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Abstract

We point out a relation between the minimum diameter spanning tree of a graph and its absolute 1-center. We use this
relation to solve the diameter problem and an extension of it efficiently.
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1. Introduction

Let G = (V E) be an undirected graph, where V is
the set of nodes and E is the set of edges. Also let
|V| = n and |E| = m. Suppose that each edge e € E
is associated with a positive weight (length) d.. A
spanning tree of G is a connected subgraph T = (V Er)
without cycles. The diameter of T, D(T), is defined
as the longest of the shortest paths in T among all the

pairs of nodes in V. The minimum diameter spanning .

tree (MDST) problem is to find a spanning tree of G
of minimum diameter.

Ho, Lee, Chang and Wong [5] consider the case
where the graph G is a complete Euclidean graph, in-
duced by a set S of n points in the Euclidean plane.

They call this special case the geometric MDST prob-
lem. They prove that in this geometric problem there
is an optimal tree which is either monopolar or dipolar.
A spanning tree is monopolar if there exists a point in
S called a monopole such that each of the remaining
points is connected to it; and it is said to be dipolar
if there exist a pair of points in S called a dipole such

* Corresponding author. Email: {hassin,atamir} @math.tau.ac.il.

that all the remaining points are directly connected to
exactly one of the two points in the dipole. Based on
the latter property, Ho et al. [5] develop an O(n?)
algorithm to find a spanning tree of minimum diame-
ter of a Euclidean graph. They also mention that the
above results extend to any graph whose edge lengths
satisfy the triangle inequality.

In this note we consider the general case where the
edge lengths do not necessarily satisfy the triangle in-
equality. We then observe that the MDST problem is
identical to the well studied absolute 1-center problem
introduced by Hakimi in 1964.[3]. As such, one can
apply existing algorithms and solve the MDST prob-
lem on a general graph in O(mn + n? logn) time.

To facilitate the discussion suppose that each edge
of the given graph G = (V E) is rectifiable. Thus,
we refer also to interior points on an edge by their
distances (along the edge) from the two nodes of the
edge. We let A(G) denote the continuum set of points
on the edges of G. The edge lengths induce a distance
function on A(G). For any pair of points x and y in
A(G) letdg(x,y) denote the length of a shortest path
in A(G) connecting x and y. For each x in A(G) let
T(x) denote a shortest path tree connecting x to all
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the nodes in V. T(x) can be found by augmenting x
to the node set V, and computing the shortest paths
from x to all nodes in V in O(m + nlogn) time by
the algorithm in [2].

For each x in A(G) define

F(x) =maxdg(x,v).
vevV

The absolute 1-center problem (A1CP) on G is to
minimize the function F(x). A point x* in A(G) is
an absolute 1-center of G if the function F attains
its minimum at x*. There are several efficient algo-
rithms to locate an absolute 1-center. See for exam-
ple, [9,6,8,1]. The most efficient known algorithm is
due to Kariv and Hakimi [8]. It can be implemented
in O(mn + nlogn) time, if one uses the procedure
of Fredman and Tarjan [2] to compute the distances
between all pairs of nodes in V.

2. Equivalence of A1CP and MDST

We now observe that an absolute 1-center of a graph
defines a spanning tree of minimum diameter.

Theorem 1. Let x* be an absolute 1-center of G and
let T(x*) be a shortest path tree connecting x* to
all nodes in V. Then T(x*) is a minimum diameter
spanning tree of G.

Proof. Let T be an arbitrary spanning tree of G. Let
A(T) be the metric space consisting of the contin-
uum set of points on the edges of T, with the respec-
tive distance function, dr(x, y), induced by the edges
of T. Also let y*(T) be the absolute 1-center of T,
i.e.,, y*(T) is a minimizer of the function Fr(x) =
max,ev{dr(x,v)} over A(T).

Following Handler [4] we conclude that y*(T) is
unique and furthermore, that D(T), the diameter of
T, satisfies

D(T) =2Fr(y*(T)).

Let T(x*) be a shortest path tree connecting x*, the

absolute 1-center of G, to all nodes in V. From the

optimality of x* it follows that x* is the midpoint of
every diameter of T(x*). Then,

D(T(x%)) =2r31§13,(dr(x-)(x*,v) (1)

=2max dg(x",0) (2)
< 2maxdg(y™(T),v) (3)
< 2maxdr(y*(T),v) (4)
= D(T). (5)

Egs. (1) and (5) follow from Handler’s rcsult.
Eq. (2) holds since, by the definition of T(x*),
dg(x*,v) = dr(x~)(x*,v) for every v € V. Inequal-
ity (3) holds since x* is the absolute 1-center of
G. Inequality (4) holds since for any pair of points
x,y € A(G), dg(x,y) < dr(x,y). We conclude
therefore that D(T(x*)) is the minimum diameter of
any spanning trec of G. [

3. Applications

The theorem and the above discussion imply that a
minimum diameter spanning tree of a general graph G
can be found in O(mn + n?logn) time. If G is com-
plete (e.g., a Euclidean graph) this bound reduces to
O(n3). Note that the result of Ho et al. [5] about the
existence of an optimal minimum diameter spanning
tree of a Euclidean graph, which is either monopolar
or dipolar follows directly from the theorem. Indeed,
if the edge lengths satisfy the triangle inequality, an
optimal tree is monopolar if x* is a node, and it is
dipolar otherwise (the dipole consists of the two end-
points of the edge containing x*).

The equivalence between the 1-center problem and
the MDST problem clearly holds also for the multi-
center problem. Let X, = {x1,...,x,} be a set of p
points in A(G). Define

H(Xp) =m€a‘),(min{dc;(x,~,v) li=1,...,p}
v

X, is called an absolute p-center of G if the func-
tion H attains its minimum at X7. From the above
theorem it follows that the absolute p-center problem
is equivalent to the following minimum diameter p-
forest problem:

Find a subgraph G’ = (V Eg/) without cycles and
with at most p connected components (subtrees), such
that the maximum of the diameters of its connected
components is minimized. As indicated by Kariv and
Hakimi [8] the above problem is NP-hard when p is
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part of the input. However, the problem is polynomi-
ally solvable for a fixed value of p. The best known
complexity bound, O(m”n?='log’n) for p > 2, is
given in [10].

Ihler, Reich and Widmayer [7] generalized the re-
sults of [5] to the geometric MDST problem with
classes defined as follows: Given the graph G = (V E)
and a partition Vi, ..., V; of V into c classes, compute
a tree of minimum diameter that contains at least one
vertex of each class. They show how to compute an
optimal solution in O(n?) time also for this problem.
We provide now an outline of how Theorem 1 can
be used also for this problem and its generalization
to general graphs and p-forest. Consequently, these
problems can also be solved within the same time that
we stated above.

We show how to imitate the algorithm for the abso-
lute -1-center problem. This algorithm first solves the
all pair shortest path problem on G, and then treats
the edges one by one. While considering x an edge
(i,j) € Ewherei € V, and j € V, (possibly r = q),
the graph is treated as if the classes V; (I #+ r,q) are
represented by a single vertex. The distance of this
vertex from / () is the minimum distance of a vertex
in V; from i (respectively, j). The vertices in V, and
V;, apart from i and j are ignored. The best location on
(i,j) can be found now as in the 1-center algorithm,
with some minor changes.
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