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Abstract. For minimal systems (X, T ) of zero topological entropy we demon-

strate the sharp difference between the behavior, regarding entropy, of the systems
(M(X), T ) and (2X , T ) induced by T on the spaces M(X) of probability measures

on X and 2X of closed subsets of X. It is shown that the system (M(X), T ) has
itself zero topological entropy. Two proofs of this theorem are given. The first uses

ergodic theoretic ideas . The second relies on the different behavior of the Banach

spaces ln1 and ln∞ with respect to the existence of almost Hilbertian central sections
of the unit ball. In contrast to this theorem we construct a minimal system (X, T ) of

zero entropy with a minimal subsystem (Y, T ) of (2X , T ) whose entropy is positive.

§0. Introduction

The basic numerical invariant associated to dynamical systems is the entropy
which divides them into two classes—the chaotic systems where the entropy is
positive and the stochastically deterministic systems where the entropy is zero. It
follows immediately from the definitions that factors of zero entropy systems have
zero entropy. This holds in both the topological category for topological entropy as
well as in the category of measure preserving transformations for the Kolmogorov-
Sinai entropy.

There is a natural generalization of factor systems called quasi-factors and for
these it turns out that there is a surprisingly sharp difference between the two
categories.

For a topological system (X, T ), X a compact metric space and T a homeomor-
phism, a factor is a continuous surjection π : X → Y , which intertwines T with a
homeomorphism S of Y , Sπ = πT . When π is an open map this factor can also be
viewed as a subsystem of 2X , the compact space of closed subsets of X with the
Hausdorff topology and the natural action that T induces on it. Indeed as y ranges
over Y ,π−1(y) ranges over points of 2X and T acts on these points just like S does
on Y ; (when π is not open the subset {π−1(y) : y ∈ Y } is not closed in 2X and
its closure is only an almost 1-1 approximation of Y ). In general a quasi-factor of
(X, T ) is any subsystem of (2X , T ).

For a measure preserving transformation (X,B, µ, T ) a factor system (Y, C, ν, S)
is one for which there is a measurable map π : X → Y satisfying πµ = ν, Sπ = πT .
To see Y as part of X, disintegrate the measure µ along the fibers of π−1(C),

(*) µ =
∫

Y

µydν(y)
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and observe that the T -invariance of µ implies that Tµy = µSy. Thus the action
of S on Y with measure ν is exactly mirrored by the action of T on the space of
probability measures on X, M(X), with ν viewed now as a measure on M(X). The
connection with µ is given by (∗) which says that µ is the barycenter of ν. A general
quasi-factor of (X,B, µ, T ) is any T -invariant measure on M(X) whose barycenter
is µ.

Topological quasi-factors of zero entropy systems may have positive entropy.
This can be seen already in the very simple example (X0, T0) where X0 = Z∪{∞}
is the one point compactification of the integers and T0 is translation by one on Z
and T0∞ = ∞. This example might suggest that the problem is with the lack of
minimality on the part of (X0, T0). Recall that (X, T ) is minimal if every T -orbit
is dense. A more restricted version of the question would be: if (X, T ) is minimal
and Y ⊂ 2X is a minimal quasi-factor does htop(X, T ) = 0 imply htop(Y, T ) = 0?
One of the main results of this paper is that the answer to this question is no! After
discovering this fact we were sure that the measure theory analogue would have a
similar answer, i.e. we expected that the vanishing of the entropy of (X, T ) would
not imply the same for (M(X), T ). It turned out that we were wrong and that
indeed we could prove:

Theorem A. If htop(X, T ) = 0 and M(X) denotes the probability measures on X
with the weak∗ topology then htop(M(X), T ) = 0.

We found two quite different proofs of this fact. The first (given in section
1), goes via a measure theoretical result concerning quasi-factors of zero entropy
systems (X,B, µ, T ) and uses ideas from ergodic theory such as K-automorphisms
and disjointness. This method of proof leads to some further results concerning
distal systems that we will describe in detail later on in that section.

The second proof (in section 2), uses some combinatorial tools as well as the pre-
cise information available concerning the dimension of almost Hilbertian sections of
the unit balls in lp-spaces. This reveals some new unexpected connections between
dynamics and the local theory of Banach spaces.

This proof , being of a constructive nature, enables one to give a quantitative
aspect to the qualitative statement of Theorem A. In addition it can be used to
prove an analogous result for actions of amenable groups. The disjointness theory
used in the ergodic theoretic proof of section 1 has not yet been established in
that context and hence cannot be easily extended to such groups. We shall not
pursue these directions here . However, in section 3, we do give another application
of some of these combinatorial tools , to provide a topological characterization of
K-automorphisms which are usually defined by probabilistic concepts.

Returning to the topological category, the examples that we construct (in section
4), of a minimal positive entropy quasi-factor of a minimal zero entropy system,
enable us to obtain some new results related to the recent developments [B,1],[B,2],
[B-L],[G-W,2],[B,3] in topological dynamics. Briefly put F. Blanchard singled out a
nice class of systems, u.p.e., with uniformly positive entropy (see definitions below)
and showed that they were a good topological analogue of K-automorphisms. In
particular a u.p.e. system has no non-trivial factors of zero entropy (such systems
are said to be of completely positive entropy; c.p.e.), and a u.p.e. system is disjoint
from every minimal zero entropy system. The notions of c.p.e. and u.p.e. systems
have natural generalizations to c.p.e. and u.p.e. extensions. The way in which
we show (in section 5), that in our basic construction the minimal quasifactor has
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positive topological entropy is by showing it to be a u.p.e. extension of its Kronecker
factor. In so doing we also provide an example of a u.p.e. extension which is not
relatively disjoint from a minimal zero entropy system. Further related results
concerning these relative notions will appear elsewhere [G-W,4].

An outline of the two proofs of theorem A appears in [G-W,3]. We express our
thanks to Y. Lindenstrauss for his invaluable assistance in the geometric proof of
theorem A, and to M. Boyle for his contribution to the ergodic theoretical proof of
that theorem.

§1. The ergodic theoretic proof of theorem A

Given a system (X,B, µ, T ) and a factor (X,B, µ, T ) π→ (Y,A, ν, S), one has the
standard disintegration of µ over ν, which represents µ as

(*) µ =
∫
Y

µydν(y)

where µy is a probability measure concentrated on π−1(y). The essential uniqueness
of this representation and the invariance of µ under T lead to relationship Tµy =
µSy. Now the action of S on Y is represented by the action of T on the space
M(X) of probability measures on X.

Equipped with the weak∗ topology, M(X) is a compact metric space and the
map y 7→ µy is measurable with respect to the corresponding Borel structure on
M(X). Via this map the measure ν is transferred onto a measure, also denoted
ν, which is concentrated on the µy’s. The relation (*) expresses the fact that the
barycenter of ν, as a measure on M(X), is µ. The notion of a quasi-factor, [G],
is a generalization of this way of looking at factors and is simply, any probability
measure ν on M(X), invariant under T , and with barycenter equal to µ:∫

M(X)

θdν(θ) = µ.

As is well known, if the entropy of (X, µ, T ) is zero so is the entropy of any factor.
Our goal in this section is to prove the following:

Theorem 1.1. Any quasi-factor of a zero entropy transformation has zero entropy.

Assuming theorem 1.1 a proof of theorem A is obtained as follows. Let ν be a
T -invariant probability measure on M(X) and let µ =

∫
θdν(θ) be the barycenter

of ν so that µ is a T -invariant probability measure on X. We assume that (X, T )
has zero topological entropy and it follows that the measure entropy of µ is zero.
By theorem 1.1 the measure entropy of ν is zero. Now use the variational principle
[D-G-S], to deduce that htop(M(X), T ) = 0. �

The ergodic decomposition of µ and the fact that entropy is an affine function of
the measure show that we may restrict in the sequel to ergodic µ’s and ergodic quasi-
factors. Our proof of this theorem relies on the concept of disjointness introduced
by H. Furstenberg, [F,1]. A joining of two systems X1 = (X1,B1µ1, T1),X2 =
(X2,B2µ2, T2) is a T1×T2 invariant measure on X1×X2 whose projection onto Xi

equals µi, (i = 1, 2). The systems X1,X2 are disjoint if their only joining is µ1×µ2.
Relativizing this notion, if the Xi’s have a common factor, say Z = (Z, C, R, η)
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with maps πi : Xi → Z, then we say that the Xi’s are disjoint relative to Z if the
only joining of X1 with X2 that identifies this common factor Z, is the relatively
independent one λ. This is obtained by disintegrating µi over η:

µi =
∫

µi,zdη(z) , i = 1, 2

and then forming λ as follows:

λ =
∫
Z

µ1,z × µ2,zdη(z).

It is well known that K-automorphisms are disjoint from zero entropy systems.
At the heart of our proof of theorem 1.1 is a relativized version of this fact.

Theorem 1.2. If Xi = (Xi,Bi, µi, Ti), i = 1, 2, both have Z = (Z, C, η, R) as a
factor, and if X1 has relative zero entropy, i.e. h(T1, µ1) = h(R, η), while X2 has
relative completely positive entropy, i.e. any factor of X2 that properly includes
(Z, C, η) has entropy strictly greater than h(R, η), then X1 is disjoint from X2 rela-
tive to Z.

We postpone the proof of theorem 1.2 to the end of this section. We shall next
use it to prove a proposition describing how any joining between a zero entropy
system and a positive entropy one arises, this proposition in turn will be used to
prove theorem 1.1. Note that every system (Y,A, ν, R) can be trivially represented
as a quasi-factor of itself by: ν =

∫
M(Y )

δydν(y), where as usual δy is the point mass

at y.

Proposition 1.3. Let X = (X,B, µ, T ) be a zero entropy system, Y = (Y,A, ν, S)
a system of positive entropy. Let λ be a joining of these two systems. We let
Z = (Z, C, η, R) denote the maximal zero entropy factor of Y, so that C lifts up to
the Pinsker algebra of Y. Denote by ρ, the projection of λ on Z × X. Then λ is
the trivial lift of ρ. More precisely, if ν =

∫
νzdη(z) is the disintegration of ν over

Z, and ρ =
∫

δz × ρzdη(z), the disintegration of ρ over Z, where ρz is a measure
on X,then

λ =
∫
Z

νz × ρzdη(z).

Proof. Let π : Y → Z be the canonical projection. We let

λ =
∫

δy × λydν(y),

where the λy’s are measures on X, be the disintegration of λ over Y . Observe that
we now have the following representation for ρ—which is a joining of Z and X :

ρ = (π × id)(λ)

=
∫

δπ(y) × λydν(y)

=
∫

δz × (
∫

λydνz(y))dη(z)

=
∫

δz × ρzdη(z),
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and thus we see that ρz =
∫

λydνz(y),

Clearly the system
∼
X = (Z ×X, ρ,

∼
T ) is an extension of X and has zero entropy.

We can now form the joining
∼
λ of Y and

∼
X , by letting

∼
λ =

∫
δy × δπ(y) × λydν(y).

We claim that
∼
λ is the relatively independent product

∫
Z

νz × δz × ρzdη(z) of ν and

ρ over Z. In fact, since
∼
X has zero entropy and since Z corresponds to the Pinsker

algebra of Y, our claim follows directly from theorem 1.2. Now we have
∼
λ =

∫
δy × δπ(y) × λydν(y)

=
∫
Z

∫
δy × δz × λydνz(y)dη(z)

=
∫
Z

νz × δz × ρzdη(z).

The uniqueness of disintegration (of
∼
λ over η), implies now that for η-almost every

z, ∫
δy × λydνz(y) = νz × ρz =

∫
δy × ρzdνz(y).

Again, by the uniqueness of disintegration, we get for νz-almost every y, that
λy = ρz. This latter equality yields

λ =
∫
Z

νz × ρzdη(z),

and our proof is complete. �

A proof of theorem 1.1. Consider an ergodic system (X,B, µ, T ) of zero entropy
and an ergodic quasi-factor ν on Y = M(X), so that

∫
M(X)

θdν(θ) = µ. Assuming

that the system (Y,A, ν, T ) has positive entropy, (where A is the Borel σ-algebra
on M(X)) we shall get a contradiction. Let λ be the measure on M(X)×X defined
by

λ =
∫

M(X)

δθ × θdν(θ).

Then clearly, λ is a joining of ν and µ. The notations are as in proposition 1.3 and
by that proposition we get:

λ =
∫

νz × ρzdη(z)

=
∫ ∫

δθ × ρzdνz(θ)dη(z)

=
∫

δθ × ρπ(θ)dν(θ)

=
∫

δθ × θdν(θ).
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Uniqueness of disintegration implies that for ν almost every θ,

θ = ρπ(θ) =
∫

θ′dνπ(θ)(θ′).

This clearly implies that π is an isomorphism so that (M(X),A, ν, T ) is its own
Pinsker factor. Since we assumed that (M(X),A, ν, T ) has positive entropy, this is
the desired contradiction and the proof of theorem 1.1 is complete. �

A proof of theorem 1.2. From the formulation of the theorem it follows that
we may assume that Z has finite entropy. By Krieger’s theorem, [D-G-S], we can
assume, therefore, that Z is given by some finite valued stationary stochastic process
{zn}+∞−∞. For such processes we shall use the notation zi

j to denote the σ-algebra
generated by the variables zn for j ≤ n ≤ i, and for brevity z− = z−1

−∞ represents
the past while z∞ = z+∞

−∞ represents the full process.
We shall need some standard results concerning the conditional entropy of pro-

cesses, these may be found, for example, in [P]. All processes are finite valued and
ergodic, X denotes now the stochastic process {xn}, and all processes occurring
together are assumed to be defined on a common probability space.

h(X ∨ Y) = H(x0|x− ∨ y∞) + H(y0|y−)(1)

= H(x0|x− ∨ y∞) + lim
n→+∞

H(y0|y− ∨ x−n
−∞),(2)

whence

(3) H(y0|y−) = lim
n→+∞

H(y0|y− ∨ x−n
−∞).

Likewise for the relative entropy h(X|Z) = H(x0|x− ∨ z∞), we have:

h(X ∨ Y|Z) = H(x0|x− ∨ y∞ ∨ z∞) + H(y0|y− ∨ z∞)(4)

= H(x0|x− ∨ y∞ ∨ z∞) + lim
n→+∞

H(y0|y− ∨ x−n
−∞ ∨ z∞),(5)

whence

(6) H(y0|y− ∨ z∞) = lim
n→+∞

H(y0|y− ∨ x−n
−∞ ∨ z∞).

Lemma 1.4. Suppose that any process that is not already measurable with respect
to z∞ adds entropy to Z when it is added to Z, then for any process X = {xn}:

lim
n→+∞

H(x0|x−n
∞

∨ z∞) = H(x0|z∞).

Proof. By the martingale convergence theorem it suffices to show that

∩
n
(x−n
−∞ ∨ z∞) = z∞.

Notice that this intersection is an invariant σ-algebra, thus it suffices to show that
for any process {yn} measurable with respect to this intersection, {yn} is actually
measurable with respect to z∞.
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Using formula (6) we see that H(y0|y−∨z∞) = 0 and then formula (1), replacing
X ,Y by Y,Z, gives h(Y ∨ Z) = h(Z) which by hypothesis implies that Y is Z
measurable. �

Suppose now that Y adds no entropy to Z, while any process measurable with
respect to X that is not measurable with respect to Z does add entropy to Z. We
claim that X and Y are relatively independent over Z. We shall use the formulas
(1)-(6) replacing the time shift T by Tn.

If z0 is replaced by (z0, z1, . . . , zn−1) then z∞ remains the same. Now y−n
−∞ should

be interpreted as using only the variables y−n, y−2n, . . . . Nonetheless it is easy to
see that we still have H(y0|y−n

−∞ ∨ z∞) = 0. Using (4) we get

h(X|Z) ≤ h(X ∨ Y|Z) = H(x0|x−n
−∞ ∨ y∞ ∨ z∞) + H(y0|y−n

−∞ ∨ z∞),

which gives H(x0|x−n
−∞ ∨ z∞) ≤ H(x0|y∞ ∨ z∞).

By lemma 1.4 the left hand side converges to H(x0|z∞), and so we deduce

H(x0|z∞) = H(x0|y∞ ∨ z∞).

The same conclusion would hold for all finite blocks (x−N , . . . , xN ) and so we con-
clude that indeed X is independent of Y relative to Z. Applying the above reasoning
to finite valued stationary processes defined on the systems X and Y we conclude
the proof of theorem 1.2. �

Remarks.
a. It is possible to prove theorem 1.1 from theorem A. For this one constructs

for a zero entropy measure preserving transformation a topological model with zero
topological entropy. This can be done using the Jewett-Krieger theorem, [D-G-S]
for example, after a preliminary reduction to the ergodic case.

b. The converse of the claim in theorem 1.2 is also true and can be deduced
from [T]. Thus we have:

Theorem 1.2’. If Xi = (Xi,Bi, µi, Ti), i = 1, 2, both have Z = (Z, C, η, R) as a
factor, and X2 has relative completely positive entropy over Z, then X1 is disjoint
from X2 relative to Z if and only if X1 has relative zero entropy over Z.

The above proof of theorem 1.1 can be applied whenever one encounters a sit-
uation in which a relative disjointness claim like theorem 1.2 can be proved. One
such case is when we replace in theorem 1.2, zero measure entropy by measure
distal (generalized discrete spectrum) and relative K-extension by relative weakly
mixing extension. The corresponding theorem we obtain asserts that every ergodic
quasi-factor of a distal system is distal. The topological analog of this result for
minimal distal systems is well known, see e.g. [K]. Recall that an ergodic system
(X,B, µ, T ) is measure distal or has generalized discrete spectrum if it belongs to the
smallest class of ergodic systems which contains all the Kronecker systems (compact
group rotations) and is closed under isometric extensions and (countable ) inverse
limits,[Z,1],[Z,2],[F,2],[F,3]. Such a system has a canonical description as a tower
of successive isometric extensions and ,when necessary, inverse limits.

An extension π : X → Z where X = (X,B, µ, T ) and Z = (Z, C, η, R) are ergodic
systems is said to be relatively distal if X can be obtained from Z by a series of
isomertic extensions and inverse limits. We shall need the following analogue of
theorem 1.2 which is essentially due to H. Furstenberg.
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Theorem 1.5. If X1 is relatively distal over Z and X2 is relatively weakly mixing
over Z then X1 and X2 are relatively disjoint over Z.

Proof. The proof is accomplished by going step by step up the tower (of X1 over
Z). For the main step assume that X1 is an extension of Z by a compact group
G. By theorem 7.5 of [F,2] the relatively independent joining X1 ×

Z
X2 is ergodic.

Then if θ is any joining of X1 to X2 over Z so is gθ for all g ∈ G. Averaging gθ
with respect to Haar measure clearly gives the relatively independent joining which
being ergodic forces θ itself to be relatively independent. �

Any ergodic system Y = (Y,A, ν, S) has a maximal distal factor Z and Y is
relatively weak mixing over Z. Using separating sieves Zimmer showed that a
factor of distal system is distal. An alternate proof is as follows. If X is distal and
Y is a factor let Z be the maximal distal factor of Y. It is easy to see that X is a
distal extension of Z while Y is relatively weakly mixing and therefore by theorem
1.5 they are relatively disjoint—which contradicts the tower structure X → Y → Z.

Finally it follows immediately from the tower description that an ergodic joining
of two distal systems is itself distal.

Theorem 1.6. Every ergodic quasi-factor of a distal system is distal.

Proof. The proof is almost verbatim that of theorem 1.1 via proposition 1.3 with
the obvious necessary changes . In that proposition we now assume that X =
(X,B, µ, T ) is distal and that Y = (Y,A, ν, S) is a non-distal ergodic system with
Z = (Z, C, η, R) as its largest distal factor. The claim of the proposition is the
same and so is the proof. The only place where some care has to be exercised is
when we use theorem 1.5 (instead of theorem 1.2 in the original proof). In fact we
want to deduce the relative disjointness of the weakly mixing extension π : Y → Z
from the system

∼
X = (Z × X, ρ,

∼
T ) over their common factor Z; i.e. the relative

independence of
∼
λ. However since we are not assuming the ergodicity of the joining

λ, neither ρ nor the system
∼
X need be ergodic. To overcome this difficulty we

observe that each ergodic component of
∼
X as a joining of the distal systems Z and

X is itself a distal system, the relative independence of this ergodic component

from Y over Z follows by theorem 1.5 and the relative independence of
∼
λ is readily

deduced as well. �

§2. The geometric proof of theorem A

The discussion simplifies when X is zero dimensional and so let us begin with
that extra assumption. If P is a finite partition of X into closed and open sets and
ε > 0 is fixed let

U(P, ε) = {(µ, ν) ∈ M(X)×M(X) : max
P∈P

|µ(P )− ν(P )| < ε}.

For a sequence of partitions into sets whose diameter tends to zero and epsilons
tending to zero the sets U(P, ε) define a metric on M(X) which can be used to
compute the topological entropy of (M(X), T ). Indeed if we denote for fixed P,

||µ− ν|| = max
P∈P

|µ(P )− ν(P )|
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and declare that a set of measures {µi : 1 ≤ i ≤ k} is (n-U)-separated if for any
1 ≤ a < b ≤ k there is some 0 ≤ i < n so that

(1) ||T iµa − T iµb|| ≥ ε,

then the topological entropy of (M(X), T ) is given by:

lim
U(P,ε)

lim sup (1/n)log c(n,U),

where c(n,U) is the cardinality of a maximal (n-U)-separated set and the limit over
U(P, ε) is as we described above, with diam(P) and ε tending to zero.

In the calculation of (1) all that one needs to know is the measures of atoms in
∨n−1

0 T−iP = Pn−1
0 . Since the sets of P are closed and open there is some positive

distance δ > 0 between them and if Ln denotes the number of non empty atoms of
Pn−1

0 , then h(X, T ) = 0 implies

(2) lim
n→0

(1/n) log Ln = 0.

To see the essence of the problem let us suppose that P = {P (0), P (1)} consists
of two sets. Then for fixed n, the relevant data about the measures µ on X is how
much mass they assign to each atom Al of Pn−1

0 ; denote this by µ(l), 1 ≤ l ≤ Ln.
Define an Ln × n, 0-1 matrix φ by the formula

Al =
n−1⋂

0

T−iP (φ(l, i))

where Al is the l-th atom of Pn−1
0 . Then

L−n∑
l=1

µ(l)φ(l, i) = (T iµ)(P (1))

and φ defines in this way a mapping from lLn
1 to ln∞. Furthermore, the measures

{µk} on X are n-separated if and only if the images {µkφ} are (n-U)-separated in
the l∞-norm. What we shall need is

Proposition 2.1. For given constants ε > 0 and b > 0, there is an n0 and a
constant c > 0 so that for all n ≥ n0, if φ is a linear mapping from lLn

1 to ln∞ of
norm ||φ|| ≤ 1, and if φ(B1(lLn

1 )) contains more than 2bn points that are ε-separated,
then Ln ≥ 2cn.

For the proof of this proposition we need a simple combinatorial result due to
N. Sauer [Sa] and Perles and Shelah [Sh], and a geometric result about ε-separated
sets in ln∞.

Lemma 2.2. ([Sa],[Sh]) Given b > 0, there is some constant c > 0 and n0 so that
for all n ≥ n0 if A ⊂ {0, 1}I satisfies |A| ≥ 2bn then there is some I ⊂ {1, 2, . . . , n}
satisfying

(1) |I| ≥ cn
(2) A|I = {0, 1}I .

In fact the precise relationship between b and c is known but since it is not
needed for our purposes we formulated a cruder result.
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Lemma 2.3. For constants ε > 0 and b > 0 there are constants d > 0 and δ > 0
such that for all sufficiently large n, if A ⊂ B1(ln∞), the unit ball of ln∞, is ε-separated
and |A| ≥ 2bn, then there is some value y0, and a set I ⊂ {1, 2, . . . , n} such that:

(1) |I| ≥ dn
(2) for every element f ∈ {0, 1}I , there is some a ∈ A such that for all i ∈ I

a(i) ≥ y0 + (δ/2) if f(i) = 1 and

a(i) ≤ y0 − (δ/2) if f(i) = 0

Proof of Lemma 2.3. 1. For a δ > 0 to be determined later (much smaller than ε),
consider the ε/δ different grids

Gk =
1/ε⋃

m=−(1/ε)

[kδ + mε, kδ + mε + δ] 0 ≤ k < K = [ε/δ].

For each a ∈ A there is some 0 ≤ k < K such that

(1) |{1 ≤ i ≤ n : a(i) ∈ Gk}| ≤ (1/K)n

since the Gk’s are disjoint. If Ak denotes those a’s in A that satisfy (1) then for
some o ≤ k < K,

(2) |Ak| ≥ (1/K)|A|.

Fix some ko that satisfies (2), and to ease notation denote Ak by A. Note that
since K is fixed the exponential size of Ak is the same as before (for large n).

2. For each interval [kδ + mε, kδ + mε + δ] that constitutes Gk, we define a map
from A to {0, 1, ∗}n by sending a(i) to 0 if a(i) ≤ kδ+mε, to 1 if a(i) ≥ kδ+mε+δ
and to ∗ if neither holds, i.e. if a(i) is in the interval. Let Um denote the image of
A under this mapping. Each element u ∈ Um has the value ∗ on some set of indices
β ⊂ {1, 2, . . . , n} whose size is at most n/k. Denote by Uβ

m those u’s in Um whose
∗ values occur precisely at β. The number of different β’s where Uβ

m is non empty
is less then

∑
0≤x<1/k

(
n
x

)
= f(n, 1/k) which is exponentially small with δ. Let

D = max
β,m

|Uβ
m|.

3. We claim that D ≥ |A|1/Mf(n, 1/K)−1 where M = [2/ε] + 1. Indeed if two
elements a, a′ ∈ A are mapped to the same Uβm

m for all −(1/ε) < m < 1/ε then
they clearly cannot be ε-separated. Therefore∑

βm’s

∏
m

|Uβm
m | ≤ DMf(n, 1/k)M

and extracting the M -th root of both sides gives us our claim. We fix now some
m and β with |Uβ

m| ≥ |A|1/Mf(n, 1/K)−1. If δ is sufficiently small then this is
some fixed exponential size and lemma 2.2 may be applied to give the desired
conclusion. �
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We turn now to the proof of proposition 2.1.

Proof of proposition 2.1. Apply lemma 2.3 to the image φ(B1(lL1 )), and noting that
this image is also convex and symmetric we conclude that there is some fixed d and
δ, which depend only on the constants ε and b, and I ⊂ {1, 2, . . . , n} such that if
π : lL∞ → lI∞ denotes the canonical projection then

π(φ(B1(lL1 ))) ⊃ Bδ/2(lI∞).

The dual (π ◦φ)∗ is an injection of (lI∞)∗ = lI1 into (lL1 )∗ = lL∞ and the norm of this
injection is bounded, as is the norm of its inverse, by fixed bounds.

Now it is known [F-L-M] that ln1 has almost Euclidean sections of dimension a
constant times n. On the other hand lm∞ has almost Euclidean sections of dimension
that are at most a constant times log m. It follows that log L must be at least some
constant times n which is exactly the assertion of the proposition. �

In case P has more than two sets, we need to map the measures into lnp
∞ where p is

the number of atoms of P, in order to capture the appropriate notion of separation.
For fixed p this doesn’t affect the argument at all and thus we see that for zero
dimensional spaces our proof is complete.

The easiest way to deal with the general case is to make use of the following
proposition whose proof was indicated to us by M. Boyle:

Proposition 2.5. If T is a homeomorphism of a compact metric space X, there

is a zero dimensional space
∼
X with a homeomorphism

∼
T and a continuous map

π :
∼
X → X satisfying

(1) Tπ = π
∼
T

(2) htop(
∼
T ) = htop(T ).

Proof. The space
∼
X will be built as an inverse limit of symbolic dynamical systems.

Begin with an open cover U1, with sets whose closure has diameter at most 1/2.
Find N1 such that

∨N1
i=1 U1 has a subcover V1 with at most eN1/2 sets. Let A1

denote the index set of the subcover V1, and let Y 1
1 ⊂ (A1 ∪ {∗})Z consists of those

sequences of the form · · ·α ∗N1−1 β ∗N1−1 γ ∗N1−1 · · · that represent points in X,
i.e. such that there exists some x ∈ X with x ∈ V α, TN1x ∈ V β,T

2N1x ∈ V γ etc.
Clearly Y 1

1 is closed and shift invariant, and we have a mapping from Y 1
1 to 2X

that commutes with the shift, and has for its image sets of diameter at most 1.
Next let U2 refine V1 with sets whose closure have diameter at most 1/22. Since

also the entropy of TN1 is zero, we can find an N2 so that
∨N2

i=1 T iN1U2 has a
subcover V2 with at most eN2/22

elements. Note that if A2 is the index set of this
cover then in a natural way each element of A2 maps onto a block of length N2 of
elements of A1. Thus if Y 2

2 ⊂ (A2∪{∗})Z is defined in an analogous way—elements
of A2 separated by N1N2−1 asterisks that represent points in X—there is a natural
projection of Y 2

2 into Y 1
1 that commutes with the shift. Denote by Y 2

1 the image
of Y 2

2 under this mapping. Note that the topological entropy of Y 2
1 is smaller than

(1/22)1/N1. Also Y 2
2 maps into 2X , and its image consists of sets whose diameter

is at most 1/2.
Continuing this scheme we get Y 1

1 ⊃ Y 2
1 ⊃ Y 3

1 ⊃ · · · and we denote ∩mY m
1 by

Y1, Y 2
2 ⊃ Y 3

2 ⊃ Y 4
2 ⊃ · · · , Y2 = ∩mY m

2 etc. The space
∼
X is the inverse limit of
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the Yn’s. The image of
∼
X in 2X consists of singletons hence can be considered as

a map to X. Finally it is clear that in the limit the topological entropy of each Yn

is zero and hence the same is true for
∼
X. �

Since π clearly also induces a factor mapping from M(
∼
X) to M(X) we see that

the general case of theorem A follows from the special case dealt with above. �

§3. A topological-combinatorial
characterization of K-automorphisms

Let Ωa denote the space of sequences with values in the finite set {0, 1, . . . , a−1},
and Y ⊂ Ωa. A subset I ⊂ Z is called an interpolating set for Y if Y |I = Ωa|I. More
concretely, for each choice {bi : i ∈ I, bi ∈ {0, 1, . . . , a − 1}} there is some ω ∈ Y
such that ωi = bi for all i ∈ I. Now suppose that (X, T, µ) is a measure preserving
transformation of a finite measure space, and that P = {P0, P1, . . . , Pa−1} is a finite
measurable partition of X. Construct a set YP ⊂ Ωa as follows:

YP = {ω ∈ Ωa : for all finite subsets J ⊂ Z, µ(
⋂
j∈J

T−jPωj
) > 0}.

If µP is the image of µ under the mapping θ : X → Ωa defined by (θx)n = that
index b such that Tnx ∈ Pb, i.e. the distribution of the stochastic process defined
by (T, µ,P), then YP is simply the closed support of µP . Finally, recall that a set
I ⊂ Z has positive density if

lim
n→∞

|I ∩ {−n, . . . , n}|
2n + 1

> 0.

The results in this section were obtained in response to some questions posed
by H. Furstenberg. The context of those questions was results connecting the
dynamical nature of X ⊂ Ωa with properties of its interpolating sets (cf. also [G-
W,2]). The main result of this section is the following theorem which characterizes
K-automorphisms in terms of these concepts.

Theorem 3.1. For every non trivial partition P, the set YP has interpolating sets
of positive density if and only if, (X, T, µ) is a K-automorphism, or equivalently
has completely positive entropy

We can quickly dispose of one direction, namely if T has a zero entropy factor
then one can construct non trivial partitions P such that the topological entropy of
YP is zero and this rules out the existence of interpolating sets of positive density.
In the other direction one can prove a stronger result, namely:

Theorem 3.2. If P has two elements and h(T,P) > 0, or more generally, if P
has a elements and h(T,P) > log(a− 1) then YP has interpolating sets of positive
density.

Here no assumption is made about the dynamic nature of T—but of course rather
a strong assumption about the size of h(T,P) is involved. If P has two elements,
then we can also show that there is a direct relation between how close h(T,P) is
to log 2 and how close one can get to density one for the interpolating sequences.
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The case a = 2 relies on lemma 2.2 while for a > 2 one needs the analogous
lemma which can be found in [K-M].

Proof of theorem 3.2. Standard reductions allow us to assume that T is ergodic.
Now the Shannon-McMillan theorem, [E-F], gives that for any h′ < h(T,P), and
N sufficiently large the set of elements

BN = {b ∈ {0, 1, . . . a− 1}N : for which µ(∩N
j=1T

−jPb(j)) > 0}

has at least 2h′N elements. Choosing h′ > log(a−1), and applying Stirling’s formula
to approximate the constants in lemma 2.2 (or its analogue for a > 2) we see that
for some constant d, and all N sufficiently large, BN has interpolating sets with
size dN .

Observe that identifying subsets of Z with elements of {0, 1}Z = Ω2 via their
indicator functions, the collection of interpolating sets for YP is a closed, shift
invariant subset of Ω2 which we denote by I. The existence of arbitrarily large
finite interpolating sets of density d yields the existence of a shift invariant measure,
ρ, on I such that ρ([1]) ≥ d where [1] = {ω : ω(0) = 1}. Take, on I, an ergodic
component ρ0 of ρ such that ρ0([1]) ≥ d, and then any generic point for ρ0 gives
an infinite interpolating set with density at least d > 0. This completes the proof
of theorem 3.2. �

Proof of theorem 3.1. Let us begin with a special case, in which µ(Pi) = 1/a for
0 ≤ i < a. In this case, since T is a K-automorphism it follows that

lim
k→∞

h(T k,P) = H(P) = log a

and thus for sufficiently large k0, h(T k0 ,P) > log(a− 1) and using theorem 3.2 we
get the desired conclusion.

For a general P, we will refine P to a partition R whose atoms are nearly
equal, and use the fact that if R refines P any interpolating set for YR is also an
interpolating set for YP . The only place where care must be exercised is in making
the size of the atoms of R nearly equal enough so that H(R) > log(n−1) where n is
the number of atoms of R. Let pi = µ(Pi), 0 ≤ i < a, and by standard Diophantine
approximation find integers ui, v so that

(i) v ≥ (10 · a)2a

and

(ii) |pi −
ui

v
| ≤ 1

v1+(1/(a−1))
1 ≤ i < a.

Deduce from (ii) that
|p0 −

u0

v
| ≤ a

v1+(1/(a−1))
,

where u0 = v − (u1 + u2 + · · ·+ ua−1).
For each i divide pi into ui atoms, giving ui − 1 of them the mass 1/v, and the

last atom the mass pi− (ui−1/v), thus defining R. Now an easy calculation reveals
that H(R) > log(v−1), where clearly R has v atoms and hence once again theorem
3.2 completes the proof. �
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§4. The construction of a minimal zero entropy
flow with a minimal positive entropy quasi-factor.

A general description. The minimal flow (X, T ) will be a subset of {0, 1}Z with
the shift. The construction will be inductive. At stage n, we will have a set of
allowable words Wn, each a concatenation of words from Wn−1. The length of the
words in Wn is fixed and equals ln. Thus if Xn denotes all infinite concatenations
of words from Wn, we have X0 ⊃ X1 ⊃ X2 ⊃ . . . and X = ∩∞0 Xn.

The minimality of (X, T ) is guaranteed by incorporating in each word w ∈ Wn

an initial segment which contains all pairs of words from Wn−1. Thus in X, any
block of length ln−1 that occurs at all, will be seen in every block of length 2ln; this
implies that (X, T ) is minimal. The fact that (X, T ) has zero entropy will follow
from the fact that 1

ln
log |Wn| → ∞.

This procedure will establish a hierarchical block structure in elements of X
which will, most probably, be determined uniquely by the initial segment in each
of the basic blocks. If we want to ensure that this block structure is indeed
uniquely determined by encoding this information into the content of the blocks,
our construction will become more complicated and may hinder the reader from
concentrating on the more essential points of the construction. It is, however,
always possible to couple our system with a Kronecker system which consists of
an inverse limit of cyclic groups of orders ln, to mark the block structure of el-
ements of X. For that reason we shall, from now on, ignore the problem of
recognition of the block frameworks and assume that the block structure can
be uniquely recognized in elements of X. Thus there is now a natural Kro-
necker factor (X, T ) π→ (Z, T ), where Z ⊂

∏∞
n=1{0, 1, . . . , ln − 1}, is defined by

Z = {z : z(n + 1) ≡ z(n)(mod ln), n = 1, 2, . . . }.
So far we have described a general procedure for manufacturing zero entropy

minimal sets. Now we have to describe the minimal set in 2X . Our minimal set Ω
in 2X will be in 2π, and that means that each E ∈ Ω ⊂ 2X is contained in π−1(z)
for some z ∈ Z. We will define a set Ωn ⊂ 2Xn by giving a collection Ln of lists of
words from Wn of size ≤ tn, i.e.

Ln ⊂ {A ⊂ Wn : |A| ≤ tn},

(we think of a list as a matrix whose rows are formed by the words of the list).
Given such a collection of lists, we declare that E ∈ Ωn if:

(1) E lies in a single fiber over Z; i.e. all points in E have the same block
framework (note that there are only ln-possibilities at this stage).

(2) At each position of the framework the set of words in Wn that we see as we
range over the points of E, belongs to our collection of lists Ln.

The lists Ln will be constructed in a fashion that is consistent with Ln−1, which
means that Ωn ⊂ Ωn−1 (this makes sense since 2Xn ⊂ 2Xn−1).

To understand the topology on 2X we recall that if X is a compact metric space
and {Uj}∞j=1 a basis for the topology on X, then a basis for the topology on 2X is
obtained as follows. For every finite subset L = {j1, j2, . . . , jk} of N, let

V (L) =< Uj1 , Uj2 , . . . , Ujk
>

= {A ∈ 2X : A ⊂ ∪k
i=1Uji

and A ∩ Uji
6= ∅, i = 1, . . . , k}.
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The family {V (L) : L ⊂ N, L finite }, is a basis for the Hausdorff topology on 2X .
Back to our example, let {Uj}∞j=1 be the basis for the topology on X given by the

cylinder sets defined by words in Wn at the ln different positions they can occupy,
n = 1, 2, . . . . It is then clear that, letting L run through all lists of words in Wn (i.e.
all subsets of Wn), the resulting family {V (L)} will yield a basis for the topology
on 2X . In particular two closed subsets in 2π are near each other, when for a large
n there exists a list L of words in Wn such that both sets are in V (L).

In the same way that words in Wn are conveniently used to signify both a proper
word as well as a neighborhood in X, so a list L ∈ Ln will mean both the list itself
and the neighborhood it defines in 2X .

To ensure the minimality of Ω = ∩∞1 Ωn we need to ensure that each list in Ln,
has some initial segment (i.e. the list obtained by considering a certain portion
of each word in the list; this will be aligned with the initial segment of words in
Wn mentioned above), wherein one sees all concatenations of pairs of lists in Ln−1.
Note that there are many ways of concatenating lists. If L,L′ are lists in Ln−1 then
a collection of words J of length 2ln−1 is a concatenation of L and L′ if the initial
ln−1-words of J , as a set, coincide with L while the final ln−1-words of J , as a set,
coincide with L′. We will call the concatenation J = {ww : w ∈ L} of a list L with
itself, the diagonal concatenation, and for two lists L,L′, the product concatenation
of L and L′ will be the list J = {ww′ : w ∈ L,w′ ∈ L′}.

Finally the fact that (Ω, T ) will have positive entropy will be deduced from an
exponential growth rate for the size of Ln with respect to ln. In fact it is not simply
the size of Ln that matters but rather the size of Ln when we identify lists if their
projections onto the ”zero lists” are the same; i.e. if ln = k · l0, L is a list in Ln and
Λ1 the list in L0 we see when looking at the first l0-places, Λ2 the list in Ln we see
when looking at the next l0-places, etc., then we count L’s as different only if for
some j, the Λj differ. It is this fixed ”mesh size” we look at with its exponential
growth, that gives positive entropy to the quasifactor (Ω, T ). We now go over to
the explicit description of the construction.

The zero stage. The set W0 of admissible words at stage zero will consist of ten
words of length l0 = 10 :

w0 = 100 . . . 0 ; w1 = 110 . . . 0 ; w2 = 101 . . . 0 ; . . . w9 = 100 . . . 1.

At this stage we simply let L0 be the collection of all 29 possible lists of words from
W0 containing the word w0. Note that the list L0 = {w0} is a sublist of every list
in L0.

The first stage. In describing the first stage of the construction we will have to
deal simultaneously with words and lists; the words of W1 will be implicitly defined
as all the words involved in L1.

The words of W1 will have two parts, the initial segment and the main part.
The initial segment will have two sections—one for the minimality of words—and
the other for the minimality of lists. The same terminology—initial segment,main
part,etc.—will apply to lists.

To construct the first section of the initial segment of words in W1 define

α = (w0w0)(w0w1) . . . (w9w9)
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i.e. α is formed by concatenating all pairs wi, wj 0 ≤ i, j ≤ 9. Let α0 have the
same length as α but be composed entirely of w0. Now all words in W1 will begin
with either αα0 or α0α. We need two kinds of words because all lists in L0 contain
w0 and to make L1 consistent with L0 we have to see in each position of the list
the word w0. Thus there is just one first-section-list, and this list contains just two
words.

Now consider the second section of the initial segment. For lists L1, L2 in L0 let
L1 ◦ L2 denote some concatenation of these two lists. Write out a list of the form

(Li ◦ Lj)(L′i ◦ L′j) . . .

in which all possible concatenations of lists from L0 occur. Thus for a fixed pair
i, j there will be in this list all possible concatenations of Li and Lj , (how we
concatenate the pairs is immaterial). The second section of the initial segment of
each list in L1 will consist of this single and fixed list. The total length of the initial
segment we denote by r1.

Finally we go over to the main part (whose length will be s1 so that l1 = r1+s1).
The main part of words in W1 will consist exclusively of words of the type:

wa
0wiw

b
0 with


l0 · (a + b + 1) = s1

a, b ≥ 0
0 ≤ i ≤ 9


In constructing the main part of the lists in L1, our main purpose is to produce
exponentially many lists—with concatenation of words that is rather small in size—
namely linear in s1. First we choose k1 so that s1 = l0 ·k1 satisfies 1− s1/l1 ≤ 1/10
(we will, eventually, make sn/ln → 1). Then for every sequence Li1Li2 . . . Lik1

in
(L0)k1—at least one of whose entries is L0—we form the list

Li1 L0 . . . L0

L0 Li2 . . . L0

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .
L0 L0 . . . Lik1


There are now one first-section-list, one second-section-list and exponentially

many main-part-lists. We let the product of the first and second section-lists be
the unique initial-segment-list, and for our lists in L1 we take some concatenation
of this initial-segment-list and each of the main-part-lists. There are therefore as
many lists in L1 as there are main-part-lists. The words of W1 are all the words
appearing in these lists; they all have the same length l1. The special list that
results when in the main part we take the constant sequence L0L0 . . . L0, we call
the zero list and denote it by L

(1)
0 . Note that we made sure that every list in L1

contains this list as a sublist.

The second stage. The second stage of the construction will capture already
all the features of the general case. When referring to words of W1 we will use
the following notation. All words in L

(1)
0 , we will denote as ”zero” words of W1,

w
(1)
0 —even though their initial segments come in several types. Similarly, w

(1)
1 , will
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denote words where in the main part we see wa
0wiw

b
0, (wi ∈ W0, i 6= 0), regardless

of the initial segment. Thus there are several kinds of w
(1)
1 , etc.

Now form the word α(2), as before, by concatenating all possible pairs of words
from W1. Form also the words of type α

(2)
0 , each of the same length as α(2), by

concatenating a single word of type w
(1)
0 . There are now many types of α

(2)
0 ’s. The

first section of the initial segment of words in W2 will be any one of the words
α(2)α

(2)
0 or α

(2)
0 α(2). The first-section-list in L2 will consist of all these words.

Next we describe the second-section-list; as in stage one there will be only one
such list. This will be formed by concatenating all possible pairs L

(1)
i ◦L

(1)
j , of lists

in L1, where for each pair i, j we take all possible concatenations of the two lists.
Again the initial-segment-list will be the product of the first and second-section
lists.

Finally for the main part; first choose k2 so that s2 = l1 · k2 satisfies 1− s2/l2 ≤
1/(10)2, where l2 = r2 +s2 and r2 is the length of the initial segment defined above.
The lists in the main part will be formed again by assigning to every sequence
L

(1)
i1

L
(1)
i2

. . . L
(1)
ik2

in (L1)k2—at least one of whose entries is L
(1)
0 —the list


L

(1)
i1

L
(1)
0 . . . L

(1)
0

L
(1)
0 L

(1)
i2

. . . L
(1)
0

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .
L

(1)
0 L

(1)
0 . . . L

(1)
ik2


However, unlike the first stage, the above list is not really well defined, because we
now have more than one zero word in the list L

(1)
0 , so that the concatenations with

this list should be described explicitly. In order to keep the cardinality of W2 small
we choose, in each row, the diagonal concatenation between any two copies of L

(1)
0 ,

and some arbitrary concatenation for the triples L
(1)
0 L

(1)
ij

L
(1)
0 . The main part of

words in W2 will now have the form

(w(1)
0 )aw

(1)
i (w(1)

0 )b

where a + b + 1 = k2, and (w(1)
0 )a means the a-fold concatenation of a single word

of type w
(n−1)
0 , and we use the same zero word for (w(n−1)

0 )b. The main part lists
are now defined and we let the lists in L2 be formed by taking some concatenation
of the initial-segment-list and each of the main-part-lists. As before, W2 is defined
as the set of words appearing in these lists. The zero list L

(2)
0 , is the one obtained

by concatenating the initial-segment-list with the main-part-list which corresponds
to the sequence L

(1)
0 L

(1)
0 . . . L

(1)
0 , (k2 times).

General stage. The collection of lists Ln contains a distinguished list called the
zero list and denoted L

(n)
0 —the words there are denoted by w

(n)
0 . All other lists

L
(n)
i contain L

(n)
0 . All words of the form w

(n)
0 have in the main part only words of

the type w
(n−1)
0 . All words of the form w

(n)
i , i 6= 0 have in the main part exactly

one word of the form w
(n−1)
i . The initial segment—i.e. what we see as (n− 1)-lists

in the initial segment of all lists in Ln is the same—and hence equals the L
(n)
0 list
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there. In the main part, to keep the entropy down, whenever we write (w(n−1)
0 )a

we mean a concatenation of a single word of type w
(n−1)
0 , and we use the same zero

word for (w(n−1)
0 )b.

If un−1 = |L(n−1)
0 |, vn−1 = |{w(n−1)

i : i ≥ 1}|, then |Wn−1| = un−1 + vn−1. Let
sn = a + b + 1, a, b ≥ 0, 1 − sn/ln ≤ 1/(10)n; then, there are sn choices for a, b,
then un−1 + vn−1 choices for the w

(n−1)
i (including i = 0) then un−1 choices for the

padding by the various zero words. Thus there are (sn) · |Wn−1| · un−1 different
main parts. Clearly for sn large this makes 1

ln
log |Wn| ≤ 1/(10)−n and guarantees

that eventually h(X, T ) = 0. The calculations involved in showing that (Ω, T ) has
positive topological entropy will be given in the next section when we show the
existence of entropy pairs in (Ω, T ).

§5. The extension σ

It is clear from our construction that a natural homomorphism σ : (Ω, T ) →
(Z, T ) is defined, simply by mapping A ∈ Ω onto the unique point z ∈ Z for which
A ⊂ π−1(z).

Proposition 5.1. The homomorphism σ is almost one to one; i.e. there exists a
dense Gδ subset, Z0 of Z, such that |σ−1(z)| = 1 for z ∈ Z0.

Proof. Let

Z0 = {z ∈ Z : for some ni →∞, lim z(ni) = lim rni
− z(ni) = ∞},

where z ∈
∏∞

n=1{0, 1, . . . , ln − 1}, and rn is the length of the initial segment in
words of Wn.

Since there is a unique initial-segment-list at each stage, it is now clear that for
each z ∈ Z0 there is one and only one A ∈ Ω for which σ(A) = z. It is easily seen
that, by minimality, the set of points z ∈ Z for which |π−1(z)| = 1—since it is
not empty—is a dense Gδ subset of Z. Of course this subset cannot exhaust Z as
(Ω, T ) has positive entropy and hence is not isomorphic to (Z, T ). �

Next we briefly recall the definitions of entropy pairs and u.p.e. flows. For more
details see [B,1],[B,2],[B-L],[G-W,1], [B,3] and [G-W,4].

Let (X, T ) be a flow; an open cover U = {U, V } of X is called a standard cover
if both U and V are none-dense in X. (X, T ) has uniform positive entropy (u.p.e.)
if for every standard cover U of X, the topological entropy h(U , T ) > 0. A pair
(x, x′) ∈ X ×X is an entropy pair if for every standard cover U with x ∈ int(U c)
and x′ ∈ int(V c), h(U , T ) > 0. Thus (X, T ) is u.p.e. iff every nondiagonal pair in
X ×X is an entropy pair. Of course the existence of enropy pairs implies positive
entropy and the converse is also true.

In an arbitrary flow (Y, T ), let us call a pair of points (y0, y1) ∈ Y × Y an
E-pair, if y0 6= y1 and for every pair of disjoint neighborhoods U0, U1 of y0, y1

respectively, there exist δ > 0 and k0 such that for every k ≥ k0, there exists a
sequence 0 ≤ n1 < n2 · · · < nk < k/δ such that for every s ∈ {0, 1}k, there exists
y ∈ Y with

Tn1y ∈ Us(1), T
n2y ∈ Us(2), . . . , T

nky ∈ Us(k).

It follows directly from the definition that for every pair U0, U1 as above the entropy
h(U , T ) ≥ δ, where U is the open cover {(U0)c, (U1)c} of Y . Hence every E-pair is
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an entropy-pair. We say that the extension (Y, T ) σ→ (Z, T ) is a u.p.e. extension (or
an entropy extension), if every pair of distinct points y, y′ ∈ Y with σ(y) = σ(y′),
is an entropy pair.

Proposition 5.2. Every pair of points A0, A1 in Ω, such that A0 6= A1 and
σ(A0) = σ(A1), is an E-pair, hence an entropy pair; in particular, the extension σ
is a u.p.e. extension.

Proof. Notice first that the conditions 1 − sn/ln < 1/(10)n imposed in the con-
struction, imply that

∞∏
n=1

sn/ln = γ > 0.

Now since A0 6= A1 and σ(A0) = σ(A1), there exist an n and lists L0 6= L1 in Ln

such that A0 ∈ V (L0) and A1 ∈ V (L1), (note that L0 6= L1 implies V (L0)∩V (L1) =
∅). In the definition of an E-pair, take k0 = kn. Now given k ≥ k0 and s ∈ {0, 1}k,
let m be determined by km ≤ k < km+1. Consider the sequence Ls(1)Ls(2) . . . Ls(k)

in {L0, L1}k. This is a sequence of lists in Ln and we can group them into sequences
of length kn+1 to form the main parts of [k/kn+1]+1, Ln+1 lists. Use this sequence
of Ln+1 lists to build the main parts of a certain number of Ln+1 lists. These, in
turn, we use to build the main parts of a sequence of lists in Ln+2 etc., until we get
in the last step, a portion of the main part of a single Lm+1 list, which we complete
in an arbitrary way. Let us denote the Lm+1 list obtained in this way by Λ, and let
n1 < n2 · · · < nk be the places in Λ where the Ls(j), j = 1, . . . k begin. Then it is
easy to see that the density of {nj}k

j=1 in the interval [0, nk] is bounded below by

(1/ln) · (sn+1/ln+1) · · · (sm+1/lm+1) ≥ γ · 1/ln.

Taking δ = γ · 1/ln, completes the proof of the proposition. �

The following corollary shows that the relative version of proposition 6 of [B,2],
is false.

Corollary 5.3. There exist a u.p.e. extension (Ω, T ) σ→ (Z, T ) of minimal flows
and an extension (X, T ) π→ (Z, T ), where (X, T ) is a minimal flow of zero entropy,
such that (Ω, T ) and (X, T ) are not disjoint over (Z, T ).

Proof. To say that (Ω, T ) and (X, T ) are disjoint over (Z, T ) means that the subset

X ×
Z

Ω =: {(x,A) : x ∈ X, A ∈ Ω, π(x) = σ(A)}

of X ×Ω is minimal. Now for our example, as we have seen σ is u.p.e. yet clearly,
the subset

{(x, A) : x ∈ A ∈ Ω},

is a proper closed and T -invariant subset of X ×
Z

Ω. �

Remark. We observe that corollary 5.3 also yields an example of a pair of minimal
flows (X, T ) and (Ω, T ) which are not disjoint over their common factor (Z, T ) but
at the same time, have no proper common factor over (Z, T ).



20 ELI GLASNER AND BENJAMIN WEISS

References

[B-S] W. Bauer and K. Sigmund, Topological dynamics of transformations induced on the

space of probability measures, Monatsh. für math. 79 (1975), 81-92.
[B,1] F. Blanchard, Fully positive topological entropy and topological mixing, Symbolic Dy-

namics and Applications; AMS Contemporary Mathematics, vol. 135, 1992, pp. 95-105.

[B,2] F.Blanchard, A disjointness theorem involving topological entropy, Bull. de la Soc. Math.
de France. 121 (1993), 465-478.

[B-L] F. Blanchard and Y. Lacroix, Zero-entropy factors of topological flows, Proc. A.M.S. (to

appear).
[B,3] F.Blanchard, B.Host, A.Maass, D.J.Rudolph, Entropy pairs for a measure, preprint.

[D-G-S] M. Denker, C. Grillenberger and K. Sigmund, Ergodic theory on compact spaces, vol. 527,

Springer Verlag, Lecture Notes in Math., 1976.
[F-L-M] T. Figiel, J. Lindenstrauss, V. D. Milman, The dimension of almost spherical sections

of convex bodies, Acta Math. 139 (1977), 53-94.

[F,1] H. Furstenberg, Disjointness in ergodic theory, minimal sets,and a problem in diophan-
tine approximation, Math.System Th. 1 (1967), 1-55.

[F,2] H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on
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