω+2 drops down to the maximal γn ≤ β, where ⟨γn | n < ω⟩ is the fixed

cofinal in γ sequence.

This way κ+ω+3
γ will be connected with κ+ω+2

β . In addition κ+ω+2
γ will drop to

κ+ω+2
γn .

5. aδβα is an assignment function (an isomorphism between suitable structures) over δ.

It satisfies the conditions 4a–4e above only with κ replaced by δ.

6. fγβ is a partial function of cardinality at most κ from κ+ω+3 to κ,

7. f δ
γβ is a partial function of cardinality at most δ from δ+ω+3 (or from δ+ω+2) to δ,

8. (Disjointness of domains)

• dom(aγβ) ∩ dom(fγβ) = ∅, for every β < γ < ω1.

• dom(aδβα) ∩ dom(f δ
βα) = ∅, for every α < β < oE⃗(δ).

Let us state now the conditions which deal with a commutativity.

9. aγα = aγβ ◦ aβα, for each α < β < γ < ω1,

10. aδγα = aδγβ ◦ aδβα, for each α < β < γ < oE⃗(δ).

Note that only dom(aω1β) ⊆ s. If γ < ω1 and γ ∈ S, then dom(aγβ) ⊆ κ+ω+3 which

may be larger than s. Our main interest will in the type dom(aγβ) realizes and further

the equivalence relation (←→) will identify conditions accordingly.

11. If ν ∈ dom(aγβ) and cof(ν) = κ+, then cof(aγβ(ν) = κ+.

Note that such ν’s will be usually non–limit points, since there will be drops in cofi-

nalities.

The next conditions deal with compatibility.
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12. (Compatibility) For each β < γ < ω1 and η ∈ Aγ we require that

aηγβ
∪
{⟨ξ̄, ρ̄⟩ | there are ⟨ξ, ρ⟩ ∈ aγβ such that η is permitted to both

pξ, pρ, πmax(s),ξ(η) = ξ̄ and πmax(s),ρ(η) = ρ̄}

is a function and it is an order preserving (or even an isomorphism between suitable

structures.

This means that the copy of aγβ over η is compatible with the ”local” function aηγβ.

13. For every α < β < γ < ω1 and ξ ∈ dom(fγα) the following hold:

(a) ξ ∈ dom(fγβ),

(b) if ν = fγα(ξ) and δ = fγβ(ξ), then o(δ0) > α implies f δ0

o(δ0)α(δ) = ν.

14. For every γ < ω1, ξ ∈
∪

β<γ dom(aγβ) and k < ω

the following set is a final segment in γ:

{β < γ | aγβ(ξ) is defined and k good}.

Let us deal now with the following situation. Suppose that γ ∈ S, α < γ, α ̸∈ {γi | i <
ω} and n < ω is a maximal such that γn < α. Then κ∼

+ω+2
γ is connected with κ∼

+ω+2
γn

and κ∼
+ω+3
γ with κ∼

+ω+2
α , and if α ∈ S, then also with κ∼

+ω+3
α . On the other hand κ∼

+ω+2
α

is connected with κ∼
+ω+2
γn , if α ̸∈ S and κ∼

+ω+3
α is connected with κ∼

+ω+3
γn , if α ∈ S, but

γn ̸∈ {αi | i < ω}. We need to break down this connections between α and γn in order

to keep the thing working. Namely the κ+ω+2
γ chain condition of the forcing at the

level γ is effected. It is easy to deal with a single γn (or with {γi | i ≤ n}). We can

just identify images at the level γn of different ordinals (or models) from the level α.

The situation starts to be more involved once instead of a single γ we have ω–many

with the corresponding γn’s unbounded in α. This always occurs due to stationarity

of S. The problem in this case is that if we identify too much, then there will not be

enough ω–sequences to make 2κα big.

Let us state now conditions that allow to identify certain ordinals (models), but still

keep many sequences different.

15. Suppose δ ∈ Aγ, for some γ ∈ S. Then oE⃗(δ0) = γ. Consider aδγα, a
δ
γγn , where α < γ

and n < ω is the maximal such that γn < α.

We have a connection aδαγn between κ∼α and κ∼γn . Let us disturb it. We will allow to
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identify some values. There is āδαγn ⊆ dom(aδαγn) on which aδαγn is order preserving (or

isomorphism) but the rest of dom(aδαγn) is mapped into the image of āδαγn by aδαγn .

It will be allowed to change āδαγn (once extending a condition) and to pass to a different

set on which the order is preserved.

Now suppose that instead of a single γn (or even bounded many ones) α is a limit of

ordinals ξi which members of the ω–sequences for ordinals ξ ≥ γ.

Then for each such such ξi we will have a set āδαξi ⊆ dom(aδαξi) on which aδαξi is order

preserving (or isomorphism). Require the following:

(a) if ν, µ are in the support over κ∼α and ν ̸= µ, then the set

{ξi < α | aδαξi(ν) = aδαξi(µ)}

is bounded in α;

(b) (Minimality) if ν, µ are in the support over κ∼α, ν ∈ āδαξi and aδαξi(ν) = aδαξi(µ),

then µ ≥ ν.

Let us explain how the above condition allows to run the chain condition argument.

We will need to prove κ+ω+2
γ –c.c. of the forcing up to the level γ. As usual a ∆–system

is formed and at the final stage of the argument we will need to put together two

conditions with indexes from it. The problem here is that the kernel of the ∆–system

includes the parts of both conditions over κ+ω+2
γ . The assignment functions then will

move this common part to κγn . So over the level α we will have different things that

should correspond to the same one over the level γn. Suppose for simplicity that α ̸∈ S.

Then (over κα) we will have the kernel x (the image under aδγα’s) the rest of the first

condition (again only over κα) y and the second z above it. We need to identify the

images of y and z over the level γn, but still keep them different or even one above

the other co-boundedly often. Denote by ȳ, z̄ the parts on which we have the order

preservation. Let ν = min(ȳ \ x) and µ = min(z̄ \ z). The sequences for ν and for µ

behave the same way (i.e. equal, less, bigger) relatively the sequences for members of

x, as parts of the ∆–system. Densely often above the level γ and hence in the sequence

of conditions above the level γ used to determine the members of the antichain over γ,

both ν and µ appear. So, their sequence from the level α differ on a co-bounded subset.

This means that a final segment of both of them differs from any of the sequences of

the kernel x as well as one from an other. In particular this means that ν = min(y)
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and µ = min(z), by the minimality item above. Now we can combine the conditions

together.

Define a direct extension order ≤∗ on P̄ in the obvious fashion as follows.

Definition 2.2 (Direct extension order) Let p = ⟨⟨ξ, pξ⟩ | ξ ∈ s⟩, ⟨Aα | α < ω1⟩, ⟨aγβ, fγβ |
β < γ ≤ ω1⟩, ⟨aδβα, f δ

βα | α < β ≤ oE⃗(δ), δ < κ⟩⟩ and q = ⟨⟨ξ, qξ⟩ | ξ ∈ t⟩, ⟨Bα | α <

ω1⟩, ⟨bγβ, gγβ | β < γ ≤ ω1⟩, ⟨bδβα, gδβα | α < β ≤ oE⃗(δ), δ < κ⟩⟩ be in P̄ . Set q ≤∗ p iff

1. s ⊇ t,

2. pξ = qξ,for every ξ ∈ t,

3. π′′
α,max(s),max(t)Aα ⊆ Bα, for every α < ω1,

4. aγβ ⊇ bγβ, for every β < γ < ω1⟩,

5. fγβ ⊇ gγβ, for every β < γ < ω1⟩,

6. aδβα ⊆ bδβα, for every α < β ≤ oE⃗(δ), δ < κ,

7. f δ
βα ⊆ gδβα, for every α < β ≤ oE⃗(δ), δ < κ.

Let us define now an extension of a pure condition by one element.

Definition 2.3 (One element extension) Let p = ⟨⟨ξ, pξ⟩ | ξ ∈ s⟩, ⟨Aα | α < ω1⟩, ⟨aγβ, fγβ |
β < γ ≤ ω1⟩, ⟨aδβα, f δ

βα | α < β ≤ oE⃗(δ), δ < κ⟩⟩ ∈ P̄ , β < ω1 and η ∈ Aβ. Define the

extension of p by η, p⌢η. It consists of two parts the upper part pup and the lower part plo,

where

pup = ⟨⟨ξ, pξ⟩ | ξ ∈ s and η not permitted for pξ⟩, ⟨Aα \ η | oE⃗(η) < α < ω1⟩,

⟨aγβ, fγβ | oE⃗(η) < β < γ ≤ ω1⟩, ⟨aδβα, f δ
βα | oE⃗(η) < α < β ≤ oE⃗(δ), η < δ < κ⟩,

⟨fγoE⃗(η) | o
E⃗(η) < γ < ω1⟩, ⟨f δ

γoE⃗(η)
| oE⃗(η) < γ ≤ oE⃗(δ)⟩, ⟨f̄γoE⃗(η) | o

E⃗(η) < γ ≤ ω1⟩⟩,

plo = ⟨⟨πmax(s),ξ(η), p
ξ⟩ | ξ ∈ s and η is permitted for pξ⟩, ⟨Aα ∩ η | α < oE⃗(η)⟩,

⟨āηγβ, f
η
γβ | β < γ ≤ oE⃗(η)⟩, ⟨aδβα, f δ

βα | α < β ≤ oE⃗(δ), δ < η0⟩⟩,

where
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1. f̄γoE⃗(η) is a combination of fγoE⃗(η) with aγoE⃗(η), i.e.

f̄γoE⃗(η) = fγoE⃗(η) � {ξ | (fγoE⃗(η)(ξ))
0 = η0}∪

{⟨ξ, πmax(s),a
γoE⃗(η)

(ξ)(η)⟩ | ξ ∈ dom(aγoE⃗(η)), η is permitted for pξ}.

Note that aγoE⃗(η) may be a name according to Definition 2.1(4b). So in such a case

also f̄γoE⃗(η) will be a name.

It is important that all connections between the upper part (including η) and the lower

part go through the level η. This way a completeness of the upper part regains.

Note also that the following situation may occur:

the connection between levels γ and α (i.e. aγα) used models of greater cardinality

than those between oE⃗(η) and α , for some α < oE⃗(η). If this happen, then we still

base the connection between oE⃗(η) and α (i.e. āη
oE⃗(η)α

) on smaller models, but require

that the largest of bigger size belongs to one of the smaller size.

2. āηγβ = aηγβ, unless γ = oE⃗(η). If γ = oE⃗(η), then āηγβ is the combination of aηγβ with the

copy of aγβ over η, i.e.

āηγβ = aηγβ
∪
{⟨ξ̄, ρ̄⟩ | there are ⟨ξ, ρ⟩ ∈ aγβ such that η is permitted to both

pξ, pρ, πmax(s),ξ(η) = ξ̄ and πmax(s),ρ(η) = ρ̄}.

Note that such defined āηγβ is an order preserving function by 2.1 (12).

The connection aϵβ, for ϵ’s above oE⃗(η), is replaced now by the composition of fη

ϵ,oE⃗(η)

(or its further extensions) with āη
oE⃗(η),β

.

The definition above takes care of a problem of completeness. Thus the following situation

always occurs:

some δ < ω1 is a dropping level for ℵ1–many levels of a pure condition p.

In this case the direct extension order ≤∗ will be at most κδ–closed. But once a one element

non-direct extension was made using η0 > κδ, the following will happen:

the connection functions aβδ split to parts up to η and below η, by 2.3(1). The parts above

η are η0–closed. Note that connections to the level of η not one to one anymore, since a’s

are replaced by f ’s.

Not only connections to the level of η stop to be one to one, but in addition also connections

to levels which drop to the level of η or below. Let us explain this point in more details.

Thus suppose that we have levels γ > β, γ ∈ S above the level of η, for some k < ω, γk+1 > β
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but β > γk and γk ≤ the level of η. In this situation we have a drop in cofinality from β

to γk. The cardinality of aγβ should be at most η (actually it should be less than κγk once

this cardinal is decided). So we should loose completeness due to the size of aγβ for each

β, γk < β < γk+1. Also there may be ℵ1 many γ’s with γm below the level η.

The way to overcome this difficulty will be to replace connection functions aγβ (for γ, β which

are like this) by a combination of it with the function uγβ which mention η. We give up the

order preservation here.

An additional refinement is needed, since κ+ω+2
γ –c.c. of the forcing up to the level γ may

be effected otherwise. Namely, running the ∆–system argument there will be a need to deal

with the following situation:

two different ordinals (or models) ξ1 < ξ2 at the level γ in two conditions that we like to

combine and to attach to them different ordinals ρ1 < ρ2 at the level β. Say presently

the same ρ corresponds to both. Usually we pick some ρ′ similar enough to ρ and extend

conditions by adding the missing ξ and sending it to ρ′. But in the present situation for each

choice of κγk there may be some ζ in the common part which uγβ moves (in both conditions)

to ρ. This makes impossible to move from ρ to ρ′ and so to combine such conditions.

Let us define uγβ more carefully. Thus instead of relying on γk let us move to γk + 1. It is

not in S and it is not of the form δn for any δ ∈ S. So, γk+1 is the first level above γk which

drops to γk. We require that if a non-direct extension was made at the level γk, then such

extension made at the level γk +1 as well. Now, uγβ will keep information about connection

to the level γk + 1 instead those to γk. The advantage in the chain condition argument will

be that in the situation described above, we first arrange compatibility at the level γk + 1,

i.e. find some similar τ, τ ′ at this level and make the assignment function aγ,γk+1 to move

ξ1, ξ2 to τ, τ ′. Now we can pick ρ′ and move ρ, ρ′ also to τ, τ ′ but using aβ,γk+1. The problem

that we had above (using γk instead of γk +1) does not occur now, since we managed to get

different values at the level γk + 1. This was impossible with γk due to different cofinalities

of levels β and γk. Note that cofinalities of levels β and γk are the same.

Inside a pure condition:

1. uγβ ⊆ κ2.

Note that we do not require that uγβ is a function. It is needed in order to prove

κ+ω+2
γ –c.c. of the final forcing below γ. A single value may prevent a possibility of

putting together equivalent condition.

2. |uγβ| < κ,
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3. dom(uγβ) ⊆ dom(fγβ),

4. if for some ξ̃ ∈ dom(uγβ) we have |uγβ(ξ̃)| > 1, then

(a) rng(aγβ) ⊇ uγβ(ξ̃),

or

(b) for some ξ ∈ dom(aγβ), uγβ(ξ̃) ∈ aγβ(ξ) and uγβ(ξ̃) is simply definable inside

aγβ(ξ) (say using ordinals from κ∼
+
β ).

Suppose now that κγk+1 was decided. We combine then aγβ and uγβ into a new uγβ as

follows.

Let ξ̃ ∈ dom(uγβ).

Case 1. For some ξ ∈ dom(aγβ) aγβ(ξ) = uγβ(ξ̃) or aγβ(ξ) ∈ uγβ(ξ̃).

If there is such ξ with fγγk+1(ξ) = fγγk+1(ξ̃), then we leave ξ̃ in the domain of the new uγβ

and leave only aγβ(ξ) as its unique image. Otherwise ξ̃ is removed.

Case 2. Not Case 1, but there is ξ ∈ dom(aγβ),uγβ(ξ̃) ∈ aγβ(ξ) and uγβ(ξ̃) is simply definable

inside aγβ(ξ).

If there is such ξ with fγγk+1(ξ̃) simply definable inside fγγk+1(ξ), then we leave ξ̃ in the

domain of the new uγβ and leave only the one inside aγβ(ξ) as its unique image. Otherwise

ξ̃ is removed.

Case 3. Not Case 1, Case 2.

Then we keep uγβ(ξ̃) as it is.

The idea here is that once a non–direct extension over γk + 1 was made– we more or

less copy the connection between levels γ, γk + 1 to those between γ, β. So the function

uγβ, which replaces aγβ now, is not order preserving. For each ξ̃ in its domain we have

fγγk+1(ξ) = fβγk+1(uγβ(ξ̃)) which is viewed as a non–direct extension over γk +1 responsible

for uγβ(ξ̃).

Cases 1–3 above describe how the irrelevant (for the choices made over γk + 1–level) infor-

mation is removed.

It may be that a non-direct extension was made at some level α, γk+1 < α < β.

Denote the set of one element extensions of elements of P̄ by P̄1. Extend ≤∗ to P̄1 in the

obvious fashion. Repeat Definition 2.3 and define P̄2 to be the set of one element extensions

of elements of P̄1, etc.

Finally set

P =
∪
n<ω

P̄n,
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where P̄0 = P̄ . Extend ≤∗ to P̄n’s and P in the obvious fashion.

Definition 2.4 (Order) Let p, q ∈ P . Set p ≥ q iff there exists a finite sequence ⟨rk | k <

n < ω⟩ of elements of P such that

1. r0 = q,

2. rn−1 = p,

3. rk ≤∗ rk+1 or rk+1 is a one element extension of rk, for every k < n− 1.

Let p ∈ P and for some α < ω1 the value of κα is decided. Then p splits naturally into

two parts – the part p≤α from the level α down and the part p>α above the level α.

Definition 2.5 Let α < ω1.

1. Set P≤α to be the set of all p≤α with p ∈ P which decides κα.

2. Set P>α to be the set of all p>α with p ∈ P which decides κα.

Lemma 2.6 Let α < ω1. Then ⟨P>α,≤∗ ⟩ is κ+
α–closed forcing.

Proof. The proof follows from the way conditions split–namely 2.3(1).

�

Lemma 2.7 (Prikry condition)

⟨P ,≤,≤∗ ⟩ satisfies the Prikry condition.

Proof. Given Lemma 2.6 – standard arguments apply.

�

3 The Main Forcing Order

Define a partial order −→ on P such that ⟨P ,→ ⟩ will be nice subforcing of ⟨P ,≤ ⟩ and
⟨P≤α,→ ⟩ will satisfy κ+ω+2

α –c.c., for every α < ω1.

We start with a definition of equivalences ←→.

16



Definition 3.1 (Equivalence of pure conditions) Let η < ω1,

p = ⟨⟨ξ, pξ⟩ | ξ ∈ s⟩, ⟨Aα | α < η⟩, ⟨aγβ, fγβ | β < γ ≤ η⟩, ⟨aδβα, f δ
βα | α < β ≤ oE⃗(δ), δ < κη⟩⟩ and

q = ⟨⟨ξ, qξ⟩ | ξ ∈ t⟩, ⟨Bα | α < η⟩, ⟨bγβ, gγβ | β < γ ≤ η⟩, ⟨bδβα, gδβα | α < β ≤ oE⃗(δ), δ < κη⟩⟩

be in P≤η.

Set p←→η q iff the following hold:

1. s = t,

2. Aα = Bα for each α < η,

3. pξ = qξ for every ξ ∈ s,

4. fγβ = gγβ, for every β < γ ≤ η,

5. f δ
βα = gδβα, for every α < β ≤ oE⃗(δ), δ < κη,

6. aδβα = bδβα, for every α < β ≤ oE⃗(δ), δ < κη,

7. aγβ = bγβ, β < γ ≤ η,

8. dom(aηγ) = dom(bηγ), for every γ < η,

9. rng(aηγ) and rng(bηγ) realize the same k-type, for every k < ω, for a final segment of

γ’s below η. Moreover they always (for each γ < η) realize the same 4-type.

Definition 3.2 (Equivalence) Let η < ω1 and p, q ∈ P≤η.

Set p←→η q iff the following hold

1. the sets of κγ’s for γ < η determined by p and by q are the same.

Denote this set by X and let Y = {γ < η | κγ ∈ X}. Clearly both X and Y are finite.

2. If Y = ∅, then p←→η q as in Definition 3.1.

3. If Y ̸= ∅, then

(a) p≤min(Y ) ←→min(Y ) q≤min(Y ),

(b) p>max(Y ) ←→η q>max(Y ),

(c) (p≤γ)>β ←→γ (q≤γ)>β, for any two successive elements β < γ of Y .
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Definition 3.3 (Main order of P≤η) Let η < ω1 and p, q ∈ P≤η.

Set p→η q iff there exists a finite sequence ⟨ri | i ≤ k⟩ of elements of P≤η such that

1. p = r0,

2. q = rk,

3. for every i < k either

• ri ≤ ri+1

or

• ri ←→η ri+1.

Definition 3.4 (Main order) Let p, q ∈ P . We set p→ q iff either

1. p ≤ q

or

2. there is η < ω1 such that κη is determined the same way in both p, q and the following

hold:

(a) p>η ≤ q>η.

It means that nothing new, not taken into account by “≤”, happen above level η.

(b) p≤η →η q≤η.

The next lemma insures that ⟨P ,→ ⟩ is a nice subforcing of ⟨P ,≤ ⟩, i.e. every dense

open set in ⟨P ,→ ⟩ generates such a set in ⟨P,≤ ⟩. The proof is similar to the corresponding

lemma of [?, Sec. 5].

Lemma 3.5 Suppose that p → q ≤ q′ then there is p′ ≥ p such that q′ → p′, where

p, q, q′, p′ ∈ P.

Lemma 3.6 The following hold in V ⟨P,→⟩, for every limit η < ω1:

• 2κη ≥ (κ+ω+2
η )V ,

• if i ∈ S, then 2κη ≥ (κ+ω+3
η )V .

Note that actually all the cardinals in the interval [κ++
η , κ+ω+1

η ] are collapsed to κ+
η which

itself is preserved as the successor of a singular.
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Lemma 3.7 Let η < ω1. If η ̸∈ S then, in V ⟨P,→⟩, 2κη ≤ (κ+ω+2
η )V .

Proof. Just the forcing splits into P>η, which is κ+
η closed, and into P≤η. Formally the

cardinality of P≤η is κ
+ω+3
η , but actually the forcing ⟨P≤η,→η ⟩ produces η–sequences indexed

only by κ+ω+2
η , since η ̸∈ S. The formal argument is given below.

Let M ≺ H(χ), for χ big enough, containing all the relevant information such that

• |M | = κ+ω+2
η ,

• M ∩ κ+ω+3
η is an ordinal,

• M is closed under κ+ω+1
η sequences of its elements.

Let p ∈ P≤η. Then, using elementarity there will be a condition pM ∈ M ∩ P≤η such

that p ←→η pM and even p � κ+ω+2
i = pM � κ+ω+2

i . This means that ⟨P≤η,→η ⟩ and
⟨P≤η ∩M,→η ⟩ are just the same from forcing point of view. But |P≤η ∩M | = κ+ω+2

η .

�
Our next task will be to show κ+ω+2

η -c.c. of the forcing ⟨P≤η,→η ⟩ in V P ′
for each η < ω1.

Lemma 3.8 (Chain condition lemma) Suppose that η < ω1 and the value of κη is decided.

Then, in V P ′
, ⟨P≤η,→η ⟩ satisfies κ+ω+2

η – c.c.

Proof. Work in V P ′
.

Let us deal with η ̸∈ S. If η ∈ S, then the argument is very similar but with ordinals

replaced by models see [4].

If η = η′+1, then we decide κη′ . The forcing ⟨Pη,→η ⟩ will be then consists of two parts

Pη′ and a part isomorphic to the Cohen forcing for adding subsets to κ+
η . As in Lemma 3.7,

Pη′ is equivalent to a forcing of small cardinality, and so we are done.

Assume now that η is a limit ordinal.

Let ⟨pτ | τ < κ+ω+2
η ⟩ be a sequence of elements of P≤η and

pτ = ⟨⟨ξ, pξτ ⟩ | ξ ∈ sτ ⟩, ⟨Aτα | α < η⟩, ⟨aτγβ, fτγβ | β < γ ≤ η⟩, ⟨aδτβα, f δ
τβα | α < β ≤ oE⃗(δ), δ < κη⟩⟩

We may assume without loss of generality that pτ ’s are of this form, since the number of

possibilities for low parts is small and so they may be assumed to be the same and then

just ignored since then the incompatibility if occurs will be due to the upper parts of the

conditions.

Shrinking and replacing by ←→η if necessary, we can assume that the following hold:

19



1. Aτα = Aτ ′α for each τ, τ ′ < κ+ω+2
η and α < η,

2. ⟨sτ | τ < κ+ω+2
η ⟩ form a ∆-system with a kernel s,

3. sτ , sτ ′ are order isomorphic over s for every τ, τ ′ < κ+ω+2
η ,

4. pξτ = p
σττ ′ (ξ)
τ ′ , where σττ ′ is the order isomorphism between sτ and sτ ′ ,

5. s ⊇ sξ ∩ κ+ω+1
η for every ξ < κ+ω+2

η ,

6. min(sξ\s) ≥ ξ,

7. ⟨aδτβα, f δ
τβα | α < β ≤ oE⃗(δ), δ < κη⟩ = ⟨aδτ ′βα, f δ

τ ′βα | α < β ≤ oE⃗(δ), δ < κη⟩, for every
τ, τ ′ < κ+ω+2

η ,

8. fτγβ and fτ ′γβ are compatible for every β < γ ≤ η, τ, τ ′ < κ+ω+2
η ,

9. aτγβ = aτ ′γβ, for every β < γ < η, τ, τ ′ < κ+ω+2
η .

Note that in order to insure this we may need to pass to conditions that are ←→η

equivalent to the original ones.

10. rng(aτηβ) = rng(aτ ′ηβ), for every β < η, τ, τ ′ < κ+ω+2
η .

As in the previous item, the above may require to pass to ←→η equivalent conditions.

Extending, if necessary, we may assume that for every τ if ν ∈ sτ and cof(ν) ≤ κη then a

closed cofinal sequence witnessing cof(ν) is contained in sτ . This implies cof(min(sτ\s)) ≥
κ+
η . Let ντ = min(sτ\s) for τ < κ+ω+2

η . Consider ⟨aτηβ(ντ ) | β < γ⟩. By Definition 2.1(14),

for every k < ω, aτηβ(ντ ) is k-good, for a final segment of β < η.

Shrinking if necessary, we may assume that this final segments are the same for all τ ’s

and k’s. Fix an increasing sequence ⟨ki | i < ω⟩ which converges to infinity and k0 ≥ 4.

Make a non-direct extension and freeze (i.e. make it independent of τ ’s) the initial segment

consisting of β’s which are not k0-good.

Let now τ ′ < τ < κ+ω+2
η . We would like to show compatibility of pτ and pτ ′ in ⟨P≤η,→η ⟩.

We proceed similar to [1, 2.20].

Let ℓ < ω and γ be from the final segment of kℓ. Consider aτηγ(ντ ). It is kℓ–good, of

cofinality κ+
η and, once κγ is determined, it will correspond to an ordinal of cofinality κ+

γ ,

by Definition 2.1(11)). Consider kℓ− 1–type that (rng(aτηγ) \ aτηγ(ντ ))∪ (
∪

β<γ dom(aτγβ) \
aτηγ(ντ )) realizes over (rng(aτηγ) ∩ aτηγ(ντ )) ∪ (

∪
β<γ dom(aτγβ) ∩ aτηγ(ντ )). Note that the

last set is bounded in aτηγ(ντ ) since its size is ≤ κη. Realize this type below aτηγ(ντ ) over
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(rng(aτηγ) ∩ aτηγ(ντ )) ∪ (
∪

β<γ dom(aτγβ) ∩ aτηγ(ντ )). Let tγ denotes the result. Now we

change aτ ′ηγ in the obvious fashion by sending the part that was above aτηγ(ντ ) into tγ . This

allows to combine aτηγ with such changed aτ ′ηγ.

The above takes care of assignment functions from the level η. What remains is to change

aτ ′γβ, for β < γ < η, according to the commutativity requirements (Definition 2.1(9)). It

can be done easily using the fact that aτηβ(ντ ) = aτγβ(aτηγ(ντ )), for every β < γ < η.

See the diagram:

γ

β

dom aτγβ

aτηγ(ντ )

κ+ω+2
η or κ+ω+3

η

aτηβ(ντ )

�

Lemma 3.9 Let η < ω1. Every cardinal of V of the form κ+n
η , 2 ≤ n ≤ ω + 1 is collapsed

to κ+
η = (κ+

η )
V in V ⟨Pη ,→η⟩.

Proof. Just size of assignment functions is κη over η and →η does not effect things below

κ+ω+1
η .

�

4 Collapsing Successors of Singulars

In this section we describe how using supercompacts to collapse κ+
i ’s one can obtain a model

satisfying

(1) 2κi = κ+3
i , if i ∈ S.

(2) 2κi = κ++
i , if i ̸∈ S.

(3) (κ+)V < κ+.

The construction repeats the previous one, but instead of using the usual extender se-

quence, we shall use here a Pκ(κ
+) extender sequence of the length κ+ω+3. Let us define
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such a sequence. Assume that κ is κ+ω+3 – supercompact. Let j : V −→M be a witnessing

embedding. Define from j a Pκ(κ
+) – extender sequence ⟨Eτ | τ < κ+ω+3⟩ of the length

κ+ω+3 as follows: for every X ⊆ Pκ(κ
+)× Vκ

X ∈ Eτ iff ⟨j′′κ+, τ⟩ ∈ j(X) .

Let Nτ = Ult(V,Eτ ), N = Ult(V, ⟨Eτ | τ < κ+ω+3⟩) and

V M

iiτ

j

kτ

k

NNτ

be the corresponding diagram with embeddings defined in the usual way.

Lemma 4.1 iτ
′′κ+ ∈ Nτ ,

κ+
Nτ ⊆ Nτ , i′′κ+ ∈ N , κ+

N ⊆ N , crit(k) = κ+3, Hκ+ω+3 =

(Hκ+ω+3)N .

Proof. Just note that iτ
′′κ+ is represented by the function (P, α) 7→ P . �

The extender based Prikry forcing with such extender ⟨Eτ | τ < κ+ω+3⟩ will blow up the

power of κ to κ+ω+3 but also will collapse κ+ to κ changing its cofinality to ω, due to the

Pκ(κ
+) – supercompact ingredient of the extender.

Here we will use a version of Magidor extended based forcing defined in previous sections,

with only change to Pκ(κ
+) – extenders, but the supports now will be of cardinality κ+, due

to number of possible choices from a supercompact measure over Pκ(κ
+), and not κ, as

before. 1

Thus we assume that

E⃗ = ⟨E(α, β) | α ≤ κ, α ∈ domE⃗ , β < ω1⟩

is a coherent sequence satisfying condition (a) – (c) of E⃗ of Section 1. Only in (a) we require

here that E(α, β) is a (Pα(α
+), α+ω+3) extender, i.e one of the type considered above. Also,

E(α, β)(τ) will be now the set

{X ⊆ Pα(α
+)× α | (jE(α,β)

′′(α+), τ) ∈ jE(α,β)(X)} .

The rest of the construction is without changes. The supercompact part of the forcing will

change cofinality of each (κ+
i )

V (i < ω1) to ω by adding to it a cofinal sequence of order type

i.
1Actually this is the point that prevents collapse of κ+ω+1 to κ, and it is collapsed rather to κ++, which

will be the new κ+.
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5 Concluding Remarks

5.1 Down to ℵω1

Combining the present construction with the techniques for collapsing cardinals of Meri-

movich [5] it is possible to turn κ into ℵω1 . For i < ω1, we start collapses from κ+ω+5
i and

insure by this that they will depend only on the normal measure of the extender E(κ, i).

This way the equivalence relation ↔ will not effect them.

5.2 Other Stationary Sets

Recall that S was a subset of a club. Outside of a club we are basically free. Only, as in 5.1,

for each i < ω1 we need to start changes above κ+ω+5
i in order to make the final thing work.
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