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Abstract

We consider the problem of designing an efficient dichotomous search in order to locate an object
which lies on a given interval. A query at a point of the interval reveals whether the object is to its
“left” or to its “right”. By successively placing queries at points of the interval it narrows down until
the searcher can identify a unit interval contaiming the object. The objective is to minimize the
expected cost of the search. We analyze the problem for a wide range of cost structures, generalizing
several known results. In particular we extend a monotonicity theorem of Knuth showing that it also
holds under weaker assumptions. Consequently, the computation effort needed to solve the problem
is reduced.

Keywords. Dichotomous search, dynamic programming, monotone policy.

1. Introduction

We consider the problem of designing an efficient dichotomous search in order to
locate an object which is known to lie on a given interval, {1, ..., N }, called the interval
of uncertainty. We denote the (a priori) probability that the object lies in i,
ie{l,...,N}, by p;. A query at k reveals whether the object is in {1,...,k} or in
{k+1,...,N}. We denote by Problem (m, n) the instance where the interval of
uncertainty is {min (m, n), ..., max(m, n)} with the following convention: m < nimplies
that the most recent query was placed at m — 1, while m > n means it was placed at n.
By successively placing a query at a point of the interval of uncertainty this interval
narrows down until the searcher can identify the object’s location. The objective is to
minimize the expected cost of the search. ‘
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This problem has been well analyzed when the only cost involved in the search
process 1s a fixed cost per query. Gilbert and Moore [8] proposed an algorithm
requiring O(N?*) computational steps. This algorithm was later improved by Knuth
[19] reducing its complexity to O(N ?). Algorithms of time O(N log N)) were described
by Hu and Tucker [ 16] and Garsia and Wachs [7]. Both algorithms are significantly
more complex than their predecessors and this is probably one of the reasons why
they were not extended to more general problems.

In this paper we generalize and improve several search models discussed in the
literature. In Section 2 we will present some preliminaries and a theorem which
constitutes the main result of this paper. The discussion about the models extended by
this theorem is deferred to Section 3. The proof of the theorem will be given in the final
section.

2. Properties of the solution

We consider two types of costs involved in the search:

e D'(m, n, k) for placing the Ith query at k in Problem (m, n);

e C; if the object is found in i after | queries.

The problem can be solved by applying the following recursive equations: Denote
pij=DpDi+ - + Pp; Forl=0.. . N—1,m=1,....N

Flim,m) = C,,, (la)

form<nandl=1,.... N —(n—m)

F'UVom n)= min {D'(m n, k) + 2 F'(k, m)
D

m<k<n mn

P g 41 )y, (1b)
Pmn

and form >nandl=1,...,.N — (m —n)

FI"Vm,n)= min {D'(m, n, k) + 2% F'(k,n)

n<k<m nm

Bl g 4 1, m)) (19)

nm

F'(m, n) is the minimum expected cost involved with locating the object in Problem
(m, n) when [ queries have already been placed. Let k be a minimizing value for the
right-hand side of (1b) or (Ic), then we say that F is attained at k. The minimum total
expected cost of the search is F°(1, N).
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The complexity of the algorithm is O(N*). It can be reduced to O(N?) by applying
ideas from Knuth [19] in cases where the following “monotonicity” property holds:

Property 2.1. If F'(m, n — 1) is attained at k', then for some k > k', F'(m, n) is attained
at k.

Theorem 2.2 (Knuth [19]). Property 2.1 holds when C is linear in | and constant in i,
and D is constant.

To prove Theorem 2.2 Knuth first proved that the following property holds when
C 1s linear:

Property 2.3. If py =0, the optimal policy to Problem (1, N) is as for Problem
(1, N — 1), except for the case where the remaining interval is {N — 1, N} in which an
additional query is needed.

Property 2.3 does not necessarily hold for nonlinear costs even when C is convex
and D is constant, as shown by the following example:

Example 2.4. Let P11 = 05, P2 = Pp3 = 025, and Pa = 0. Let Cli = C2i = 1, C3,j =10
for every i. The optimal policy for Problem (1, 3) has k = 1. For Problem (1, 4), k = 2.

We show next that Property 2.1 does not necessarily hold even when D is constant.

Example 2.5. Let C;be 1,4, Sforl = 1,2, 3 and every i, and p; = 0.2,0.3, 0.4, 0.1 for
i=1,...,4, respectively. Let D = 1. The optimal policy for Problem (1, 3) starts with
a query at k = 2 while for Problem (1, 4) one starts with k = 1 and if the object is in
{2,...,4} the resulting Problem (2, 4) is solved by a first query in k = 3.

The case of a uniform distribution and convex costs is easy as seen from the next
result which is similar to a theorem by Markowsky [21] for nonalphabetic trees:

Theorem 2.6. Suppose that C is convex in | and constant in i, and that p is constant, then
the optimal policy is as for linear C.

Proof. See Markowsky [21]. [

Our main result is a proof that Property 2.1 holds for the general model introduced
above, under certain assumptions on the costs. As seen from Example 2.4 a different
approach from the one used by Knuth is needed. The approach we use is of proving
that under certain assumptions a function associated with F is submodular. Related
principles for general dynamic programming are described by Topkis [25] and
Heyman and Sobel [12], and applied to a special case of our problem by Yao [28] (see
also Yao [29]).
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We next study some properties of the function G'(m, n) = p,., F'(m, n), if m < n and
G'(m, n) = puw F'(m, n), if m >n. As already noticed by Morris [22] for a very
restricted case, this function possesses some important properties that F does not
have. Let d'(m, n, k) be equal to D'(m, n, k) p, for m < n, and to D'(m, n, k)p,, for
n < m. Let ¢, = C,,pm. Then G'(m, n) is defined as follows: For [=0,....N — 1,
m=1,....N

G'(m,m) = ¢, (2a)
form<nandl=1,....N—(n—m)
G'"Ymn)= min {d'(m, n k)+ G'(k,m)+ G'(k + 1,n)}, (2b)
m<k<n

and form >nandl=1,... N —(m —n)

G'"'mn) = min {d'(m n k) + G'(k,n)+ G'(k + 1, m)}. (2¢)

n<k<m

Obviously, G'(m, n) is attained by the same values as F'(m, n).
The proof to the following theorem will be given in Section 4:
Theorem 2.7. For [ =0,...,N — 1, let d' be defined over the lattice
Z ={(mn k) 1<mn<N, min{m n} <k < max{m,n}}.

Let ¢, be defined over {(Ln): 1=1,....N—1,n=1,..., N}. We make the following
assumptions:

(A1) d' is submodular for every fixed |, i.e., for every pair of points (m;, n;, k;) e &,
i=1,2

dl(mb Ny, kl) + dl(m23 nZ’ k2)
> d'(min {m, m, }, min {n,, n, }, min {ky, k; })

+ d'(max {m;, m, }, max{n,, n, }, max{k,, k,}).

(A2.1)
d'n—1,nn—1)+d(nn+ 1,n)
<min{d'(n—1,n+ 1,n— 1) +d"* ' (n,n+ 1,n)
din—Ln+ 1,n)+d" " (n,n—1,n—1)}.
(A2.2)

dinn—1,n—1)+d(n+1,nn
<min{d'n+ 1,n—1,n— 1) +d"* "' (n+ 1,n,n),

din+ Ln—1,ny+d" " '(n— Lnn— 1)}



Optimal dichotomous search 225

(A3) ¢ is convex in [ for every fixed n, ie.,
2C["SC[+1‘"+C1_HLH, l:2,,N'—2

(A4) ¢ is nonnegative and nondecreasing in [ for every fixed n.
Under Assumptions (A1)-(A4), G' is submodular, i.e.,

G'(m,n) + G'(m + a,n + by < G'(m,n + b) + G'(m + a, n) (3)

for 1<m<m+a<N, 1<n<n+b<N, and 2<I<N —max{|m—n—b|
Im—n+al} — 1.

Remark 2.8. Conditions (A2) connect the search costs incurred in periods [ and [ + 1,
and seem to lack the intuitive reasoning associated with the other conditions. In the
next section we will show that they hold in several cases of interest at least whenever
we can assume that D', and therefore also d', is nondecreasing in [. In this case, it is
sufficient to demonstrate that

(AS.1)
din—1Lnn—1)+d'nn+1,n
<min{d'n— Ln+1,n— 1) +d'(n,n+1,n)
d'n—Ln+ Ln+d'(nn—1,n— 1)},
and -
(A5.2)

dim,n—Ln—1)+d'(n+1,nn)
<min{d'(n+ I,n—1,n— 1)+ d'(n + 1,n, n),
d'n+1Ln—1,n+d(n—1,nn—1)}.

Theorem 2.9 (Monotonicity Theorem). Property 2.1 holds under the conditions of
Theorem 2.7.

Proof. We prove the claim for m < n. The proof for m > n is similyar‘ Suppose that
G'(m, n — 1) is attained at k’. By (2b)

Gmny<d ' (mn k'Y + G k',m)+ G'EHK + 1,n). 4)
Adding and subtracting identical terms we obtain
Gmny<[d' ' (mn— LK)+ Gk, mj + G + 1,1 —1)]
+[GHY K + 1,n) — G YUK + 1,n— 1)]

+ [d" P (myn k)Y —d Y mon — 1, K)].
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Using (2b) and the definition of k’ for the first expression, (3) for the second, and (A1)
for the third, we obtain for every ke {m,...,k'}

G'mn) <[d ' (mn—1,k)+ G k,m)+ Gk + 1,n— 1)]
PG k4 1) — G ik + Ln—1)]
+[d" mon k) —d" T mon— 1, k)]
A o k) 4 G m) + G (ke + 1, )

If strict inequality holds for every k € {m,...,k’} then G'(m, n) must be attained at
some k > k'. If equality holds for some k < k' then equality must hold in (4) and
G'(m, n) is attained at k’. [J

Corollary 2.10. For fixed | > 1 there exist values kim,n), myn=1,...,N such that
G'(m, n) is attained at k(m, n) and

kim,n — 1) < k(m,n) < k(m + 1, n).
Proof. Follows from Theorem 2.9 by left-right symmetry. [

For completeness we will describe how Corollary 2.10 serves to reduce the amount
of computations from O(N*) to O(N?), using Knuth’s observation. The corollary
makes it possible to restrict the search for k(m, n) to the interval {k(m,n— 1), ...,
k(m + 1,n)}. Thus, for I fixed the minimum in (2) is computed in order of increasing
|n — m|, and the effort is proportional to

T (km + 1,n) — k(myn — 1) + 1)

m, n

=YYlkm+1m+1+r)—kimm+r)+1].

This is a telescopic series and for any fixed m all terms except for two can be cancelled
to obtain an overall complexity of O(N ?). Summing for / an O(N?) time is obtained.
In those applications where C is linear, the state variable [ is redundant and the
complexity is reduced from O(N?) to O(N?).

3. Applications

Many of the interesting applications to the search problem discussed in here are in
computer science where the search policy defines a binary tree associated with a code.
We will try to present more potential applications from other fields, and refer to the
computer science literature when a related problem is discussed there. We will
mention each case separately, but the conclusions are also valid for combinations of
the assumptions.
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Restricted number of queries. In this case there is an upper bound, L, on the number
of queries allowed in the search process. This bound may result from budget limita-
tions or from the fact that the object becomes useless after a while. This is a special
case of a convex function where C,,, and therefore also c,,, is “infinite” for { > L.
Knuth’s algorithm was extended to this case by Itai [12], Wessner [27], and Yao [28].
(Similar results for the related problem where the intervals can be re-ordered by the
searcher are also given by Garey [6], Hu and Tan [15] and Larmore [20].)

Travel costs (see, Murakami [24], Hu [14], Hu and Wachs [17], Hassin and
Hotovly [11]). In many cases of interest the searcher actually has to move to the point
in order to place a query. For example, Murakami [24] models in this way the search
for the recrystallization temperature of a metal, Hu [14] and Hu and Wachs [17] use
such a model for search for a record on a tape. Thus, in addition to search costs which
depend on the number of queries and tend to favor queries placed about the median of
the distribution, the travel costs favor a policy that places queries close to the
searcher’s present location. Let ;7 (t;7) denote a nonnegative cost of traveling from
i — 1toi(fromitoi— 1). Let D;; denote the cost associated with the travel from i to j.
Then, Dy =0, for i<j, Dyy=Y7_., 1, and for i > j, D;; = ZL:J.H 7, . Suppose
that the object is known to lie in {m, ..., n} for m < n. If the last query was at m — 1 the
cost to place the next one at kis D,,_; . If the last query was in n then the travel cost is
D,,. Defining D'(m, n, k) as the above travel cost function and multiplying by
Pmn Tesults in the associated function d'(m, n, k) as in (2). Unfortunately, this is not
a submodular function and (A1) is violated. To overcome this difficulty we reformu-
late the problem. We observe that to locate an object lying at i one has to place queries
both ati — 1 and i. Suppose m < n. Problem (m, n) assumes that the answers to queries
at m — 1 and n are known. Any solution to the problem includes the unavoidable
travel cost associated with the travel from the present locationm — 1toi — 1,if i # m,
and to i, if i # n. This cost is independent of the search policy. We now define the
problem excluding this constant from F. D(m, n, k) will now describe the expected
additional travel cost caused by placing the next query in k. Suppose first that m < n.
Such a cost is incurred only if k > i, where the object is in i, and is composed of the
expected extra travel including the return trip to the new far end of the interval
containing the object. Thus, D(m, n, k) = pu/Pmn(Dmk + Dim) + Z{.‘:mﬂr Di/ P
(Di + Dy ;—1). Applying the transformation to (2) we obtain for m <n,
d(m,n, k) = pp(Dpx + Dim) + Y.4_ ,  Pi(Di + Dy i), and for m > n, d(m,n, k) =
Pm(Dm-1,6 + Dim—1) + Z::kilpi(Diﬂ.k + D).

Lemma 3.1. (A1) and (AS) hold for the reformulated model with travel costs.

Proof. (A5)follows since the left-hand sides of (A5) are zero, while the right-hand sides
are nonnegative. Noting that d(m, n, k) is independent of n, submodularity of
d amounts to

dimnky—dm+ Lnk)y<dmnk+ 1) —dm+ 1,n k+ 1),
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for m < n (and similarly for m > n). Substituting d and cancelling terms the inequality
reduces to dpy + diw < dyp p+1 + di+ 1 m- This inequality is satisfied since 7/, >0

implies that d,;, < d, .+, while 7,7 > 0 implies that d;,, < dy,; ,,. LI

Deviation dependent costs. In many applications the cost of a query depends on
whether the “object” lies to its “right” or “left”. For example, a “query” above the
searched value may destroy the machinery used in an experiment (Cameron and
Narayanamurthy [3], Murakami [23], Hinderer [13]). In other cases the cost is
proportional to the sum of absolute deviations of the query points from the object’s
location (Baston and Bostock [2], Alpern [1]). More complex cost functions may be
involved in determining the optimal dosage of some medicine (see, Eichhorn and
Zacks [5], Eichhorn [4]). Hinderer [13] proved the monotonicity theorem for the
direction-dependent costs. We now show its validation for the more general case.

Let R(i, k) > 0 be the cost associated with a query placed in k while the object is
located in i. Then D'(m,n,ky=3._  R(i, k)pi/pm. for m < n, (and similarly for
m > n). Thus d'(m,n, k) =Y ._  r(i, k), where r(i, k) = R(i, k) p;. We make the
reasonable assumption that for | fixed R(i, k) (and therefore also r(i, k)) is unmimodal in
k with a minimum R (i, i} = 0. This corresponds to a monotonicity of the costs with
respect to the deviation of the query from the actual location of the object.

i=m,

Lemma 3.2. In the model with deviation dependent costs, d* satisfies (A1).

Proof. Let (m;, n;, k) e &, i= 1,2 be given. Let d = d', and assume, without loss of
generality, that k; > k,. By the left-right symmetry of the assumptions we also
assume, without loss of generality, that n; > m;, i = 1, 2. Assumption (A1) reduces to

max (ny,ny} ny
Z r(i, kl)_ Z r(i7 kl)
i=max{my,my} i=my
ny min{ny,nz}
< Y rliky) — 2 rii,k2). )
i=mj i=min{my, ma}

Suppose first that m; > m, and n; > n,. (5) holds since both sides are equal to zero.
Suppose now that m; > m, while n; < n,. (5) becomes

na

Z r(i,kl)g Z r(i, kz)
i=ng+1 i=n 41
(5) holds also in this case since the unimodality assumption of R implies
r(i, ki) <r(i, k) foreveryie{n, +1,...,n,}.
Suppose next that m; < m,. (5) becomes

max {n1,nz2} ny na min{ny, nz)

Y k)= Y rGk)< Y rGk)— Y rlik).

i=ms i=mi i=mj i=my
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If ny = n, it becomes

my—1 mz— 1

- ¥ rlik) s = % k)

i=my

In this case we have k, > k, > m, > m, and the inequality holds by the unimodality
assumption of R. If n; < n, the inequality becomes

2 L] na my

Z r(i’kl)—.z r(lakl)gz r(iskZ)_‘Z r(is kZ))
or
n2 ma—1 ny my— 1
S orky) - Y r k)< 2 k)= Y r( k).
i=n;+1 i=m i=n+1 i=my

In this case our assumptions amount to m, < m, < k, < k; < n; < n,, and it follows
from the unimodality assumption that r(i, k,) <r(i, k,) for i=n, + 1,...,n, and
ri, ko) <r(@ ky)fori=my,....omy— 1. [

Lemma 3.3. In the model with deviation dependent costs, d' satisfies (A5).

Proof. In this model d(m, n k)=d(n,mk). Hence, (AS5.1) reduces to
dh—1nn—1)<dn—1,n+1,n—1), and dn,n+1,n<dn—1,n+ 1 n)
These inequalities follow since for m < n, d(m, n, k) is nondecreasing in n. (A5.2)
follows from similar arguments. {J V

Position-dependent query costs (Wachs [26]). Here the cost of placing a query varies
according to the position of this query. For example, a query may require drilling in
the specific position, and the terrain’s hardness may be different in each point. Wachs
{267 deals with such a situation, motivated by the problem arising in search on
a sequential access file or tape. The monotonicity property is proved there for
a restricted case.

The application of Theorem 2.7 to this case is straightforward. Let
d'(m, n, k) = d'(k). Then (A1) and (A5) hold with equality.

Geometric distribution (Hassin [10]). Suppose that D'(m, n, k)= D'(m + 1,
n+ 1,k + 1) whenever these terms are defined. This is the case in most of the
above-mentioned applications, where the costs depend only on the location of the
query relative to the current interval of uncertainty. Assume further that {p;} is
a truncated geometric distribution, i.e., p; is proportional to p’. (Hassin [10] describes
several applications where this assumption holds.) Then, Problem (m, m + j) is inde-
pendent of m, and

kimym+j) < k(mm+j+1)=1+kim—1m+j)<1+kimm+j),
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where the inequalities follow from Corollary 2.10 and the equality is immediate from
the above assumptions. Denoting by k(j) a value where Problem (m, m + j) is
attained, we conclude that

k(j+ 1) e {k(j), k(j)+1}.

The result is an O(n?) algorithm for (1), which becomes linear if D' is independent of L.
Hassin [10] proved an analogous result for a restricted case.

Parallel search (Gotlieb [9]). In this case there are L searchers and each of them
may place a query at each stage of the search process. These queries are evaluated
simultaneously and as a result a new interval of uncertainty is obtained and a new set
of up to L queries is placed. We assume that each stage takes one unit of time and that
the cost associated with locating the object is C per stage. One possible way to solve
the problem is by defining F(m, n) to be the cost of the (m, n) problem and then

F(m, m) =0,
Fmn)=C, m+ L>n,

and form<n-— L

L
F(m, n) = min {c+ ZMF(k,-H,km)}.
kg=m<ky < o <kpyy=n i=0 Pmn
It is more efficient however to compute the optimal assignment of searchers in a given
stage sequentially, deciding at each stage on the assignment of the next leftmost
searcher. Let | be an index denoting the number of searchers that were already
assigned. Let F'(m, n) (0 < | < L) denote the expected cost needed when [ queries were
already placed outside the interval of uncertainty {m,...,n}. Then F'(m, m) = 0, and
form<n

F'"Y(m,n)=5,+ min {@Fg(”(m, k) + Prtin F"Ok + 1, n)}, (6)
m<k<n {Pmn Pmn

where 6, = C if I = 1 (mod L), and §, = 0 otherwise, g(I) =] I/L7]L, and h(l) = L

As stated, the complexity of the algorithm is O(n*). However, realizing that
F!= Ftmed) it is sufficient to solve for I = 1,..., L, and the complexity is O(n*L)
(where it is assumed that L. < n). One can follow the inductive proof of Theorem 2.7 to
see that the theorem holds also for this case (with d'(m, n, k) = &, p,., being modular,
and ¢ = 0). We did not present the theorem in a more general way because it requires
a substantial complication of the notation. The complexity reduces consequently from
O(n’L) to O(n? L). We note that the decision in (6) is where to locate the next leftmost
query in the present stage. It can be replaced by a decision of where to locate the
middle one among the remaining queries in that stage, substituting g (/) and h(!) by
| (g(1) +1)/2 | and [ (g(!) + 1)/27, respectively. (To see this, note that the remaining
number of queries in the present stage is g(/) — [, and dividing this number equally for
the intervals on the left and right of k leaves for each interval the above-mentioned
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number of additfonal queries in the present stage.) Consequently, the complexity is
reduced to O(n*log L) (see Gotlieb [9] for details).

4. Proof of the main theorem

Notice that for a given | € {0,...,N — 1}, G' is defined over a lattice #* = {(m, n):
mne{l,.. ,N},Im—n|<N—1}

Lemma 4.1. Let [ € {0,...,N — 1}. Suppose that for all m, n such that (m + 1, n) and
(m,n + 1) are in &'

Gm+1L,n+1)—G'(m+ 1,n <G'(mn+ 1)— G'(m,n).
Then for all a, b > 0 such that (m + a,n) and (m,n + b) are in £,

G'm+a,n+b)— G'(m+an <G'(mn+ b — G'(mn).

_Proof. By the assumption G'm+1Ln+j+1)—G'm+ L,n+)<G(mn+j

+ 1) = G'mn+j)forj=0,....b — 1. By summing both sides of the inequality over
all values of j=0,...,b—1 and after cancelling identical terms we get
G'm+ L,n+b)— G'(m+ 1,n) < G'(myn+ b) — G'(m,n). Thus, G'(m +i,n+b)
-~ G'm+i,n<G'm+i—1,n+b)—G'(m+i—1,n for i=1,...,a. By sum-
ming both sides of the inequality overi = 1, ..., a, and after cancelling identical terms
we get G'(m+a,n+b)— G'm+a,n) <G'(mn+b)— G'(mn). O

Proof of Theorem 2.7. Noting that the claim and assumptions are symmetric with
respect to m and n, it 1s sufficient to prove the claim for m < n. Ifeithera = O or b = O then
(3) is an identity. By Lemma 4.1 it is sufficient therefore to prove (3)fora =5 = 1,1e,,

G'(mn)+ G'(m+ L,n+ 1)< G'(m,n+ 1) + G'(m+ 1,n). 7

The claim is trivially valid for [ = N — 1 since G¥™! is defined for m = n (and
therefore, a = b = 0) only. We continue with induction on . Suppose the claim is true
for some | (3 <1< N — 1). We distinguish three cases.

Case 1: m <n— 2. Letk, and k, solve G'"*(m, n + 1) and G'~ ' (m + 1, n) respec-
tively. We prove this case for k; > k,. A similar proof can be given for k; < k,. From
this assumption it follows that k, > m + 1 is a feasible choice for the (m + 1,n + 1)
problem, while k, is a feasible choice for the (m, n) problem. By (2b)

G 'mn+G " 'm+ 1L,n+1)
<d'(m,n ky)+ G'ky,,m) + Gk, + L)+ d'(m+ 1,n+1,ky)
+ Glky,m+ 1)+ Gky + 1,n+ 1)
<d'm+ 1,nky)) + G'kyy,m) + Glky + L,n) + d'(m,yn + 1, ky)

+ G'ky,m+ 1)+ G'(ky + 1,n + 1),



232 R. Hassin, M. Henig

where the last inequality follows (for ky > k) from (A1). By the induction assumption
Gtk + Ln)+ Gk + L,n+ 1) < G'(ky + L,n+ 1) + G'(ky + 1, n),
hence
G lmny+ G 'm+1Ln+ D<dmn+ 1L,k)+ Gllky,m+ 1)
+ Glky + 1,n)+ d'(m + 1,n, k)
+ Glky,m) + G'ky + 1,n + 1)
=G 'mn+ 1)+ G Hm+ 1, n),

where the equality holds since we assume m < n — 2.
Case2: m=n— 1.By(2a),G'"'(n,n) = ¢,_ ,. Denote d'(n) = d'(n,n + 1, n). By 2b),

G "'mn+ 1)=d'n+G'nn+Gn+1,n+1)
=d'(n) + e + Clns1s (8)
G'''n—1,m=d'n-1D+G'n—1,n—1)+ G'(n,n)
=d'n—1)+c 1+ Cm 9)
and
G ln—1n+1)
=min{d'n—-Ln+Ln—1)+G'n—-1Ln— 1)+ G @nn+ 1),
din—1Ln+1Ln+G'mn—1)+G'n+1,n+ 1))
=min{d'n—Ln+ Ln—1)+d () +crp-1+Cutnt Cotntts
| din—Ln+1L,n+d " "mn—-1,n-1)
+ Clotm1F Crrn+ Conir ) (10)
Adding (8) to (9) we have
G'"''n—1L,n+ G " *mn+ H=dm)+d'(n—1)+ ¢ -1
+ 2€1n + Ciinv1
<d'm)+d'n—1)+ ¢y + Carm
+ it t Cnt s (11)

where the last inequality follows from (A3). Using ¢; ,+1 < ¢;41,,+1 (by (Ad)) and (A2)
we obtain that
G 'n—1Lm+G 'mn+ H)<d'n—1,n+1,n—1)+d" ' (n
+ Cn-1F Crin,n

+ Cit,nt1 T Ci—1,n- (12)
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Similarly, using ¢, ,— ; < ¢4 1,1 (by (A4)) and (A2) we obtain that
G 'n—1L,n+ G ' n+ ) <dT mn—-1,n-1)
+d'n—1Ln+1L,n)+¢ 4
+Citnt Cletn-1+ Cotn- (13)
By (12) and (13),
G'"'n—1L,nM+ G  '(nn+1)
<min{d'n—Ln+1n—10)+d* ")+ clp1+ i1t Cotntis
A ' inn—-1L,n—)+dn—-1n+1n
+Cner + Cernt Gt} + ot
=G 'n—1,n+ 1)+ G'" (n,n),

where the equality follows from (10).
Case 3: m = n. It is obvious that (7) is valid since by (A4),

G'(m,m) = Cim < Cly1m + Cr1,me1 < GHmym+ 1),
and similarly

G'm+ 1,m+1)<G'(m+ 1,m). O
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