
Negation of the Singular Cardinals Hypothesis with
GCH below

Moti Gitik*

March 23, 2023

Abstract

The purpose of this paper is to provide an attempt to understand the difficulty of
getting a model where GCH breaks first time at a singular κ and there is an inner
model in which κ is a regular cardinal but still with 2κ big.

1 Introduction

There is a tension between the negation of the Singular Cardinals Hypothesis the power

function below it. A celebrated result of J. Silver [14] states that a singular cardinal of

uncountable cofinality cannot be the first that violates GCH.

M. Magidor [11], using extremely sophisticated arguments, showed that this need not be

the case with a singular of cofinality ω. Namely, starting with a supercompact cardinal with

a huge above, he constructed a model in which 2ℵω = ℵω+2 and 2ℵn = ℵn+1, for every n < ω.

In early 80-th, Hugh Woodin came up with a beautiful construction of a model of 2ℵω =

ℵω+2 and 2ℵn = ℵn+1, for every n < ω. The initial assumptions of his construction were

optimal.

However, the gap between the singular cardinal and its power in both of the constructions

was 2 and not more.

The basic reason for the difficulty was that both arguments based on the Silver-Prikry

method of violating SCH, i.e. first a model with a measurable cardinal κ with 2κ > κ+ was

constructed and then the Prikry forcing was used to change the cofinality of κ to ω. But

having a measurable cardinal κ with 2κ > κ+ implies that GCH is violated at unboundedly

*We are grateful to Mohammad Golshani for discussing with us the Woodin question several years ago
and to Tom Benhamou for doing the same recently. The work was partially supported by ISF grant No.
882/22.
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many places below κ. So, a hard tusk starts to be to collapse cardinals in order to resurrect

GCH below and still keeping 2κ > κ+.

Later a different method of constructions of models of ¬SCH - Extender Based Prikry

forcing was introduced in [9]. It allows to change cofinality of κ and to blow up its power

higher simultaneously without adding new bounded subsets to κ.

Following this developments, H. Woodin asked the following natural question:

Assuming that there is no inner model with a strong cardinal, is it possible to have a

model M in which 2ℵω > ℵω+2 and 2ℵn = ℵn+1, for every n < ω, and there is an inner model

N such that κ = ℵω is a measurable and 2κ ≥ (ℵω+3)
M?

A reasonable approach to this question was to use Extender based forcing over κ to-

gether with a suitable preparation which say adds many Cohen subsets to ν’s below κ, and

then, passing into a submodel in which κ is still regular, we combine this Cohen’s from

the preparation together, using Prikry sequences, in order to obtain 2κ−Cohens over the

submodel.

It turned out to be realizable to some degree. Namely, as it was shown in [2], even the

Prikry forcing (with carefully picked κ−complete ultrafilter) can add κ+−many mutually

generic Cohen subsets to κ over a submodel. However, by [2], neither the original ([9]) nor

C. Merimovich ([12]) versions of Extender based Prikry forcings cannot produce the above

type of inner models. Namely, if PE denotes the Extender based forcing of [9] and G ⊆ PE

is generic, then:

For every A ∈ V [G] \ V,A ⊆ κ, κ changes its cofinality to ω in V [A].

If PE denotes the Extender based forcing of [12] and G ⊆ PE is generic, then:

For every ⟨Aα | α < κ++⟩ list of different subsets of κ in V [G], there is I ⊆ κ++, I ∈ V, |I| =
κ such that κ changes its cofinality to ω in V [⟨Aα | α ∈ I⟩].

The aim of the present paper is to use The Mitchell Covering Lemma with some Pcf-

arguments in order through some more light on the reasons of the difficulty to have an inner

model in which κ is regular, but still 2κ is big. In particular, this will provide some progress

on the question of Woodin.

2 Settings and main results

Assume ¬0¶. Let K denotes the core model.

First we would like to show the following:
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Theorem 2.1 Suppose that in V , cof(κ) = ω, 2κ = κ++, GCH holds below κ and there is

an inner model V ′ ⊇ K in which κ is a regular, but still 2κ ≥ κ++.

Assume that

1. every a ⊆ (2κ)V
′
, |a| < κ can be covered by a set b ∈ V ′ with |b| ≤ κ,

2. V ′ |= 2ν = ν+ for ν’s in a club subset of κ in V ′,

3. (κ++)V
′
= κ++.

Then |(τ+)K| = τ , for unboundedly many cardinals τ < κ.

Remark 2.2 1. Note that κ is a measurable in K, and so, by the Mitchell Covering

Lemma, (κ+)K = κ+.

2. If (2κ)V
′
< κ+ω, then we have the required type of covering by standard arguments.

3. If there is no measurable cardinal above κ in K, then again we have the required type

of covering, by the Mitchell Covering Lemma.

4. If κ is a measurable cardinal in V ′, then the required type of covering holds. ¬0¶ is

assumed, so, by [7], there is no measurable in K cardinal in the interval (κ, (2κ)V
′
].

In order to state our further results we will need to define the following form of a strong

covering:

Definition 2.3 Let V ′ ⊆ V , κ be a cardinal in V . Then Cov(V, V ′, κ+) holds iff:

For every set of ordinals B ⊆ 2κ of cardinality κ+ there are I ⊆ B of cardinality κ and

I∗ ∈ V ′, I∗ ⊇ I such that for some increasing and continuous sequence ⟨Mν | ν < κ⟩ ∈ V ′

with |Mν | < κ, for every ν < κ, and I∗ ⊆
⋃

ν<κMν, the following holds: for every ν <

κ, |Mν ∩ I| = |Mν ∩ I∗|.

Note that the following density property implies Cov(V, V ′, κ+):

Every set of ordinals S ′ ⊆ 2κ of cardinality κ+ contains a set in V ′ of cardinality κ.

We refer to [8] on this subject.

The next theorem shows, in particular, that the Woodin method for restoring GCH below

a singular κ with 2κ = κ++, is basically the only possible.

Theorem 2.4 Suppose that in V , cof(κ) = ω, 2κ = κ++, GCH holds below κ and there is

an inner model V ′ ⊇ K in which κ is a regular, but still 2κ ≥ κ++.

Assume that
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1. every a ⊆ (2κ)V
′
, |a| < κ can be covered by a set b ∈ V ′ with |b| ≤ κ,

2. Cov(V, V ′, κ+).

Then |(τ+)K| = τ , for unboundedly many cardinals τ < κ.

The last result relates to the question of Woodin stated in the introduction. Unfortunately

it does not provide the full answer due to the assumption (4) on a strong form of covering.

Theorem 2.5 Suppose that in V , cof(κ) = ω, 2κ ≥ κ+3, GCH holds below κ. Then there is

no inner model V ′ ⊇ K such that

1. κ is regular in V ′,

2. 2κ ≥ κ+3,

3. every a ⊆ (2κ)V
′
, |a| < κ can be covered by a set b ∈ V ′ with |b| ≤ κ,

4. Cov(V, V ′, κ+).

3 Some general observations

Let us prove several general statements concerning clubs and principle indiscernibles. They

are a kind of slight generalizations of result by M. Dzamonja, S. Shelah [4] and the author

[6] in context of a srong limit cardinal. The following is Proposition 2.1 of [6]:

Proposition 3.1 Let V1 ⊆ V2 be two models of ZFC. Let κ be a regular cardinal of V1

which changes its cofinality to θ in V2. Suppose that in V1 there is an almost decreasing

(mod nonstationary or equivalently mod bounded) sequence of clubs of κ of length (κ+)Vl so

that every club of κ of V1 almost contains one of the clubs of the sequence. Assume that V2

satisfies the following:

(1) cof(κ+)V1 ≥ (θ)+ or cof(κ+)V1 = θ;

(2) κ > θ+.

Then, in V2, there exists a cofinal in κ sequence ⟨τi | i < θ⟩ consisting of ordinals of cofinality
> θ+ so that every club of κ of V1 contains a final segment of ⟨τi | i < θ⟩.

The proof of it actually gives the following:
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Proposition 3.2 Let V1 ⊆ V2 be two models of ZFC. Let κ be a strongly inaccessible cardinal

of V1 which changes its cofinality to θ in V2 but remains a strong limit.

Suppose that every set of ordinals a of cardinality < κ there is b ∈ V1 such that b ⊇ a and

|b|V1 ≤ κ.

Then, in V2, for every δ < κ there exists a cofinal in κ sequence ⟨τi | i < θ⟩ consisting of

ordinals of cofinality > δ so that every club of κ of V1 contains a final segment of ⟨τi | i < θ⟩.

Proof. We repeat the proof of 2.1 of [6]. In the construction of trees T (C) their, instead of

splitting into ω allow splittings into ≤ δ. Define (2δ)+ clubs Cα instead of (2ℵ0)+. We use the

covering assumption in order to proceed. Namely, let α < (2δ)+ and the sequence of clubs

⟨Cβ | β < α⟩ was already defined, however it need not be in V1. Define Cα. Let ⟨Xi | i < ρ⟩
be an enumeration of all clubs of κ in V1. So, for every β < α there is iβ < ρ such that

Cβ = Xi. Consider the set a = {iβ | β < α} ⊆ ρ. There is b ∈ V1, Z ⊆ ρ, |b|V1 = κ such that

Z ⊇ Y . Set Cα = ∆i∈bXi. Then Cα ∈ V1 and for every β < α, Cα is almost included in Cβ.

The rest of the argument stays without a change.

□

Now let us show the following:

Proposition 3.3 Let V1 ⊆ V2 be two models of ZFC. Let κ be a strongly inaccessible cardinal

of V1 which changes its cofinality to θ in V2 but remains a strong limit.

Suppose that every set of ordinals a of cardinality < κ there is b ∈ V1 such that b ⊇ a and

|b|V1 ≤ κ.

Then, in V2, there exists a cofinal in κ sequence ⟨τi | i < θ⟩ so that

1. every club of κ of V1 contains a final segment of ⟨τi | i < θ⟩,

2. the sequence ⟨ cof(τi) | i < θ⟩ is cofinal in κ.

Proof. Suppose otherwise. Using 3.2, for every δ < κ pick a cofinal sequence ⟨τ δi | i < θ⟩
such that

1. every club of κ of V1 contains a final segment of ⟨τi | i < θ⟩,

2. for every i < θ, cof(τ δi ) > δ.

Fix a cofinal in κ sequence ⟨κi | i < θ⟩.
Set A = {τκj

i | i, j < θ}.
Let η = |A|. We have 2η < κ, since κ is a strong limit.

Denote by X the set of all subsets A′ of A which satisfy the following
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1. A′ is a cofinal in κ sequence of order type θ,

2. for every c, d ∈ A′, if c < d then cof(c) < cof(d),

3. the set {cof(c) | c ∈ A′} is cofinal in κ,

Then for every x ∈ X there is a club Cx in V1, such that x′ = x \ Cx is unbounded in κ.

Consider the set {Cx | x ∈ X}. It can be covered by a set of clubs in V1 of cardinality κ. Let

C be the diagonal intersection of such covering clubs. Then, for every x ∈ X, C is almost

contained in Cx.

By the choice of τ
κj

i , there will be x ∈ X such that x ⊆ C. But this impossible, since x \Cx

is unbounded in κ and C is almost contained in Cx.

Contradiction.

□

Turn now to our context. So, we have K ⊆ V ′ ⊆ V , κ is regular in K, V ′ and singular

strong limit in V . Also, we assumed that V ′ and V satisfy the required covering assumption.

Hence, the previous results imply the following:

Proposition 3.4 Suppose that ⟨τi | i < ω⟩ is a cofinal in κ sequence such that every club of

κ of K contains a final segment of ⟨τi | i < ω⟩.
Let N be a covering model and ⟨τi | i < ω⟩ ∈ N .

Then a final segment of ⟨τi | i < ω⟩ consists of principle indiscernibles of N .

Proof. Suppose otherwise. Let I ⊆ ω be infinite and for every i ∈ I, τi is not a principle

indiscernible of N . Then there is a finite sequence c⃗ ∈ [τi]
<ω such that hN(c⃗) ≥ τi.

Define C = {ν < κ | hN ′′[ν]<ω ⊆ ν}. It is a club in K. However, C ∩ {τi | i ∈ I} = ∅, which
is impossible since C is supposed to include a final segment of ⟨τi | i < ω⟩. Contradiction.
□

4 Proof of Theorem 2.1

Suppose that such V ′ exists and (τ+)K = τ+, for all but boundedly many cardinals τ < κ.

Let ⟨Aα | α < κ++⟩ be a sequence of different subsets of κ in V ′.

Pick a sequence ⟨Nα | α < κ++⟩ of covering models of a same cardinality cardinality

below κ with Aα ∈ Nα, for every α < κ++.

Apply the Mitchell Covering Lemma to Nα.

We will have a Skolem function hα ∈ K, ρα < κ and the sequence of indiscernibles Cα.
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Denote by C∗
α the set of all principle indiscernibles of Cα. It includes an ω−sequence cofinal

in κ.

For each µ ∈ C∗
α, consider Aα ∩ µ.

Denote by iµα the index of Aα ∩ µ in a fixed enumeration of P(µ) in V ′.

Further, in Section 5, a fixed enumeration of P(µ) in V will be used instead.

Then iµα ∈ Nα, since Aα ∈ Nα.

Let us apply Proposition 3.3 to V, V ′ and find a cofinal in κ sequence ⟨τi | i < ω⟩ which
satisfies the conclusion of 3.3.

Fix a covering model N∗ such that ⟨τi | i < ω⟩ ∈ N∗. Set C∗ = N∗ ∩ {τi | i < ω}. By

Proposition 3.4, C∗ is cofinal in κ.

Without loss of generality we can assume that each Nα includes N∗.

By the assumption (2) of the theorem and since C∗ is almost contained in every club of

κ of V ′, we can assume the following:

(∗) V ′ |= 2τ = τ+, for every τ ∈ C∗.

Recall that we have GCH<κ in V , but not necessary in V ′.

Then, iµα < (µ+)V
′
.

Then there is a finite sequence of indiscernibles c⃗µα below µ such that iµα = hα(c⃗
µ
α, µ).

Now, the number of possibilities for hα, ρα’s is κ
+, since hα ∈ K, ρα < κ. Hence, we can

find a stationary S ⊆ κ++ a function h and an ordinal ρ such that for every α ∈ S, hα = h

and ρα = ρ. By shrinking S, if necessary, we may assume also that Cα, C
∗
α’s are similar.

Let I be a subset of S of cardinality κ+ with cof(sup(I)) = κ+.

We have κ+ = (κ+)K = (κ+)V
′
, since κ was regular in K, changed its cofinality in V and

so, the Mitchell Covering Lemma applies.

However, in general it is possible that (κ++)V
′
is collapsed in V to κ+, and so, we cannot

cover I by a set in V ′ which cardinality there is κ+. This is the reason for the assumption

(3) of the theorem.

Find I∗ ∈ K of cardinality κ+ which covers I and such that sup(I) = sup(I∗).

Let us identify below I with I∗.

Denote this supremum by δ. Then κ+ ≤ δ < κ++ and I is unbounded in δ.

Fix in K a function σ : κ+ ↔ δ.

Let U be the normal ultrafilter of K which concentrates on non-measurable cardinals.

Consider jU(h)(κ) = [ν 7→ h ↾ [ν ∪ {ν}]<ω]U , where we restrict h ↾ [ν ∪ {ν}]<ω only to values

in ν+, say setting all the rest to be 0. It follows that, in K, jU(h)(κ) : [κ ∪ {κ}]<ω → κ+.
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Work in V ′.

Let ⟨Mν | ν < κ⟩ be an increasing continuous sequence of elementary submodels of Hχ such

that

1. ⟨Mν | ν ≤ ζ⟩ ∈Mζ+1,

2. |Mν | < κ,

3. Mν ⊇ ν,

4. h, jU(h)(κ), σ, ⟨Aα | α ∈ I⟩ ∈M0.

Let C = {ν < κ |Mν ∩ κ = ν}. It is a club in V ′, since κ is regular there.

Pick a typical ν ∈ C ∩ C∗.

Let M̄ν be the transitive collapse of Mν and π the collapsing function.

Then π(κ) = ν, π(A) = A ∩ ν, for every A ⊆ κ,A ∈Mν .

Now, in M̄ν , the number of subsets of ν indexed by ordinals in the range of h ↾ [ν ∪ {ν}]<ω

is less than (ν+)M̄ν = π(κ+) < ν+. Let ν∗ < (ν+)M̄ν be such that

M̄ν |= ∀ξ(ν∗ < ξ < ν+ → the index of π(Aσ(π−1(ξ))) = Aσ(π−1(ξ)) ∩ ν

does not appears in the range of h ↾ [ν ∪ {ν}]<ω).

Define a function s ∈
∏

ν∈C∗∩C ν
+ by setting s(ν) = ν∗.

Let ⟨fξ | ξ < κ+⟩ be canonical functions in
∏

ξ<κ ξ
+, in K.

Lemma 4.1 There is η < κ+ such that fη ↾ C∗ ∩ C dominates s mod finite.

Proof. Pick a covering model N with s, C∗ ∩ C ∈ N . We may that each ν ∈ C∗ ∩ C

is a principle indiscernible of N , by dropping finitely many points if necessary. By the

assumption, ν+ = (ν+)K, hence there is no indiscernibles in the interval (ν, ν+].

Define a function g ∈
∏

γ<κ γ
+ as follows:

g(γ) = sup(hN ′′γ) ∩ γ+.

Then g ∈ K, since hN is in K. In addition, g(ν) > s(ν), for every ν ∈ dom(s), since s ∈ N

and is no indiscernibles in the interval (ν, ν+].

Now find η < κ+ such that fη dominates g.

□
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Pick η < κ+ such that the canonical function fη ↾ C∗ ∩ C which dominates s.

Let ⟨Rν | ν < κ⟩ be an increasing continuous sequence of elementary submodels of Hχ

such that

1. ⟨Rν | ν ≤ ζ⟩ ∈ Rζ+1,

2. |Rν | < κ,

3. Mν ⊆ Rν ,

4. h, jU(h)(κ), σ, ⟨Aα | α ∈ I⟩, η ∈ R0.

Let E = {ν ∈ C | Rν ∩ κ = ν}.
Pick a typical ν ∈ E ∩ C∗ which is a principal indiscernible and ν∗ < fη(ν).

Let R̄ν be the transitive collapse of Rν and φ the collapsing function.

Then φ(κ) = ν, φ(A) = A ∩ ν, for every A ⊆ κ,A ∈ Rν . Let M
′
ν be φ[Mν ]. Then M

′
ν ⪯ R̄ν .

Also, M̄ν is the transitive collapse ofM ′
ν . Let ψ :M ′

ν ↔ M̄ν be the collapsing function. Note

thatM ′
ν∩ν = M̄ν∩ν = R̄ν∩ν = ν. So,M ′

ν∩φ(κ+) is an ordinal, and hence, ψ ↾M ′
ν∩φ(κ+)

is the identity. In particular, ψ(ν∗) = ν∗.

In addition, φ(η) = fη(ν).

Also, φ(jU(h)(κ)) = h ↾ [ν ∪ {ν}]<ω.

We have, ν∗ < fη(ν). Hence, the index iνη of Aσ(η) ∩ ν in the enumeration of subsets of ν

will not appear in the range of h ↾ [ν ∪ {ν}]<ω. This is impossible, since h = hσ(η) and there

is a finite sequence of indiscernibles c⃗νσ(η) below ν such that iνσ(η) = hσ(η)(c⃗
ν
σ(η), ν).

Remark 4.2 Note that the standard Extender Based Prikry forcing over K satisfies the

conditions (2) and (3) of the theorem. So, the argument above shows that there is no inter-

mediate model in which κ is regular and 2κ > κ+. However, this is under the assumption

that there is no inner model with a strong cardinal, in contrast to [2].

5 Proof of Theorem 2.4

Let us show how to modify the previous argument in order to replace the assumptions (*) and

(**) by a strong form of covering, i.e., we do not require that V ′ |= 2τ = τ+, for every τ ∈ C∗

and that κ++ = (κ++)V
′
.

For every α < κ++, τ ∈ C∗, let iτα be the index of Aα∩τ in a fixed enumeration of P(τ), but

now in V . Consider the function τ 7→ iτα. Denote it by gα. By GCH<κ, gα ∈
∏

τ∈C∗ τ+. There
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is a finite increasing sequence of indiscernibles c⃗τα ∈ [iτα + 1]<ω such that gα(τ) = iτα = h(c⃗τα).

Actually, c⃗τα ∈ [τ + 1]<ω, since we are assuming that

(τ+)K = τ+, and so, there are no indiscernibles in the interval (τ, τ+]. Denote by nτ
α the

length of c⃗τα. By similarity of models Nα, we can assume that nτ
α does not depend on α. Let

nτ be such value.

Replace c⃗τα by cταnτ + cταnτ−1 + ... + cτα0, if n
τ > 0. Let h′ be the corresponding replacement

of h, i.e., set h′(ξn + ξn−1 + ...+ ξ0) = h(⟨ξ0, ..., ξn⟩).
Note that there are no indiscernibles in the interval (τ, τ+], since we are assuming that

(τ+)K = τ+, for every τ ∈ C∗. Hence,

tcf(
∏
τ∈C∗

τ+, <Jbd
κ
) = κ+.

Just every function in this product will be bounded by the restriction of a function in K to

C∗.

Let f⃗ = ⟨fα | α < κ++⟩ be a witnessing scale. We have κ++−many gα’s, so there are

S ′ ⊆ S, |S ′| = |S| = κ++ and α∗ < κ++ such that fα∗ dominates each gα, α ∈ S ′. By

shrinking S ′ if necessary, we can assume that there is γ∗ ∈ C∗ such that for every γ ∈ C∗\γ∗,
fα∗(γ) > tα(γ). Assume for simplicity that γ∗ = minC∗.

For every τ ∈ C∗ we fix a function

eτ : fα∗(τ) ↔ |τ |.

For every α ∈ S ′, define a function sα ∈
∏

τ∈C∗ |τ | by setting

sα(τ) = eτ (gα(τ)).

Let us consider few cases.

Case 1 There is δ < κ such that for an unbounded C ′ ⊆ C∗, the following holds:

c ∈ C ′ ⇒ cof(|c|) < δ.

Then, using GCH<κ, it is easy to find some g ∈
∏

τ∈C′ |τ | and S ′′ ⊆ S ′, |S ′′| = |S ′| such
that for every α ∈ S ′′, g dominates sα. By shrinking a bit more if necessary, we can assume

that the domination takes place from the same point for every α ∈ S ′′.

□ of Case 1.

Suppose now that there is no such δ. Then the set

{cof(|c|) | c ∈ C ′}
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is unbounded in κ. By shrinking C∗ if necessary, we can assume that the sequence

⟨ cof(|c|) | c ∈ C∗⟩

is strictly increasing. Consider then pcf({|c| | c ∈ C∗})\κ. It is a subset of the set {κ+, κ++},
since 2κ = κ++ and κ is a strong limit.

Case 2 There is C ′ ⊆ C∗ such that tcf(
∏

c∈C′ |c|, <Jbd
κ
) = κ+.

Let p⃗ = ⟨pξ | ξ < κ+⟩ be a witnessing scale.

Then there are ξ∗ < κ+ and S ′′ ⊆ S ′, |S ′′| = |S ′| such that for every α ∈ S ′′, pξ∗ dominates

sα ↾ C ′. By shrinking a bit more if necessary, we can assume that the domination takes place

from the same point for every α ∈ S ′′. Set g = pξ∗ .

□ of Case 2.

Case 3 There is C ′ ⊆ C∗ such that tcf(
∏

c∈C′ |c|, <Jbd
κ
) = κ++.

Let p⃗ = ⟨pξ | ξ < κ++⟩ be a witnessing scale. Take S ′′ to be a subset of S ′ of cardinality

κ+. Then there will be ξ∗ < κ++ such that for every α ∈ S ′′, pξ∗ dominates sα. By shrinking

a bit more if necessary, we can assume that the domination takes place from the same point

for every α ∈ S ′′. Set g = pξ∗ .

□ of Case 3.

So, in either case we are able to find a function g which dominates subsets of S ′ of

cardinality κ++ or κ+.

We showed the following crucial property:

(ℵ) There are an unbounded E ⊆ C∗ and B ⊆ S, |B| = κ+ such that for every τ ∈ E,

the set

{Aα ∩ τ | α ∈ B}

has cardinality less than |τ |.
This holds since the corresponding set

{iτα | α ∈ B}

has cardinality less than |τ |.
Now let us run the argument with an elementary chain and use the strong form of covering

Cov(V, V ′, κ+) defined 2.3.

Apply it to B which was constructed above, i.e. from (ℵ).
Let I, I∗, ⟨Mν | ν < κ⟩ be a witnessing sets.

Work in V ′. Pick ⟨Rν | ν < κ⟩ to be an increasing continuous sequence of elementary

submodels of Hχ, with χ large enough, such that
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1. ⟨Rν | ν ≤ ζ⟩ ∈ Rζ+1,

2. |Rν | < κ,

3. Mν ⊆ Rν ,

4. I∗, ⟨Aα | α ∈ I∗⟩ ∈ R0.

Let ⟨i∗ν | ν < κ⟩ be an enumeration of I∗ in V ′ ∩R0.

Set X = {ν < κ | Rν ∩ κ = ν and Mν ∩ I∗ = {i∗ζ | ζ < ν}}.
Clearly, X is in V ′ and it is a closed unbounded subset of κ. Then, X contains a final

segment of E, where E ⊆ C∗ is from (ℵ). Pick η ∈ E ∩X.

Then, Rη ∩ η = η. By elementarity, Rη ∩ I∗ = {i∗ν | ν < η}. So, Rη ∩ I∗ = Mη ∩ I∗.

Hence, in V ,

|η| = |Rη ∩ I∗| = |Mη ∩ I∗| = |Mη ∩ I| = |Rη ∩ I|.

For every α ∈ I∗ ∩ Rη, Aα ∈ Rη. In particular, for every α ∈ I ∩ Rη, Aα ∈ Rη. By

elementarity,

Rη |= ∀α, β ∈ I∗(α ̸= β → Aα ̸= Aβ).

We have Rη ∩ κ = η, hence Aα ∩ η ̸= Aβ ∩ η, for every α, β < (κ+3)V ∩ Rη, α ̸= β. In

particular, for every α, β ∈ Rη ∩ I, α ̸= β, Aα ∩ η ̸= Aβ ∩ η. So,

|{Aα ∩ η | α ∈ I}| ≥ |Rη ∩ I| = |η|.

But I ⊆ B, η ∈ E, hence the set

{Aα ∩ η | α ∈ I}

has cardinality less than |η|, by (ℵ). It is impossible. Contradiction.

This completes the proof of Theorem 2.4.

6 Proof of Theorem 2.5

We deal now with a possibility that successors of principle indiscernibles are collapsed.

Assume here that 2κ = κ+3. If 2κ > κ+3, then we just collapse 2κ to κ+3. Suppose that

there is V ′,K ⊆ V ′ ⊆ V such that

1. κ is a regular in V ′,

12



2. (2κ)V
′ ≥ κ+3.

Let ⟨Aα | α < κ+3⟩ be a sequence in V ′ of κ+3−subsets of κ. Keep the notation of the

previous sections and define C∗, ⟨Nα | α < κ+3⟩, h, S ⊆ κ+3 as before.

The basic idea will be to explore the choice between three available cardinalities

κ+, κ++, κ+3 for collections of subsets of κ in V ′ against only two related cofinalities of

products of the form
∏

τ∈C∗ τ+ and
∏
C∗.

For every α < κ+3, τ ∈ C∗, let iτα be the index of Aα ∩ τ in a fixed enumeration of P(τ)

in V . Consider the function τ 7→ iτα. Denote it by gα. By GCH<κ, gα ∈
∏

τ∈C∗ τ+. There

is a finite increasing sequence of indiscernibles c⃗τα ∈ [iτα + 1]<ω such that gα(τ) = iτα = h(c⃗τα).

Denote by nτ
α the length of c⃗τα. By similarity of models Nα, we can assume that nτ

α does not

depend on α. Let nτ be such value.

Replace c⃗τα by cταnτ + cταnτ−1 + ... + cτα0, if n
τ > 0. Let h′ be the corresponding replacement

of h, i.e., set h′(ξn + ξn−1 + ...+ ξ0) = h(⟨ξ0, ..., ξn⟩).
Denote the set {τ+ | τ ∈ C∗} by C∗+.

Consider pcf(C∗+) \ κ. It is a subset of the set {κ+, κ++, κ+3}. Let C∗+ = C∗+
1 ∪C∗+

2 ∪C∗+
3

be a splitting of C∗+ into sets which are generators of κ+, κ++, κ+3 respectively. It is possible

that some of them are empty. Let us consider few cases.

Case 1 C∗+
3 ̸= ∅.

Then tcf(
∏
C∗+

3 , <Jbd
κ
) = κ+3.

Let f⃗ = ⟨fα | α < κ+3⟩ be a witnessing scale. Let α ∈ S. Define a function tα on C∗+
3 by

setting

tα(τ
+) = h′(cταnτ + cταnτ−1 + ...+ cτα0).

Then tα ∈
∏
C∗+

3 , and so it is bounded by a function from the scale f⃗ .

Take any S ′ ⊆ S of cardinality κ++. There will be α∗ < κ+3 such that fα∗ dominates each

tα, α ∈ S ′. By shrinking S ′ if necessary, we can assume that there is γ∗ ∈ C∗+
3 such that for

every γ ∈ C∗+
3 \ γ∗, fα∗(γ) > tα(γ). Assume for simplicity that γ∗ = minC∗+

3 .

Set

C ′
3 = {τ ∈ C∗ | τ+ ∈ C∗+

3 }.

For every τ ∈ C ′
3 we fix a function

eτ : fα∗(τ+) ↔ |τ |.

For every α ∈ S ′, define a function sα ∈
∏

τ∈C′
3
|τ | by setting

sα(τ) = eτ (tα(τ
+)).
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Subcase 1.1 There is δ < κ such that for an unbounded C ′ ⊆ C ′
3, the following holds:

c ∈ C ′ ⇒ cof(|c|) < δ.

Then, using GCH<κ, it is easy to find some g ∈
∏

τ∈C′ |τ | and S ′′ ⊆ S ′, |S ′′| = |S ′| such
that for every α ∈ S ′′, g dominates sα. By shrinking a bit more if necessary, we can assume

that the domination takes place from the same point for every α ∈ S ′′.

□ of Subcase 1.1.

Suppose now that there is no such δ. Then the set

{cof(|c|) | c ∈ C ′}

is unbounded in κ. By shrinking C ′ if necessary, we can assume that the sequence

⟨ cof(|c|) | c ∈ C ′⟩

is strictly increasing. Consider then pcf({|c| | c ∈ C ′}) \ κ. Again, it is a subset of the set

{κ+, κ++, κ+3}.
Subcase 1.2 There is C ′′ ⊆ C ′ such that tcf(

∏
c∈C′′ |c|, <Jbd

κ
) = κ+ or

tcf(
∏

c∈C′′ |c|, <Jbd
κ
) = κ+3.

Let p⃗ = ⟨pξ | ξ < κ+⟩ be a witnessing scale.

Then there are ξ∗ < κ+ and S ′′ ⊆ S ′, |S ′′| = |S ′| such that for every α ∈ S ′′, pξ∗ dominates

sα ↾ C ′′. By shrinking a bit more if necessary, we can assume that the domination takes

place from the same point for every α ∈ S ′′. Set g = pξ∗ .

□ of Subcase 1.2.

Subcase 1.3 There is C ′′ ⊆ C ′ such that tcf(
∏

c∈C′′ |c|, <Jbd
κ
) = κ+3.

Let p⃗ = ⟨pξ | ξ < κ+3⟩ be a witnessing scale. Then, |S ′| = κ++ implies that there is

ξ∗ < κ+3 such that for every α ∈ S ′′, pξ∗ dominates sα ↾ C ′′. By shrinking a bit more if

necessary, we can assume that the domination takes place from the same point for every

α ∈ S ′′. Set g = pξ∗ .

□ of Subcase 1.3.

Suppose now that Subcases 1.2,1.3 fail. Then tcf(
∏

c∈C′ |c|, <Jbd
κ
) = κ++.

Let p⃗ = ⟨pξ | ξ < κ++⟩ be a witnessing scale. Take S ′′ to be a subset of S ′ of cardinality κ+.

Then there will be ξ∗ < κ++ such that for every α ∈ S ′′, pξ∗ dominates sα. By shrinking a

bit more if necessary, we can assume that the domination takes place from the same point

for every α ∈ S ′′. Set g = pξ∗ .

So, in either case we are able to find a function g which dominates subsets of S ′ of

cardinality κ++ or κ+.
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Case 2 C∗+
2 ̸= ∅.

Case 3 C∗+
1 ̸= ∅.

The treatment of Cases 2,3 is completely similar to those of Case 1.

We showed the following crucial property:

(ℵ) There are an unbounded E ⊆ C∗ and B ⊆ S, |B| = κ+ such that for every τ ∈ E,

the set

{Aα ∩ τ | α ∈ B}

has cardinality less than |τ |.
This holds since the corresponding set

{iτα | α ∈ B}

has cardinality less than |τ |.
Now let us run the argument with an elementary chain and use the strong form of covering

for κ+ (2.3).

Recall that Cov(V, V ′, κ+) denotes the following strong covering property:

For every set of ordinals B ⊆ 2κ of cardinality κ+ there are I ⊆ B of cardinality κ and

I∗ ∈ V ′, I∗ ⊇ I such that for some increasing and continuous sequence ⟨Mν | ν < κ⟩ ∈ V ′

with |Mν | < κ, for every ν < κ, and I∗ ⊆
⋃

ν<κMν, the following holds: for every ν <

κ, |Mν ∩ I| = |Mν ∩ I∗|.
We assume Cov(V, V ′, κ+). Apply it to B which was constructed above, i.e. from (ℵ).
Let I, I∗, ⟨Mν | ν < κ⟩ be a witnessing sets.

Work in V ′. Pick ⟨Rν | ν < κ⟩ to be an increasing continuous sequence of elementary

submodels of Hχ, with χ large enough, such that

1. ⟨Rν | ν ≤ ζ⟩ ∈ Rζ+1,

2. |Rν | < κ,

3. Mν ⊆ Rν ,

4. I∗, ⟨Aα | α ∈ I∗⟩ ∈ R0.

Let ⟨i∗ν | ν < κ⟩ be an enumeration of I∗ in V ′ ∩R0.

Set X = {ν < κ | Rν ∩ κ = ν and Mν ∩ I∗ = {i∗ζ | ζ < ν}}.
Clearly, X is in V ′ and it is a closed unbounded subset of κ. Then, X contains a final

segment of E, where E ⊆ C∗ is from (ℵ). Pick η ∈ E ∩X.
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Then, Rη ∩ η = η. By elementarity, Rη ∩ I∗ = {i∗ν | ν < η}. So, Rη ∩ I∗ = Mη ∩ I∗.

Hence, in V ,

|η| = |Rη ∩ I∗| = |Mη ∩ I∗| = |Mη ∩ I| = |Rη ∩ I|.

For every α ∈ I∗ ∩ Rη, Aα ∈ Rη. In particular, for every α ∈ I ∩ Rη, Aα ∈ Rη. By

elementarity,

Rη |= ∀α, β ∈ I∗(α ̸= β → Aα ̸= Aβ).

We have Rη ∩ κ = η, hence Aα ∩ η ̸= Aβ ∩ η, for every α, β < (κ+3)V ∩ Rη, α ̸= β. In

particular, for every α, β ∈ Rη ∩ I, α ̸= β, Aα ∩ η ̸= Aβ ∩ η. So,

|{Aα ∩ η | α ∈ I}| ≥ |Rη ∩ I| = |η|.

But I ⊆ B, η ∈ E, hence the set

{Aα ∩ η | α ∈ I}

has cardinality less than |η|, by (ℵ). It is impossible. Contradiction.

This completes the proof of Theorem 2.5.
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