Two Stationary Sets with Different Gaps of the
Power Function

Moti Gitik
School of Mathematical Sciences
Tel Aviv University

Tel Aviv 69978, Israel
gitik@post.tau.ac.il

August 14, 2014

Abstract

Starting with a strong cardinal a model with a cardinal x of cofinality N; such that
both sets {« < k |2 =™} and {a < K | 2% = ot T} are stationary is constructed.

0 Introduction

The classical theorem of Silver states that if « is a singular cardinal of uncountable cofinality
and 2% > kT, then the set {a < Kk | 2¢ > a™} contains a club. But what if 2° = k1, can
both sets

{a<k|2=at}

and
{a<k|2*>at}

be stationary?

The question is still open. The purpose of the present paper is to construct a model
with a cardinal k of cofinality X; such that both sets {a < k | 2¢ = o™} and {a < & |
2% = o™t} are stationary. We start from a regular cardinal x having a coherent sequence
of (k, kT T3)—extenders of the length N;. A variation of the extender based Magidor forcing
(see [5], [?]) is used to change its cofinality to W, blowing up powers of cardinals over the
generic Magidor sequence below. The point will be to arrange a different behaviour on

stationary sets. For this a short extenders forcing will be used.
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1 Preliminary Settings

1.1 Cofinal sequences and stationary set

Let us attach to every d, 0 < § < wy, a successor ordinal * < ¢ so that for every successor

ordinal 7 < wy the set of §’s with 7 = ¢* is stationary. Clearly, the set

C = {p<w;|p islimit ordinal and for every successor T < p

the set of §’s below p with §* = 7 is unbounded in u}

is closed unbounded.
Let S be a subset of lim(lim(C')). It can be nonstationary, but in the interesting cases
S will be stationary, costationary. For every u € C fix a cofinal sequence (u)|n < w). Let

€ C. We define another cofinal sequence (u,|n < w) as follows:
po =0, pps1 =min{d <p|dlimit, 6¢S, 6 =p, and 6>pu, }+1.

The advantage of using such improved cofinal sequences is that once we have pu, then
(uplk < m) is uniquely determined without need in pu. Thus p,—1 = (pn — 1)*, pin_2 =
(1 — 1), etc.

1.2 The extenders sequence
We assume that the ground model satisfies GCH and has a coherent sequence
E=(E(,f)|a<k, acdomE, S<uw)

such that for every a < k and 8 < w; the following hold:

(a) E(a,p) is an (o, a™3)-extender over a.

(b) (coherence)

Jpean(B) I (a+1) = (E@.8) | (@ <a) or (a=a and §<§B)),
where jpp 1 V = M ~ Ult(V, E(a, 3)) is the elementary embedding by E(«, 3)

(c) there are disjoint subsets (E,; | i < wi) of a such that E, s belongs to the normal

measure E(a, 8)(«) of E(a, ) and for every v < a, v € dom E, i < w,
Eoﬂ' N Y= E’yi 3

where for 7 < a™*3 the 7-th measure E(«, 8)(7) of E(a, 8) is the set {X Ca | T €
JBGes) (X))}



(d) E | (a,8) = JE(a,p)(f)(a) for some f € “V,, ie., essentially it depends on the normal

measure E(a, §)(«), where
E ()= (E(.f) | (' <a) or (o/=a and §'<B)).

1.3 Types

Previously Short Extenders forcings were used in context of a singular cardinal £ which is a
limit of cardinals k,’s carrying extenders and types were defined over k,’s (say %2 with
sequences (k, | n < w) converging to infinity). Here k is a regular cardinal, but we will work
around 1 and will use k™, n < w as a replacement.

Let x be a regular cardinal large enough (thus <™ will do it). For k& < w we consider

a structure
A, = (H(x**), €, E, the enumeration of [x***3]=% and of [x**+2]=

XTI n<k),k0,1,.. . a... |a<kt

in an appropriate language which we denote Lj.

For an ordinal ¢ < y (usually € will be below xT3) we denote by tp.(£) the Li-type
realized by & in .

Let L) be the language obtained from £ by adding a new constant ¢. For 6 < x let
a5 be the £ -structure obtained from a; by interpreting ¢’ as 6. The type tpy(9,€) is the
L-type realized by £ in Ay 5. Further, we shall identify types with ordinals corresponding

to them in some fixed well ordering of P(x**).

Definition 1.1 Let k < w and 8 < k™73 (or B < kT72). B is called k-good iff

1. for every v < f8 tpr(7v, B) is realized unboundedly often below k™3 (or respectively,
KT,
2. for every bounded a C f3 of cardinality < k there is @ <  corresponding to a in the

enumeration of [kT“T3]=F (or respectively [kT<T2]=F).

The next two lemmas are proved in [1].

Lemma 1.2 The set {3 < k™ | B is w-good} contains a club, for every i < 2.

Lemma 1.3 Let 0 < k < w and 8 be k-good. Then there are arbitrarily large k — 1-good

ordinals below f3.



1.4 The Preparation Forcing P’

The relevant preparation forcing P’ here will be just P’ of Gap 3 with x replaced by x*¥
(and then st by kTt kTF by kT2 kT3 by kT3). So, models of cardinality T+ and
those of cardinality s %2 (ordinals) will be the only one used. This way the final forcing
will satisfy only k™ *2-c.c. and the cardinals of the interval [x*", xTT] will be collapsed.
But that is what we actually desire. Thus (x7%2)V will be turned into ™+ and (kT<3)V
into k3.

In order to force with P’ and preserve the desired strongness— the corresponded preparation

should be made below k.

2 The Main Forcing

The next definition combines the Extender Based Magidor forcing with a certain short
extenders forcing.

The forcing will change the cofinality of x to w; by adding to it a Magidor sequence
(ky | T < wy). For each 7 < wy, we will have 2% > (k7“™)V. This will be due to the
fact that extenders E(k., (), < 7 has length above x7“*2 and nothing special (like new
assignments and equivalence relations <—) will be done for measures with indexes below
k2. So the correspondence (assignment) will be here the natural one:
¢ < k“*2 will correspond the £&-th measure of the extenders over ..

If 7 € S, then we would like to have 2%~ = (kF*3)V and 2% = (k1“*2)V whenever 7 ¢ S.
A new essential point in the present construction will be as follows. Let 7 € S. Suppose that
Kk, is determined and it is a limit of x,’s with v € S. We would like that {x "2 | v & S}
correspond to xf“t? ie. {k}“*? | v & S} C b, yuts, where b, jwss is the pcf-generator.
This already requires drops in cofinality. Thus we need some sequence to correspond to
rF9t2 We will use (k1“2 | n < w) for this purpose, where (7, | n < w) is a cofinal in 7
sequence consisting of successor ordinals that was reserved in advance. So not all of the set
{rj“** | v ¢ S} will be a part of b, +w+s, rather only

{ " v g SPA KL I n < w}.

Tn

Suppose also that for every n < w we have n, € S,7, < n, < Tp,i1 such that /@j_jf"” is
connected with £“*? (i.e. basically k}“** € b,+w+2). Note that since there are ¥; many 7’s
and both S,w; \ S are stationary, situations like above always must occur. Let n < w. We

have that %2 is connected to kT¥+3, k7“2 is connected to kF*T? and k1“2 is connected
Mn T s Ny, Tn o
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to k2. This looks like a problem and in the actual setting has to do with the chain
condition (kF“™3—c.c. instead of the desired xk“*?-c.c.). A way to overcome this difficulty
will be as follows. Once we have two conditions such that in the first some a < kF“*3
corresponds to a measure o < k1“2 of E(k,,n,) and o* corresponds to a measure v* of
E(k.,T,) via the assignment of E(k,,n,) (i.e. on a set of measure one for a maximal measure
of the condition for F(k,,n,)). In addition some v < kI“*2 corresponds to the measure v* of
E(ks,7,). Suppose the second condition is the same, but instead of o we have some different
ordinal 3, say a < (3, but a* = * and the rest is the same.

We need to be able to put such two conditions into one stronger than both of them in order
to verify the chain condition. Say we like to extend the first condition. So, as usual, we find
some p > o which realize the same type over the common part and attach it to f instead
of a* (which corresponds to 3 in the second condition). The problem with this is that o*
corresponds to v*, but u does not.

But let us do the following: attach p to v* as well. So, in a sense, we loose a one to one
correspondence of the assignment function for Iﬁ:;:’+2. In order to compensate this, let us
require that the a*-th and p-th sequences to x,, differ all the time above x-,.

The above will be implemented as follows. A non direct extensions of a condition which
determine the value of x, will be allowed to identify o* and p as above, but then on a set of
measure one for k. (i.e. with different choices of x,) they will be kept different.

Now, since a non—?iirect extensions can be made only at finitely many places (i.e. a condition
decides only finitely many &,’s) the generic omega sequences corresponding from «,,, for o*
and p will be eventually different.

We do not require that assignments between x1*72 and measures of F(k,,n,) and between
measures E(k,,7,) and E(k,,n,) are identity. i.e. v < k1“2 corresponds to y-th measure
of E(kr,n,), and y-th measure of F(k,,7,) corresponds to y-th measure of E(k.,n,).
Actually, it cannot be the identity once the above was implemented. The assignment func-
tions however will be identity on x1*+i.

Let 7 < 1 < wi. Denote the connection function between levels n and 7 by a,.. There

are five possibilities.
1. ,ng&Ss.

Then we connect between 2 and xf“*2.

2. T,neSs.
This implies that 7 is not one of 7,,’s.

We connect 5% to both £7“** and to %>,
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3. ngS,Ttes.

Then we connect ,7“** to both £7** and to %2,

4. ne S,;7 ¢ S and 7 = n, for some n < w.

Then we connect £,/“*? to kF“+2.

5. ne€ S, 7 ¢ S and T is not one of 7,’s.

Then we connect ;7% to £7*2. Dropping in cofinality is used to deal with this case.

In all the cases ! is connected to x7**! and the connection between them is just the
identity.

Let us explain more the cofinalities drops that will occur here. The complication is due
to the fact that the cofinality from w; many places may drop to a same value. Thus, for
example, 7o may be the first element of the fixed w-sequence for w; many ordinals o < wy.
So, we will have drops from £} to £}**? for wi- many o’s. This disturbs completeness of
the forcing (at least direct extensions in it).

Let us deal with this as follows (the explanation continues with 79, but 79 may be viewed as
an arbitrary point of the fixed w-sequence to arbitrary 7 € S). Let us assume that 7/ =: 79+1

is not in S and is not a member of any of this fixed w-sequences. Then we would like to add
+w+2

,T/

extension of a condition was made over level 7y, then the same was done over 7/ and k., is

K -many w-sequences to k.. Now require that once k., is determined, i.e. a non-direct
determined as well. # is linked with the rest w; many cardinals (not yet determined) r4’s.
We will now ”copy” more or less from k. to K5’s.

Let us clarify one subtle point in this context (i.e. once there are many drops to a single
cofinality). Suppose for simplicity that w € S, but n € S, for each n < w. Suppose also that
(2n | n < w) is the fixed sequence for w. In a generic extension (and we are interested only
in its part below k) let f; be the generic w-sequence for ¢ < ;3. Then f; € [], o /f;ffl?,
for i < x}*3. In addition, if cof (i) = kF“*2, then cof(fi(n)) = k3**!, because of dropping

in cofinality.

+w+2

: : +w+2
new Bon 5 1€ corresponding to k“"%. Let

Let (g; | 7 < k1“72) be generic w-sequences in ||
Vi=Viigs | < st
Now suppose the following:

(*) for every i < k**3 of cofinality x1“*2 (or just for stationary many of such i’s) there
is a sequence (s(i,n) | n < w) € Vi such that for all but finitely many n’s s(i,n) is bounded
in 7, but {f;(n) < fi(n) | j € s(i,n)} is unbounded in f;(n).

Work in V. Consider a function i + sup(U,<,s(i,n)). Find a stationary S C (k1 +3)V



on which it takes a constant value . Now, in V;, we still have 6% = k% = (kJ*1?)V <
(kF@T3)V. Hence, there is S; C S stationary such that for every 7,7’ € S; we have (s(i,n) |
n<w)=(s(@,n) | n<w).
Let now i < i’ be in S;. Then in the full extension (*) implies that for all but finitely many
n’s we have f;(n) = fy(n). Which is impossible and hence (*) must fail.
The meaning of this is that in this type of a cofinality dropping it is impossible to relay
completely (i.e. once arranging assignment functions) on points of a drop corresponding to
smaller cofinality. This is a reason of taking ., and copping from it to relevant rs’s as was
described above.

Let us explain the process of copping and assignment functions that allow it. For each
a < B < wy, we will have the assignment function ag, which will be as usual an isomorphism
between suitable structures and fz, that is comes from a Cohen part of a condition. As
before the both components will be put together once a non-direct extension which decides
Ka, kg was taken. The new element in the present context will be a commutativity.

Thus suppose that we have in addition 7, 8 < v < w;. We require that
1. ayo = agq © ag,

2. fra = fsa© f58

once non of x;’s is decided. Domains of f;;’s are sets of pairs which have the first coordinates
corresponding to potential choices of r;’s.

Suppose now that a non-direct extension was made and as a result s, was decided. Then
(o and ag, are incorporated into new f,, and fz, respectively in the usual fashion. Now
a~g, f-3 together with fg, should give f,,.

Assume that we have in addition o/, a < o' < 8 such that a dropping occurs from v to «
and o at the same level, i.e. for some n < w, we have 7,, < a, &’ < y,41, where (v, | v < w)
is the fixed sequence for 7. Assume also that . is not decided yet. Then we use a.g,f,5 to
pick elements of the level 3, i.e. over kg, and then ag, to move them down to the level .
Note that it is possible that By < o’ < By, for some k < w, and £, is not decided yet.
Once kg is decided, then the argument showing ngw”fc.c. of the forcing up to xz turns now
the usual form.

Let us turn to formal definitions. First let us define pure conditions.

Definition 2.1 (Pure conditions) The set P consists of sequences of the form

<<§7p£> | § € S>7 <AO< | a < wl)) <a’757f75 | ﬁ < Y S w1>7 <aga7fga | a < /B S 05(5)75 < ’i>>
satisfying the following conditions:



1. s C kt“*2 such that

(a)
(b)

|s| < &,
max(s) exists and it is above every other element of s in the order of each of the

extenders E(k,§),£ < wy.

2. pf is a finite increasing sequence of ordinals below x,

3. A, € E(k,a)(max(s)),

4. a,p is an assignment function (an isomorphism between suitable structures) over k.

Let us state the particular properties a,g related to the fixed stationary set S.

(a)

If B,v €S, then a3 is an isomorphism between a generic suitable structure over
kT“+2 and a suitable structure over kT +2,
This eventually will connect /{j“” with HE“J’Q, where k., kg are y-th and S-th

elements of a generic Magidor sequence.

B,v € S, then a3 is an isomorphism between a generic suitable structure over
kT@*3 and a suitable structure over k*“*3, but so that ordinals correspond to
models of cardinality x“** and x*“** drops down to x“** where 7, is the
maximal member < § of the fixed cofinal in 7 sequence (v, | n < w).

This way we would like to connect £1“*3 with both £5“** and £}“*?, in addition
T4 will drop to K772,

Note, that due to the dropping, the cardinality of a3 should be &.,,, once we have
K, is decided. It is bad (Prikry condition) to keep the cardinality of a,z below
x and then to choose k., above it. Instead let us allow the cardinality of a5 to
be a name which depends on the choice of k,,. Recall that in cofinality drops
rng(a,g) depends on the choice of a point from A, . So, here also the domain is
a name, but both are always subsets of the support of the condition s.

If v ¢ S and 8 € S, then a,g is an isomorphism between a generic suitable struc-

kTet? kT@*3 50 that ordinals correspond

ture over and a suitable structure over
to models of cardinality x™++!.

This way we would like to connect F“*2 with both £f“** and x“*?. Thus, if
¢ € dom(a,5) N On then a,5(¢) will be a model of the size k™. a,5(&) N kT2
will be an ordinal. We have here a kind of splitting where & corresponds to both
an ordinal a.,5(§) N k™ *2 for w + 2 and a model a.5(€) for w + 3. No drops are

needed in this case.



10.

11.

(d) If vy € S and 8 = v,, for some n < w (and, in particular, 5 ¢ S), then a,z is
an isomorphism between a generic suitable structure over x*“*2 and a suitable
structure over kT2,

This eventually will connect £3“** with /{E“’H.

(e) If v € S, & S and S is not one of v,’s, then a3 is an isomorphism between a

w3 K+w+2’ but so

generic suitable structure over and a suitable structure over
that x**2 drops down to the maximal v, < 3, where (v, | n < w) is the fixed
cofinal in v sequence.

This way £3“" will be connected with x£“*?. In addition x3“*? will drop to

+w+2
/{’Yn :

a%a is an assignment function (an isomorphism between suitable structures) over 9.

It satisfies the conditions 4a—4e above only with x replaced by 9.
f+5 is a partial function of cardinality at most s from ™2 to &,

04 is a partial function of cardinality at most § from §*“*3 (or from §t*?) to 4,
(Disjointness of domains)

e dom(a.z) Ndom(f,z) =0, for every f < v < ws.
= (),

e dom(a},) N dom(f3,) for every a < 3 < 0% (5).

Let us state now the conditions which deal with a commutativity.

(o = Q43 O Agq, for each a < f < v < wy,

ad, = adg 0 ay,, for each o < f < vy < OE((S).
Note that only dom(ay,z) C s. If ¥ < wy and v € S, then dom(a,z) C k™*3 which
may be larger than s. Our main interest will in the type dom(a.z) realizes and further

the equivalence relation («+—) will identify conditions accordingly.

If v € dom(a,g) and cof(v) = kT, then cof(a,5(v) = k.

Note that such v’s will be usually non-limit points, since there will be drops in cofi-

nalities.

The next conditions deal with compatibility.



12.

13.

14.

15.

(Compatibility) For each 8 < v < w; and n € A, we require that
alg U{(f, p) | there are (£, p) € a,p such that 7 is permitted to both

p§7pp’ 71—maX(S),ﬁ(n) = g and 71—maX(S),p(n) = 15}

is a function and it is an order preserving (or even an isomorphism between suitable
structures.

This means that the copy of a,3 over 1 is compatible with the "local” function az 5

For every a < f <y < w; and £ € dom(f,,) the following hold:

(a) & € dom(fyp),
(b) if v = f,a(€) and § = f,5(£), then 0(8°) > a implies fg(oéo)a(é) = .

For every v < wi, § € Uy, dom(a,) and k < w

the following set is a final segment in ~:

{8 <~ ayp(€) is defined and k good}.

Let us deal now with the following situation. Suppose that v € S, a <, a &€ {v; |i <
w} and n < w is a maximal such that v, < a. Then g¥*** is connected with g%+
and 513 with 5“2 and if a € S, then also with £ £, On the other hand g [+
is connected with 7*? if o ¢ S and £1“*® is connected with 1“3 if a € S, but
Yn & {a; | i <w}. We need to break down this connections between « and -, in order
to keep the thing working. Namely the /@“’*2 chain condition of the forcing at the
level v is effected. It is easy to deal with a single v, (or with {v; | i < n}). We can
just identify images at the level ~, of different ordinals (or models) from the level .
The situation starts to be more involved once instead of a single v we have w-many
with the corresponding v,’s unbounded in «. This always occurs due to stationarity
of S. The problem in this case is that if we identify too much, then there will not be
enough w-sequences to make 2" big.

Let us state now conditions that allow to identify certain ordinals (models), but still

keep many sequences different.

Suppose 6 € A,, for some v € S. Then 05(50) = ~. Consider aia, ag%, where o < v

and n < w is the maximal such that v, < a.

)

We have a connection Aoy

between r, and £, . Let us disturb it. We will allow to
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6

aYn

isomorphism) but the rest of dom(a

C dom(a?,, ) on which al,, is order preserving (or
5 5

QaYn QaYn

identify some values. There is a
) is mapped into the image of al,, by a?, .
It will be allowed to change &g% (once extending a condition) and to pass to a different

set on which the order is preserved.

Now suppose that instead of a single =, (or even bounded many ones) « is a limit of
ordinals & which members of the w—sequences for ordinals £ > ~.
Then for each such such & we will have a set di& c dom(a‘;&,) on which ag@ is order

preserving (or isomorphism). Require the following:

(a) if v, u are in the support over 5, and v # p, then the set

{& < ala,(v) = ane, ()}

is bounded in «;

(b) (Minimality) if v, u are in the support over kg, v € ZL‘;&_ and ais (v) = a‘;&,(u),

i

then p > v.

Let us explain how the above condition allows to run the chain condition argument.
We will need to prove /ﬁ“’”fc.c. of the forcing up to the level 7. As usual a A—system
is formed and at the final stage of the argument we will need to put together two
conditions with indexes from it. The problem here is that the kernel of the A—system
includes the parts of both conditions over /ij‘*’“. The assignment functions then will
move this common part to k,,. So over the level a@ we will have different things that
should correspond to the same one over the level ,,. Suppose for simplicity that o & S.
Then (over k,) we will have the kernel z (the image under af,’s) the rest of the first
condition (again only over k,) y and the second z above it. We need to identify the
images of y and z over the level ~,, but still keep them different or even one above
the other co-boundedly often. Denote by g,z the parts on which we have the order
preservation. Let v = min(y \ ) and g = min(z \ z). The sequences for v and for u
behave the same way (i.e. equal, less, bigger) relatively the sequences for members of
x, as parts of the A—system. Densely often above the level v and hence in the sequence
of conditions above the level v used to determine the members of the antichain over ~,
both v and p appear. So, their sequence from the level « differ on a co-bounded subset.
This means that a final segment of both of them differs from any of the sequences of

the kernel x as well as one from an other. In particular this means that ¥ = min(y)
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and p = min(z), by the minimality item above. Now we can combine the conditions

together.

Define a direct extension order <* on P in the obvious fashion as follows.

Definition 2.2 (Direct extension order) Let p = ((&,p%) | € € 8), (An | @ < w1), (ays, 5 |

(
B <y < w) (@S fla | a < B <0P(0),0 < r)) and g = ((§,¢°) | € € 1),(Ba | @ <
w1>,(b%3,gw]ﬂ<7§w1>,(b2a,ggala<ﬁ§0 (8),0 < K)) be in P. Set ¢ <* p iff

1. sOt,

2. pt = ¢¢ for every £ € t,

3. Wg,max(s),max(t)Aa C B,, for every a < wy,
4. ayg 2 by, for every f < v < wy),

5. fy 2 gy, for every B <y < wy),

6. aga C b, for every a < 8 < 05(5),5 < K,
7. f30 € Gha, for every o < B < 05(5),5 < K.

Let us define now an extension of a pure condition by one element.

Definition 2.3 (One element extension) Let p = ((£,p%) | € € s), (A, | @ < wi), (@, f15 |
B <y <w)(ady, fle o< B < 0(8),6 < k)) € P, B < wy and n € Ag. Define the
extension of p by n, p~n. It consists of two parts the upper part p“? and the lower part p'°,

where
p"? = ((£,p°) | € € s and 7 not permitted for p¢), (A, \ 7 | OE(T]) < a<uwy),

(s, fys | 0P () < B <y < wr), (e, o | 05 () < a < B < 0F(6),1 < 8 < k),

Froiin 105 () <7 <wn) (2 5 105 (m) <7 < 0P (8), {F, ) | 05 () <7 Swn)),

lo __

P’ = ((Tmax(s),£(0), D &) | € € s and 7 is permitted for pt), (A, N7y | a < 05(77)%

(@, [y | B <y < o), (. f | 0 < B < 0P(5),8 <11°)),

where
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1. f'\/oE(n) is a combination of fvoﬁ(n) with 0o () 1-€-
fvoﬁ(n) - fvog(n) €] (fvoﬁ(n)(é))o - no}U

{6 Tmax(s)a = (©(n) | € € dom(a_ 5,,),n is permitted for p°}.
yo™ (n) v0E ()

Note that 008

also j:o,;(n) will be a name.

) may be a name according to Definition 2.1(4b). So in such a case

It is important that all connections between the upper part (including 1) and the lower

part go through the level n. This way a completeness of the upper part regains.

Note also that the following situation may occur:

the connection between levels v and a (i.e. a,,) used models of greater cardinality
E(n) and « , for some o < 05(77). If this happen, then we still
base the connection between o (n) and « (i.e. C_LZE o

that the largest of bigger size belongs to one of the smaller size.

than those between o

) on smaller models, but require

. @)y = als, unless v = of (n). If v = o (n), then @), is the combination of @/, with the

copy of a,z over 7, i.e.

alg=al, U{(f, p) | there are (£, p) € ap such that n is permitted to both

pgapp77rmax(s),§(n) = g and ﬂ-max(s),p(n) = ﬁ}

Note that such defined (zzﬂ is an order preserving function by 2.1 (12).
The connection a.g, for €’s above of (n), is replaced now by the composition of f:OE

(n)

(or its further extensions) with a’, = .
of(n),B

The definition above takes care of a problem of completeness. Thus the following situation

always occurs:

some ¢ < wy is a dropping level for Ny—many levels of a pure condition p.

In this case the direct extension order <* will be at most ks—closed. But once a one element

non-direct extension was made using n° > ks, the following will happen:

the connection functions ags split to parts up to n and below 7, by 2.3(1). The parts above

n are n°—closed. Note that connections to the level of 7 not one to one anymore, since a’s

are replaced by f’s.

Not only connections to the level of 1 stop to be one to one, but in addition also connections

to levels which drop to the level of n or below. Let us explain this point in more details.

Thus suppose that we have levels v > 3,y € S above the level of 7, for some k£ < w, Y411 > B
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but 8 > 7, and v, < the level of 7. In this situation we have a drop in cofinality from f
to 7x. The cardinality of a3 should be at most n (actually it should be less than «.,, once
this cardinal is decided). So we should loose completeness due to the size of a3 for each
Byve < B < Ypr1. Also there may be Ry many +’s with ~,, below the level 7.

The way to overcome this difficulty will be to replace connection functions a.z (for vy, 5 which
are like this) by a combination of it with the function .z which mention n. We give up the
order preservation here.

An additional refinement is needed, since /{j“’“—c.c. of the forcing up to the level v may
be effected otherwise. Namely, running the A—system argument there will be a need to deal
with the following situation:

two different ordinals (or models) & < & at the level v in two conditions that we like to
combine and to attach to them different ordinals p; < py at the level 3. Say presently
the same p corresponds to both. Usually we pick some p’ similar enough to p and extend
conditions by adding the missing ¢ and sending it to p’. But in the present situation for each
choice of k., there may be some ¢ in the common part which wu,g moves (in both conditions)
to p. This makes impossible to move from p to p’ and so to combine such conditions.

Let us define u,g more carefully. Thus instead of relying on 7; let us move to v, + 1. It is
not in S and it is not of the form ¢,, for any 0 € S. So, v, + 1 is the first level above 7, which
drops to vx. We require that if a non-direct extension was made at the level 7, then such
extension made at the level v, 41 as well. Now, w3 will keep information about connection
to the level v, 4 1 instead those to 7;. The advantage in the chain condition argument will
be that in the situation described above, we first arrange compatibility at the level v, + 1,
i.e. find some similar 7,7’ at this level and make the assignment function a, ., 41 to move
1,6 to 7, 7. Now we can pick p’ and move p, p’ also to 7, 7" but using ag,+1. The problem
that we had above (using 7 instead of 7, + 1) does not occur now, since we managed to get
different values at the level v, + 1. This was impossible with 7, due to different cofinalities
of levels 8 and ~,. Note that cofinalities of levels S and ~; are the same.

Inside a pure condition:

1 uyg C K2.
Note that we do not require that w,3 is a function. It is needed in order to prove
/@j“’“—c.c. of the final forcing below 7. A single value may prevent a possibility of

putting together equivalent condition.

2. ’u’Yﬁ‘ < R,

14



3. dom(u,g) C dom(f,p),

4. if for some € € dom(u,3) we have |u,5(€)| > 1, then

(a) tng(asp) 2 u\p(8),

(b) for some & € dom(as), us(€) € a,p(€) and wu,z(€) is simply definable inside

a,5(&) (say using ordinals from £ 7).

Suppose now that k., 1 was decided. We combine then a3 and u.,3 into a new u.g as
follows.
Let € € dom(u.z).
Case 1. For some € € dom(ays) a,5(€) = u5(E) or ayz(€) € uyp(€).
If there is such & with f,,, 11(§) = fyy,41(€), then we leave £ in the domain of the new w4
and leave only a,5(§) as its unique image. Otherwise € is removed.
Case 2. Not Case 1, but there is £ € dom(avg),uw(g) € ap(§) and uw(é) is simply definable
inside ap(&).
If there is such & with fwk+1(f~) simply definable inside f,,,+1(&), then we leave € in the
domain of the new u.z and leave only the one inside a.,z(€) as its unique image. Otherwise
5 is removed.
Case 3. Not Case 1, Case 2.
Then we keep u5(€) as it is.

The idea here is that once a non-direct extension over 7, + 1 was made- we more or
less copy the connection between levels 7,7 + 1 to those between ~, 5. So the function
u,3, which replaces a,3 now, is not order preserving. For each 5 in its domain we have

Fre41(8) = foyet1(uy5(§)) which is viewed as a non-direct extension over 7, + 1 responsible

for u,5(§).

Cases 1-3 above describe how the irrelevant (for the choices made over v + 1-level) infor-
mation is removed.

It may be that a non-direct extension was made at some level o, v < a < 5.

Denote the set of one element extensions of elements of P by P;. Extend <* to P; in the
obvious fashion. Repeat Definition 2.3 and define P, to be the set of one element extensions
of elements of P, etc.

Finally set
P = U 7571’
nw
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where Py = P. Extend <* to P,’s and P in the obvious fashion.

Definition 2.4 (Order) Let p,q € P. Set p > ¢ iff there exists a finite sequence (ry | k <
n < w) of elements of P such that

1. rg = q,
2.y = b,
3. 1 <* reyq or TRaq is a one element extension of r, for every k < n — 1.

Let p € P and for some a < w; the value of k, is decided. Then p splits naturally into

two parts — the part p<, from the level @ down and the part p-, above the level «.
Definition 2.5 Let a < wj.
1. Set P, to be the set of all p<,, with p € P which decides x,.

2. Set P, to be the set of all p~, with p € P which decides k.

Lemma 2.6 Let o« < wy. Then (P, <*) is k! —closed forcing.

Proof. The proof follows from the way conditions split-namely 2.3(1).
0

Lemma 2.7 (Prikry condition)
(P, <,<*) satisfies the Prikry condition.

Proof. Given Lemma 2.6 — standard arguments apply.
OJ

3 The Main Forcing Order

Define a partial order — on P such that (P, — ) will be nice subforcing of (P, < ) and
(P<w, — ) will satisfy kf“"2-c.c., for every a < w.

We start with a definition of equivalences +—.
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Definition 3.1 (Equivalence of pure conditions) Let n < wy,

p= (&) [€€s), (Aa|a<m) (s, fra | B<7 <) (@, flo | @ < B <07(5),0 < ky)) and

0= (&) |€€t), (Bala <) (b gy | 8<7 <), (Vo gha | @ < B 07(5),0 < 1y))

be in PSW'
Set p «—, q iff the following hold:

1. s=t,

2. A, = B, for each o < n,

3. p* = ¢¢ for every € € s,

4. fip = gyp, for every 8 <y <,

5. fga = gga, for every a < 8 < 05(5),6 < Ky,
6. a‘sﬁa = bga, for every a < 5 < 05(5), § < Ky,
7. ayg =byg, B <7 <1,

8. dom(a,,) = dom(b,,), for every v < n,

9. rng(a,,) and rng(b,,) realize the same k-type, for every k < w, for a final segment of

v’s below 1. Moreover they always (for each v < n) realize the same 4-type.

Definition 3.2 (Equivalence) Let n < wy and p,q € P<,,.
Set p <—, ¢ iff the following hold

1. the sets of k,’s for v < 1 determined by p and by ¢ are the same.
Denote this set by X and let Y = {y <7 | k, € X}. Clearly both X and Y are finite.

2. f Y = (), then p <—, ¢ as in Definition 3.1.

3. Y #0, then

(a) P<min(yY) < ?min(Y) d<min(Y);
(b> P>max(Y) <—>r] q>max(Y)s

(€) (p<y)sp ¢~ (¢<)>p, for any two successive elements 5 < v of Y.
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Definition 3.3 (Main order of P<,) Let n < w; and p,q € P<,,.

Set p —, ¢ iff there exists a finite sequence (r; | ¢ < k) of elements of P, such that
1. p=ro,
2. q =",
3. for every i < k either

o 7 <71y

or

® 7 &y Titl-
Definition 3.4 (Main order) Let p,q € P. We set p — ¢ iff either

1.p<gq
or

2. there is 7 < w; such that &, is determined the same way in both p, ¢ and the following
hold:

(a) D>y < >y
It means that nothing new, not taken into account by “<”, happen above level 7.
(b) p<y =y q<n-
The next lemma insures that (P, — ) is a nice subforcing of (P, < ), i.e. every dense

open set in (P, — ) generates such a set in (P, < ). The proof is similar to the corresponding

lemma of [?, Sec. 5.

Lemma 3.5 Suppose that p — q < ¢ then there is p' > p such that ¢ — p', where
p.q.q,p €P.

Lemma 3.6 The following hold in VP for every limit n < w;:
o 2Fn Z (K:?—;-w—O—Q)V’

e ifi €S, then 287 > (/@j{“”)v.

Note that actually all the cardinals in the interval [r}*, £ *!] are collapsed to &, which

itself is preserved as the successor of a singular.
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Lemma 3.7 Letn < wy. Ifn &S then, in VP=), 28 < (kFe+2)V,

Proof. Just the forcing splits into P-,, which is l'i:’l_ closed, and into P<,. Formally the
cardinality of P<,, is /<;f{“’+3, but actually the forcing (P<,, —, ) produces n-sequences indexed
only by ;%2 since nn ¢ S. The formal argument is given below.

Let M < H(x), for x big enough, containing all the relevant information such that
— twt2

o |M|=r et

o M N k% is an ordinal,

e M is closed under /1;; “+1 gequences of its elements.

Let p € P<,. Then, using elementarity there will be a condition p* € M N P, such

that p <, p™ and even p | k7" = pM | k"2 This means that (P,,—, ) and
(P<, N M, —, ) are just the same from forcing point of view. But |P<, N M| = /fj{‘"“.
L]

Our next task will be to show £ *2-c.c. of the forcing (P<,, —, ) in V" for each n < wy.

Lemma 3.8 (Chain condition lemma) Suppose that n < wy and the value of K, is decided.

Then, in VP, (P<,,—, ) satisfies /{j{“” - c.c.

Proof. Work in V',
Let us deal with n ¢ S. If n € S, then the argument is very similar but with ordinals
replaced by models see [4].

If n =n'+1, then we decide &,y. The forcing (P,, —, ) will be then consists of two parts
P,y and a part isomorphic to the Cohen forcing for adding subsets to li:)_ . As in Lemma 3.7,
P,y is equivalent to a forcing of small cardinality, and so we are done.

Assume now that 7 is a limit ordinal.

Let (p, | 7 < KF“*?) be a sequence of elements of P, and

pr= (& 15) 1€ € 570, (Ara | @ <), arys, fro | B <7 S ), (@, flsu | @ < B < 07(5),6 < i)

We may assume without loss of generality that p,’s are of this form, since the number of
possibilities for low parts is small and so they may be assumed to be the same and then
just ignored since then the incompatibility if occurs will be due to the upper parts of the
conditions.

Shrinking and replacing by <—, if necessary, we can assume that the following hold:
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1. A, = Ay for each 7,7 < ﬁ;“” and o < 7,
2. (s; | 7 < K¥F?) form a A-system with a kernel s,

3. S, 8, are order isomorphic over s for every 7,7’ < /-i;r wt2

©)

g, . . .
4. ps = pr”, where 0, is the order isomorphism between s, and s,,

5. 52 s¢ N H for every § < mFF?,
6. min(s¢\s) > &,

7. (g0 [0 | 0 < B < 0?(8),6 < bop) = (02150 forp0 | < B < 0% (8),6 < Ky), for every

7,7 < /ﬁ“”,
8. fryp and frg are compatible for every § <y <n, 7,7 < 5,[“F?,

9. Gryp = arryg, for every B <y <n,7,7" < KFeT
Note that in order to insure this we may need to pass to conditions that are <+—,

equivalent to the original ones.

10. tng(arys) = mg(armp), for every g < n, 7,7 < 5“2

As in the previous item, the above may require to pass to <—, equivalent conditions.

Extending, if necessary, we may assume that for every 7 if v € s; and cof(v) < &, then a

closed cofinal sequence witnessing cof(v) is contained in s,. This implies cof (min(s,\s)) >
K, Let vy = min(s;\s) for 7 < 5,2 Consider (ays(v;) | f < ). By Definition 2.1(14),
for every k < w, arys(v;) is k-good, for a final segment of 5 < 7.
Shrinking if necessary, we may assume that this final segments are the same for all 7’s
and k’s. Fix an increasing sequence (k; | i < w) which converges to infinity and ko > 4.
Make a non-direct extension and freeze (i.e. make it independent of 7’s) the initial segment
consisting of #’s which are not ky-good.

Let now 7’ < 7 < /ﬁ{“*z. We would like to show compatibility of p, and p,/ in (P<,, =, ).
We proceed similar to [1, 2.20].

Let { < w and 7 be from the final segment of k. Consider a,,,(v;). It is k;good, of
cofinality KJ:IF and, once s, is determined, it will correspond to an ordinal of cofinality /-q,
by Definition 2.1(11)). Consider k, — 1-type that (1ng(ary) \ arpy (7)) U (U, dom(arqs) \
ary (V7)) Tealizes over (rng(aryy,) N aryy(v7)) U (Ugo, dom(aryg) N aryy(v7)). Note that the

last set is bounded in a,,,(v;) since its size is < k,. Realize this type below a.,,(v,) over
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(tng(arpy) N arpy (7)) U (Uge, dom(arqp) N arpy(vr)). Let ¢, denotes the result. Now we
change a,,,, in the obvious fashion by sending the part that was above a,,,(v;) into ¢,. This
allows to combine a,,, with such changed a,/,, .

The above takes care of assignment functions from the level . What remains is to change
arp, for B < v <, according to the commutativity requirements (Definition 2.1(9)). It
can be done easily using the fact that a,,g(v;) = arys(arm,(vr)), for every <y <.

See the diagram:

dom a,+g
‘ ‘ ﬁ+w+2(ﬂ'ﬁgw+3
¥ . . T
e (V7
B . . .

Arnp(Vr)

O

Lemma 3.9 Let n < wy. Every cardinal of V' of the form /{TT”, 2<n<w+1 s collapsed

to k= (k)Y in VP,

Proof. Just size of assignment functions is x, over 7 and —, does not effect things below
+w-+1
Kyt

0

4 Collapsing Successors of Singulars

+

In this section we describe how using supercompacts to collapse &, ’s one can obtain a model

satisfying

(1) 2% = K2, if i € S.
(2) 2ri = g1 it g S.
(3) (kMY < k™.

The construction repeats the previous one, but instead of using the usual extender se-

quence, we shall use here a P, (k") extender sequence of the length ™3, Let us define
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K+w+3

such a sequence. Assume that k is — supercompact. Let j: V — M be a witnessing

embedding. Define from j a P,(x") — extender sequence (F, | 7 < £TT3) of the length

kTt as follows: for every X C P, (k™) x V,
X e E, iff (j'kT,7) € j(X).

Let N, = Ult(V, E,), N = Ult(V,(E, | 7 < T“*3)) and

v J M
iT \ /{‘
N, N

kr

be the corresponding diagram with embeddings defined in the usual way.

Lemma 4.1 i,"x* € N,,"'N, C N,, i"kT € N, "N C N, crit(k) = x*3, Horurs =
(Hﬁ+w+3>N

Proof. Just note that i,”k™ is represented by the function (P, a) — P. O

The extender based Prikry forcing with such extender (E, | 7 < £™3) will blow up the
power of x to kT3 but also will collapse k* to s changing its cofinality to w, due to the
P.(kT) — supercompact ingredient of the extender.

Here we will use a version of Magidor extended based forcing defined in previous sections,
with only change to P, (k™) — extenders, but the supports now will be of cardinality x*, due
to number of possible choices from a supercompact measure over P.(xk'), and not s, as
before. !

Thus we assume that
E=(E(pf)|a<koacdmE, < w)

is a coherent sequence satisfying condition (a) — (c) of E of Section 1. Only in (a) we require
here that E(a, ) is a (P,(a™),a™T3) extender, i.e one of the type considered above. Also,
E(a, B)(1) will be now the set

{X CPala”) x a| (Je@p" (@), 7) € je@s(X)} -

The rest of the construction is without changes. The supercompact part of the forcing will
change cofinality of each (k)" (i < w;) to w by adding to it a cofinal sequence of order type

1.

I Actually this is the point that prevents collapse of k7! to &, and it is collapsed rather to ¥+, which
will be the new .
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5 Concluding Remarks

5.1 Down to X,

Combining the present construction with the techniques for collapsing cardinals of Meri-
+w+5

movich [5] it is possible to turn x into N,,. For ¢ < wy, we start collapses from ; and
insure by this that they will depend only on the normal measure of the extender E(k,1).

This way the equivalence relation <+ will not effect them.

5.2 Other Stationary Sets

Recall that S was a subset of a club. Outside of a club we are basically free. Only, as in 5.1,
+w—+5

for each ¢ < w; we need to start changes above &; in order to make the final thing work.
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