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OPTIMAL CONTESTS

AMIHAI GLAZER and REFAEL HASSIN®

Firms frequently use contests to compensate their employees:
an employee’s pay depends on the ranking of his output compared
to that of others, rather than on the absolute level of his output.
This paper analyzes the design of a contest which maximizes the
contestants’ expected aggregate output, and describes two set-
tings which yield opposite results. In one, prizes should be equal
except for that given to the contestant with the lowest output.
In the other setting, only the contestant with the highest output
should obtain a meaningful prize.

I. INTRODUCTION

Contests are widely used as a reward mechanism. Automobile dealers hold
sales contests in which a salesman’s remuneration is a function of his success
compared to that of other salesmen. The reward offered young professors may
consist of granting tenure to the best candidate, regardless of the absolute
quality of his work. A manager will be promoted not if his work is excellent,
but if it is better than that of his competitors. These examples illustrate an
essential feature of contests: any one person's reward depends on the perfor-
mances of all other contestants and not only on his own achievements. A
contest thus differs from a conventional wage system in which a worker’s
reward is independent of that received by others.

Not all contests are designed solely for the purpose of providing contestants
with appropriate incentives. Some contests, such as sports competitions, are
held largely for thrill and excitement. Other contests, such as those for beauty
queens, provide a forum for selecting a person out of a large group. Yet
providing incentives is an integral feature of all these contests, and we would
do well to focus on it.

The study of contests has attracted increasing attention in recent years. The
earliest modelling efforts appear in studies of animal behavior. In particular,
Maynard Smith [1973; 1974; 1976a; 1976b] and Dawkins [1976] study fights
between animals in which the winner earns some benefit, but where both the
winner and the loser may suffer injuries. It will come as no surprise that the
emphasis in these studies is to characterize equilibrium strategies; fights are
not viewed as incentive mechanisms. More specifically, Maynard Smith, Hirsh-
leifer and Riley [1978), Riley [1979] and Eshel [1983] study evolutionary equi-
librium strategies: such a strategy, if adopted by most members of the pop-
ulation, gives a higher expected gain than does any other strategy. The concept
is identical to a Nash equilibrium only for infinite populations.
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The seminal work in the economic analysis of coutests is by Lazear and
Rosen {1981], who devote most of their attention to a contest between two
contestants. The analysis is generalized by Green and Stokey [1983) and by
Nalebuff and Stiglitz [1983); Dye [1984] criticizes this approach by arguing
that collusion by contestanls may make contests a very imperfect system. The
most itportant difference between their papers and ours concerns the source
of a contestant’s uncertainty. The aforementioned papers assume that con-
testants are identical in ability, but that mecasures of their output are subject
to error. Under those assumptions each contestant will choose the same effort,
though the reward he obtains is subject to random variation.

In our paper the rauk order of output can be measured with no error, but
no one contestant knows for sure what level of output others choose. This
means that in equilibrium identical contestants will choosc different levels of
effort. (O'Keefe et al. [1984] consider this situation, but allow for only two
prizes.) We also analyze contests in which contestants have different abilities.
What matters then in the design of a contest is not only how to induce persons
to work, but also how to get persons with high ability to work harder than
persons with low ability.

In that sense, the present work is related to some recent papers on the
optimal design of auctions (particularly Hirshleifer and Riley [1978]; Myerson
[19S1): and Riley and Samuelson [1981]), and to other papers concerning the
sale of differentiated goods to consumers who valuc quality differently (for
example, Mussa and Rosen [1978); Spence [1980]). The solutions obtained there
are not, however, directly applicable here. In the literature just cited, persons
differ in the value they place on the good. We assume all contestants have
identical utility functions and therefore agree on the values of the prizes. The
way in which they do differ is the ease with which they can produce something
(output) of value to the employer. Though Maskin and Riley [1984] study a
problem similar to ours, they assume that the employer can measure each
worker’s level of output where we assume that only relative rankings are
observed.

The next section of the paper sets forth our assumptions. Sections I1I and
IV concern contests in which all contestants have the same ability. We find
that if contestants have linear cost functions, total expected output is maximized
by giving equal prizes to all but the lowest producer. Section V considers a
model in which contestants have different abilities: it describes the conditions
under which persons with greater ability will exert more effort, and demon-
strates that in general only a few of the prizes should be greater than the
reservation wage.

If. ASSUMPTIONS

Let the number of potential contestants be exogenously fixed at N. Each
potential contestant decides whether to participate in the contest; he who does
produces a nonnegative output.

A maximum of N prizes, m,, m,, . ..

)

my, are allocated; a nonparticipant
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obtains no prize. The prizes are ordered so that my, = m, = ... = m, = 0.
The prizes are distributed according to the ranks of the participants’ outputs;
the kth highest prize, m,, is given to the contestant who produces the kth
highest output. If several contestants produce the same output, the tie among
them is broken in some fair way.

Each contestant is characterized by a parameter, «, that reflects his ability.
His cost of producing output y is c(«, y), which function is twice differentiable.
We assume that ¢(a, 0) = 0, that dc(a, y)/dy > 0, that dc(a, y)/da < 0, and
that 9%(a, y)/dady < 0. The last inequality means that a contestant can more
easily increase his output the greater his ability. A potential contestant can
find alternative employment which yields utility r.

A contestant’s utility from obtaining a prize of size m is u(im), a ponotone,
increasing and concave function. For any value of output, each contestant is
not sure what other contestants will do or what his prize will be, so that he
views the value of m as a random variable. Let F(y) denote, for y = 0, the
probability that a randomly chosen contestant will choose an output of y or
less, so that each contestant’s problem can be viewed as maximizing a function

vy, a, F(y)], where a and F(y) are given. The function F(y) is called an
equilibrium distribution if and only if dv/dy = 0 for some a whenever dF(y)/
dy > 0; that is, any chosen level of output must be a possible solution to somne
contestant’s maximization problem. Define y,,. as suply|F(y) < 1}

LEMMA 1. F(y) is continuous in the interval (0, yma.)-

Proof. Suppose otherwise, that F(y) is discontinuous at some value, y, This
means that with a positive probability all contestants will choose output y,,
and that a contestant who increases his output to a level irfinitesimally greater
than y, increases the expected value of his prize and his expected utility by
a noninfinitesimal amount. This violates the equilibrium condition that y,
maximizes expected utility for some contestant.

LeEmMA 2. F(y) is strictly increasing in the interval (0, y,...).

Proof. Suppose otherwise, and let (a, b) be the subinterval of maximum length
in (0, y,u..) on which F is constant. Then a contestant who chooses y = b can
increase his expected utility by producing y = a instead; he reduces his costs
without reducing his expected prize. This contradicts the assumption that F(y)
describes an equilibrium.

From lemmas 1 and 2 we conclude that though there may be a positive
probability that a potential contestant decides not to participate, those who
do participate choose different output levels. Thus, the probability that a
contestant obtains the kth prize is the probability that k — 1 of the contestants
choose an output greater than his, and that N — k of them choose a lower
level or decide not to participate. The expected utility from the prize accorded
to a contestant who produces an output y is then

E (k _ 1) (m)F¥Ky)L — F(y)J-*. (1)
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A contestant’s cost of producing output y is c¢(«, y), so that his net bene-
fit is
Rla, y) = B(y) — cla, y). (2)

This value, R{a. y), can be called “contestant’s surplus.”

. CONTESTANTS WITH IDENTICAL ABILITIES

In this and the following scction we study contests among participants who
have identical abilities. For succinctness we write R(y) and c(y) instead of
R(a, y) and c(a, y). Lemmas 1 and 2 imply that in such contests there is no
Nash equilibrium in pure strategies. The reason for this result is best explained
by an example. Suppose two contestants produce outputs y, and y, with the
aim of obtaining the prize awarded to the one with the higher output. In
equilibrium, ¥, cannot equal y,. For were they equal, a contestant who raised
his output by an infinitesimal amount would certainly win the highest prize.
Suppose next that in equilibrium y, is greater than y, Clearly, contestant 2
will not win the highest prize and he would do well to let y, = 0. But then
contestant 1 will find it profitable to choose a value of y, only infinitesimally
greater than y,. Thus, no deterministic Nash equilibrium exists.

We will accordingly examine a Nash equilibrium represented by a cumu-
lative distribution function, F(y), that gives the probability that a contestant
chooses an output less than or equal to y. That is, we wish to find a function
F(y) such that if any one contestant believes that F(y) describes the distribution
of outputs for all other contestants, then each contestant believes his expected
net benefit, R(y), to be invariant with respeet to all values of y he may choose.
That is, R(y) must be a constant R for all values of y that contestants may
actually choose. In particular, by Lemmma 1, R = R(0) = B(0). Substitute this
condition in (1) to obtain

R=2 <z B f)u(rnk)F“'*"(O)[l — FO)], (3)

k=1

where F(0) is the probability that a potential contestant chooses not to par-
ticipate.

It is conceivable for the firm to set the prizes so low as to make the benefit
of participation, R, negative; the firm would then have to attract contestants
by giving them lump sum pavments before a contest began. There could,
however, be great difficulties in implementing such a system. A contestant,
for example, might immediately spend any lump sum payment he obtains
and then declare insolvency or bankruptey when the results of the contest
reveal that he owes a large sum of money to the employer. It is not unrea-
sonable, therefore, to consider a contest which involves no lump sum payments,
<o that a contestant’s remuneration consists solely of his prize. The condition
of no advance grants to participants therefore requires that R(y) = r in
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(0, y.ae), where r is a contestant’s opportunity cost of participating. Two
possibilities arise.

a) If the value of the smallest prize is so low that w(my) < r, then F(0)
must be positive. For were F(0) equal to 0, equation (3) would yield R =
u(my) < r, in violation of the condition that R = r. We conclude that if
u(my) < r, with positive probability some potential contestants choose not to
participate, and equilibrium requires that R = r. Substitute this in (3) to obtain
the value of F(0).

b) If u(my) > r, every participant is assured of obtaining at least a utility
u(my), even if he chooses y = 0. Therefore in this case F(0) = 0, and all
potential contestants participate. Substitute this in (3) to obtain R = u(my,).

We can use equation (2) to find the value of y,.,,. By definition F(l/,,m) =
1, so that a contestant who chooses output y,,,, obtains the largest prize, m,.
From equation (2), R(¢n.) = u(my) — ¢(Ymax), which in equilibrium must
cqual R. Therefore

Ymax = c” [U( ) - R] (4)

To summarize, the equilibrium value of F(y) for each vdlue of y must satisfy
equations (1) through (4), so that in equilibrium

F(y) =0, for y < 0

E <k _ 1) (MIFN=Xy)1 — F(y)I*-' = R + c(y),

for0 = y < ¢ '[u(m,) — R;
F(y) =1, for y = ¢~ '[u(m,) — R}, (3)

where R = max[r, u(my)]

IV. OPTIMAL CONTESTS WITH IDENTICAL CONTESTANTS

We characterized the equilibrium distribution of output as a function of
the fixed set of prizes, m, ... my; hence to each set of prizes there corresponds
an expected value of total output. This relation is not, however, an intuitively
obvious one. Suppose that the value of the first prize is increased, and that the
second prize is decreased by the same amount. The increase should induce
contestants to work harder. But the decrease in the second prize might either
induce the contestants to work more in an attempt to obtain the first prize, or
lead them to work less since the marginal benefit of ranking second rather
than third has declined. Moreover, an analysis of such changes in the prizes
must consider not only the incentives any one person faces, but also changes
in the distribution of effort, F(y), and how changes in this distribution affect
each contestant’s incentives. It is thus important to discover how to design a
contest that maximizes the expected value of contestants’ output. That problem
is the topic of this section.
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From -equation (5) we know that y = ¢~ '[B(y) — R], so that Ly =

f y dF(y). Let x = F(y) to obtain as the maximand
4]

Ql ‘\'
Ey = I C""[Z <7 : f)u(mk)x‘\"‘(l — k1 — Ridx. (6)
[Eaatil]

k=1

We suppose the firm has a fixed amount, M, to be allocated as prizes, and
wishes to maximize the expected value of total output produced by the con-
testants. The firm's choice variables are the values of the prizes my, m,, . ..
my: thus, the firm’s problem is to maximize Ey subject to

)

N

E mye = M,

P

m, = m, = .= my = 0,
B(y) — cly) = R for all y in (0, y,,..),
R =,
Umax = ¢ '[u(my) — R}

We shall demonstrate that optimality requires that u(my) = r and that R =
r. Two cases need to be considered. If u(my) < r, then as we showed in the
previous section, not all potential contestants will participate; the probability
distribution of the number of participants will be such that B = r, or that
contestants’ surplus equals the opportunity cost of participating in the contest.

If uimy) = r, then all N potential contestants participate, F(0) = 0, and
R = u{my). Equation (6) then states that the coefficient of u(my) is —[1 —
(1 — 03371 which is negative. Since Ey decreases in my, optimality requires
that in this case u{my) = r, so that R = r.

In summary, optimality requires that u(my) < r, and that R = r. In general
this problem has no analytic solution; we can however solve an important
special case.

ProrosiTion 1. Suppose that r = u(0), that u(my) = r, and that ¢(y) = v/ «a.
Then maximizing output requires that my = m, = ... = mq_, = M /(N —
I and that my = 0. That is, the smallest prize is zero, and all other prizes
arc cqual.

Pronf. We showed above that optimality requires that u(my) =< r and that
R = r. Together with the assumption that u(my) = r, this implies that u(my) =
r By assumption, v = w{0) and therefore my = 0. Recall also that if u(my) =
r. then in equilibrium F(0) = 0. Form the Lagrangean

N
I.=Fy + )\<M - mk>,

k=1
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and differentiate with respect to my, my, ..., my_, to obtain the first order
conditions

i [
0=20L/dm;, = « f <‘z _ ll>u’(m,()x“’"‘(l — )V dx — A,
0

fork=1...,N— L (7)

We show that equation (7) is satisfied for my =0 and m, = m, =. .. =
my_y = M /(N — 1). Make this substitution in (7) and use the assumption that
c(y) = y/c to obtain the condition

1
A= au'[M/(N — 1)) <l]\:_— ;)f NR1 = xR dy,
0

fork=1,..., N - 1. (8)

The integral is the Beta function, equal to (N — k)I(k — 1)/NJ, so that equation
(8) becomes A = au'[M/(N — 1)]/N which is satisfied for k = 1, 2,
N — 1. This completes the proof.

We note that the solution described in the proposition is also the limiting
solution when N tends to infinity, even if the function ¢(y) is strictly convex
rather than linear. For if m,, m,, ..., my_; = M /(N — 1), the value on the
right-hand side of (8) converges to a constant when N tends to infinity.!

It is clear that a contest is not the most efficient form of compensation.
Suppose that r = 0. Then a contest will lead to a lower level of total output
than the following compensation scheme: each of thg N participants is awarded
a prize of M /N if and only if he produces that value of output at which c(y) =
u{M/N). Nevertheless, use of a contest does have some advantages over other

1. Recent research (see Myerson [1981], Riley and Samuelson [1981]) shows that for auctions,
which are similar to contests, the seller’s revenue can be maximized by setting a minimum bid.
The equivalent requirement here would be that no prize be given for an output less than some
critical level, say y*. In fact, however, such a scheme would reduce the total level of output.

Were there such a minimum output level, no contestant would choose an output in the range
(0, y*). The equilibrium distribution of output would be given by the following conditions:

Fly)=10 fory <0

F(y) = J(y*) for0 =y = y*

F(y) = J(y) for y* = y < ¢7'fu(m,) — R}
Fly) =1 for y = ¢ '[u(m,) — R]

where R = max{r, u(my) — c(y*)], and J(y) is defined by the condition that

« [N -1
) <k _ 1>u(nu)]”“(y)[l = JWF' =R+ c(y)
k=)
Optimal allocation of prizes requires that u(my) — ¢(y*) = r so that R = ; for an output greater
than y* this distribution, J(y), is identical to that for F(y) given by equations (5). Qutput above
y* is therefore not increased, but output below y™* is lost. Letting y* be greater than zero therefore
reduces total output.

The difference between this solution and the auction results lies in our assumption that all
persons place the same valuations on the prize.



systems. The most important is that with a contest the employer need measure
output ordinally and not cardinally. This avoids all the difficulties of a system
in which the parties must set the piece rate and later agree on exactly how
much was produced. And for a large number of contestants, the inefficiency
arising from contests becomes insignificantly simall.

V. CONTESTANTS WITH DIFFERENT ABILITIES

This scction considers contests among persons with different, instead of
identical, abilitics. Let at most N persons, randomly selected from the pop-
ulation, participate in the contest. The cumulative distribution of ability in
the population is represented by a continuous function, G(a). Each contestant
knows his own ability, but has only probabilistic estimates of the abilities of
fellow potential contestants. Let a contestant with ability « choose output y(«a).

As explained before, we assume that a contestant’s remuncration consists
solely of his prize, so that a person with ability « chooses to participate in the
contest only if his surplus, Rle, y(a)], is no less than the opportunity cost of
participation.

Since for anv a; > «, and for y > 0, we have R{e,, y(a,)] = R, ylay)] >
Rlas, ylao)] we find that Rl«, y(a)] increases with «.

Let «, satisfv Rle, y(ep)] = r; then only persons with ability a = «q will
participate in the contest. Therefore a polential contestant with ability « is
certain to obtain the lowest prize among the participants (although he may
not know beforehand which prize it will be since the number of participants
is not known), and will produce zero output.

A necessary and sufficient condition that guarantees the participation of all
N potential contestants is that the smallest prize be sufficiently attractive, or
that u(my) = r. Il u(my) < r, the least able potential contestants will not
participate.

A contestant with ability & > «, chooses output y if and ounly if dR(«, y)/
dy = 0 and R, y)/dy* < 0, that is if and only if

dB (y)/dy = dc(e. y)/dy (9)
and
*B(y)/dy* — Pcla, 4)/dy* < 0. (10)

But we know from Lerama 2 that each value of y in the range (0, y,.,..) may
in fact be chosen by sonie contestant, so that conditions (9) and (10) must hold
in cquilibrium for all values of y in (0, y,...).

Surely a contest is an attractive reward svstem only if y(«) is an increasing
function of « for all v > «a: the most productive should work the most. Under
our assumptions this is indeed the case. Differentiate (9) with respect to «,
and solve for dy(a)/d e to find

dy (@) da = [0cla, y)/dydal/[*By)/dy?* — Fc(a, y)/dy?] an

which is positive by our assumptions on ¢{-) and by condition (10).



These assumnptions allow contests to be used for sorting; not only can a
contest reveal which contestant has the greatest ability, but it also allows the
estimation of a person’s ability on the basis of his outpul. Moreover, any sct
of prizes can be used to elicit information on the contestants’ abilities, and
such information can be obtained on all contestants, not only on those who
win a meaningful prize.

Recall that a contestant chooses a higher level of output the greater is his
ability, so the probability that a contestant with ability « obtains the kth highest
prize is simply the probability that he has the kth highest ability among the
N potential contestants. Thus the expected utility of the prize won by a
contestant with ability « is

Bla) = Bly(a)] = E (1]\(] : 11>u(mk Nkl — Gla)F~1, (12)
Use (9) to obtain

dB(a)/da = {dBly(a))/da} dy/da = {dcla, y(a))/dy} dy/da.  (13)

Substitute dB(«)/da from (12) in (13) to obtain a differential 1 equation that
can be solved for y(a).

The firm’s objective is to allocate the prizes to maximize the expected value
of total output. Unfortunately we are unable to find a general solution to this
problem, and must therefore make some restrictive assumptions. We first
suppose that all potential contestants, including the one with the lowest possible
ability, actually participate. Since y(o;) = 0, and since dy(a)/da > 0, this
implies that the contestant with the lowest ability in the population is sure to
obtain the smallest prize, with value my. This person will participate if and
only if u(my) = r.

Thus, the firm’s objective is to maximize Ey = f y(a) dG (a) subject to

@
equations (12) and (13), and subject to the conditions that m; = m, = ... =
N
my = r, and that E m, =M.
k=1

An increase in my, the smallest prize, above the value which satisfies u(m,) =
r does not increase the number of participants, and from equation (1) we find
that

*B(y)/dydmy = —(N — Lu(my)[l — F(y)]¥~* dF(y) dy,

which is negative. Any increase in my above u~'(r) thus lowers each contestant’s
incentive to increase his output, and lowers the total value of expected output.
Optimality thus requires that u(my) = r.

ProposiTION 2. Suppose that c(a, y) = y/«, that ability, «, is uniformly
distributed on (0, 1) and.that the opportunity cost of participation, r, equals
u(0). Then in equilibrium expected aggregate output, NEy, is equal to



N

2 u(m)(N — 2k + 1)/(N + 1).

-
Proof. Rewrite (13) in the form dB(«)/da = (1/a)dy/da), and integrate to

obtain

y(a) = aB(a) — fﬂ B(x) dx.

0

A contestant’s expected output is

) 1 1 a
Ey = f yla) da = f aB(a) da — f f B(x) dx d
0 0 o Jo
= f aBla) da — f (1 — a)Bla) da.
0 0

Substitute (12) with G(a) = « to obtain

N \7 o l ~1
Ey = E u(mk)<‘k ){j a¥ L = )T da
L= -1 0

— f ¥ M1 — )k da} (14)

1
Note that f (1 — ) da is the Beta function, and is equal to (a!b!)/(a +
O

b -+ 1! so that (14) simplifies to the desired result.

CororLAry 1. Suppose that u'(c0) = 0. Let k be the smallest integer greater
than or cqual to (N + 1)/2. Then expected output is maximized by setting
the smallest prizes, my, . ... my to zero and setting the largest prizes, m,,

. my _,. to positive values that sum to M, and that satisfy u'(m;)/u'{m,) =
(N = DN — 2k + 1),

COROLLARY 2. If u(m) is linear, then expected output is maximized by

setting my = M and m, = ... = my = 0.

Vi. CONCLUSION

We often think that contests are held primarily for the purpose of selecting
the best person for some job. In many contests, such as the electoral race for
the presidency or the rat race {or executive promotion, the winner receives a
large prize and the losers show no gain for their efforts. This is consistent with
the optimal design of contests. We have also shown that in equilibrium output
is an increasing function of ability, so that a contest ean be used as a sorting
mechanism. Moreover, any set of prizes that awards higher prizes to higher
outputs will serve for such sorting. But clearly contests serve as incentive
mechanisms as well; emplovees are promoted not only to fill a position, but



also to provide them with incentives to perform well in their current joos. ror
these purposes, as we have shown, we cannot be indifferent between one contest
design and another.

Perhaps of greatest interest is the finding that an optimal contest may require
that meaningful prizes be given not only to the top-ranked worker, but to
others as well, and that these prizes be unequal. Indeed, although under a
wage system we would expect identical workers to have identical earnings,
such a result is simply incompatible with the use of a contest as an incentive
mechanism; the further study of contests may be able to shed new light on
the problems of income distribution.
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