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Abstract

We prove equiconsistency results concerning gaps between a singular strong limit
cardinal κ of cofinality ℵ0 and its power under assumptions that 2κ = κ+δ+1 for δ < κ
and some weak form of the Singular Cardinal Hypothesis below κ. Together with
previous results this basically completes the study of consistency strength of various
gaps between such κ and its power under GCH type assumptions below.

0 Introduction

Our first result deals with cardinal gaps.

We continue [Git-Mit] and show the following:

Theorem 1. Suppose that κ is a strong limit cardinal of cofinality ℵ0, δ < κ is a cardinal

of uncountable cofinality. If 2κ ≥ κ+δ and the Singular Cardinal Hypothesis holds below κ

at least for cardinals of cofinality cfδ, then in the core model either

(i) o(κ) ≥ κ+δ+1 + 1 or

(ii) {α < κ | o(α) ≥ α+δ+1 + 1} is unbounded in κ.

Together with [Git-Mag] and [Git1] this provides the equiconsistency result for cardinal

gaps of uncountable cofinality. Surprisingly the proof uses very little of the indiscernibles

theory for extenders developed in [Git-Mit]. Instead, basic results of the Shelah pcf-theory

play the crucial role.

Building on the analysis of indiscernibles for uncountable cofinality of [Git-Mit] and pcf-

theory we show the following:
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Theorem 2. If for a set a of regular cardinals above 2|a|
++ℵ2 |pcfa| > |a|+ ℵ1 then there

is an inner model with a strong cardinal.

Using this result, we extend Theorem 1 to ordinal gaps:

Theorem 3. Suppose that κ is a strong limit cardinal of cofinality ℵ0, δ < κ is a cardinal

above ℵ1 of uncountable cofinality and ` < ω. If 2κ ≥ κ+δ`
and the Singular Cardinal

Hypothesis holds below κ at least for cardinals of cofinality cfδ, then in the core model

either

(i) o(κ) ≥ κ+δ`+1 + 1 or

(ii) {α < κ | o(α) ≥ α+δ`+1 + 1} is unbounded in κ.

If the pcf structure between κ and 2κ is not “wild” (thus, for example, if there is no

measurable of the core model between κ and 2κ), then the result holds also for δ = ℵ1.

These theorems and related results are proved in Section 1 of the paper. Actually more

general results (1.20, 1.21) are proved for ordinal gaps but the formulations require technical

notions “Kinds” and “Kinds∗” and we will not reproduce them here. In Section 2 we sketch

some complimentary forcing constructions based on [Git1]. Thus we are able to deal with

cardinal gaps of cofinality ℵ0 and show the following which together with Theorem 1 provides

the equiconsistency for the cases of cofinality ℵ0.

Theorem 4. Suppose that in the core model κ is a singular cardinal of cofinality ℵ0, δ < κ

is a cardinal of cofinality ℵ0 as well and for every τ < δ the set {α < κ | o(α) ≥ α+τ} is

unbounded in κ. Then for every α < δ+ there is a cofinalities preserving, not adding new

bounded subsets to κ extension satisfying 2κ ≥ κ+α.

The Rado-Milner paradox is used to show the following:

Theorem 5. Suppose that in the core model κ is a singular cardinal of cofinality ℵ0, δ < κ

is a cardinal of uncountable cofinality and for every n < ω the set {α < κ | o(α) ≥ α+δn}
is unbounded in κ. Then for every α < δ+ there is cofinalities preserving not adding new

bounded subsets to κ extension satisfying 2κ ≥ κ+α.

A more general result (2.6) of the same flavor is obtained for ordinal gaps.

In the last section, we summarize the situation and discuss related open questions and

some further directions.

A knowledge of the basic pcf -theory results is needed for Section 1. We refer to the

Burke-Magidor [Bur-Mag] survey paper or to Shelah’s book [Sh-g] on these matters. Results
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on ordinal gaps and the strength of “|pcfa| > |a|” require in addition familiarity with basics

of indiscernible structure for extenders. See Gitik-Mitchell [Git-Mit] on this subject.

Results of Sections 2 are built on short extender based Prikry forcings, mainly those of

[Git1].

Acknowledgement. We are grateful to Saharon Shelah for many helpful conversations

and for explanations that he gave on the pcf-theory.

1 On the Strength of Gaps

Let SSHδ
<κ (SSH≤δ

<κ) denote the Shelah Strong Hypothesis below κ for cofinality δ (≤ δ)

which means that for every singular cardinal τ < κ of cofinality δ(≤ δ) pp(τ) = τ+. We

assume that there is no inner model with a strong cardinal. First we will prove the following:

Theorem 1.1. Suppose that κ is a singular strong limit cardinal of cofinality ℵ0, δ < κ a

cardinal of uncountable cofinality, 2κ ≥ κ+δ and SSHcfδ
<κ . Then in the core model either

(i) o(κ) ≥ κ+δ+1 + 1 or

(ii) {α < κ | o(α) ≥ α+δ+1 + 1} is unbounded in κ.

Remark 1.2. (1) in either case we have in the core model a cardinal α carrying an extender

of the length α+δ+1.

(2) By [Git-Mag] or [Git1] it is possible to force, using (i) or (ii), the situation assumed

in the theorem. So this provides equiconsistency result.

Proof. If δ is a regular cardinal then let A be the set of cardinals κ+τ+1 so that τ < δ and

either o(α) < κ+τ for every α < κ+τ or else κ+τ is above every measurable of the core model

smaller than κ+δ. The set A is unbounded in κ+δ since there is no overlapping extenders

in the core model. If cfδ < δ then we fix 〈δi | i < cfδ〉 an increasing sequence of regular

cardinals with limit δ. For every i < cfδ define Ai to be the set of cardinals κ+τ+1 so that

τ < δi and either o(α) < κ+τ for every α < κ+τ or else κ+τ is above every measurable of the

core model smaller than κ+δi . Again, each of Ai’s will be unbounded in κ+δi since there is

no overlapping extenders in the core model.

The following fact was proved in [Git-Mit, 3.24]:

Claim 1.3. If B ⊆ A in case cfδ = δ or B ⊆ Ai for some i < cfδ, in case cfδ < δ then

|B| < inf B implies max(pcf(B)) = (sup B)+.
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Now for every κ+α+1 ∈ A or κ+α+1 ∈ ⋃
i<cfδ Ai (if cfδ < δ) we pick a set {cα

n | n < ω} of

regular cardinals below κ so that κ+α+1 ∈ pcf{cα
n | n < ω}. Set

a = {cα
n | n < ω , κ+α+1 ∈ A if cfδ = δ or κ+α+1 ∈

⋃

i<cfδ

Ai otherwise} .

Removing its bounded part, if necessary, we can assume that min a > |a|+.

Claim 1.4. For every b ⊆ a | A ∩ pcf(b)| ≤ |b| or |Ai ∩ pcf(b)| ≤ |b|, for every i < cfδ, if

cfδ < δ.

Proof. It follows from Shelah’s Localization Theorem [Sh-g] and Claim 1.3. ¤
In particular, |a| = δ.

Let bκ+ [a] be the pcf-generator corresponding to κ+. Consider a∗ = a\bκ+ [a]. For every

α > 0, if κ+α+1 ∈ A or
⋃

i<cfδ Ai then κ+α+1 ∈ pcf(a∗). Hence, |(pcfa∗) ∩ A| = δ or

|pcf(a∗) ∩ Ai |= δi for each i < cfδ and by Claim 1.4, then |a∗| = δ.

Claim 1.5. Let 〈τn | n < ω〉 be an increasing unbounded in κ sequence of limit points of

a∗ of cofinality cfδ. Then for every ultrafilter D on ω including all cofinite sets

cf
( ∏

n<ω

τ+
n /D

)
> κ+.

Proof. For every n < ω, τn is a singular cardinal of cofinality cfδ. So, by the assumption

pp(τn) = τ+
n . Then τ+

n = cf(
∏

t/E), for every unbounded in τn set of regular cardinals

with |t| < τn and an ultrafilter E on it including all cobounded subset of t. In particular,

τ+
n ∈ pcf(a∗ ∩ τn) since τn is a limit point of a∗.

So {τ+
n | n < ω} ⊆ pcfa∗. By [Sh-g], then pcf{τ+

n | n < ω} ⊆ pcf(pcfa∗) = pcfa∗. But

by the choice of a∗, κ+ /∈ pcfa∗. Hence for every ultrafilter D on ω, cf
( ∏

n<ω

τ+
n /D

)
6= κ+.

¤
Now, |a∗| = δ,∪a∗ = κ, cfδ > ℵ0 and cfκ = ℵ0. Hence there is an increasing unbounded

in κ sequence 〈τn | n < ω〉 of limit points of a∗ so that for every n > 0 |a∗∩(τn−1, τn)| = δ and

|(a∗∩τn)\β| = δ for every β < τn. By Claim 1.5, 〈τ+
n | n < ω〉 are limits of indiscernibles. We

refer to [Git-Mit] for basic facts on this matter used here. There is a principal indiscernible

ρn ≤ τ+
n for all but finitely many n’s. By the Mitchell Weak Covering Lemma, τ+

n in the

sense of the core model is the real τ+
n , since τn is singular. This implies that ρn ≤ τn, since

a principal indiscernible cannot be successor cardinal of the core model. Also, ρn cannot be

τn, since again τ+
n computed in the core model correctly and so there is no indiscernibles

between measurable now τn and its successor τ+
n . Hence ρn < τn. By the choice of τn, the

interval (ρn, τn) contains at least δ regular cardinals. So ρn is a principal indiscernible of
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extender including at least δ +1 regular cardinals which either seats over κ or below κ. This

implies that either o(κ) ≥ κ+δ+1 + 1 or {α < κ | o(α) ≥ α+δ+1 + 1} is unbounded in κ. ¤
Using the same ideas, let us show the following somewhat more technical result:

Theorem 1.6. Let κ =
⋃

n<ω κn be a strong limit cardinal with κ0 < κ1 < · · · < κn < · · · .
Assume 2κ ≥ κ++ and SSHℵ1

<κ (Shelah Strong Hypothesis below κ for cofinality ℵ1, i.e.

ppτ = τ+ for every singular τ < κ of cofinality ℵ1). Then there are at most countably many

principal indiscernibles 〈ρn,m | m, n < ω〉 with indiscernibles 〈δn,m | m,n < ω〉 so that for

each n,m < ω κn ≤ ρn,m ≤ δn,m, ρn,m is the principal indiscernible of δn,m, each δn,m is a

regular cardinal and for every m < ω cf
( ∏

n<ω

δn,m

/
Dm

)
> κ+, where Dm is an ultrafilter

on ω including all cofinite sets.

Remark 1.7. The theorem implies results of the following type proved in [Git-Mit]: if

2κ = κ+m (2 < m < ω) and GCH below κ, then o(κ) ≥ κ+m + 1, provided that for some

k < ω the set of ν < κ such that o(ν) > ν+k is bounded in κ.

Proof. Suppose otherwise.

Collapsing if necessary 2κ to κ++, we can assume that 2κ = κ++. Let 〈ρn,i | n < ω,

i < ω1〉 and 〈δn,i | n < ω, i < ω1〉 witness the failure of the theorem. We can assume that for

every n < ω and i < j < ω1

ρn,i ≤ δn,i < ρn,j ≤ δnj .

Let a = 〈δn,i | n < ω, i < ω1〉. Consider a∗ = a\bκ+ [a]. Then for every i < ω1 the set

ci = a∗ ∩ {δn,i | n < ω} is infinite, since cf
( ∏

n<ω

δn,i

/
Di

)
= κ++ for some Di.

The following is obvious.

Claim 1.8. There is an infinite set d ⊆ ω such that for every n ∈ d there are uncountably

many i’s with δn,i ∈ ci.

For every n ∈ d let

τn = sup{δn,i | δn,i ∈ Ci} .

Then each such τn is a singular cardinal of uncountable cofinality. Also, τ+
n ∈ pcfa∗ for every

n ∈ d, since ppτn = τ+
n . But then pcf{τ+

n | n ∈ d} ⊆ pcfa∗. Hence κ+ 6∈ pcf{τ+
n | n ∈ d}.

Now, this implies as in the proof of 1.1 that τ+
n ’s are indiscernibles and there are principal

indiscernibles for τ+
n ’s below τn. Here this is impossible since then there should be overlapping

extenders. Contradiction. ¤
We will use 1.6 further in order to deal with ordinal gaps.

As above, we show the following assuming that there is no inner model with a strong

cardinal.
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Proposition 1.9. Suppose that 〈τα | α < θ〉 is an increasing sequence of regular cardinals.

θ is a regular cardinal > ℵ1 and τ0 > 2θ. Then there is an unbounded S ⊆ θ such that for

every δ of uncountable cofinality which is a limit of points of S the following holds:

(∗) for every ultrafilter D on δ ∩ S including all cobounded subsets of δ ∩ S

tcf
( ∏

α∈δ∩S

τα

/
D

)
= tcf

( ∏

α∈δ∩S

τα

/
J bd

δ∩S

)
< τα+1

where J bd
δ∩S denotes the ideal of bounded subsets of δ ∩ S.

Proof. Here we apply the analysis of indiscernibles of [Git-Mit] for uncountable cofinality.

Let 〈νβ | β ≤ θ〉 be the increasing enumeration of the closure of 〈τα | α < θ〉. Let A ⊆ θ

be the set of indexes of all principal indiscernibles for νθ among νβ’s (β < θ). Then A is a

closed subset of θ. Now split into two cases.

Case 1. A is bounded in θ.

Let β∗ = sup A. We have a club C ⊆ θ so that for every α ∈ C, β ∈ (β∗, α) if νβ is a

principal indiscernible, then it is a principal indiscernible for an ordinal below να. Now let

α be a limit point of C of uncountable cofinality. Then by results of [Git-Mit], ppνα = ν+
α

and moreover tcf
( ∏

β<α

νβ

/
J bd

να

)
= ν+

α . So we are done.

Case 2. A is bounded in θ.

Let Ã be the set of limit points of A. For every α ∈ Ã we consider να+1. Let ν∗α+1 be the

principal indiscernible of να+1. Then να ≤ ν∗α+1 ≤ να+1.

The following is the main case:

Subcase 2.1. For every α in an unbounded set S ⊆ θ, ν∗α+1 is a principal indiscernible for

νθ and να+1 is an indiscernible belonging to some να+1 over νθ of cofinality ≥ νω1 in the core

model.

We consider the set B = {να+1|α ∈ S}. If |B| < θ, then we can shrink S to set S ′ of the

same cardinality such that for every β, α ∈ S ′ να+1 = νβ+1. Now projecting down to limit

points of S ′ of uncountable cofinality we will obtain (*) of the conclusion of the theorem. So,

suppose now that |B| = θ. W.l. of g., we can assume that α < β implies να+1 < νβ+1. Now,

by [Git-Mit], B (or at least its initial segments) is contained in the length of an extender

over νθ in the core model. There is no overlapping extenders, hence

tcf
( ∏

α∈S

να+1

/
J bd

θ

)
=

(
sup({να+1 | α ∈ S})

)+
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where the successor is in sense of the core model or the universe which is the same by the

Mitchell Weak Covering Lemma. Also, for every α which is a limit point of S of uncountable

cofinality

tcf
( ∏

β∈S∩α

νβ+1

/
J bd

S∩α

)
=

(
sup{νβ+1 | β ∈ S ∩ α}

)+

.

Projecting down we obtain (*).

Subcase 2.2. Starting with some α∗ < θ each ν∗α+1 is not a principal indiscernible for νθ or

it is but να+1 corresponds over νθ to some να+1 which has cofinality < νθ in the core model.

Suppose for simplicity that α∗ = 0. If ν∗α+1 is not a principal indiscernible for νθ, then

we can use functions of the core model to transfer the structure of indiscernibles over ν∗α+1

to the interval [να, length of the extender used over να]. This will replace να+1 be a member

of the interval. So let us concentrate on the situation when ν∗α+1 is a principal indiscernible

for νθ but να+1 has cofinality ≤ νθ (α < θ).

Let us argue that this situation is impossible. Thus we have increasing sequences 〈αi |
i ≤ θ〉, 〈ρi | i < θ〉 and 〈ρ′i | i < θ〉 such that for every i < θ ρi is between ναi

and the

length of the extender used over ναi
, cfρi ≥ ναi

in the core model, ρ′i is the image of ρi over

ναi+1 and cfρ′i < ναi+1 in the core model. Then cfρ′i < ναi
again in the core model since

ρ′i is the image of ρi in the ultrapower and ναi+1 the image of ναi
which is the critical point

of the embedding. Fix for every i < θ a sequence ci unbounded in ρ′i, in the core model

and of cardinality cfρ′i there. Take a precovering set including {ci | i < θ}. By [Git-Mit],

assignment functions can change for this new precovering set only on a bounded subset of

ναi
’s. Pick i < θ such that ναi

is above supremum of this set. Again, consider the ultrapower

used to move from ναi
to ναi+1. Now we have ci in this ultrapower and its cardinality is

< ναi
. Let j : M → M ′ be the embedding. ci ∈ M ′ and M ′ is an ultrapower by extender.

Hence for some τ and f ci = j(f)(τ). Let Uτ = {X ⊆ ναi
| τ ∈ j(X)} and j̃ : M → M̃ be

the corresponding ultrapower. Denote j̃(ναi
) by ν̃ai+1, j̃(ρi) = c̃i and j̃(f)([id]) = c̃i. Let

c̃i = 〈j(fξ)([id]) | ξ < ξ∗ = cfρ′i = cf ρ̃i〉 be increasing enumeration (everything in the core

model). Then for most β’s (mod Uτ ) f(β) = 〈fξ(β) | ξ < ξ∗〉 will be a sequence in M cofinal

in ρi of order type ξ. Which contradicts the assumption that cfρi ≥ νi. ¤
Let us use 1.9 in order to deduce the following:

Theorem 1.10. Suppose that there is no inner model with strong cardinal then for every

set a of regular cardinals above 2|a|
++ℵ2 |pcfa| ≤ |a|+ ℵ1.

Remark. If a is an interval then |pcfa| = |a| by [Git-Mit, 3.24].
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Proof. Suppose that for some a as in the statement of the theorem |pcfa| > |a|+ ℵ1. Let

θ = |a|+ + ℵ2. Then |pcfa| ≥ θ. Pick an increasing sequence 〈τα | α < θ〉 inside pcf(a). By

1.9 we can find an unbounded subset S of θ satisfying the conclusion (*) of 1.9.

Let D be an ultrafilter on θ including all cobounded subsets of S. Let τ = cf(
∏
α<θ

τα/D).

Then, clearly, τ ≥ (
⋃

α<θ τα)+. By the Localization Theorem [Sh-g], then there is a0 ⊆
{τα | α ∈ S}, |a0| ≤ |a| with τ ∈ pcfa0. Consider S\ sup a0. S\ sup a0 ∈ D since a0 is

bounded in S. Hence cf
( ∏

α∈S\ sup a0

τα

/
D

)
= τ . Again by the Localization Theorem, there

is a1 ⊆ S\ sup a0, |a1| ≤ |a| and τ ∈ pcfa1. Continue by induction and define a sequence

〈aα | α < ω1〉 such that for every α < ω1 the following holds:

(a) aα ⊆ S

(b) |aα| ≤ |a|

(c) τ ∈ pcfaα

(d) min aα > sup aβ for every β < α.

Let δ =
⋃

α<ω1
sup aα. Then δ is a limit of points of S and cfδ = ℵ1. Hence (*) of 1.9 ap-

plies. Thus tcf
( ∏

α∈δ∩S

τα/J bd
δ∩S

)
exists is below τδ+1 and is equal to tcf

( ∏
α∈δ∩S

τα/F
)

for every

ultrafilter F on δ ∩ S including all cobounded subsets of δ ∩ S. Denote tcf
( ∏

α∈δ∩S

τα/J bd
δ∩S

)

by µ. Let c = pcf(a) and 〈bξ[c] | ξ ∈ pcf(a) = c〉 be a generating sequence. Clearly both µ

and τ are in c and µ < τ . Consider b = bτ [c]\bµ[c].

For every α < ω1, b ∩ aα 6= ∅, since τ ∈ pcf(aα). Hence, b ∩ δ ∩ S is unbounded in δ

(by (d) of the choice of aα’s). Let F be an ultrafilter on δ ∩ S including b ∩ δ ∩ S And all

cobounded subsets of δ ∩ S. Then tcf
( ∏

α∈δ∩S

τα/F
)

= µ but this means that µ ∈ pcfb,

which is impossible by the choice of b, see for example [Bur-Mag, 1.2]. ¤
The proof of 1.10 easily gives a result related to the strength of the negation of the

Shelah Weak Hypothesis (SWH). (SWH says that for every cardinal λ the number of singular

cardinals κ < λ with ppκ ≥ λ is at most countable).

Theorem 1.10.1. Suppose that there is no inner model with strong cardinal. Then for

every cardinal λ > 2ℵ2

|{κ < λ | cfκ < κ and ppκ ≥ λ}| ≤ ℵ1 .
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Now we continue the task started in 1.1. and deal with ordinal gaps.

Let us start with technical definitions.

Definition 1.11. Let

Kinds =
{

δ`0
0 · δ`1

1 · · · δ`k−1

k−1

∣∣∣k < ω, 1 ≤ `0, . . . , `k−1 < ω, δ0 > δ1 > · · · δk−1 are cardinals

of uncountable cofinality
}
∪ {0}, where the operations used are the ordinals operations.

Remark 1.12. The only kinds around ω1 are ω1 itself, ω2
1, . . . , ω

n
1 · · · (n < ω). But already

with ω2 we can generate in addition to ω2, ω
2
2, . . . , ω

n
2 · · · (n < ω) also ω2 · ω5

1, ω19
2 · ω3

1 etc.

Note that between ωω
1 and ω2 there are no new kinds. Using the Rado-Milner paradox we

will show in the next section that the consistency strength of the length the gap does not

change in such an interval.

Definition 1.13. Let γ be an ordinal

(a) γ is of kind 0 if γ is a limit ordinal.

(b) γ is of kind δ0 for a cardinal δ0 ∈ Kinds if γ is a limit of an increasing sequence of

length δ0. In particular, if δ0 is regular this means that cfγ = δ0.

(c) γ is of kind δ`0
0 · δ`1

1 · · · δ`k−1

k−1 ∈ Kinds, with `0 > 1, if γ is a limit of an increasing

sequence of δk−1 ordinals of kind δ`0
0 · δ`1

1 · · · δ`k−1−1
k−1 .

Lemma 1.14. Let κ be a strong limit cardinal of cofinality ℵ0, δ < κ a cardinal of un-

countable cofinality. Assume

(1) SSH≤δ
<κ

(2) there is no measurable cardinals in the core model between κ and κ+δ+
.

Let 0 < ξ ∈ Kinds ∩ [δ, δ+) and 2κ ≥ κ+α+ξ, for some α < δ+. Then κ+α+ξ+1 ∈
pcf{τ+ν+1

n,i | ν is an ordinal of kind ξ, i < i(n), n < ω}, where τni denotes the principal

indiscernible of the block Bn,i, as defined in 1.6.

Remark 1.15.

(a) The lemma provides a bit more information then will be needed for deducing the

strength of 2κ = κ+ξ+1.
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(b) The condition (2) is not very restrictive since we are interested in small (< κ) gaps

between κ and its power.

Proof. We prove the statement by induction on ξ. Fix α < δ+. Let ξ = δ`0
0 · · · δ`k−1

k−1 , where

δ0 = δ. Set for each σ < δk−1

κ(σ) = κ+α+δ
`0
0 ···δ`n−2 ·δ`n−1−1

k−1 ·σ+δ
`0
0 ···δ`k−2

k−2 ·δ
`k−1−1

k−1 +1

if (k > 1) or (k = 1 and `0 > 1) and

κ(σ) = κ+α+σ+1

if k = 1 and `0 = 1, i.e. ξ = δ.

For every σ < δk−1, if ξ 6= δ then by induction

κ(σ) ∈ pcf({τ+ν+1
n,i |ν is an ordinal of kind δ`0

0 · · · δ`k−2

k−2 · δ`k−1−1
k−1 , i < i(n), n < ω}).

Let E be the set consisting of all regular cardinals of blocks Bn,i(n < ω, i < i(n))

together with all regular cardinals between κ and min
(
κ+δ+

, 2κ). Set E∗ = pcfE. Then

κ > |pcfE∗|, since κ is strong limit. We can assume also that min E∗ > |pcfE∗|. By [Sh-g],

then pcfE∗ = E∗ and there is a set 〈bχ[E∗] | χ ∈ E∗〉 of pcfE∗ generators which is smooth

and closed, i.e. τ ∈ bχ[E∗] implies bτ [E
∗] ⊆ bχ[E∗] and pcf(bχ[E∗]) = bχ[E∗].

The assumption (2) of the lemma implies that for every unbounded in κ+α+ξ set B

consisting of regular cardinals above κ and below κ+α+ξ max pcf(B) = κ+α+ξ+1. In particular

max pcf{κ(σ)|σ < δk−1}) = κ+α+ξ+1. Denote κ+α+ξ+1 by µ. Let

A∗ = bµ[E∗] ∩ {κ(σ) | σ < δk−1} .

Then, |A∗| = δk−1 and for every λ ∈ A∗ bλ[E
∗] ⊆ bµ[E∗]. For every λ ∈ A∗, fix a sequence

〈ρλ
n | n < ω〉 ∈ ∏

n<ω

κ+
n+1 inside bλ[E

∗] such that

(a) ρλ
n ∈ Bn,i for some i < i(n)

and, if ξ 6= δ then also

(b) ρλ
n is of kind δ`0

0 · · · δ`k−2

k−2 · δ`k−1−1
k−1 .

It is possible to find ρλ
n’s of the right kind using the inductive assumption, as was observed

above.

Claim 1.16. There are infinitely many n < ω such that

|{ρλ
n | λ ∈ a∗}| = δk−1

10



Proof. Otherwise by removing finitely many n’s or boundedly many ρλ
n’s we can assume

that for every n |{ρλ
n | λ ∈ A∗}| < δk−1. But cfδk−1 > ℵ0. Hence, the total number of ρλ

n’s is

less than δk−1. Now, pcf{ρλ
n | n < ω , λ ∈ A∗} ⊇ A∗. So, |A∗ ∩ pcf{ρλ

n | n < ω, λ ∈ A∗}| ≥
|A∗| = δk−1. By (2) of the statement of the lemma this situation is impossible.

¤ of the claim.

Suppose for simplicity that each n < ω satisfies the conclusion of the claim. If not then

we just can remove all the “bad” n’s. This will effect less than δk−1 of ρ’s which in turn

effects less than δk−1 of λ’s.

Let us call a cardinal τ reasonable, if for some n < ω τ is a limit of δk−1-sequence of

elements of {ρλ
n | λ ∈ A∗}. Clearly, a reasonable τ is of kind δ`0

0 · · · δ`k−1

k−1 , since ρλ
n’s are

of kind δ`0
0 · δ`1

1 · · · δ`k−2

k−2 · δ`k−1−1
k−1 . The successor of such τ is in pcf{ρλ

n | λ ∈ A∗} since

cfτ = cfδk−1 and we assumed SSH
cfδk−1
<κ , i.e. ppτ = τ+. Also ppτ = τ+ implies that the

set {ρλ
n | λ ∈ A∗}\bτ+ [E∗] is bounded in τ .

Claim 1.17. pcf{τ+ | τ is reasonable} ⊆ bµ[E∗].

Proof. {ρλ
n | n < ω} ⊆ bλ[E

∗] for every λ ∈ A∗. Also, bλ[E
∗] ⊆ bµ[E∗]. By the above,

for every reasonable τ , τ+ ∈ pcf{ρλ
n | λ ∈ A∗} for some n < ω. But pcf(bµ[E∗]) = bµ[E∗]

and pcf{ρλ
n|n < ω, λ ∈ A∗} ⊆ pcf(bµ[E∗]) since the pcf generators are closed and {ρλ

n | n <

ω, λ ∈ A∗} ⊆ bµ[E∗]. So, {τ+ | τ is reasonable} ⊆ bµ[E∗] and again using closedness of

bµ[E∗], we obtain the desired conclusion.

¤ of the claim.

Claim 1.18. For every µ′ ∈ pcf{τ+ | τ is reasonable}, bµ′ [E
∗] ⊆ bµ[E∗].

Proof. By the smoothness of the generators bµ′ [E
∗] ⊆ bµ[E] for every µ′ ∈ pcf{τ+ |

τ is reasonable}.
¤ of the claim.

In order to conclude the proof we shall argue that there should be µ′ ∈ pcf{τ+ | τ is

reasonable} such that µ ∈ bµ′ [E
∗]. This will imply bµ[E∗] = bµ′ [E

∗] and hence µ = µ′.

Let us start with the following:

Claim 1.19. |{ρλ
n | n < ω, λ ∈ A∗}\⋃{bτ+ [E∗]|τ is reasonable}| < δk−1.

Proof. Suppose otherwise. Let S = {ρλ
n | n < ω, λ ∈ A∗}\⋃{bτ+ [E∗]|τ is reasonable} and

|S| = δk−1. Then for some n < ω also {ρλ
n | ρλ

n ∈ S} has cardinality δk−1, since cfδk−1 > ℵ0.

Fix such an n and denote {ρλ
n | ρλ

n ∈ S} by Sn.

But now there is a reasonable τ which is a limit of elements of Sn. ppτ = τ+ implies that

the set {ρλ
n | λ ∈ A∗}\bτ+ [E∗] is bounded in τ . In particular, Sn ∩ bτ+ [E∗] is unbounded.

11



Contradiction, since Sn ⊆ S which is disjoint to every bτ+ [E∗] with τ reasonable.

¤ of the claim.

Now, removing if necessary less than δ elements, we can assume that {ρλ
n | n < ω, λ ∈ A∗}

is contained in ∪{bτ+ [E∗] | τ is reasonable}. Recall that this can effect only less than δ of

λ’s in A∗ which has no influence on µ.

Let b = pcf{τ+ | τ is reasonable}. Then pcfb = b and b ⊆ E∗. By [Sh-g], there are

µ1, . . . , µ` ∈ pcfb = b such that b ⊆ bµ1 [E
∗]∪· · ·∪bµ`

[E∗]. Using the smoothness of generators,

we obtain that for every reasonable τ there is k, 1 ≤ k ≤ ` such that bτ+ [E∗] ⊆ bµk
[E∗].

Now, {ρλ
n | n < ω, λ ∈ A∗} ⊆ ∪{bτ+ [E∗] | τ is reasonable}. Hence, {ρλ

n | n < ω, λ ∈ A∗} ⊆⋃`
k=1 bµk

[E∗].

For every λ ∈ A∗ fix an ultrafilter Dλ on ω including all cofinite sets so that tcf
( ∏

n<ω

ρλ
n

/
Dλ

)
=

λ. Let λ ∈ A∗. There are xλ ∈ Dλ and k(λ), 1 ≤ k(λ) ≤ ` such that for every n ∈ xλ

ρλ
n ∈ bµk(λ)

[E∗]. Then λ ∈ pcf
(
bµk(λ)

[E∗]
)

= bµk(λ)
[E∗]. Finally, we find A∗∗ ⊆ A∗ of cardi-

nality δk−1 (or just unbounded in µ) and k∗, 1 ≤ k∗ ≤ ` such that for every λ ∈ A∗∗ k(λ) = k∗.

Then A∗∗ ⊆ bµk∗ [E
∗]. But, recall that µ = max pcf(B) for every unbounded subset B of A∗.

In particular, µ = max pcf(A∗∗). Hence, µ ∈ pcfA∗∗ ⊆ pcf
(
bµk∗ [E

∗]
)

= bµ∗k [E
∗].

¤
Lemma 1.14 implies the following:

Theorem 1.20. Let κ be a strong limit cardinal of confinality ℵ0, 0 < ξ ∈ Kinds. Assume

that

(1) SSH
≤|ξ|
<κ

(2) there are no measurable cardinals in the core model between κ and κ+|ξ|+ .

If 2κ ≥ κ+ξ, then in the core model either

(i) o(κ) ≥ κ+ξ+1 + 1 or

(ii) {α < κ | o(α) ≥ α+ξ+1 + 1} is unbounded in κ.

Proof. By 1.14, for infinitely many n’s for some ik < i(n) the length of the block Bn,i∗n

will be at least τ+ξ+1
n,in

, since it should contain some τ+ν+1
n,in

for an ordinal ν of kind ξ. Clearly,

ν ≥ ξ since ξ is the least ordinal of kind ξ.

¤
We like now outline a way to remove (2) of 1.20 by cost of restricting possible ξ’s. First

change Definitions 1.11 and 1.13. Thus in 1.11 we replace uncountable by “above ℵ1”.
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Denote by Kinds∗ the resulting class. Then define kind∗ of ordinal as in 1.13 replacing Kinds

by Kinds∗.

Theorem 1.21. Let κ be a strong limit cardinal of cofinality ℵ0, 0 < ξ ∈ Kinds∗. Assume

SSH
≤|ξ|
<κ . If 2κ ≥ κ+ξ, then in the core model either

(i) o(κ) ≥ κ+ξ+1 + 1 or

(ii) {α < κ | o(α) ≥ α+ξ+1 + 1} is unbounded in κ.

The theorem, as in the case of 1.20, will follow from the following:

Lemma 1.22. Let κ be a strong limit cardinal of cofinality ℵ0, δ < κ a cardinal of cofinal-

ity above ℵ1. Assume SSH≤δ
<κ. Let 0 < ξ ∈ Kinds∗∩ [δ, δ+] and 2κ ≥ κ+α+ξ for some α < δ+.

Then

pcf{τ+ν+1
ni | ν is an ordinal of kind∗ ξ, i < i(n), n < ω} ∩ [κ+α+ξ+1, κ+α+ξ+ξ+1] 6= ∅ ,

Let us first deal with a special case – ξ is a cardinal. We split it into two cases: (a) ξ is

regular and (b) ξ is singular. The result will be stronger than those of 1.22.

Lemma 1.23. Let κ be a strong limit cardinal of cofinality ℵ0, δ < κ is a regular uncount-

able cardinal. Assume SSH≤δ
<κ. Let 2κ ≥ κ+α+δ for some α > δ+. Then

κ+α+δ+1 ∈ pcf
({

τ+ν+1
ni | i < i(n), n < ω and ν is an ordinal of cofinality δ}

)
.

Proof. Let µ = κ+α+δ+1. We choose E∗ and 〈bχ[E∗] | χ ∈ E∗〉 as in the proof of

1.14. Measurables of a core model between κ and 2κ are allowed here. So in contrast

to 1.14 we cannot claim anymore for every unbounded B ⊆ [κ, κ+α+δ) consisting of regulars

max pcf(B) = κ+α+δ+1. Hence the choice of A∗ (the crucial for the proof set in 1.14) will be

more careful.

Set A to be the set of cardinals κ+α+τ+1 ∈ [κ+α+1, κ+α+δ) such that either o(β) < κ+α+τ

for every β < κ+α+τ or else κ+α+τ is above every measurable of the core model smaller than

κ+α+δ. Clearly, |A| = δ, since there is no overlapping extenders and as in 1.1 |(pcfb)∩A| ≤ |b|
for every set of regular cardinals b ⊆ κ, |b| ≤ δ. By 1.3, max pcf(B) = κ+α+δ+1 for every

unbounded B ⊆ A. This implies that A\bµ[E∗] is bounded in κ+α+δ+1. Define A∗ =

A ∩ bµ[E∗]. The rest of the proof completely repeats 1.14.

¤
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Lemma 1.24. Let κ be a strong limit cardinal of cofinality ℵ0, δ < κ is a regular cardinal

of uncountable cofinality. Assume SSH≤δ
<κ. Let 2κ ≥ κ+α+δ for some α < δ+. Then

pcf(τ ν+1
ni |i < i(n), n < ω and ν is a limit of an increasing sequence of the length δ}) ∩

[κ+α+δ+1, κ+α+δ+δ+1] 6= ∅.
Proof. Let 〈δi | i < cfδ〉 be an increasing continuous sequence of limit cardinals unbounded

in δ. Consider the set

B = {κ+α+δi+ν | i < cfδ , i limit and ν < δi}.

Since cfδ > ℵ0, the analysis of indiscernibles of [Git-Mit, Sec. 3.4] can be applied to show

that {cf(
∏

B/D)|D is an ultrafilter over B extending the filter of cobounded subsets of

B} ⊆ {κ+α+ν+1 | δ ≤ ν ≤ δ + δ}.
We cannot just stick to κ+α+δ+1 alone since we like to have δ cardinals below κ+α+δ.

But once measurable above κ allowed, it is possible that max pcf({κ+α+ρ+1 | ρ < δ}) >

κ+α+δ+1. Still by [Sh-g], for a club C ⊆ cfδ tcf(
∏

ν∈C

κ+α+ν+1/ cobounded ¹ C) = κ+α+δ+1.

Unfortunately, this provided only cfδ many cardinals κ+α+ν+1 and not δ-many.

Define a filter D over B:

X ∈ D iff {i < cfδ|i is limit and {j < i|{ν < δ+
j |κα+δi+ξ+1 ∈ X} is cobounded in δ+

j } is

cobounded in i} contains a club.

Let D∗ be an ultrafilter extending D. Set µ = cf(
∏

B/D∗). By the choice of D, for

every C ⊆ B of cardinality less than δ B\C ∈ D. So, µ ∈ [κ+α+δ+1, κ+α+δ+δ+1]. Define E∗

as before. Set A∗ = B ∩ bµ[E∗].

Claim 1.25. If A∗ ∈ D∗.

Proof. Otherwise the compliment of A∗ is in D∗. Let A′ = B\bµ[E∗]. Clearly, D∗ ∩
J<µ[E∗] = ∅. By [Bur-Mag, 1.2], then there is S ∈ D∗ S ∈ J<µ∗ [E

∗]\J<µ[E∗]. But bµ[E∗]

generates J<µ[E∗] over J<µ[E∗]. So, S ⊆ bµ[E∗]∪c for some c ∈ J<µ[E∗]. Hence, S∩bµ[E∗] ∈
D∗. But A′ ∈ D∗ and A′ ∩B ∩ (S ∩ bµ[E∗]) = ∅. Contradiction.

¤ of the claim.

Now we continue as in the proof of 1.14. In order to eliminate possible effects of less than

δ cardinals, we use 1.10. At the final stage of the proof a set A∗∗ was defined. Here we pick

it to be in D∗. This insures that µ ∈ pcfA∗∗ and we are done.

¤
Now we turn to the proof of 1.22.
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Proof. As in 1.14, we prove the statement by induction on ξ. Fix α < δ+. Let ξ =

δ`0
0 · · · δ`k−1

k−1 . The case k = 1 and `0 = 1 (i.e. ξ = δ) was proved in 1.23, 1.24. So assume that

k > 1 or (k = 1 and `0 > 1). For each σ < δk−1 let

κ(σ) ∈ pcf({τ+ν+1
n,i | i < i(n), n < ω , and ν is an ordinal of kind∗ δ`0

0 · · · δ`k−2

k−2 ·δ`k−1−1
k−1 })∩

[κ+α+ξ−·σ+ξ−+1, κ+α+ξ−·σ+ξ−+ξ−+1] , where

ξ− =

{
δ`0
0 · · · δ`k−2

k−2 · δ`k−1−1
k−1 , if ξ = δ`0

0 · · · δ`k−1

k−1 and (k > 1 or (k = 1 and `0 > 1)

0, if k = 1 and `0 = 1

In the last case the inductive assumption insures the existence of such κ(σ).

Define E∗ and 〈bχ[E∗]|χ ∈ E∗〉 as in the proof of 1.14. We do not know now if for every un-

bounded in κ+α+ξ set B ⊆ [κ, κ+α+ξ) consisting of regular cardinals max pcf(B) = κ+α+ξ+1.

We may consider the set {κ+α+ξ−·ν+1 | ν < δk−1}. If for club many ν’s κ+α+ξ−·ν+1 is not a

principle indiscernible then by [Git-Mit] cf(
∏

B/bounded) = κ+α+ξ+1 for any unbounded

subset B of κ+α+ξ consisting of regular cardinals. Note that cfδk−1 > ℵ0 is crucial here. In

this case we define A∗ = {κ(σ) | σ < δk−1} ∩ bκ+α+ξ+1 [E∗] and proceed as in the proof of

1.14. The only difference will be the use of 1.10 to eliminate a possible influence of < δk−1

cardinals. Here the assumption δk−1 > ℵ1 comes into play. In the general case it is possible

to have {κ(σ) | σ < δk−1} ∩ bk+α+ξ+1 [E∗] empty. But once for a club of ν’s below δk−1

κα+ξ−·ν+1’s are principal indiscernibles, by [Git-Mit] we can deduce that

pcf({κ(σ) | σ < δk−1})\κ+α+ξ ⊆

[κ+α+ξ+1, κ+α+ξ+ξ−+ξ−+1] ⊆ [κ+α+ξ+1, κ+α+ξ+ξ+1] .

Let D be an ultrafilter on the set {κ(σ) | σ < δk+1} containing all cobounded subsets.

Set

µ = cf(
∏
{κ(σ) | σ < δk−1}/D) .

Define A∗ = bµ[E∗]∩{κ(σ) | σ < δk−1}. By Claim 1.25, then A∗ ∈ D. From now we continue

as in 1.14 only using 1.10 in a fashion explained above and at the final stage picking A∗∗

inside D.

¤

Remark 1.26. The use of Kinds∗ and not of Kinds in 1.21 (or actually in 1.22) is due only

to our inability to extend 1.10 in order to include the case of a countable set. Still in view

of 1.1 and also 1.23, 1.24, the first unclear case will not be ω1 but rather ω1 + ω1.
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2 Some Related Forcing Constructions

In this section we like to show that (1) it is impossible to remove SSH assumptions from

Theorem 1.6; (2) the conclusion of Theorem 1.11 is optimal, namely, starting with κ =⋃
n<ω κn, κ0 < κ1 < · · · < κn < · · · and o(κn) = κ+δn+1

n + 1 we can construct a model

satisfying 2κ ≥ κ+α for every α < δ+, where δ as in 1.9 is a cardinal of uncountable cofinality;

(3) the forcing construction for δ’s of cofinality ℵ0 will be given. All these results based on

forcing of [Git1] and we sketch them modulo this forcing.

Theorem 2.1 Suppose that for every n < ω {α < κ | o(α) ≥ α+n} is unbounded in κ.

Then for every δ < κ there is a cardinal preserving generic extension such that it has at least

δ blocks of principal indiscernibles 〈ρn,ν | n < ω, ν < δ〉 so that

(i) ρn,ν < ρn,ν′ < ρn+1,0 for every n < ω, ν < ν ′ < δ

(ii)
⋃

n<ω ρn,ν = κ for every ν < δ

and

(iii) tcf
( ∏

n<ω

ρ+n+2
n,ν , finite

)
= κ++, for every ν < δ.

Proof. Without loss of generality we can assume that δ is a regular cardinal. We pick an

increasing sequence 〈κn | n < ω〉 converging to κ so that for every n < ω o(κn) = κ+n+2
n +δ+1.

Fix at each n a coherent sequence of extenders 〈En
i | i ≤ δ〉 with En

i of the length κ+n+2
n .

We like to use the forcing of [Git1, Sec. 2] with the extenders sequence 〈En
δ | n < ω〉 to

blow power of κ to κ++ together with extender based Magidor forcing changing cofinality of

the principal indiscernible of En
δ to δ (for every n < ω) simultaneously blowing its power to

the double plus. We refer to M. Segal [Seg] or C. Merimovich [Mer] for generalizations of

the Magidor forcing to the extender based Magidor forcing.

The definitions of both of these forcing notions are rather lengthy and we would not

reproduce them here. Instead let us emphasize what happens with indiscernibles and why

(iii) of the conclusion of the theorem will hold.

Fix n < ω. A basic condition of [Git1, Sec. 2] is of the form 〈an, An, fn〉, where an is

an order preserving function from κ++ to κ+n+2
n of cardinality < κn, An is a set of measure

one for the maximal measure of rngan which is in turn a measure of the extender En
δ over

κn. The function of fn is an element of the Cohen forcing over a κ+. Each α ∈ doman is

intended to correspond to indiscernible which would be introduced by the measure an(α) of

En
δ . In present situation we force over the principal indiscernible δn, i.e. one corresponding
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to the normal measure of En
δ . The extender based Magidor forcing changes its cofinality to

δ and adds for every γ ρn ≤ γ ≤ ρ+n+2
n a sequence tnγ of order type δ cofinal in ρn. Actually,

tn,ρ+n+2
n

(i) = ρ+n+2
n,i (i < δ), where 〈ρni|i < δ〉 is the sequence tnρn . Now, if γ < ρ+n+2

n is

produced by an(α), then we connect α with the sequence tnγ in addition to its connection

with γ. Using standard arguments about Prikry type forcing notions, it is not hard to see

that cf
( ∏

n<ω

ρ+n+2
n,i , finite

)
= κ++ for every i < δ as witnessed by tnγ(i)

′s. ¤

Remark 2.2 Under the assumptions of the theorem, one can obtain 2κ ≥ κ+α for any

countable α. But we do not know whether it is possible to reach uncountable gaps. See also

the discussion in the final section.

Theorem 2.3 Suppose that κ is a cardinal of cofinality ω, δ < κ is a cardinal of uncountable

cofinality and for every n < ω the set {α < κ | o(α) ≥ α+δn} is unbounded in κ. Then for

every α < δ+ there is cofinality preserving, not adding new bounded subsets to κ extension

satisfying 2κ ≥ κ+α.

Remark 2.4 By the results of the previous section, this is optimal if α ∈ [
⋃

n<ω δn, δ+), at

least if one forces over the core model.

Proof. Fix an increasing sequence κ0 < κ1 < · · · < κn < · · · converging to κ so that

each κn carries an extender En of the length κ+δn

n . W.l. of g. α ≥ ⋃
n<ω δn. We use the

Rado-Milner Paradox (see K. Kunen [Kun, Ch. 1, ex. 20]) and find Xn ⊂ α(n ∈ ω) such

that α =
⋃

n<ω Xn and otp(Xn) ≤ δn. W.l. of g. we can assume that each Xn is closed and

Xn ⊆ Xn+1(n < ω). Now the forcing similar to those of [Git1, 5.1] will be applied. Assign

cardinals below κ to the cardinals {κ+β+1 | 1 ≤ β ≤ α} as follows: at level n elements of the

set {κ+β+1 | β + 1 ∈ Xn} will correspond to elements of the set {κ+n+γ+1
n | γ < δn}.

The next definition repeats 5.2 of [Git1] with obvious changes taking in account the

present assignment.

Definition 2.5 The forcing noting P(α) consists of all sequences 〈〈A0ν , A1ν , F ν〉 | ν ≤ α〉
so that

(1) 〈〈〈A0ν , A1ν〉 | ν ≤ α〉 is as in 4.14 of [Git1].

(2) for every ν ≤ α F ν consists of p = 〈pn | n < ω〉 and for every n ≥ `(p), pn = 〈an, An, fn〉
as in 4.14 of [Git1] with the following changes related only to an;

(i) an(κ+ν) = κ
+ϕn(ν)
n where ϕn is some fixed in advance order preserving function from

successor ordinals in Xn to successor ordinals of [n + 2, δn).
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(ii) only of cardinalities κ+ν for ν ∈ Xn∩ Successors can appear in dom an.

The rest of the argument repeats those of [Git1].

The following is a more general result that deals with all kinds (i.e. elements of Kinds)

of ordinals and not only with δn’s.

Theorem 2.6. Let κ be a cardinal of cofinality ω and δ`0
0 · · · δ`n−1

k−1 · δ ∈ Kinds∩κ. Suppose

that for every n < ω the set {α < κ | o(α) ≥ α+δ
`0
0 ···δ

`k−1
k−1 ·δn} is unbounded in κ. Then for

every α < δ`0
0 · · · δ`k−1

k−1 · δ+ there is cofinality preserving, not adding new bounded subsets to

κ extension satisfying 2κ ≥ κ+α.

Again, this is optimal by results of the previous section, if

α ∈ [
⋃
n<ω

δ`0
0 · · · δ`k−1

k−1 · δn , δ`0
0 · · · δ`k−1

k−1 · δ+)

at least if one forces over the core model in case δ = ℵ1. The construction is parallel to those

of 2.3, only we use the following version of Rado-Milner Paradox:

For every α ∈ [
⋃

n<ω δ`0
0 · · · δ`k−1

k−1 · δn, δ`0
0 · · · δ`k−1

k−1 · δ+) there are Xn ⊆ α(n < ω) such that

α =
⋃

n<ω Xn and otp(Xn) ≤ δ`0
0 · · · δ`k−1

k−1 · δn.

¤
Under the same lines we can deal with gaps of size of a cardinal of countable cofinality

below κ. Thus the following result which together with the results of the previous section

provides the equiconsistency holds:

Theorem 2.7 Suppose that κ is a cardinal of cofinality ω and δ < κ is a cardinal of

cofinality ω as well. Assume that for every τ < δ the set {α < κ | o(α) ≥ α+τ} is unbounded

in κ. Then for every α < δ+ there are cofinalities preserving, not adding new bounded

subsets to κ extension satisfying 2κ ≥ κ+α.

The proof is similar to those of 2.3. Only notice that we can present α as an increasing

union of sets Xn(n < ω) with |Xn| < δ since α < δ+, cfδ = ω and there is a function from

δ onto α.

3 Concluding Remarks and Open Questions

Let us first summarize in the table below the situation under SSH<κ (i.e. for every singular

µ < κ ppµ = µ+) assuming that 2κ ≥ κ+δ for some δ, where κ as usual here in a strong limit

cardinal of cofinality ℵ0. For δ = ℵ`
1, for 2 ≤ ` < ω, in the cases dealing with ordinals in
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Kinds\Kinds∗ we assume in addition that there is no measurable of the core model between

κ and κ+δ.

δ = 2 o(κ) = κ++

or
∀n < ω{α < κ|o(α) ≥ α+n}

is unbounded in κ

2 < δ < ℵ0 o(κ) = κ+δ + 1
or

∀n < ω{α < κ|o(α) ≥ α+n}
is unbounded in κ

cf |δ| = ℵ0 ∀τ < |δ| {α < κ|o(α) ≥ α+τ}
is unbounded in κ

δ is a cardinal o(κ) ≥ κ+δ+1 + 1
κ > δ ≥ ℵ0 cf |δ| > ℵ0 or

{α < κ|o(α) ≥ α+δ+1 + 1}
is unbounded in κ

δ = |δ|`, o(κ) ≥ κ+|δ|`+1 + 1
for some or

1 < ` < ω {α < κ|o(α) ≥+|δ|`+1 +1}
is unbounded in κ

δ ≥ S
`<ω

|δ|` ∀` < ω{α < κ|o(α) ≥ α+|δ|`}
is unbounded in κ

δ`0
0 · · · δ`k−1

k−1 · δω
k≤δ<δ`0

0 · · · δ`k−1
k−1 · δ+

k ∀n<ω{α<κ | o(α)≥α
+δ

`0
0 ···δ`k−1

k−1 ·δn
k }

for some δ`0
0 · · · δ`k−1

k−1 · δk ∈ Kinds is unbounded in κ

δ`0
0 · · · δ`k

k ≤ δ < δ`0
0 · · · δ`k

k · ω1 o(κ) ≥ κ+δ
`0
0 ···δ`k

k
+1 + 1

for some δ`0
0 · · · δ`k

k ∈ Kinds or

{α < κ | o(α) ≥ α+δ
`0
0 ···δ`k

k
+1 + 1}

is unbounded in κ
δ ≥ κ ∀τ < κ{α < κ | o(α) ≥ α+τ}

is unbounded in κ

The proofs are spread through the papers [Git1,2,3,4,5], [Git-Mag], [Git-Mit] and the

present paper. The forcing constructions in these papers give GCH below κ.

Let us finish with some open problems.

Question 1. Let a be a countable set of regular cardinals. Does “|pcfa| > |a| = ℵ0” imply

an inner model with a strong cardinal?

In view of 1.10, it is natural to understand the situation for countable a. Recall that

the consistency of “|pcfa| > |a|” is unknown and it is a major question of the cardinal

arithmetic.

The next question is more technical.

Question 2. Can the assumption that there are no measurables in the core model between

κ and 2κ be removed in 1.11?

It looks like this limitation is due only to the weakness of the proof. But probably there

is a connection with “|pcfa| > |a|”. The simplest unclear case is 2κ ≥ κ+ω2
1 .
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The situation without SSH<κ is unclear. In view of 2.1 probably weaker assumptions

then those used in the case of SSH<κ may work. A simplest question in this direction is as

follows.

Question 3. Is “{α | o(α) ≥ α+n} unbounded in κ for each n < ω” sufficient for “κ strong

limit, cfκ = ℵ0 and 2κ ≥ κ+ω1”?

If the answer is affirmative, then the construction will require a new forcing with short

extenders, which will be interesting by itself. We then conjecture that the same assumption

will work for arbitrary gap as well.

For uncountable cofinalities (i.e. cfκ > ℵ0), as far as we are concerned with consistency

strength, the only unknown case is the case of cofinality ℵ1. We restate a question of [Git-

Mit]:

Question 4. What is the exact strength of “κ is a strong limit, cfκ = ℵ1 and 2κ ≥ λ for

a regular λ > κ+?

It is known that the strength lies between o(κ) = λ and o(κ) = λ + ω1, see [Git-Mit].
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