Closed coloring

Refael Hassin

In an arc-colored tournament $D = (N, A), |N| \ge 4$, the arcs in A are partitioned into color classes $\{\sigma_1, \ldots, \sigma_m\}$, and each class induces a directed bipartite subgraph (a directed graph with node set $A \cup B$ and arc set E such that $(u, v) \in E$ implies $u \in A$ and $v \in B$.)

Arc $(i, j) \in A$ is closed by $a, b \in A$ if

(i) Either a = (i, k) and b = (j, l) (in this case (i, j) is closed by the tails of a and b), or a = (k, i) and b = (l, j) (in which case (i, j) is closed by the heads of a and b), for some $k, l \in N \setminus \{i, j\}$. (ii) a and b have the same color.

The arc-coloring of a subgraph D' = (N, A') of D is closed if

- (iii) Every arc of A' is closed by a pair of arcs in A'.
- (iv) Every arc of A' is used to close other arcs exactly twice, once by its tail, and once by its head.

A subgraph whose arcs are colored by a closed coloring is also said to be closed.

Figure 1 shows some examples of subgraphs with closed colorings. The numbers indicate colors. We call the top-left graph *closed* C_4 and the top-middle graph a *closed* $K_{2,3}$. Note that a closed graph remains closed after reversing the directions of a color class. In particular we maintain the name $K_{2,3}$ closed subgraph after reversing the arcs of one of its color classes.

Figure 1: Closed colorings

Conjecture 1 [1] If $m \leq |N| - 2$ then D contains a closed subgraph.

Another way to state the conjecture is that the maximum order of an arc-colored tournament with m colors, which does not contain a closed subgraph, is m + 1.

The next two theorems confirm Conjecture 1 for N = 4, 5 (longer proofs can be found in [1]). The proofs assume that we have for each color class σ_i a directed cut (S_i, T_i) such that the σ_i colored arcs are in (S_i, T_i) . (This cut need not be unique.) Every arc belongs to at least one of these cuts (corresponding to its color).

Theorem 2 A tournament with bicolored arcs on four nodes contains a closed C_4 .

Proof: In the case of four nodes, since every arc belongs to a cut, these cuts must intersect, for example $S_1 = \{1,2\}$ and $S_2 = \{1,4\}$. This means $(1,3), (2,4) \in \sigma_1$ and $(1,2), (3,4) \in \sigma_2$, thus inducing a closed C_4 .

Theorem 3 A tournament on five nodes colored with three colors contains a closed C_4 or a closed $K_{2,3}$.

Proof: W.l.o.g assume $|S_i| < |T_i|$ i = 1, 2, 3 (if $|S_i| > |T_i|$ reverse the orientation of σ_i). If $|S_i| = 1$ then all σ_i -colored arcs leave the same node and by removing this node we obtain a 4-nodes 2-colored tournament that contains a closed subgraph by Theorem 2. Therefore, assume $|S_i| = 2$ i = 1, 2, 3 There are two cases to consider:

 $S_1 = \{1, 2\}, S_2 = \{3, 4\}, S_3 = \{1, 3\}$. This means arcs $(1, 2), (3, 4) \in \sigma_3$ and $(4, 5) \in \sigma_2$ (as each of these arcs is covered by a single cut). By symmetry there is no loss of generality assuming $(3, 1) \in \sigma_2$ (the alternative is $(1.3) \in \sigma_1$). If $(4, 2) \in \sigma_2$ then with $(3, 1) \in \sigma_2$ and $(1, 2), (3, 4) \in \sigma_3$ we obtain a closed C_4 . Assume therefore the alternative option $(2, 4) \in \sigma_1$. Similarly, $(1, 5) \in \sigma_3$ would create a closed C_4 with $(3, 4) \in \sigma_3$ and $(3, 1), (4, 5) \in \sigma_2$. Therefore assume $(1, 5) \in \sigma_1$. We now obtained a closed $K_{2,3}$ with terminal nodes 1 and 4.

The other case has $S_1 = \{1, 2\}$, $S_2 = \{1, 3\}$, $S_3 = \{1, 4\}$. Arcs incident to 5 are covered by a unique cut and therefore $(2, 5) \in \sigma_1$, $(3, 5) \in \sigma_2$, and $(4, 5) \in \sigma_3$. W.l.o.g $(1, 2) \in \sigma_2$ (the alternative is $(1, 2) \in \sigma_3$). To avoid a closed C_4 on 1,2,3,5 we must have $(1, 3) \in \sigma_3$, and now to avoid a closed C_4 on 1,3,4,5 we must have $(1, 4) \in \sigma_1$. We now have a closed $K_{2,3}$ with terminals 1 and 5.

A closed C_4 is equivalently a closed $K_{2,2}$ and therefore one could be led from Theorems 2 and 3 to conjecture that a tournament with N nodes and C = N - 2 colors contains a closed $K_{2,r}$ for some $2 \le r \le N - 2$. However it is possible to refute this possibility already for N = 6.

References

 N. Guttmann-Beck and R. Hassin, "On coloring the arcs of a tournament, covering shortest paths, and reducing the diameter of a graph," *Discrete Optimization* 8 (2011) 302-314.