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Okamura and Seymour recently proved two properties of multicommodity flows in
undirected planar retworks where all the sources and the sinks are on a common face
of the underlying graph. One is that a feasible solution is guaranteed whenever each
cut’s capacity is at least as large as the cut’s demand. The second is that if all demands
and capacities are integers then the flow values may be chosen half-integer-valued. In
this paper we use the first property to construct two computational procedures; one
examines the existence of a feasible flow, and the other constructs such a flow if one
exists. We also show that the construction procedure can be ysed as an alternative
proof to the above properties. Finally we show, by presentin%unterexampley, that

the half-integrality property does not necessarily hold when eithes-thegraph-cannot-be.
drawn in.the plane with allsources.and sinks on.a.commenface-es the graph is directed.

I. INTRODUCTION

Okamura and Seymour [7] recently proved two properties of multicommodity flows
in undirected planar graphs where all the sources and the sinks are on a common face.
One is that a feasible solution is guaranteed whenever each cut’s capacity is at least as
large as the cut’s demand. The second is that, if all demands and capacities are integers,
the flow values may be chosen half-integer-valued. Similar results were discovered long
ago for two-commodity flows in general graphs {2, 9, 11] and used to develop an algo-
rithm that constructs two-commodity flows [2]. In this paper we use the results of
Okamura and Seymour to develop two computational procedures concerning networks
of the type considered in their paper. One procedure checks the existence of a feasible
solution in O(n? log n) time, the other constructs such a solution in O(n*) time where
n is the number of vertices in the graph. Then we show how the construction pro-
cedure supplies an alternative proof to the feasibility theorem. Finally, we show that
the half-integrality result cannot be extended to the cases where either the graph can-
not be drawn in the plane with all sources and sinks on a common face or the graph is
directed.

Several other authors used feasibility and integrality theorems to develop network
flow algorithms. For example, Rothfarb and Frisch [8] presented a theorem and an
algorithm for three-commodity graphs with no internal vertices, and Sakarovitch [10]
treated “‘completely planar” graphs (sce also Kennington {4]). Further discussion on
this subject can be found in the survey of multicommodity network flows [4].
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il. MATHEMATICAL FORMULATION OF THE PROBLEM

Let G be a finite directed graph without loops, and let (s, £1), .. ., {5k, tx ) be pairs
of vertices of G. Suppose that each edge e € £ has a real-valued capacity w(e} = 0 and
that g, k=1, ..., K are real-valued demands. Suppose also that G is planar and can
be drawn in the plane so that sy, ..., $x, 1, ..., tx are on a common face of G.
Without loss of generality, we assume that this face is the exterior face of &, and de-
note the set of edges and vertices of this face as the boundary of G. Foraset X C V,
let 3(X) C E be the set of edges with one end in X and the other in V=X, let D(X) =
{1 <k <K, |{sy, tx} N X[ =1}, and let A(X) = Z,ea¢x) w(e) - Zxepx) dx- The
following theorem was proved in [7]:

Theorem 1. Statements (1) and {2) are equivalent:

(1) For k=1, ..., K there is a flow F}, from s, to ¢, of value gy, such that, for
eachedge ¢ € E, Z, |F.{e)l < wl(e).
{2) Forevery X C_V, A(X)=0.

Moreover, if 91, ..., gx and w(e), e € F, are integers then the flow values Fy{e) may
be chosen half-integer-valued.

Examination of (ii) is practically impossible since 2!V sets must be considered.
Lemma 2.1 of [7] reduces the number of sets by stating that (3} is also equivalent
to (1)

(3) Assume (without loss of generality) that G is connected. Fareach X € V such
that the subgraphs G|X and G|V ~ X are both connected, A(X)=>0. (G|X denotes
the result of deleting all vertices in ¥~ X and their incident edges.)

However, the computational work involved in checking this condition is still pro-
hibitive. In this paper we describe a procedure that efficiently examines (1) by check-
ing only O(|V[*) sets. Then we propose a polynomial-time algorithm that constructs
the flow function, if one exists. We note that the proof of Theorem 1 in {7} is con-
structive in the sense that it includes a procedure that constructs the flow. In each
iteration of this procedure one unit of flow is sent through one edge and two new com-
modities are created. Our method uses this idea but in a more efficient way.

I, FEASIBILITY EXAMINATION

Suppose that G is drawn in the plane so that sy, ..., 8k, 1, ..., [x are on its bound-
ary. Denote by BCE and Vg € V the sets of edges and vertices of this boundary,
respectively.

Figure 1 describes a multiple-source dual graph G of a graph G. It is defined simi-
larly to a reguiar dual graph (see [1, 3, 6]) with the exception that a distinct source
vertex is defined in the exterior face for each edge in B. The set of sources of G2 wilt
be denoted by S. In Figure 1, G and G? are described by the solid and broken lines,
respectively.

Consider a pair of sources f,j € S¥. There are many different paths connecting f and
jon GPand cach of them partitions ¥ into different subscts (X, ¥ - X). However,
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the value of zkED(X) qx is identical for all the sets X formed this way. Therefore, to

find the minimum value of A{X") among all these sets, it suffices to find the minimum
value of Zogacx) w(e) among them. This is simply the length of the shortest i-f path
on GP (as described in [3], the length of an edge in G7 equals the capacity of the
corresponding edge in ). Denote the minimal value of A(X} among the above sets by
Ay Noting that every set in (3) defines an i~f path on G? for some i, €SP, we have
established the equivalence of (1) to the following statement:

{(4) Foreveryf,j €87, Ay =0,

Condition (4) can be checked as follows: Let the vertices of Vg and S° be indexed
in clockwise direction (mod [B]) as in Figure 1. For every u and v in Vj let q,, be
equal to the demand g, of the commodity k with {s, ¢, } = {u, v} if such a commod-
ity exists (without loss of generality we assume that 1f such k exists then it is unique).
Otherwise, let g, = 0. Let Ay, =ZV20 0, Gur - Er —v Qur then A, ,oq = Ay, + 2qy,
so that 4, can be computed in O(|B|?) time for all v and v in V. Foreveryiand j
in §7 let Oy = i i E’_, Quv, then Qpy ;= @y + Ay so that Gy can be computed in
O(|B*) time for all #, j € SP. The lengths dy; of the shortest i~/ paths can be computed
for all i~j pairs, by applying Dijkstra’s algorithm 18| times, in O(|B YV log {V]) time.
Finally, the values of Ay can be computed by subtracting Qy; from dy;. Therefore the
overall computational effort needed is of order O({Bl[V]log IV]). If K <|B] this
bound can be replaced by O(A |F]log [F]), since an cquivalent graph whose set of

boundary vertices is {sy,..., Sx,1,..., tx} can be formed by suitable additionat of
edges with zero capacity.

IV. CONSTRUCTION OF A FEASIBLE MULTICOMMODITY FLOW

In this section we describe an algorithm that constructs a feasible flow, if one exists.
Before presenting the algorithm, we outline the main ideas underlying it and prove

two lemmas that are nccessary to compute flow values while preserving the feasibility
conditions,
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In each iteration of the algorithm a commodity & € {1, -+, K} and a boundary edge
€ € B are selected. Then § units of &-flow are sent along e, To attain feasibility it is
necessary that § units of k-flow be sent from s, to one end of e and from the other
end of e to ;. Suppose ¢= {g, b} and the order of the nodes on the boundary is
Sk, 4, b, ty. Lemma 1 claims that we can restrict ourselves to solutions in which these
& units will be sent from s, to  and from & to t,. Therefore the following transforma-
tion is made: w(e) and g are reduced by 8, and two artificial commodities with g = §
are introduced, one with its source at §; and its sink at @, the other has its source at
b and its sink at ¢,. The flows of these commodities will be considered at the end of
the computations as k-flows,

Lemma 1. Let e €8 have ends ¢ and b, so that the orderon Biss,,a, b, ;. Thena

multicommoedity flow exists if and only if one exists with no k-flow directed from
btoa

Proof: Consider a solution with k-flow directed from b to a; then there must exist
a cycle of &-flow such as the cycle c-b-a shown in Figure 2. A feasible flow with no
k-flow directed from b to @ can be obtained by repeatedly reducing F, «(8) by mine ¢
Fy (1} for every edge € of such a cyele C. u

After all commodities and boundary edges are chosen, the boundary edges are de-
leted from the graph. The resulting graph is also planar and all source and demand
vertices are on its boundary. To simplify the computations, boundary edges that be-
come surrounded by the infinite region are deleted after flow is determined in them in
the obvious way. This is done in Step 1 of the algorithm.

The main part of the algorithm is devoted to the computation of the maximum
k-flow that can be sent through e € B without violating the feasibiiity requirements.
The next lemma showshow to do it efficiently. Consider the set # of all subsets X C ¥
such that the subgraphs induced by X and V - X are connected. Fore= {a, b} €8
and k € {l,...,X} define f(e, k) to be the set of all X € A such that X N {a, b} # ¢
and X N {5, 1.} = ¢.

Lemma 2: Consider the following transformation: w(e) « wie) ~ 5, g, « qy - 5,
Qx+1 ¥ 8, griq <86 where K+ 1 and K +2 are new commodities with Skay = Sk.
fk+y =8, 5k = b, tgaa =ty Then A(X) decreases by 26 for X C H(e, k) and re-
mains unchanged for X C H - H(e, k).
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Proof. We consider five types of sets X C H as illustrated in Figure 3 (all the other
possible cases are equivalent to one of these five, as far as our lemma is concerned):

(I) Suppose that a, b, sy, and f; are all in ¥ - X, then no g4, k € D(X) or w(e),
e € 8(X), is changed and so A{X) is unchanged.

(II) Suppose that X separates #; from g, 4, and & In this case X €D(X) and (K +
2) ED(X) so that § is subtracted and added to Zic p(xy ¢4 Since also e & 3(X), ACX)
is unchanged.

(IT) Suppose that X separates fx and b from 5, and 2. Here ¢ € 3(X) and Z,g3(x)
w{e) decreasesby &, However, also Ziepex) q; decreases by & since {k, K+ 1, K+ 2} C
D(X), so that A(X) is unchanged.

(IV) Suppose that X separates ¢ and b from s and #y, then e & 3(X), k & D(X),
K+1€D(X),and K + 2 € D(X) so that A(X) decreases by 25,

(V) Suppose that X separates b from a, s, and t;, then e € 3(X), k € D(X), K +1 &
D(X), and K +2€D(X). Hence both Z.cycxy we) and Ziepx) 4; decrease by 8,
50 that A(X) decreases by 25.

Since the sets X € H(e, k) are of the types described in IV and V, the lemma is
proved. =

Suppose that (4) holds, so that a feasible multicommodity flow exists. Denote the
maximum value of k-flow which can be sent through e € B by 8(e, k). Then 8(e, k) =
min {w(e), g, {min § AX), X €H(e, k)}}. As a matter of fact, from the discussion
in Section III it suffices to consider only the corresponding values of Ay. Suppose
that G is drawn as in Figure 3, and consider the vertices in S° which correspond to the
edges in B on the lower path connecting s, and #,. Lets, be the vertex corresponding
to e and let §;, (Sg) be the set of vertices which correspond to edges between s, and
2 (b and t,). Define H(e, &} = {(i, Nli,; €SP s.t.i €8, andj € Sp, 0ri = 5 and
]ESL ﬁSR} Then

(5) 8(e, k)= min {w(e), qx, min {3 A;|(G,/) € He, OP.
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FIG. 4.

Consider the graph of Figure 4(a) where ¢, =2. If edge e = {2, 3} is chosen first
then § =2 and after the transformation we obtain Figure 4{b) with g, =2. For the
same edge and & = 2 we obtain again & = 2, which means that this quantity is reshipped
to node 3, and the process may be repeated until some A(X ) such that e € 3(X) becomes
zero, To prevent repeated shipments of a commeodity in opposite directions, Step 2 of
the algorithm reduces each wA{e) e © B as much as possible, without violating the feasi-
bility requirements.

Multicommodity Flow Algorithm

Step 0. (Initialization)
Fork=1,....K:
Set Fy {(a,b) < Qforeverya, b E ¥,
Qijie * i ifi=5, andj =14, and g4 + O otherwise.
(The variable g denotes the amount of k-flow which must be sent from { to j.)
Step 1. (Deletion of edges surrounded by the exterior face)
(i} If £ = ¢, stop {F is a feasible flow),
Set B + set of boundary edges of (£, V),
Vy < set of boundary vertices of (&, ¥).
(it} Find e = {g, b} € B such that no other edge of B has one of its ends ina, Ifno
such edge exists, go to 2.
SetB+~B-e, E«FE-e.
(iii) ForeveryvEVgandk=1,...,K:
Set Qook * Gpure T qauk,Fk(av b) "'Fk(fz: b) * Quvkr Qovk < Guor T Quak,
Fi(b,a) < Fi (b, a) + Guar, W(e) < W(€) = Qauk ~ Quak-
(iv} If w(e) <0, stop (no feasible solution exists),
If B =g, go to (7). Else, go to (#).
Step 2. (Capacity reduction in boundary edges)
(i) Set G « dual multisource graph of (£, V), S2 « dual source nodes, £« £ - B.
(ii) Foreveryn esP.
Compute An; foraillj €82 - n.
Set e « edge in B that corresponds to n, w(e) < w(e) - mm - Ay
Ifw(e) <0, set B+ B~ ¢and w(e) « 0.
Set A,y + A,y - min {mm'esD nj» W(€)} forevery i€ SP ~ n.
(Note that A,; = Ajy and it is understood that only one vajue is stored and modified.)
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Step 3. (Flow construction in boundary edges)
IfF=¢,potol.
Set P+ {(u, v)|lu+#v,u € Vg, vE Vg, and g, > 0 for some k}.

() IfP=¢,goto 1.

Choose (u, v)EP.
Set P+ P-(u,v), 0« {kigu >0}, and B « B.

(i) If B’ = ¢, go to (i).
Choose ¢ €EB and set B' « B' - e,
Denote the ends of e by (g, b) so that the order on the boundary is (i, v, 2, b).
Set H « H{e, r), where r is assumed to have 5, =u and ¢, = v,
Set & < min {w(e), min {3 Ay(, ))EH}.
If § =0, go to (ii). _
Set A< Ay - 2 min {5, E,ﬁl Guur } forevery (i, ) €H.
[The quantity min {8, Zq,,} is the total flow to be sent through e during the
following executions of Step 3 (iii). Every 4/, /) € H will be reduced by twice
this quantity, as shown by Lemma 2.]

(i) 1 Q = ¢, go to ().
Choose k & Q and set " + min {gy ok, 5.
Set Guar + Quak + 8y Qouk © Qo T8 Quok < Guok ~ 8, wle) < w(e) - &',
Fi(a, by« Fi(a,b)+8  and 6 « & - 8",
g =0set@«Q-k
If & =0, go to (ii). Else, go to (iii).

Theorem 2. If qy, ..., g, and w(e) € £ are all even integers, then the algorithm pro-
duces an integral solution.

Froof. Clearly all A(X) X © ¥ are initially even. We must show that § is always in-
tegral, or equivalently that all ACX) remain even and all ¢ and w remain integral.

The changes in ¢ and w in Step 1 do not effect A and change some g values by in-
tegral amounts.

In Step 2, both A and w values are changed by min_ 0 Ap;, which is by our assump-
tion even. =

In Step 3, w and q values are clanged by & and A values are decreased by 28. There-
fore, if all g’s and w’s are integral and all A’s even, § is integral and the above properties
of the g’s, w’s, and A’s are preserved. ]

Validity of the algorithm results from Theorem 1 through the computation of 8(e, k)
by (5). An edge e € B is removed after either its capacity becomes zero or §(e, k) =0
fork=1,...,K, since in both cases no further flow augmentation is possible in this
edge. However, the algorithm can be used to give an alternative constructive proof of
Theorem I:

As in [7] we use induction {£|, noting that the theorem holds for [£] = 0. [t suffices
to prove, therefore, that if, for some e € B, 6(e, k) =0, k= 1, ..., K, then e can be
removed from E without violating (4). Let n € §2 correspond to e. Setting wie) «
[w(e) ~ minjesD Ap;lT does not violate (4). We claim that now w(e) = 0 so that e can

be removed from £. To prove this claim we show now that the following assumptions
lead to a contradiction:
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FIG. 5.

Ay20  foreveryd,j ESD,

by = for somejESD -n,
6(e,k)=0 fork=1,... K,
w(e) >0,

Let us choose vertex m from among the vertices of S for which A, = 0 to be the
one that is closest (from the left) to n. Since w(e) > 0 and A,,,,, = 0 there exists at least
one commodity k with positive demand, such that its source and sink are on different
sides of every path connecting # and m. Choose the one with the closest (from the
right) source or sink to b. Since 8(e, k) = 0, we conclude from (5) that there exists
(i, /Y€ H(e, k) with Ay =0. By our choice of m, Ay, > 0. The shortest i~f and n-m
paths on G partition ¥ into four subsets Xy, X2, X5, 2nd X, as illustrated in Figure
5. Note that X, is not empty since A;; >0 and Aj;; = 0 so that n # .

Let @y, equal the sum of g, over all commodities  with s, € X,, and ¢, € X, or
5, € X, and 1, € X,. By our choice of k, 0,4 = Q44 = 0. Since A, =0 then 03 +
023 = 21ea(x,ux, ) W(t), and since Ay = O then Q1o + Qua + Qa4 = Zrcacx,uxq) W)
On the other hand, A;, > O implies Q1 + Q13 < Zigpcx,) w(f) and Ay 2 0 implies
Qs + Qs + Q38 < Zpep(xq) W(t). Since

ZoownE X wnE X ownt 2w

tEA (XU X5) 1E3(X1VXe) tSa(Xy) tE3(X3)
a contradiction obtains.

V. COMPLEXITY ANALYSIS

Denote by B4, B, ..., the sets B formed in Step 1(i). Clearly Z|B;|< |E].

Step 1(iii) is executed for every v € ¥g and k= 1, ..., K whenever an edge sur-
rounded by the infinite region is located. Thus the complexity of this step is Q(K |B;1)
for each of these edges and altogether at most O(|£|*) = O(|¥|*).
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Step 2(ii) is executed for every n € §°, ie., Z|B;] times. Each execution requires
computation of the shortest path from a given n € §2 to all other vertices in 2, which
takes O(|V]log |V]). Hence the overall complexity is O(iV[* log [V]).

Step 3(if) computes & for every e € B;. Computation of § requires O(|B8;!) opera-
tions, so that for u and v fixed this step requires O(|3;1*). Each execution of Step
3(iii) decreases either ¢, for some k or & for some e € B, to zero. Therefore, for i
and v fixed this step requires O(max {K, |B;{}). The overall time consumed by Step 3
is therefore O(max {K Z[B;[?, Zi8,1*}) = 0({V'[%).

We conclude from the above discussion that the complexity of the algorithm is
oIV 1*).

VI. COUNTEREXAMPLES FOR POSSIBLE EXTENSIONS

In [7] it has been shown, by a counterexample, that Theorem 1 cannot be extended
to general planar graphs. In this section we show, by presenting a counterexample,
that also the integrality theorem for input consisting of even integers cannot be ex-

-3
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tended to general planar graphs By asecond counferexample we show that-this-ins.
iegralityresult does-not-apply 1o directed networks even when the graph is planar and

all of the pairs (s;, t;) are on a common face of G.

veaple 1. The graph of Figure 6(a) is planar but cannot be drawn on the plane y

Example 2. The graph of Figure 7 is directed, planar, and drawn with sy, ¢4, 52, and
t; on the boundary of its infinite region. It was inspired by an example of Jewell [5].
We assume that gy =3, ¢, = 1, and each edge has one unit of capacity. Suppose that
4 > =0 units of 2-flow are shipped from s, to the right and 4 - # to the left. Consid-
ering only simple paths, the 2-flow solution is uniquely determined by r. It follows
that no more than 3(1 - r) units of 1-flow can be shipped from 5, to the right and no
more than 3r to the left. However, it is clear that one unit of 1-flow must be sent

FIG. 7,
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from $; to the right and two units to the left. Thus2<3rand 1 <3(1 - #) in every
feasible solution, implying that a unique feasible solution exists, with r = ~§—
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