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Yao’s Lemma

Given a randomized algorithm A, and an input distribution D.
It is true that

max
x∈D

E [A (x)] ≥ min
ALG

E
x∈D

[ALG (x)]

So that the min is on all deterministic algorithms.

Random-order highlights different aspects

Theorem

There is a random-order algorithm for the secretary problem which
chooses the best item with a probability 1/e.
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1, 0, . . . , 0
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By assuming random-order on the set of requests, we analyze the
problem in a different way.



Random-Order Models

Introduction

Definitions

Definitions

Adversary
Optimal reward/cost
Competitive-ratio
Random-order model

Definition

Given an adversary-chosen set S = {r1, . . . , rn} of requests, we
imagine nature drawing a uniformly random permutation π of
{1, . . . , n} and define the input sequence to be rπ(1), . . . , rπ(n).
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Definition

Given an algorithm A, we define the competitive-ratio to be OPT
E[A]

for maximization problems and E[A]
OPT for minimization problems on

an adversary-chosen (worst case) set of inputs.

The expected-value is over all permutations of the input, and the
algorithm (in the case it is not deterministic).

The algorithm we know for the secretary problem can be called an
e-competitive algorithm.



Random-Order Models

Introduction

Definitions

Definitions - Cont.

Definition

Given an algorithm A, we define the competitive-ratio to be OPT
E[A]

for maximization problems and E[A]
OPT for minimization problems on

an adversary-chosen (worst case) set of inputs.

The expected-value is over all permutations of the input, and the
algorithm (in the case it is not deterministic).
The algorithm we know for the secretary problem can be called an
e-competitive algorithm.



Random-Order Models

Introduction

Our First Theorem

Our First Theorem

Theorem

The strategy that maximizes the probability of picking the
highest number can be assumed to be a wait-and-pick strategy.
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Our First Theorem - Proof

Definition

We say vi is prefix-maximum (later denoted Pmax) if max
1≤j≤i

vj = vi .

Assume we are the best algorithm.
Obviously, if vi is not a prefix-maximum, we should not pick it.
Otherwise, we should pick it only if

f (i) := P [vi is max | vi is Pmax] ≥
chance of choosing the maximum later =: g (i)

Let’s analyze these probabilities.
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Lemma

Let’s calculate the following function:

f (i) := P [vi is max | vi is Pmax] =
P [vi is max]

P [vi is Pmax]
=

1/n
1/i

=
i

n

Note it increases.

Definition

Define g (i) to be the probability that the optimal solution picks
the maximum value, assuming it must discard the first i items.
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Reminder, we should pick vi only if it is prefix-maximum and

f (i) := P [vi is max | vi is Pmax]

≥
chance of choosing the maximum later =: g (i)

So waiting until f (i) ≥ g (i) and then picking the first
prefix-maximum is an optimal strategy.
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Order-Oblivious Algorithms

Definition

An order-oblivious algorithm and analysis is defined with the
following two-phase structure

1 We give algorithm a uniformly random subset of items, but is
not allowed to pick any of these items.

2 Then, the remaining items arrive in an adversarial order, and
only now can the algorithm pick items while respecting any
constraints that exist.
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Definition

Order-Oblivious Algorithms - Benefits

It is easy to design and analyze algorithms in this environment.
The guarantees of such algorithms can be interpreted as
holding even for adversarial arrivals, as long as we have offline
access to some samples from the underlying distribution.
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Instead of choosing 1 element, we now choose k elements.

Definitions

Define S? ⊆ [n] to be the set of k items of the largest value, and
define V ? :=

∑
i∈S?

vi the total value of the set.

It is easy to get expected value of Ω (V ?) by splitting the data to k
equal-sized sections, and running our e-algorithm on each of them.
We want to do better, and reach the best V ? (1− O (?)) we can.
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Multiple-Secretary Problem
An Order-Oblivious Algorithm

The Algorithm

1 Set ε = δ = O
(
log k

k1/4

)
.

2 Ignore the first δn items and set
τ := the value of the (1− ε) δkth-highest valued item in this
set.

3 Pick the first k items that are greater than τ .
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Multiple-Secretary Problem
An Order-Oblivious Algorithm

Theorem

This algorithm has an expected value of V ? (1− O (δ)).
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Multiple-Secretary Problem
Explaining the Expected Value

Set v ′ = min
i∈S?

vi the minimal value we actually want to pick.

We fail in 2 cases:

1 If τ < v ′

2 If there are less than k −O (δk) items from S? that are among
the last (1− δ) n items and greater than τ .
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Multiple-Secretary Problem

Explaining the Expected Value
Bounding the Error

Is τ too low?

Chernoff-Hoeffding concentration bound on the event that τ < v ′.
Remember we define τ to be the value of the (1− ε) δkth-highest
valued item the first δn items.
This event means we have fewer than (1− ε) δk elements from S?

in the first δn locations.
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Define X1, . . . ,Xk to be indicators such that Xi = 1 iff the highest
i ’th number is in the first δn locations.

Define Sk =
k∑

i=1
Xi .

Notice that E [Xi ] = δ and so E [Sk ] = δk .
By the Chernoff bound, we get
P (Sk ≤ (1− ε) δk) ≤ exp

(
−ε2δk

2

)
= exp

(
−1

2ε
2δk
)
.
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Bounding the Error

Is τ too high?
Bad event means there are less than k −O (δk) items from S? that
are among the last (1− δ) n items and greater than τ .

Look at v ′′ = (1− 2ε) kth-highest value in S?.
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What is the probability that τ > v ′′?

Remember Xi , look at S(1−2ε)k =
(1−2ε)k∑

i=1
Yi (only items bigger than

v ′′).

Notice that E [Yi ] = δ, and so E
[
S(1−2ε)k

]
= (1− 2ε) δk .

We are interested in the event S(1−2ε)k > (1− ε) δk .

Equivalently: S(1−2ε)k >
(
1 + ε

1−2ε

)
(1− 2ε) δk .

From Hoeffding inequality we get:

P
(
S(1−2ε)k >

(
1 + ε

1−2ε

)
(1− 2ε) δk

)
≤

exp

(
−( ε

1−2ε)
2
(1−2ε)δk

2+ ε
1−2ε

)
= exp

(
−ε2δk
2−3ε

)
≤ exp

(
−ε2δk

)
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So we bounded the event that τ ≤ v ′′.

How many items are bigger than v ′′?
(1− 2ε) k = k − 2εk ∗= k − O (δk)

This means that if τ ≤ v ′′ then we are not too high.
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Why can we use the Hoeffding bound? The choices are not
independent...

2 solutions:

1 Change the algorithm to use “time”.
2 Don’t use the Hoeffding bound...
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Explaining the Expected Value
Choosing δ, ε

We want to lose at most O (δV ?) value.
Enough to choose δ, ε so that exp

(
−ε2δ2k

)
= O (δ) (we also want

k→∞−→ 0).
This is equivalent to ε2δ2k = O

(
log 1

δ

)
.

A clean solution would be δ = ε =
(
log k
k

)1/4
.

Then we would get

ε2δ2k =

((
log k

k

)1/4
)4

k = log k = O

(
log

k

log k

)
= O

(
log

1
δ

)
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Discussion

Is a loss of k1/4 of the value the best we can do?

Question

What would you change, if we don’t constrain ourselves to an
order-oblivious algorithm?
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Order-oblivious algorithms are easier to analyze, but they are too
limiting.

We want algorithms that can adapt during-execution, and exploit
the randomness of the entire sequence.
We call these algorithms order-adaptive algorithms.
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An Upgrade
Updating the Threshold As We Go

Until now, we ignored the first ≈ k−1/4 fraction of items, and then
set a fixed threshold.

The fraction ignored tried to balance 2 measures:
the amount of lost items⇔ good estimation of the kth largest item.
We want to update the threshold as we gain more information.
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Order-adaptive algorithm for the multiple-secretary problem

Define δ :=
√

log k
k and nj := 2jδn.

1 Ignore the first δn items.
2 For each j ∈

{
0, . . . , log 1

δ

}
, phase j runs on arrivals in window

Wj := (nj , nj+1].

1 Let εj :=
√

δ
2j .

2 Set threshold τj to be the (1− εj) kth-largest value among the
first nj items.

3 Choose any item in window Wj with value above τj .
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For the Multiple-Secretary Problem

Theorem

The above algorithm has an expected value of

V ? ·
(
1− O

(√
log k
k

))
.

We will not prove this theorem, but it is similar to the way we
handled the order-oblivious algorithm (with some union bounds).
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A Lower Bound

It turns out the
√

log k can be removed, but the loss of 1/
√
k is

essential.
More formally: Every algorithm to the multiple-secretary problem
will lose at least V ? · O (1/

√
k) value.

Let’s see a sketch of why that is.
By Yao’s minimax lemma, it suffices to give a distribution over
instances that causes a large loss for any deterministic algorithm.
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Define a distribution of items as follows:

With probability 1− k
n , give the item a value of 0.

Otherwise, give it 1 or 2 with equal probability.
The variance of the amount of non-zero items is
n · kn

(
1− k

n

)
= k − k2

n .
So with high probability, the amount of non-zero items is
k ± O

(√
k
)
.

This means V ? = 3
2k ± O

(√
k
)
.
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Optimal solution would take all 2’s and fill the remaining
k/2± O

(√
k
)
slots with 1’s.

But an online algorithm doesn’t know how many 2’s are going to
arrive.

Look at the state of our deterministic algorithm after n/2 arrivals.
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Either we pick too many 1’s, and lose Θ
(√

k
)
2’s in the second

half,

or we pick Θ
(√

k
)
too few 1’s in the first half.

Either way, the algorithm will lose Θ
(√

k
)

= Ω (V ?/
√
k) value.
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Max-Weight Forests

Given a graph G = (V ,E ), and weights w : E → R+, find the
forest (acyclic subset of E ) with the maximum weight.

In the random-order model, the edges and their weights arrive one
by one.
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Max-Weight Forests

An Algorithm

1 Choose a uniformly random permutation π of the vertices.

2 For each edge (u, v) ∈ E , direct it from u to v in
π (u) < π (v).

3 Independently for each vertex u, consider the edges directed
towards u and run the 50%-algorithm on these edges.
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Max-Weight Forests

Theorem

This algorithm is 8-competitive.
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Max-Weight Forests - Proof
Outline

We need to prove 2 things:

1 The algorithm returns a forest.
2 The expected value of the algorithm is at least 1/8’th of the

optimal value.
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Max-Weight Forests - Proof Cont.
The Algorithm Returns a Forest

Assume by contradiction that there is a cycle.

Look at the highest numbered vertex in the cycle (by π), call it v̂ .

We chose at most 1 edge pointing to v̂ , thus contradicting the
existance of such circle.
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Max-Weight Forests - Proof Cont.
Expected Value is 1/8’th

Since we limit our choice (one incoming edge per vertex), the
optimal max-weight might not be feasible.

Despite this, we claim there is a forest with the
one-incoming-edge-per-vertex restriction, and expected value V ?/2.
(Randomness over the permutation)
Proved in a moment - assume for now.
The 50%-algorithm will get 1/4 of the maximum possible weight for
each vertex.
Summing up over all vertices, we get an expected value of
V ? 1

2 ·
1
4 = V ? 1

8 as desired.
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Let’s prove the expected value of the feasible forest:
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Max-Weight Forests - Proof Cont.
Expected Value is 1/8’th

Let’s prove the expected value of the feasible forest:

Choose an arbitrary root for each component in S?

and associate each non-root vertex u with the unique edge
e (u) of the undirected graph on the path towards the root.
In our algorithm, for each vertex u, the edge e (u) = (u, v)
can be chosen if π (v) < π (u) (we direct it into u).
This event happens with probability 1/2 for each vertex, and
the claim follows by linearity of expectation.
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Max-Weight Forests

We can use the 1/e-algorithm instead of the 50%-algorithm and get
an expected value of V ?/2e.
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Minimization Problems

Bin Packing
Definitions

Each bin is of capacity 1.
For all 1 ≤ i ≤ n, it holds that si ≤ 1.
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Bin Packing
An Online Algorithm

Algorithm: Best-Fit

Given the next request with size st :

1 If the item does not fit in any currently used bin, put it in a
new bin.

2 Else, put into a bin where the resulting empty space is
minimized (i.e., where it fits “best”).
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Best Fit
Worst Case Cost

OPT must use at least d
∑

sie bins, because each bin is of unit size.

The sum of 2 bins > 1, otherwise we would have never started the
second bin.
d
∑

sie can be considered as “the total weight” and each 2 bins take
in at least 1 “weight unit”.
So d2 ·

∑
sie is the maximal amount of bins needed.

Thus we use no more than 2 · OPT in the worst case.
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Lower Bound

A sophisticated analysis shows that BEST FIT uses at most
1.7 · OPT + O (1) bins, and this multiplicative factor of 1.7 is the
best possible.

The example showing the lower bound (why this is the “best
possible”) of 1.7 · OPT + O (1) is complex.
We will show an easier lower bound of 1.5, which also highlights
why the algorithm does better in the random-order model.
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Conditioned on starting and ending at the origin.
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Best Fit - Random Order
Calculations and Results

The number of 1/2 + ε items that occupy a bin by themselves can
be bounded in terms of the maximum deviation from the origin.

This deviation is bounded by O
(√

n · log n
)

= o (OPT ) with high
probability (tends to 1 as n→∞).

Corollary

The algorithm uses only (1 + o (1)) · OPT bins on this instance.
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The General Theorem

Theorem

The Best-Fit algorithm uses at most (1.5 + o (1)) ·OPT bins in the
random-order setting.



Random-Order Models

Conclusion

Summary

Summary

What is Random-Order?
Why Random-Order?
Amount of randomness
The Secretary Problem from multiple angles
Max Weight Forests
Example of a minimization problem - Bin Packing



Random-Order Models

Conclusion

Summary

Summary

What is Random-Order?

Why Random-Order?
Amount of randomness
The Secretary Problem from multiple angles
Max Weight Forests
Example of a minimization problem - Bin Packing



Random-Order Models

Conclusion

Summary

Summary

What is Random-Order?
Why Random-Order?

Amount of randomness
The Secretary Problem from multiple angles
Max Weight Forests
Example of a minimization problem - Bin Packing



Random-Order Models

Conclusion

Summary

Summary

What is Random-Order?
Why Random-Order?
Amount of randomness

The Secretary Problem from multiple angles
Max Weight Forests
Example of a minimization problem - Bin Packing



Random-Order Models

Conclusion

Summary

Summary

What is Random-Order?
Why Random-Order?
Amount of randomness
The Secretary Problem from multiple angles

Max Weight Forests
Example of a minimization problem - Bin Packing



Random-Order Models

Conclusion

Summary

Summary

What is Random-Order?
Why Random-Order?
Amount of randomness
The Secretary Problem from multiple angles
Max Weight Forests

Example of a minimization problem - Bin Packing



Random-Order Models

Conclusion

Summary

Summary

What is Random-Order?
Why Random-Order?
Amount of randomness
The Secretary Problem from multiple angles
Max Weight Forests
Example of a minimization problem - Bin Packing



Random-Order Models

Conclusion

Summary

Summary

Thank you for listening.


