
0368.4281, Spring Semester, 2020/2021—Homework 1, March 21, 2021 1
version March 21, 2021, 11:49 P.M.

TEL AVIV UNIVERSITY
Department of Computer Science

0368.4281 – Advanced topics in data structures
Spring Semester, 2020/2021

Homework 1, March 21, 2021

Due on Sunday April 11.

1. Let X be a sequence of m accesses to elements in [n]. Let q(i), i ∈ [n] be the number
of accesses to elements i in X, and let p(i) = q(i)/m. Assume q(i) ≥ 1 for all i. Prove that
the total search time

∑n
i=1 q(i)(d(i) + 1) = m

∑n
i=1 p(i)(d(i) + 1) of X in any binary search tree

storing n is Ω
(
q(i) log

(
m
q(i)

))
. (Hint: One way to do it is using Gibbs inequality which says that∑

pi log
(

1
pi

)
≤
∑

pi log
(

1
qi

)
for any two distributions pi and qi, i ∈ [n]. Here 0 · log x

0 is defined to

be 0 for any x.)

2. Let X be a sequence of m accesses to elements in [n]. Let q(i), i ∈ [n] be the number of
accesses to elements i in X. Describe a dynamic programming algorithm that finds an optimal
static search tree for X. Prove
1) That your algorithm indeed constructs a tree that minimizes the total access time.
2) An upper bound on the running time of your algorithm.

3. Give a sequence X for which the algorithm given in class that computes an approximate
optimal static tree for X does not compute an optimal tree.

4. Assume we splay at a node x. Let y be a node on the path to x. Let d(y) be the depth of y
before the splay and let d′(y) be the depth of y after the splay. Show that d′(y) ≤ bd(y)/2c+ c for
a constant c. What is the smallest c that you can prove this for?

5. We define the following variation on the splay algorithm. This variation looks 3 steps (edges)
towards the root from the node x and applies one of the rules in Figure 1 (or their mirror image)
if possible. If it is not possible to apply one of the rules in Figure 1 we apply one of the regular
zig-zig, zig-zag, or zig rules (Note that zig or zig-zig would apply only if x is at distance 1 or 2
from the root, respectively). Prove that the access lemma holds for this variation as well (with a
different constant).

6. Recall the rebalancing operations on 2-4 trees (review this basic material on B-trees if
needed).

When a node x gets too large (has 4 keys and 5 children) then we split it. The parent, p(x), gets
an additional key (and child) following the split of x and we split p(x) also if needed. We continue
splitting bottom-up until a node does not split or the root splits and we add a new root.

When a node x looses its last key then its steals a key (and a child) from a sibling if possible and
otherwise we fuse x with its sibling. This fusing causes p(x) to lose a key (and a child) and we
repeat the process at p(x) if p(x) lost its last key.



0368.4281, Spring Semester, 2020/2021—Homework 1, March 21, 2021 2

1) Describe an implementation of find, insert, delete, join, and split on finger 2-4 trees, that use
the rebalancing processes described above. Your implementation should guarantee the following.

Consider a sequence of m operations on an (initially empty) collection of 2-4 finger search trees.
Out of these m operations k are concatenations where the ith concatenation concatenates two trees
such that the smaller among them contains ni elements. The other m−k operations are find, insert,
delete, and split. The j-th operation among these m− k operations is performed on an element of
rank dj (there are dj items smaller than it in this tree) in a tree containing nj elements.

Such a sequence should take

O

 k∑
i=1

log(ni) +
m−k∑
j=1

log(min{dj , nj − dj})


time. Prove that this indeed holds for your implementation.

2) Improve the bound on the running time of the sequence described above (and improve also your
implementation if needed) to

O

k +
m−k∑
j=1

log(min{dj , nj − dj})

 .

x

a

b

c

A

C

D E

B

x

b

c

a

B

C D

E A

==>

a C

BA

D

E

x

c

b

a

x

b

c

C

D E

B

A

==>

(1) (2)

Figure 1: Splay cases in question (5)


