Introduction	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Experiments	Summary

Competitive Caching with Machine Learned Advice Seminar on Online Algorithms

Gal Wiernik

Tel Aviv University

May 25, 2022

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

Introduction	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Experiments	Summary

- 2 Online Algorithms with ML Advice
- 3 The Predictive Marker Algorithm

4 Extensions

 Introduction
 Online Algorithms with ML Advice

 •••••••
 •••••••

The Predictive Marker Algorithm

Extensions

Experiment

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

its Summary

Machine Learning vs Online Algorithms

Motivation - Machine Learning

 Introduction
 Online Algorithms with ML Advice

 •••••••
 •••••••

The Predictive Marker Algorithm

Extensions

ns Experiment: 00

nts Summary

Machine Learning vs Online Algorithms

Motivation - Machine Learning

 In recent years machine learning algorithms have been wildly successful.

The Predictive Marker Algorithm

Extensions

Experiments 00

Machine Learning vs Online Algorithms

Motivation - Machine Learning

 In recent years machine learning algorithms have been wildly successful.

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

The Predictive Marker Algorithm

Extensions

Experiments 00

Machine Learning vs Online Algorithms

Motivation - Machine Learning

 In recent years machine learning algorithms have been wildly successful.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

• Yet, in pratice:

The Predictive Marker Algorithm

Extensions

Experiments

Machine Learning vs Online Algorithms

Motivation - Machine Learning

 In recent years machine learning algorithms have been wildly successful.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Yet, in pratice:
 - Are very difficult to deploy

The Predictive Marker Algorithm

Extensions

Experiments

Machine Learning vs Online Algorithms

Motivation - Machine Learning

 In recent years machine learning algorithms have been wildly successful.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

- Yet, in pratice:
 - Are very difficult to deploy
 - Are prone to errors

The Predictive Marker Algorithm

Extensions 00 Experiments S

Machine Learning vs Online Algorithms

Motivation - Machine Learning

 In recent years machine learning algorithms have been wildly successful.

- Yet, in pratice:
 - Are very difficult to deploy
 - Are prone to errors

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

The Predictive Marker Algorithm

Extensions

s Experiment

nts Summary

Machine Learning vs Online Algorithms

Motivation - Online Algorithms

• Online algorithms act without any knowledge of the future.

The Predictive Marker Algorithm

Extensions

Experiments

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

Machine Learning vs Online Algorithms

Motivation - Online Algorithms

• Online algorithms act without any knowledge of the future.

• Are robust against any input

The Predictive Marker Algorithm

Extensions

ns Experimen 00

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

nts Summary

Machine Learning vs Online Algorithms

Motivation - Online Algorithms

• Online algorithms act without any knowledge of the future.

- Are robust against any input
- Have a provable gaurantee on performance

 Introduction
 Online Algorithms with ML Advice

 000000
 00000000

The Predictive Marker Algorithm

Extensions

s Experiments 00

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

Machine Learning vs Online Algorithms

Motivation - Online Algorithms

- Online algorithms act without any knowledge of the future.
 - Are robust against any input
 - Have a provable gaurantee on performance
- Yet, overly cautious

Introduction	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Extensions 00	Experiments 00	Summary		
Machine Learning vs Online Algorithms							
Compa	rison						

ML Algorithms	Online Algorithms
attempt to predict the unknown	act without any knowledge
suceptible to large errors	robust againt any input
exploit patterns	overly cautious

うりん 川田 ふかく キャート

	Online Algorithms with ML Advice	The Predictive Marker Algorithm		Experiments 00				
Machine Learning vs Online Algorithms								
The m	ain question							

What if we could combine the **predictive power** of ML with the **robustness** of online algorthms?

	Online Algorithms with ML Advice	The Predictive Marker Algorithm		Experiments 00	Summary			
Faster binary search								
First e	xample							

Textbook problem - Sorted array A of size n, and query q. What is the query cost?

	Online Algorithms with ML Advice	The Predictive Marker Algorithm		Experiments 00			
Faster binary search							
First e	xample						

Textbook problem - Sorted array A of size n, and query q. What is the query cost?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

ML Approach

	Online Algorithms with ML Advice	The Predictive Marker Algorithm		Experiments 00			
Faster binary search							
First e	xample						

Textbook problem - Sorted array A of size n, and query q. What is the query cost?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

ML Approach

• train a classifier h(q) to predict t(q).

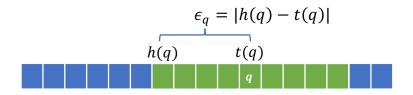
	Online Algorithms with ML Advice	The Predictive Marker Algorithm		Experiments 00			
Faster binary search							
First e	xample						

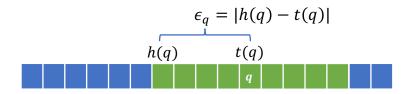
Textbook problem - Sorted array A of size n, and query q. What is the query cost?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

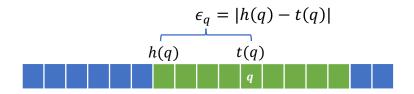
ML Approach

- train a classifier h(q) to predict t(q).
- How can we use such a classifier?





The expected cost is $2 \cdot \log(\epsilon_q)$.



The expected cost is $2 \cdot \log(\epsilon_q)$. Is this any good?

Introduction ○○○○●	Online Algorithms with ML Advice	The Predictive Marker Algorithm		Experiments 00	Summary		
The main resu	ilt						
The caching problem							

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Our focus will be the caching problem.

Introduction ○○○○●	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Extensions 00	Experiments			
The main result							
The caching problem							

- Our focus will be the caching problem.
- Best **determinstic** algorithm for online caching $\Theta(k)$ competitive ratio

Introduction ○○○○●	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Experiments 00	
The main resu	lt			
The ca	aching problem			

- Our focus will be the **caching problem**.
- Best **determinstic** algorithm for online caching $\Theta(k)$ competitive ratio

ション ふゆ アメビア メロア ひんの

• Best randomized algorithm - $\Theta(\log k)$

Introduction ○○○○●	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Experiments 00	
The main resu	lt			
The ca	ching problem			

- Our focus will be the caching problem.
- Best **determinstic** algorithm for online caching $\Theta(k)$ competitive ratio
- Best randomized algorithm $\Theta(\log k)$
 - In reality, observeed competitive ratio is much lower.

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

Introduction ○○○○●	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Experiments 00	
The main resu	lt			
The ca	ching problem			

- Our focus will be the caching problem.
- Best **determinstic** algorithm for online caching $\Theta(k)$ competitive ratio
- Best randomized algorithm $\Theta(\log k)$
 - In reality, observed competitive ratio is much lower.

The main result

The machine-learning assisted algorithm reaches a competitive ratio of $2 + O(\min(\sqrt{\epsilon}, \log k))$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Experiments	Summary

- 2 Online Algorithms with ML Advice
- 3 The Predictive Marker Algorithm

4 Extensions

Introduction 000000	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Experiments 00	
Framework				
Prelim	inaries			

• To achieve our results we have to define the playing ground for a **new genere of algorithms**: competitive algorithms with machine learning advice.

	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Experiments 00	
Framework				
Prelimi	inaries			

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ●□ ● ● ●

• ML scenarios consist of:

- Feature space ${\cal X},$ and labels ${\cal Y}$
- hypothesis $h: \mathcal{X} \to \mathcal{Y}$
- loss function: $\ell:\mathcal{Y}\times\mathcal{Y}\rightarrow\mathbb{R}_{\geq0}$

	Online Algorithms with ML Advice ○●○○○○○○	The Predictive Marker Algorithm		Experiments 00	
Framework					
Preliminaries					

• ML scenarios consist of:

- Feature space $\mathcal X$, and labels $\mathcal Y$
- hypothesis $h: \mathcal{X} \to \mathcal{Y}$
- loss function: $\ell:\mathcal{Y}\times\mathcal{Y}\rightarrow\mathbb{R}_{\geq0}$
- The loss can be: abosolute $(\ell_1(y, \hat{y}) = |y \hat{y}|)$, squared $(\ell_2(y, \hat{y}) = (y \hat{y})^2$), or generally: $\ell_c(y, \hat{y}) = \mathbf{1}_{y \neq \hat{y}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

	Online Algorithms with ML Advice ○●○○○○○○	The Predictive Marker Algorithm		Experiments 00	
Framework					
Preliminaries					

• ML scenarios consist of:

- Feature space ${\mathcal X},$ and labels ${\mathcal Y}$
- hypothesis $h: \mathcal{X} \to \mathcal{Y}$
- loss function: $\ell:\mathcal{Y}\times\mathcal{Y}\rightarrow\mathbb{R}_{\geq0}$
- The loss can be: abosolute $(\ell_1(y, \hat{y}) = |y \hat{y}|)$, squared $(\ell_2(y, \hat{y}) = (y \hat{y})^2)$, or generally: $\ell_c(y, \hat{y}) = \mathbf{1}_{y \neq \hat{y}}$
- Online scenarios consist of a algorithm \mathcal{A} and sequences σ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

	Online Algorithms with ML Advice ○●○○○○○○	The Predictive Marker Algorithm	Experiments 00	
Framework				
Prelim	inaries			

- ML scenarios consist of:
 - Feature space ${\mathcal X},$ and labels ${\mathcal Y}$
 - hypothesis $h: \mathcal{X} \to \mathcal{Y}$
 - loss function: $\ell:\mathcal{Y}\times\mathcal{Y}\rightarrow\mathbb{R}_{\geq0}$
 - The loss can be: abosolute $(\ell_1(y, \hat{y}) = |y \hat{y}|)$, squared $(\ell_2(y, \hat{y}) = (y \hat{y})^2)$, or generally: $\ell_c(y, \hat{y}) = \mathbf{1}_{y \neq \hat{y}}$
- Online scenarios consist of a algorithm \mathcal{A} and sequences σ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

• \mathcal{A} has comptitive ratio CR if for every σ : $cost_{\mathcal{A}}(\sigma) \leq CR \cdot OPT(\sigma)$

The Predictive Marker Algorithm

Extensions 00

s Experiments 00

・ロト < 団ト < 三ト < 三ト < 三日 < のへの

The Online ML-Assisted Framework

The Online ML-Assisted Framework

• Now we can define the combined framework.

The Predictive Marker Algorithm

Extensions 00 Experiments S

◆□▶ ◆□▶ ▲□▶ ▲□▶ 三回□ のQ@

The Online ML-Assisted Framework

The Online ML-Assisted Framework

- Now we can define the combined framework.
- \bullet We have a universe ${\mathcal Z}$ and feature space ${\mathcal X}$

The Predictive Marker Algorithm

Extensions

Experiments Summary

The Online ML-Assisted Framework

The Online ML-Assisted Framework

- Now we can define the combined framework.
- \bullet We have a universe ${\mathcal Z}$ and feature space ${\mathcal X}$
- The input is a sequence of items $\sigma = (\sigma_1, \sigma_2, ...)$ Each item σ_i is assosiated with an element $z_i \in \mathcal{Z}$ and with features $x_i \in \mathcal{X}$

The Predictive Marker Algorithm

Extensions 00

Experiments 00

The Online ML-Assisted Framework

The Online ML-Assisted Framework

• Each item σ_i also has a label $y_i \in \mathcal{Y}$

Introduction	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Extensions	Experiments	
000000	0000000	0000000000000000			
The Online M	L-Assisted Framework				

The Online ML-Assisted Framework

- Each item σ_i also has a label $y_i \in \mathcal{Y}$
- A predictor $h: \mathcal{X} \to \mathcal{Y}$ returns $h(\sigma_i)$, attempts to find y_i

Introduction Online Algorithms with ML Advice October October

The Online ML-Assisted Framework

The Online ML-Assisted Framework

- Each item σ_i also has a label $y_i \in \mathcal{Y}$
- A predictor $h: \mathcal{X} \to \mathcal{Y}$ returns $h(\sigma_i)$, attempts to find y_i
 - The total loss of h on σ is:

$$\eta_{\ell}(h,\sigma) = \sum_{i} \ell(h(\sigma_{i}), y_{i})$$

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

The Online ML-Assisted Framework

The Online ML-Assisted Framework

- Each item σ_i also has a label $y_i \in \mathcal{Y}$
- A predictor $h: \mathcal{X} \to \mathcal{Y}$ returns $h(\sigma_i)$, attempts to find y_i
 - The total loss of h on σ is:

$$\eta_{\ell}(h,\sigma) = \sum_{i} \ell(h(\sigma_{i}), y_{i})$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Question

How can we define h to have a general accuracy of ϵ ?

Online Algorithms with ML Advice The Predictive Marker Algorithm Extensions Introduction 0000000

Experiments

The Online ML-Assisted Framework

The Online ML-Assisted Framework

- Each item σ_i also has a label $y_i \in \mathcal{Y}$
- A predictor $h: \mathcal{X} \to \mathcal{Y}$ returns $h(\sigma_i)$, attempts to find y_i
 - The total loss of h on σ is:

$$\eta_{\ell}(h,\sigma) = \sum_{i} \ell(h(\sigma_{i}), y_{i})$$

Question

How can we define h to have a general accuracy of ϵ ?

Definition

We say that h is ϵ – accurate if for every σ , $\eta_{\ell}(h, \sigma) \leq \epsilon \cdot \operatorname{OPT}(\sigma).$

The Predictive Marker Algorithm

Extensions 00

Experiments 00

・ロト < 団ト < 三ト < 三ト < 三日 < のへの

The Online ML-Assisted Framework

The Online ML-Assisted Framework

The Predictive Marker Algorithm

Extensions 00 xperiments Sι ο

The Online ML-Assisted Framework

The Online ML-Assisted Framework

Define $CR_{\mathcal{A}}(\epsilon)$ to be the **competitive ratio** of algorithm \mathcal{A} that uses any predictor *h* that is ϵ -accurate.

The Predictive Marker Algorithm

Extensions

Experiments S 00

The Online ML-Assisted Framework

The Online ML-Assisted Framework

Define $CR_{\mathcal{A}}(\epsilon)$ to be the **competitive ratio** of algorithm \mathcal{A} that uses any predictor *h* that is ϵ -accurate.

The Predictive Marker Algorithm

Extensions

ents Summa

The Online ML-Assisted Framework

The Online ML-Assisted Framework

Define $CR_{\mathcal{A}}(\epsilon)$ to be the **competitive ratio** of algorithm \mathcal{A} that uses any predictor *h* that is ϵ -accurate.

• What would we like $\operatorname{CR}_{\mathcal{A}}\left(0\right)$ to be?

The Predictive Marker Algorithm

Extensions 00

Experiments Sumn

The Online ML-Assisted Framework

The Online ML-Assisted Framework

Define $CR_{\mathcal{A}}(\epsilon)$ to be the **competitive ratio** of algorithm \mathcal{A} that uses any predictor *h* that is ϵ -accurate.

Consistency

 \mathcal{A} is β -consistent if $\operatorname{CR}_{\mathcal{A}}(0) = \beta$.

The Predictive Marker Algorithm

Extensions 00

Experiments Si

The Online ML-Assisted Framework

The Online ML-Assisted Framework

Define $CR_{\mathcal{A}}(\epsilon)$ to be the **competitive ratio** of algorithm \mathcal{A} that uses any predictor *h* that is ϵ -accurate.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Consistency

$$\mathcal{A}$$
 is β -consistent if $\operatorname{CR}_{\mathcal{A}}(0) = \beta$.

Robustness

 \mathcal{A} is α -robust for some function α if $\operatorname{CR}_{\mathcal{A}}(\epsilon) = O(\alpha(\epsilon))$.

The Predictive Marker Algorithm

Extensions 00

Experiments S

The Online ML-Assisted Framework

The Online ML-Assisted Framework

Define $CR_{\mathcal{A}}(\epsilon)$ to be the **competitive ratio** of algorithm \mathcal{A} that uses any predictor *h* that is ϵ -accurate.

Consistency

$$\mathcal{A}$$
 is β -consistent if $\operatorname{CR}_{\mathcal{A}}(0) = \beta$.

Robustness

 \mathcal{A} is α -robust for some function α if $\operatorname{CR}_{\mathcal{A}}(\epsilon) = O(\alpha(\epsilon))$.

Competitivness

 \mathcal{A} is γ -competitive if $CR_{\mathcal{A}}(\epsilon) \leq \gamma \cdot OPT$ for all ϵ .

The Predictive Marker Algorithm

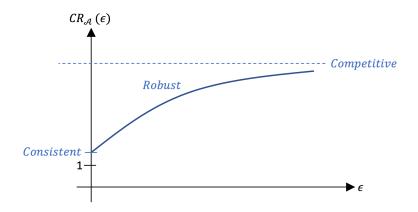
Extensions 00

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

nents Summ

The Online ML-Assisted Framework

The Online ML-Assisted Framework



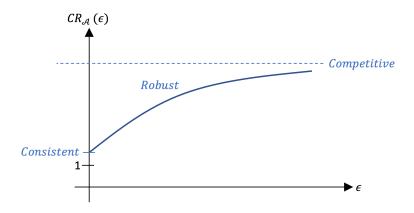
The Predictive Marker Algorithm

Extensions

nents Summa

The Online ML-Assisted Framework

The Online ML-Assisted Framework



 The holy grail is an algorithm A which simultaneously optimizes all three properties.

	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Experiments 00	
The Online MI	L-Assisted Framework			
The Ca	aching Scenario			

Introduction 000000	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Experiments 00	Summary
The Online MI	L-Assisted Framework			
The Ca	aching Scenario			

• Each σ_i is a request

	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Experiments 00	Summary
The Online ML	L-Assisted Framework			
The Ca	aching Scenario			

- Each σ_i is a request
- z_i is the requested page, and x_i is features of the request.

Introduction 000000	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Experiments 00	
The Online ML	-Assisted Framework			
The Ca	aching Scenario			

- Each σ_i is a request
- z_i is the requested page, and x_i is features of the request.

Question

What should the labels ${\mathcal Y}$ be?

Hint: The optimal caching algorithm is LFD.

Introduction 000000	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Experiments	
The Online MI	L-Assisted Framework			
The Ca	aching Scenario			

- Each σ_i is a request
- z_i is the requested page, and x_i is features of the request.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Question

What should the labels $\mathcal Y$ be?

Hint: The optimal caching algorithm is LFD.

• $y(\sigma_i)$ will be the next appearence of z_i .

Introduction 000000	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Experiments 00	
The Online ML	-Assisted Framework			
The Ca	aching Scenario			

- Each σ_i is a request
- z_i is the requested page, and x_i is features of the request.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Question

What should the labels $\mathcal Y$ be?

Hint: The optimal caching algorithm is LFD.

- $y(\sigma_i)$ will be the next appearence of z_i .
- $h(\sigma_i)$ will try to predict y_i .

Introduction 000000	Online Algorithms with ML Advice 00000000	The Predictive Marker Algorithm	Experiments 00	
The Online MI	L-Assisted Framework			
The Ca	aching Scenario			

- Each σ_i is a request
- z_i is the requested page, and x_i is features of the request.

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

Question

What should the labels $\mathcal Y$ be?

Hint: The optimal caching algorithm is LFD.

- $y(\sigma_i)$ will be the next appearence of z_i .
- $h(\sigma_i)$ will try to predict y_i .
- $\mathcal{Y} = \mathbb{N}^+$

Introduction 000000	Online Algorithms with ML Advice	The Predictive Marker Algorithm		Experiments 00				
The Online ML	The Online ML-Assisted Framework							
The Ca	aching Scenario							

• Example:

 $y: a b c b a a c d \dots$

シロマート・(用・(用・(日・))

Introduction 000000	Online Algorithms with ML Advice	The Predictive Marker Algorithm		Experiments 00				
The Online ML	The Online ML-Assisted Framework							
The Ca	aching Scenario							

• Example:

 $y: a b c b a a c d \dots$

シロマート・(用・(用・(日・))

	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Extensions 00	Experiments 00	
The Online ML	-Assisted Framework				
The Ca	aching Scenario				

• Example:

 $y: a b c b a a c d \dots$

 $h: \stackrel{f}{a} \stackrel{b}{b} \stackrel{c}{c} \stackrel{b}{a} \stackrel{a}{a} \stackrel{c}{c} \stackrel{d}{d} \dots$

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Introduction	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Experiments	Summary

- 2 Online Algorithms with ML Advice
- 3 The Predictive Marker Algorithm

4 Extensions

The Predictive Marker Algorithm

=xtensions DO

▲□▶▲□▶▲≡▶▲≡▶ Ξ|= めぬ⊙

its Summary

Initial Attempts

Attempt #1 - Blindly Following the Predictor

• If the predictor is good, can't we just use it?

The Predictive Marker Algorithm

Extensions 00 riments Sum

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Initial Attempts

Attempt #1 - Blindly Following the Predictor

• If the predictor is good, can't we just use it?

Lemma

Define \mathcal{B} the algorithm that blindly follows an ϵ -accurate predictor. Then \mathcal{B} has a competitive ratio $\operatorname{CR}_{\mathcal{B}}(\epsilon) = \Omega(\epsilon)$.

The Predictive Marker Algorithm

Extensions

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

ents Summar

Initial Attempts

Attempt #1 - Blindly Following the Predictor

• If the predictor is good, can't we just use it?

Lemma

Define \mathcal{B} the algorithm that blindly follows an ϵ -accurate predictor. Then \mathcal{B} has a competitive ratio $\operatorname{CR}_{\mathcal{B}}(\epsilon) = \Omega(\epsilon)$.

• Assume k = 2 and three elements, *a*, *b*, *c*.

The Predictive Marker Algorithm

Extensions 00

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

nents Summary

Initial Attempts

Attempt #1 - Blindly Following the Predictor

• If the predictor is good, can't we just use it?

Lemma

Define \mathcal{B} the algorithm that blindly follows an ϵ -accurate predictor. Then \mathcal{B} has a competitive ratio $\operatorname{CR}_{\mathcal{B}}(\epsilon) = \Omega(\epsilon)$.

- Assume k = 2 and three elements, a, b, c.
- Example follows.

a b c b c ... b c

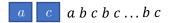
Predictor h: true, except $h(\sigma_1) = 2$

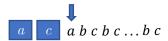
a b c b c ... b c

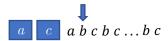
Predictor h: true, except $h(\sigma_1) = 2$

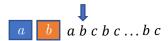
$$\bigcap_{a \ b \ c \ b \ c \ \dots \ b \ c}$$

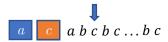
a b c b c ... b c

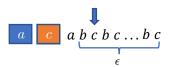


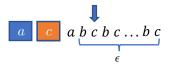




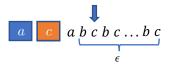




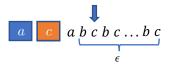




Offline Optimum:



Offline Optimum: OPT = 1



Offline Optimum: OPT = 1Performance of \mathcal{B} :

$$a$$
 c a b c b c \dots b c

Offline Optimum: OPT = 1Performance of \mathcal{B} : ϵ

$$a$$
 c a b c b c \dots b c

Offline Optimum:OPT = 1Performance of \mathcal{B} : ϵ Absolute Loss: $\eta(h, \sigma) = \epsilon$

$$a$$
 c a b c b c \dots b c

Offline Optimum:OPT = 1Performance of \mathcal{B} : ϵ Absolute Loss: $\eta(h, \sigma) = \epsilon \leq \epsilon \cdot OPT$

$$a$$
 c a b c b c \dots b c

Offline Optimum:OPT = 1Performance of \mathcal{B} : ϵ Absolute Loss: $\eta(h, \sigma) = \varepsilon \leq \epsilon \cdot OPT$ Competitive ratio: $CR_{\mathcal{B}}(\epsilon) = \frac{\epsilon}{1} = \Omega(\epsilon)$

	Online Algorithms with ML Advice	0	Extensions 00	Experiments 00	
Initial Attempts					

Attempt #2 - Reacting to Predictor Mistakes

• We trusted the predictor too much. Can we do better?

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ●□ ● ● ●

Initial Attempts

Attempt #2 - Reacting to Predictor Mistakes

• We trusted the predictor too much. Can we do better?

Lemma

Define \mathcal{W} the algorithm that follows an ϵ -accurate predictor, but evicts wrong predictions. Then \mathcal{W} has a competitive ratio $\operatorname{CR}_{\mathcal{W}}(\epsilon) = \Omega(\epsilon)$.

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

Summarv

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

Initial Attempts

Attempt #2 - Reacting to Predictor Mistakes

• We trusted the predictor too much. Can we do better?

Lemma

Define \mathcal{W} the algorithm that follows an ϵ -accurate predictor, but evicts wrong predictions. Then \mathcal{W} has a competitive ratio $\operatorname{CR}_{\mathcal{W}}(\epsilon) = \Omega(\epsilon)$.

• Assume k = 3 and four elements, a, b, c, d.

Summarv

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

Initial Attempts

Attempt #2 - Reacting to Predictor Mistakes

• We trusted the predictor too much. Can we do better?

Lemma

Define \mathcal{W} the algorithm that follows an ϵ -accurate predictor, but evicts wrong predictions. Then \mathcal{W} has a competitive ratio $\operatorname{CR}_{\mathcal{W}}(\epsilon) = \Omega(\epsilon)$.

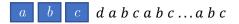
- Assume k = 3 and four elements, a, b, c, d.
- Example follows.

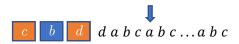
d a b c a b c ... a b c

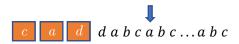
d a b c a b c ... a b c

> **A** *d a b c a b c* ... *a b c*

d a b c a b c ... a b c







Online Algorithms with ML Advice The Predictive Marker Algorithm Introduction

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

Initial Attempts

Attempt #3 - Popular Heuristics

 In the examples we saw that there is some element that should have been evicted.

Online Algorithms with ML Advice The Predictive Marker Algorithm Introduction

Extensions

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

Initial Attempts

Attempt #3 - Popular Heuristics

- In the examples we saw that there is some element that should have been evicted.
- LRU and FIFO both provide strong hueristics for such cases.

Introduction Online Algorithms with ML Advice

The Predictive Marker Algorithm

Extensions

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

Experiments Summary

Initial Attempts

Attempt #3 - Popular Heuristics

- In the examples we saw that there is some element that **should** have been evicted.
- LRU and FIFO both provide strong hueristics for such cases.
 - However, their **strict** (determisitic) policy leads to weak gaurantees.

Introduction Online Algorithms with ML Advice

The Predictive Marker Algorithm

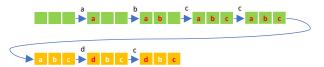
Extensions

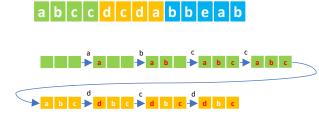
riments Sum

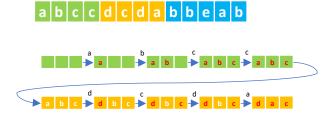
The Predictive Marker Algorithm

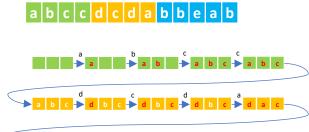
Reminder - Classic Marking Algorithm

• Recall the classic Marking Algorithm.









The Predictive Marker Algorithm

Extensions

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

ents Summary

The Predictive Marker Algorithm

Reminder - Classic Marking Algorithm

• A **clean** element is an element that didn't arrive in phase r - 1 and arrives in phase r.

The Predictive Marker Algorithm

Extensions

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

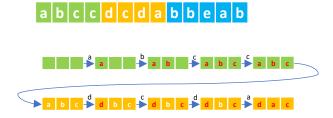
 (日)

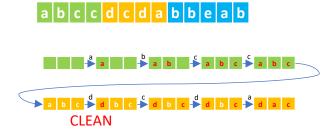
ents Summary

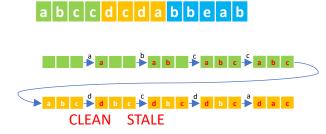
The Predictive Marker Algorithm

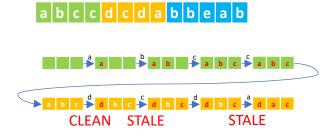
Reminder - Classic Marking Algorithm

- A clean element is an element that didn't arrive in phase r-1 and arrives in phase r.
- A stale element is an element that arrived in phase r 1 and also in phase r.









The Predictive Marker Algorithm

Extensions 00

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

nts Summary

The Predictive Marker Algorithm

Reminder - Classic Marking Algorithm

• We saw that the marking algorithm has competitive ratio $O(\log k)$.

The Predictive Marker Algorithm

Extensions 00

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

ents Summary

The Predictive Marker Algorithm

Reminder - Classic Marking Algorithm

- We saw that the marking algorithm has competitive ratio $O(\log k)$.
- This came from 2 claims:

The Predictive Marker Algorithm

Extensions 00

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

ents Summary

The Predictive Marker Algorithm

Reminder - Classic Marking Algorithm

- We saw that the marking algorithm has competitive ratio $O(\log k)$.
- This came from 2 claims:

Claim 1

Let *L* be the number of clean elements in σ . Then $OPT(\sigma) \ge \frac{L}{2}$.

The Predictive Marker Algorithm

Extensions 00

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Experiments Summary

The Predictive Marker Algorithm

Reminder - Classic Marking Algorithm

- We saw that the marking algorithm has competitive ratio $O(\log k)$.
- This came from 2 claims:

Claim 1

Let *L* be the number of clean elements in σ . Then $OPT(\sigma) \geq \frac{L}{2}$.

Claim 2

Let *L* be the number of clean elements in σ . Then $\mathbb{E}[MARK(\sigma)] \leq L \cdot H_k$.

The Predictive Marker Algorithm

Extensions 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Experiments Summary

The Predictive Marker Algorithm

Reminder - Classic Marking Algorithm

- We saw that the marking algorithm has competitive ratio $O(\log k)$.
- This came from 2 claims:

Claim 1

Let *L* be the number of clean elements in σ . Then $OPT(\sigma) \geq \frac{L}{2}$.

Claim 2

Let *L* be the number of clean elements in σ . Then $\mathbb{E}[MARK(\sigma)] \leq L \cdot H_k$.

• Combined, we got: $\mathbb{E}\left[MARK\left(\sigma\right)\right] \leq L \cdot H_{k} \leq 2\log k \cdot \operatorname{Opt}\left(\sigma\right).$

Introduction 000000	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Extensions 00	Experiments				
The Predictive Marker Algorithm								
Predictive Marker								

• If we'll use the marking algorithm, we'll gain $O(\log k)$ competitive ratio. How can we improve that?

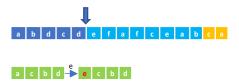
◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ●□ ● ● ●

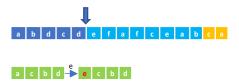
Introduction 000000	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Extensions 00	Experiments 00				
The Predictive Marker Algorithm								
Predictive Marker								

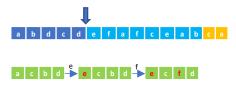
- If we'll use the marking algorithm, we'll gain $O(\log k)$ competitive ratio. How can we improve that?
- The natural thing to do then is to **break ties in eviction** using the predictor.

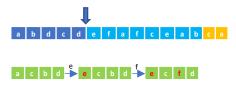
・ロト ・ 日本 ・ 日本 ・ 日本 ・ クタマ

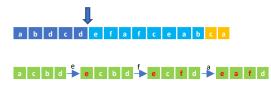
Introduction 000000	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Extensions 00	Experiments 00			
The Predictive Marker Algorithm							
Chains							

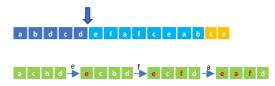


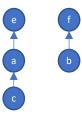


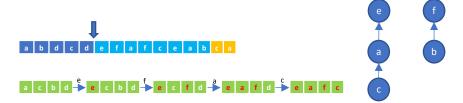


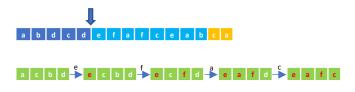


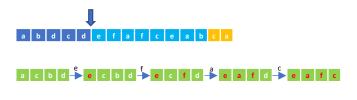




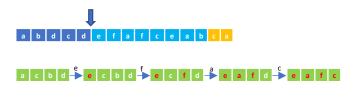


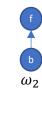




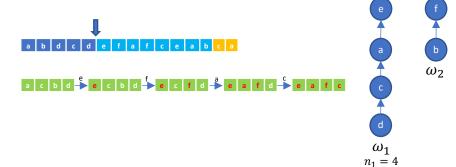


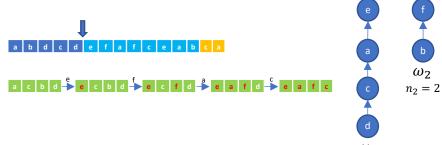
 ω_1





 ω_1





 ω_1 $n_1 = 4$

The Predictive Marker Algorithm

Extensions

xperiments

The Predictive Marker Algorithm

The Predictive Marker Algorithm

Now to the algorithm:

 $\mathcal{PM} - Predictive Marker$

●●● 単則 《田》《田》《日》

The Predictive Marker Algorithm

Extensions

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

nts Summary

The Predictive Marker Algorithm

The Predictive Marker Algorithm

Now to the algorithm:

\mathcal{PM} – Predictive Marker

• At each phase, unmark all elements and save them as potentially **stale**.

The Predictive Marker Algorithm

Extensions 00 periments Su

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

The Predictive Marker Algorithm

The Predictive Marker Algorithm

Now to the algorithm:

$\mathcal{PM}-Predictive Marker$

- At each phase, unmark all elements and save them as potentially **stale**.
- In a cache miss for z_i :

The Predictive Marker Algorithm

Extensions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

nts Summary

The Predictive Marker Algorithm

The Predictive Marker Algorithm

Now to the algorithm:

$\mathcal{PM}-Predictive Marker$

- At each phase, unmark all elements and save them as potentially **stale**.
- In a cache miss for z_i:
 - If the element z_i is **clean**, create a new chain.

The Predictive Marker Algorithm

Extensions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

ents Summary

The Predictive Marker Algorithm

The Predictive Marker Algorithm

Now to the algorithm:

$\mathcal{PM}-\textit{Pred}$ ictive Marker

- At each phase, unmark all elements and save them as potentially **stale**.
- In a cache miss for z_i:
 - If the element z_i is **clean**, create a new chain.
 - If z_i is stale, find its chain $z_i = \omega_c$.

The Predictive Marker Algorithm

Extensions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Experiments Summary

The Predictive Marker Algorithm

The Predictive Marker Algorithm

Now to the algorithm:

$\mathcal{PM}-\textit{Pred}$ ictive Marker

- At each phase, unmark all elements and save them as potentially **stale**.
- In a cache miss for z_i:
 - If the element z_i is **clean**, create a new chain.
 - If z_i is **stale**, find its chain $z_i = \omega_c$.
 - If the chain length is $n_c \leq H_k$: evict unmarked element with highest predicted time e.

The Predictive Marker Algorithm

Extensions

Experiments

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

Summarv

The Predictive Marker Algorithm

The Predictive Marker Algorithm

Now to the algorithm:

$\mathcal{PM}-Predictive$ Marker

- At each phase, unmark all elements and save them as potentially **stale**.
- In a cache miss for z_i:
 - If the element z_i is **clean**, create a new chain.
 - If z_i is **stale**, find its chain $z_i = \omega_c$.
 - If the chain length is n_c ≤ H_k: evict unmarked element with highest predicted time e.
 - Else:

evict random unmarked element e.

The Predictive Marker Algorithm

Extensions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Experiments Summary

The Predictive Marker Algorithm

The Predictive Marker Algorithm

Now to the algorithm:

$\mathcal{PM}-Predictive$ Marker

- At each phase, unmark all elements and save them as potentially **stale**.
- In a cache miss for z_i:
 - If the element z_i is **clean**, create a new chain.
 - If z_i is **stale**, find its chain $z_i = \omega_c$.
 - If the chain length is n_c ≤ H_k: evict unmarked element with highest predicted time e.
 - Else:

evict random unmarked element e.

• Increase the chain: $\textit{n_c} \leftarrow \textit{n_c} + 1$, $\omega_{\textit{c}} \leftarrow \textit{e}$.

	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Experiments 00	
The Predictive	e Marker Analysis			
Main ⁻	Theorem			

Theorem

Consider the caching scenario, with the prediction model ${\cal H}$ and the loss function $\ell_1.$

The competitive ratio is of the ϵ -assisted Predictive Marker Algorithm \mathcal{PM} is bounded by:

$$\operatorname{CR}_{\mathcal{PM}}\left(\epsilon\right) \leq 2 \cdot \min\left(1 + \sqrt{5\epsilon}, 2H_{k}\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Introduction 000000	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Extensions 00	Experiments	
The Predictive	e Marker Analysis				
Proof	- Chain Lengths				

• Every cache miss is a link in a chain.

Introduction 000000	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Extensions 00	Experiments	
The Predictive	e Marker Analysis				
Proof	- Chain Lengths				

- Every cache miss is a link in a chain.
- Long chains means there are many misses. We would like to bound that length.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□■ のへ⊙

Introduction 000000	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Extensions 00	Experiments 00	
The Predictive	e Marker Analysis				
Proof	- Chain Lengths				

- Every cache miss is a link in a chain.
- Long chains means there are many misses. We would like to bound that length.

Lemma

If h has error $\leq \eta$ on chain ω_c , then the chain's length is bounded by $n_c \leq 1 + \sqrt{5\eta}$.

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

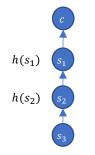
 (日)

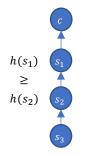
 (日)

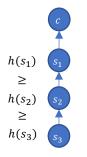
 (日)

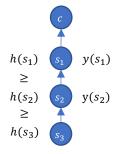
 (日)

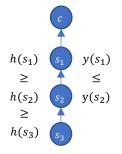
 (日)
 </p

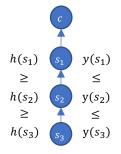


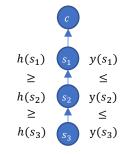






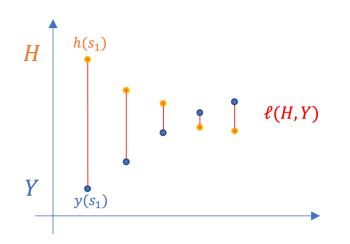






 $h(s_1) \ge h(s_2) \ge h(s_3) \ge \cdots$ $y(s_1) \le y(s_2) \le y(s_3) \ge \cdots$

	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Experiments 00	
The Predictive	Marker Analysis			
Proof -	- Chain Lengths			



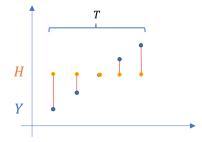
◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□■ のへ⊙

Introduction 000000	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Extensions 00	Experiments 00	
The Predictive	e Marker Analysis				
Proof	- Chain Lengths				

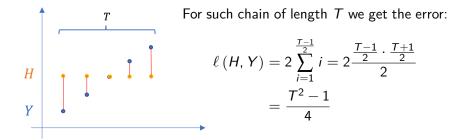
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction 000000	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Extensions 00	Experiments	
The Predictive	e Marker Analysis				
Proof	- Chain Lengths				

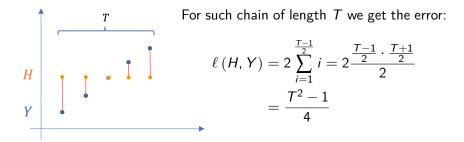
きょう きょう きょう きょう きょう



	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Extensions 00	Experiments 00	
The Predictive	e Marker Analysis				
Proof	- Chain Lengths				



	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Extensions 00	Experiments 00	
The Predictive	e Marker Analysis				
Proof	- Chain Lengths				



(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

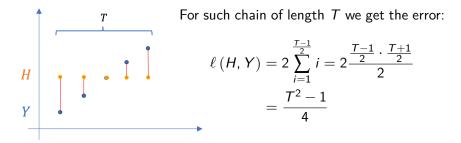
 (日)

 (日)

 (日)

• So every chain of length T has at least $\frac{T^2-1}{4}$ error.

	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Extensions 00	Experiments 00	
The Predictive	e Marker Analysis				
Proof	- Chain Lengths				



• So every chain of length T has at least $\frac{T^2-1}{4}$ error.

Corollary

If a chain has error $\leq \eta_c$, its length is at most $\sqrt{4\eta_c + 1} \leq \sqrt{5\eta_c}$.

	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Extensions 00	Experiments 00	Summary
The Predictive	e Marker Analysis				
Proof	- Continued				

・ロト・(日)・(日)・(日)・(日)・(日)・

• We want to figure out the total cost.

	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Extensions 00	Experiments 00	Summary
The Predictive	e Marker Analysis				
Proof	- Continued				

・ロト・(日)・(日)・(日)・(日)・(日)・

• We want to figure out the total cost.

Introduction 000000	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Experiments 00	Summary
The Predictive	e Marker Analysis			
Proof	- Continued			

◆□ ▶ < @ ▶ < E ▶ < E ▶ E ■ 9 Q @</p>

- We want to figure out the total cost.
- For a single chain c with error η_c :

	Online Algorithms with ML Advice	The Predictive Marker Algorithm		Experiments 00		
The Predictive Marker Analysis						
Proof	- Continued					

- We want to figure out the total cost.
- For a single chain c with error η_c :
 - If we never switched to random evictions: there are at most $1+\sqrt{5\eta_c}$ cache misses.

・ロト ・ 日本 ・ 日本 ・ 日本 ・ クタマ

	Online Algorithms with ML Advice	The Predictive Marker Algorithm		Experiments			
The Predictive Marker Analysis							
Proof ·	- Continued						

- We want to figure out the total cost.
- For a single chain c with error η_c :
 - If we never switched to random evictions: there are at most $1+\sqrt{5\eta_c}$ cache misses.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• If we did: there are at most $2H_k$ misses.

Introduction 000000	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Extensions 00	Experiments 00			
The Predictive Marker Analysis							
Proof ·	- Continued						

- We want to figure out the total cost.
- For a single chain c with error η_c :
 - If we never switched to random evictions: there are at most $1+\sqrt{5\eta_c}$ cache misses.
 - If we did: there are at most $2H_k$ misses.
- We can bound the evictions from the chain *c* of the *r*th phase in expectation by min $(1 + \sqrt{5\eta_{r,c}}, 2H_k)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction 000000	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Extensions 00	Experiments 00			
The Predictive Marker Analysis							
Proof -	- Continued						

- We want to figure out the total cost.
- For a single chain c with error η_c :
 - If we never switched to random evictions: there are at most $1+\sqrt{5\eta_c}$ cache misses.
 - If we did: there are at most $2H_k$ misses.
- We can bound the evictions from the chain *c* of the *r*th phase in expectation by min $(1 + \sqrt{5\eta_{r,c}}, 2H_k)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• So the total cost is bounded by $cost_{\mathcal{PM}(\epsilon)} \leq \sum_{r,c} \min(1 + \sqrt{5\eta_{r,c}}, 2H_k) \leq ?$

	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Extensions 00	Experiments 00			
The Predictive Marker Analysis							
Proof -	- Continued						

Proof.

Let L be the number of clean elements (= number of chains).

	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Extensions 00	Experiments 00			
The Predictive Marker Analysis							
Proof -	- Continued						

Proof.

Let L be the number of clean elements (= number of chains).

	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Experiments 00	
The Predictive	e Marker Analysis			
Proof	- Continued			

Proof.

Let *L* be the number of clean elements (= number of chains). The total error is $\eta = \epsilon \cdot \text{OPT}$.

	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Experiments	
The Predictive	e Marker Analysis			
Proof	- Continued			

	Online Algorithms with ML Advice	 Extensions 00	Experiments 00	
The Predictive	e Marker Analysis			
Proof	- Continued			

Let *L* be the number of clean elements (= number of chains). The total error is $\eta = \epsilon \cdot \text{OPT}$. We want to know how big is $\sum_{r,c} \min(1 + \sqrt{5\eta_c}, 2H_k)$.

• Since $\sqrt{\cdot}$ and min (\cdot) are both concave:

	Online Algorithms with ML Advice	The Predictive Marker Algorithm ○○○○○○○○○○○○○○	Experiments 00	
The Predictive	e Marker Analysis			
Proof	- Continued			

- Since $\sqrt{\cdot}$ and $\min\left(\cdot\right)$ are both concave:
 - the way to maximize the expression is to divide the error η equally across all chains, with $\frac{\eta}{I}$ each.

	Online Algorithms with ML Advice	The Predictive Marker Algorithm ○○○○○○○○○○○○○	Experiments 00	
The Predictive	e Marker Analysis			
Proof	- Continued			

Let *L* be the number of clean elements (= number of chains). The total error is $\eta = \epsilon \cdot \text{OPT}$. We want to know how big is $\sum_{r,c} \min(1 + \sqrt{5\eta_c}, 2H_k)$.

- Since $\sqrt{\cdot}$ and $\min\left(\cdot\right)$ are both concave:
 - the way to maximize the expression is to divide the error η equally across all chains, with $\frac{\eta}{I}$ each.

• The total length of all chains is then $L \cdot \min\left(1 + \sqrt{5\frac{\eta}{L}}, 2H_k\right)$.

	Online Algorithms with ML Advice	The Predictive Marker Algorithm ○○○○○○○○○○○○○	Experiments 00	
The Predictive	e Marker Analysis			
Proof	- Continued			

- Since $\sqrt{\cdot}$ and $\min\left(\cdot\right)$ are both concave:
 - the way to maximize the expression is to divide the error η equally across all chains, with $\frac{\eta}{I}$ each.
- The total length of all chains is then $L \cdot \min\left(1 + \sqrt{5\frac{\eta}{L}}, 2H_k\right)$.
- By Lemma 1, $\frac{L}{2} \leq \text{OPT}(\sigma)$. Trivially, $\text{OPT}(\sigma) \leq L$.

Introduction 000000	Online Algorithms with ML Advice	The Predictive Marker Algorithm ○○○○○○○○○○○○○	Experiments 00	
The Predictive	e Marker Analysis			
Proof.	Continued			

- Since $\sqrt{\cdot}$ and $\min\left(\cdot\right)$ are both concave:
 - the way to maximize the expression is to divide the error η equally across all chains, with $\frac{\eta}{I}$ each.
- The total length of all chains is then $L \cdot \min\left(1 + \sqrt{5\frac{\eta}{L}}, 2H_k\right)$.
- By Lemma 1, $\frac{L}{2} \leq \text{OPT}(\sigma)$. Trivially, $\text{OPT}(\sigma) \leq L$.
- So: $cost_{\mathcal{PM}(\epsilon)}(\sigma) \leq 2 \cdot \operatorname{OPT}(\sigma) \cdot \min\left(1 + \sqrt{5\frac{\eta}{\operatorname{OPT}(\sigma)}}, 2H_k\right).$

Introduction 000000	Online Algorithms with ML Advice	The Predictive Marker Algorithm ○○○○○○○○○○○○○	Experiments 00	
The Predictive	e Marker Analysis			
Proof.	Continued			

- Since $\sqrt{\cdot}$ and $\min\left(\cdot\right)$ are both concave:
 - the way to maximize the expression is to divide the error η equally across all chains, with $\frac{\eta}{I}$ each.
- The total length of all chains is then $L \cdot \min\left(1 + \sqrt{5\frac{\eta}{L}}, 2H_k\right)$.
- By Lemma 1, $\frac{L}{2} \leq \text{OPT}(\sigma)$. Trivially, $\text{OPT}(\sigma) \leq L$.
- So: $cost_{\mathcal{PM}(\epsilon)}(\sigma) \leq 2 \cdot \operatorname{OPT}(\sigma) \cdot \min\left(1 + \sqrt{5\frac{\eta}{\operatorname{OPT}(\sigma)}}, 2H_k\right).$

Introduction 000000	Online Algorithms with ML Advice	The Predictive Marker Algorithm ○○○○○○○○○○○○○	Experiments 00	
The Predictive	e Marker Analysis			
Proof	- Continued			

Let *L* be the number of clean elements (= number of chains). The total error is $\eta = \epsilon \cdot \text{OPT}$. We want to know how big is $\sum_{r,c} \min(1 + \sqrt{5\eta_c}, 2H_k)$.

- Since $\sqrt{\cdot}$ and $\min\left(\cdot\right)$ are both concave:
 - the way to maximize the expression is to divide the error η equally across all chains, with $\frac{\eta}{l}$ each.
- The total length of all chains is then $L \cdot \min\left(1 + \sqrt{5\frac{\eta}{L}}, 2H_k\right)$.
- By Lemma 1, $\frac{L}{2} \leq \text{Opt}(\sigma)$. Trivially, $\text{Opt}(\sigma) \leq L$.
- So: $cost_{\mathcal{PM}(\epsilon)}(\sigma) \leq 2 \cdot \operatorname{OPT}(\sigma) \cdot \min\left(1 + \sqrt{5\frac{\eta}{\operatorname{OPT}(\sigma)}}, 2H_k\right).$

Which means $\operatorname{CR}_{\mathcal{PM}}(\epsilon) \leq 2 \cdot \min\left(1 + \sqrt{5\epsilon}, 2\log k\right)$.

	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Experiments 00	
The Predictive	e Marker Analysis			
Tightn	ess of analysis			

Theorem (without proof)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

	Online Algorithms with ML Advice	The Predictive Marker Algorithm ○○○○○○○○○○○○○○	Experiments 00	
The Predictive	Marker Analysis			
Tightn	ess of analysis			

Theorem (without proof)

Any **deterministic** ϵ -assisted marking algorithm \mathcal{A} , that only uses the predictor in tie-breaking among unmarked elements in a deterministic fashion, has a competitive ratio of

$$\operatorname{CR}_{\mathcal{A}}\left(\epsilon\right) = \Omega\left(\min\left(\sqrt{\epsilon},\mathbf{k}\right)\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Online Algorithms with ML Advice		

- 2 Online Algorithms with ML Advice
- 3 The Predictive Marker Algorithm

4 Extensions

Robustsness vs Competitiveness Tradeons

Free parameter in the algorithm

• So far, we chose H_k as a switching point for the algorithm.

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

• So far, we chose H_k as a switching point for the algorithm.

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

• What about γH_k for some $\gamma > 0$?

The Predictive Marker Algorithm

Extensions

Experiments Summary

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Robustsness vs Competitiveness Tradeoffs

Free parameter in the algorithm

- So far, we chose H_k as a switching point for the algorithm.
- What about γH_k for some $\gamma > 0$?

Theore<u>m</u>

Suppose that, for $\gamma > 0$, the algorithm uses γH_k as switching point. denote this algorithm by $\mathcal{PM}(\gamma)$.

The Predictive Marker Algorithm

Extensions

Experiments Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Robustsness vs Competitiveness Tradeoffs

Free parameter in the algorithm

- So far, we chose H_k as a switching point for the algorithm.
- What about γH_k for some $\gamma > 0$?

Theore<u>m</u>

Suppose that, for $\gamma > 0$, the algorithm uses γH_k as switching point. denote this algorithm by $\mathcal{PM}(\gamma)$. Then, the competitive ratio of ϵ -assisted ϵ -assisted $\mathcal{PM}(\gamma)$ is bounded by:

$$CR_{\mathcal{PM}(\gamma),\ell}\left(\epsilon\right) \leq 2\min\left(1+rac{1+\gamma}{\gamma}\sqrt{5\epsilon},\left(1+\gamma\right)H_{k},k
ight)$$

The Predictive Marker Algorithm

Extensions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Experiments Summary

Robustsness vs Competitiveness Tradeoffs

Free parameter in the algorithm

- So far, we chose H_k as a switching point for the algorithm.
- What about γH_k for some $\gamma > 0$?

Theorem

Suppose that, for $\gamma > 0$, the algorithm uses γH_k as switching point. denote this algorithm by $\mathcal{PM}(\gamma)$. Then, the competitive ratio of ϵ -assisted ϵ -assisted $\mathcal{PM}(\gamma)$ is bounded by:

$$CR_{\mathcal{PM}(\gamma),\ell}\left(\epsilon\right) \leq 2\min\left(1+rac{1+\gamma}{\gamma}\sqrt{5\epsilon},\left(1+\gamma\right)H_{k},k
ight)$$

• What does a low γ mean?

The Predictive Marker Algorithm

Extensions

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

Experiments Summary

Robustsness vs Competitiveness Tradeoffs

Free parameter in the algorithm

- So far, we chose H_k as a switching point for the algorithm.
- What about γH_k for some $\gamma > 0$?

Theorem

Suppose that, for $\gamma > 0$, the algorithm uses γH_k as switching point. denote this algorithm by $\mathcal{PM}(\gamma)$. Then, the competitive ratio of ϵ -assisted ϵ -assisted $\mathcal{PM}(\gamma)$ is bounded by:

$$\mathcal{CR}_{\mathcal{PM}(\gamma),\ell}\left(\epsilon\right)\leq2\min\left(1+rac{1+\gamma}{\gamma}\sqrt{5\epsilon},\left(1+\gamma
ight)\mathcal{H}_{k},k
ight)$$

- What does a low γ mean?
- What does a high γ mean?

Introduction 000000	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Experiments 00	Summary
Practical Trait	s			
Robust	tifiying LRU			

• How can we use LRU in the predictive marker setting?

• How can we use LRU in the predictive marker setting?

▲□▶▲□▶▲≡▶▲≡▶ Ξ|= めぬ⊙

• Define $h(\sigma_i) = -i$.

Introduction 000000	Online Algorithms with ML Advice	The Predictive Marker Algorithm		Experiments			
Practical Traits							
Robust	Robustifiying LRU						

- How can we use LRU in the predictive marker setting?
- Define $h(\sigma_i) = -i$.

Fact

If we never switched to random evictions, this is exactly LRU.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回▼ のへの

Introduction 000000	Online Algorithms with ML Advice	The Predictive Marker Algorithm		Experiments 00			
Practical Traits							
Robustifiying LRU							

- How can we use LRU in the predictive marker setting?
- Define $h(\sigma_i) = -i$.

Fact If we never switched to random evictions, this is exactly LRU.

 LRU is deterministic and therfore has only a bound of Θ(k), but is very good in practice.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction 000000	Online Algorithms with ML Advice	The Predictive Marker Algorithm		Experiments 00				
Practical Traits								
Robust	Robustifiying LRU							

- How can we use LRU in the predictive marker setting?
- Define $h(\sigma_i) = -i$.

Fact If we never switched to random evictions, this is exactly LRU.

- LRU is deterministic and therfore has only a bound of Θ(k), but is very good in practice.
- This new setting reduces the analysis of LRU from $\Theta(k)$ to $O(\log k)$, while still exploiting its predictive power.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Online Algorithms with ML Advice		

- 2 Online Algorithms with ML Advice
- 3 The Predictive Marker Algorithm

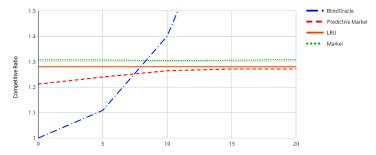
4 Extensions

Introduction 000000	Online Algorithms with ML Advice	The Predictive Marker Algorithm	Extensions	Experiments ●0	Summary		
Tightness of Analysis							
Compa	Comparing results						

• Lets take a look at some real world datasets:

Dataset	Num Sequences	Sequence Length	Unique Elements
BK	100	2,101	67-800
Citi	24	25,000	593 - 719

Introduction 000000	Online Algorithms with ML Advice	The Predictive Marker Algorithm		Experiments ○●			
Tightness of A	Tightness of Analysis						
Compa	aring results						



Error Parameter

Algorithm	Competitive Ratio on BK	Competitive Ratio on Citi
Blind Oracle	2.049	2.023
LRU	1.280	1.859
Marker	1.310	1.869
Predictive Marker	1.266	1.810

Online Algorithms with ML Advice	The Predictive Marker Algorithm		Summary

• We saw a general framework for combining **online algorithms** with guidance of **machine learning** - OMLA.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ●□ ● ● ●

Online Algorithms with ML Advice		Summary

• We saw a general framework for combining **online algorithms** with guidance of **machine learning** - OMLA.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• We saw how we can maintain **robustness** while exploiting predictions to improve **competitiveness**.

Online Algorithms with ML Advice		Summary

- We saw a general framework for combining **online algorithms** with guidance of **machine learning** OMLA.
- We saw how we can maintain **robustness** while exploiting predictions to improve **competitiveness**.
- We discussed the analysis of **robustness vs competitiveness** and looked at real-world examples.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Online Algorithms with ML Advice		Summary

- We saw a general framework for combining **online algorithms** with guidance of **machine learning** OMLA.
- We saw how we can maintain **robustness** while exploiting predictions to improve **competitiveness**.
- We discussed the analysis of **robustness vs competitiveness** and looked at real-world examples.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Thank you!

🛸 Thodoris Lykouris and Sergei Vassilvitskii. 2021. Competitive Caching with Machine Learned Advice. J. ACM 68, 4, Article 24 (July 2021), 25 pages.

