Closed coloring

Refael Hassin

In an arc-colored tournament $D=(N, A),|N| \geq 4$, the arcs in A are partitioned into color classes $\left\{\sigma_{1}, \ldots, \sigma_{m}\right\}$, and each class induces a directed bipartite subgraph (a directed graph with node set $A \cup B$ and arc set E such that $(u, v) \in E$ implies $u \in A$ and $v \in B$.)

Arc $(i, j) \in A$ is closed by $a, b \in A$ if
(i) Either $a=(i, k)$ and $b=(j, l)$ (in this case (i, j) is closed by the tails of a and b), or $a=(k, i)$ and $b=(l, j)$ (in which case (i, j) is closed by the heads of a and b), for some $k, l \in N \backslash\{i, j\}$.
(ii) a and b have the same color.

The arc-coloring of a subgraph $D^{\prime}=\left(N, A^{\prime}\right)$ of D is closed if
(iii) Every arc of A^{\prime} is closed by a pair of arcs in A^{\prime}.
(iv) Every arc of A^{\prime} is used to close other arcs exactly twice, once by its tail, and once by its head.

A subgraph whose arcs are colored by a closed coloring is also said to be closed.
Figure 1 shows some examples of subgraphs with closed colorings. The numbers indicate colors. We call the top-left graph closed C_{4} and the top-middle graph a closed $K_{2,3}$. Note that a closed graph remains closed after reversing the directions of a color class. In particular we maintain the name $K_{2,3}$ closed subgraph after reversing the arcs of one of its color classes.

Figure 1: Closed colorings

Conjecture 1 [1] If $m \leq|N|-2$ then D contains a closed subgraph.

Another way to state the conjecture is that the maximum order of an arc-colored tournament with m colors, which does not contain a closed subgraph, is $m+1$.

The next two theorems confirm Conjecture 1 for $N=4,5$ (longer proofs can be found in [1]). The proofs assume that we have for each color class σ_{i} a directed cut (S_{i}, T_{i}) such that the $\sigma_{i^{-}}$ colored arcs are in $\left(S_{i}, T_{i}\right)$. (This cut need not be unique.) Every arc belongs to at least one of these cuts (corresponding to its color).

Theorem 2 A tournament with bicolored arcs on four nodes contains a closed C_{4}.

Proof: In the case of four nodes, since every arc belongs to a cut, these cuts must intersect, for example $S_{1}=\{1,2\}$ and $S_{2}=\{1,4\}$. This means $(1,3),(2,4) \in \sigma_{1}$ and $(1,2),(3,4) \in \sigma_{2}$, thus inducing a closed C_{4}.

Theorem 3 A tournament on five nodes colored with three colors contains a closed C_{4} or a closed $K_{2,3}$.

Proof: W.l.o.g assume $\left|S_{i}\right|<\left|T_{i}\right| i=1,2,3$ (if $\left|S_{i}\right|>\left|T_{i}\right|$ reverse the orientation of σ_{i}). If $\left|S_{i}\right|=1$ then all σ_{i}-colored arcs leave the same node and by removing this node we obtain a 4 -nodes 2 colored tournament that contains a closed subgraph by Theorem 2. Therefore, assume $\left|S_{i}\right|=2$ $i=1,2,3$ There are two cases to consider:
$S_{1}=\{1,2\}, S_{2}=\{3,4\}, S_{3}=\{1,3\}$. This means arcs $(1,2),(3,4) \in \sigma_{3}$ and $(4,5) \in \sigma_{2}$ (as each of these arcs is covered by a single cut). By symmetry there is no loss of generality assuming $(3,1) \in \sigma_{2}$ (the alternative is $\left.(1.3) \in \sigma_{1}\right)$. If $(4,2) \in \sigma_{2}$ then with $(3,1) \in \sigma_{2}$ and $(1,2),(3,4) \in \sigma_{3}$ we obtain a closed C_{4}. Assume therefore the alternative option $(2,4) \in \sigma_{1}$. Similarly, $(1,5) \in \sigma_{3}$ would create a closed C_{4} with $(3,4) \in \sigma_{3}$ and $(3,1),(4,5) \in \sigma_{2}$. Therefore assume $(1,5) \in \sigma_{1}$. We now obtained a closed $K_{2,3}$ with terminal nodes 1 and 4.

The other case has $S_{1}=\{1,2\}, S_{2}=\{1,3\}, S_{3}=\{1,4\}$. Arcs incident to 5 are covered by a unique cut and therefore $(2,5) \in \sigma_{1},(3,5) \in \sigma_{2}$, and $(4,5) \in \sigma_{3}$. W.l.o.g $(1,2) \in \sigma_{2}$ (the alternative is $\left.(1,2) \in \sigma_{3}\right)$. To avoid a closed C_{4} on $1,2,3,5$ we must have $(1,3) \in \sigma_{3}$, and now to avoid a closed C_{4} on $1,3,4,5$ we must have $(1,4) \in \sigma_{1}$. We now have a closed $K_{2,3}$ with terminals 1 and 5 .

A closed C_{4} is equivalently a closed $K_{2,2}$ and therefore one could be led from Theorems 2 and 3 to conjecture that a tournament with N nodes and $C=N-2$ colors contains a closed $K_{2, r}$ for some $2 \leq r \leq N-2$. However it is possible to refute this possibility already for $N=6$.

References

[1] N. Guttmann-Beck and R. Hassin , "On coloring the arcs of a tournament, covering shortest paths, and reducing the diameter of a graph ," Discrete Optimization 8 (2011) 302-314.

