The Swapping Problem
.| SHOSHANA ANILY

Facuity of Management
~ Tel-Aviv Unijversity

Tel-Aviv 699 78

Israél

o REFAEL HASSIN
School of Mathemanca! Sciences-
Tel-Aviv University
Tel-Aviv 69978.
lsrael

Each vertex of a graph mltlally may contaln an object of a known type A ﬁnal state, .
specifying the type of object desired at each vertex, is also given. A single vehicle of

-unit. capacny is available for shipping objects among the vertices. The swapping prob-

'lem is to compute a shortest route such that a vehicle can accomplish the rearrangement

of the objects while following this route. We exhibit several stguctural prapert:es of

shortest routes and develop polynamial approximation algorithms that are variations of

a well-known “‘patching’” algorithm for the traveling salesman problem, We prove tight

constant performance guarantees for these algorithms and note as a side producl that .
these bounds hold and are tlght also for thé latter problem.

lNTRODUCTION
Let G = (V, E) be 4 (complete undlrected) graph w1th a Iength functlon
c:E— R..Let § ={1,. .., m}be aset of ‘‘object types.”” An object: of typej -

is called aj-object: Bach vertex v € V is associated with two numbers @, and b, , -
where the first denotes the type of the object currently at v while the latter is the
desired ﬁnal type of object at v. If a vertex v is initially empty, we set a, = 0 and
say that v contains a 0-object. Similarly, if v is emipty in the desired final state,
then b, = 0. We assume that for each object type j, the number of vertices .
mlttally contammg a j- object equals the number of vertlces where such an
object is desired.
The objects are shipped by a smgle vehicle of unit capac1ty startmg and
termmatmg its route ata glven vertex (the depot) The theorems and algorlthms

NETWORKS, Vol 22 (1 992) 419--433 7 o o . T
©-1992 by John Wiley & Sens, ing. - . ccC 002873Q45I92/q40419-1 5$04.00

420 ANILY AND HASSIN

¥

presented below can be adapted, with minor modifications, to the case where
the departure and destination points are distinct (see Hoogeveen [6] about
possible implications of this assumption).

The set of objects § is partitioned into two subsets: S = S, U §,. The objects
in S, can be temporarily stored at intermediate vertices on the vehicle’s route.
Thus, the vehicle may unload such an object in order to reload it later. Such an
action is called a drop. For objects in §,, no drops are allowed. In many
practical situations, one of the sets §; and .S, may be empty (see, e.g., [1]). The
above presentation generalizes the two subcases and also allows unification of
some of the resuits.

A walk is a sequence of (not necessarily distinct) edges W = (v;, v,
(vy, v3)y -+ ., (U, Uka), Where v) = vy . In contrast to the common definition
of a cycle, the starting point of a walk, v, is a distinguished vertex of the walk
(corresponding to the depot). A feasible solution is called a route. It consists of
a walk and an assignment of exactly one object type to each of the walk’s
edges. This assignment must be such that the object of the prescribed type is
available at v; while the vehicle starts moving along (v;, vi+1), and the final state
obtained conforms with the desired final state. A walk may use an edge of G
more than once. However, when we refer to an edge (u;, vi+)) € W, we specifi-
cally mean the use of this edge as the i-th edge of W. Similarly, each vertex v; of
W corresponds to a vertex of v € V, but we specifically refer to v; as the visit of
v made in between the / — 1-st and i-th edges of W. _

The length of a route is the sum of lengths of its edges. The swapping
problem is t0 compute an optimal route, i.c., a route of minimum length, The
simple swapping problem is a special case with two types of objects. In this -
case, V= UU W, where |U|=|W|,a,=1b,=2forallve U,and a, = 2 b, =
1 for all v € W. For simplicity, we have assumed that each vertex contains,
both prior to the swapping and after it, at most one object. The results of this
paper can be easily extended to the more general case by considering duplicates
of vertices at zero distance.

A simple example may serve to illustrate that drops may be used to improve

the solution.

Example 1.1 Let V = {1, 2, 3, 4}. Suppose that the vertices lie in the plane as
corners of a unit square in the cyclic order 1,2,3,4. Leta, = by = 1, a; = b =
2, a3 = by = 3, and a;= by = 4. Thus, the problem requires two swaps:. one
between vertices 1 and 2; the other between 3 and 4. To form a route, these
swaps must be connected. Suppose the depot is at vertex 1. A shortest route
without drops is 1 — 2 — 1 ~4 — 3 — 4 — | and its total length is 6. A better
solution exists if we allow drops; starting at vertex 1, the 1-object is shipped to
4 and dropped there, then the objects at vertices 3 and 4 are swapped, the 1-
object is reloaded and shipped to’its destination at vertex 2, and the route is
completed by shipping the 2-object from 2 to 1. The resulting route is 1 — 4 — 3
— 4 ~ 2 — 1 has a total length of 4 + V2, :

We find it heipful to employ the terminology that refers to the underlying

THE SWAPPING PROBLEM 421

““physical’’ problem. Thus, we may say that a route “*passes’’ through a vertex
or that the vehicle *‘loads’’ or ‘“‘ships’’ an object, etc.

Throughout this paper, we assume that the length function ¢ obeys the trian-
gle inequality:

Assumption 1.2. For every triplet of distinct vertices v, v, w € V,
CHU + CUH' a CHI!"

Remark 1.3. Even the simple swapping problem is NP-hard. To verify this
observation, consider an instance of the traveling salesman problem (TSP).
Replace each vertex v by a pair of vertices v’ and V' ay = b, = 1, a, = by=12
and cy = 0. For each pair u, v, set the edge lengths ¢, ,, = Corn® = Corur = Cop
equal 1o ¢y, . Clearly, an optimal route for this swapping problem is also an
optimal tour for the TSP instance.

In this paper, we characterize the structure of optimal solutions for the
swapping problem and develop polynomial approximation algorithms with
bounded worst-case performance ratio. This ratio is defined as the supremum
over all problem instances of the ratio of the approximate solution’s length to
that of the optimal one. The algorithms are variations of a well-known ““patch-
ing algorithm’’ developed by Gilmore and Gomory [5] for the TSP. We prove
that the bounds are tight, i.e., they can (asymptotically) be achieved by certain
instances. A side product is a proof that the same bounds are also tight for the
associated algorithms for the TSP. :

A related problem is the stacker crane problem, for which polynomial ap-
proximations with bounded performance guarantees were developed by Fre-
derickson et al. [4] (see also [I, 3, 7]. In this special case, there are unigque
vertices v and u# with a, = jand b, = j, respectively, foreachj=1,. .., m, and
drops are not allowed. Consequently, G contains m directed special edges that
must be traversed. The algorithm of Frederickson et al. [4] produces a perfor-
mance guarantee of at most 9/5, In obtaining this bound, it is assumed that the
length of the set of edges that are required to be used by any solution (and
therefore is constant) is part of the solution’s value; different solution strategies
are taken depending on whether this constant is “‘large”” or “*small.”* We note
that in the generalization considered in the present paper the set of edges where
the vehicle is loaded is not fixed but must be computed as part of the solution.

Another relateéd problem is the TSP with pickup and delivery, or the dial-a-
ride problem. Also, there, each object-type has a single origin-destination pair,
but usually it is assumed that the vehicle’s capacity is infinite (see [8] for a
comparative study of heuristics). For this variation, a bounded approximation
is straightforward: Approximate the shortest tour on the set of all vertices and
traverse it twice. The first time, pick all the objects, and the second, drop them
at their destination (the heuristic of [9] is in this spirit). As we will see, our
problem is considerably different and has both further difficulties and an inter-
esting structure of the solutions that do not exist in the dial-a-ride problem.

422 ANILY AND HASSIN

2. DROPS AND DEADHEADINGS

The current and desired states can be described by 0 — | matrices A and B of
dimension |V| X (m -+ 1), where Ay = 1 if and only if ¢, = j, and B,; = 1 if and
only if b, = j. We assume that Z,¢y Ay = Z,ev By forall j € S, so that the total
number of objects of each type is preserved. .

Consider a walk with edges e; = (v, v} i =1, . . . &k (U =vy) Letx; = 1
if a j-object is assigned to e;, and x; = 0 otherwise. Clearly, x must satisfy

xo+ oxg=1 i=1,...,k Q.1
JES
and
S-S xy=Ay—-B; Jj=1,....m vEV. (22
ile=v ilvie1=v

(2.1) requires that each edge of the walk will be assigned an object, possibly a 0-
object (i.e., a deadheading), while (2.2) takes care of the conservation of ob-
jects at the vertices. The following example demonstrates that these are not
sufficient conditions for feasibility.

Example 2.1. Consider the instance described in Figure | with a walk, W,
visiting the vertices in the following order: (1, 2, 5, 2, 6, 3, 2, 4, 1}. Assign
objects to the edges of W as indicated by the figure. This assignment satisfies
(2.1) and (2.2). However, edge (2, 6) is traversed when the 3-object supposed to
be transferred by it is not available at vertex 2.

Summing (2.2) overj=1,. .., m, and using (2.1) and Zgy0 Ay = sy By =
1 for all v € V, we obtain

0 =1 4 g =4

THE SWAPPING PROBLEM 423

ay =

by =1

FIG. 2.

Z Xig — Z Xio = Aw — Bu. (2.3)

iiu,-'—-u flli‘J,'H:U

Hence, (2.2) holds also for 0-objects. However, 0-objects must be distinguished
from other object types. This fact is illustrated by the following example;

Example 2.2. Consider the instance described by Figure 2. It resembles the
one considered in Example 2.1, but a; and bs are now 0. As a result of this
change, edge (2, 6) can be traversed before (3, 2), and there exists a route
conforming with the assignment of object types as indicated in the figure. One
such route consists of the following sequence of vertices: 1,2,5,2,6,3,2,4,1.
An alternative sequence is 1,2, 6, 3,2, 5, 2 4, 1. Note the drop of the l-objecr
at vertex 2.

From Assumption 1.2, it follows that in a pure no-drop case there exists an
optimal route that does not pass through a vertex v such that a, = b,. This,
however, is not necessarily true when drops are allowed as shown by the
following example

Example 2.3. Consider the instance described by Figure 3 where the square is
a unit square in the plane. An optimal route may start at 1, drop the 1-object at
3, continue to 3 and 4, return to 5 to reload the 1-object, and then return to 1
through 2. The total distance traveled is 2 + 2V?2., Without dropping at vertex
5 a shortest route is 1 — 2 —1—3 — 4 — 1 and its length is 4 + V2.

We note that vertices v with a, = b, used by a route resemble ‘‘Steiner
points’’ used in constructing a minimum length connected subgraph that spans
a given set of points. :

424 ANILY AND HASSIN

(1.1:1 : ag =3
by =2 by =0
a5=0
b5=0
az"‘2 a4-0
by =1 by = 3
F1G. 3.

Definition 2.4. A segment of the solutron that the vehicle traverses unloaded
is called a deadheading.

By (2.3}, if V contains a vertex v with g, = 0, then a route includes a subset of
edges corresponding to a path of deadheadings originating at v and ending at a
vertex u with b, = 0. Note that this subset does not necessarily correspond to a
consecutive sequence of the route’s edges as a result of drops. Moreover, the
order of the edges in the path may be different from the corresponding order in
the route. As an example, consider again Example 2.2. There, a path of dead-
headings consists of edges (3, 2) and (2, 6) that are traversed in opposite order
by each of the routes described there.

As demonstrated by Example 1.1 for the no-drop case, addmonal deadhead-
ings are possible in optimal routes, even when no 0-objects exist. From (2.3),
these additional deadheadings form a set of cycles. In Theorem 2.9 below, we
will show that such cycles of deadheadings are possible. only if S, # ¢.

When the condition of Assumption 1.2 holds with equality for some triplets
of vertices, multiple optimal routes may exist since single edges may be re-
placed by pairs of edges of the same total length. We show below that optimal
routes with minimum number of edges have interesting properties. Therefore,
we define: :

Definition 2.5, A minimum cardinality optimal route is an optimal route hav-
ing the minimum number of edges among all optimal routes.

By Assumption 1.2, minimum cardinality optimal routes do not include con-
secutive edges carrying the same object type. This is also true with respect to 0-
objects, though it is possible that the first and last edges of every optimal route
are deadheadings. -

THE SWAPPING PROBLEM 425

Each of the two routes mentioned in Example 2.2 includes six edges incident
with vertex 2. Of these edges, two correspond to the drop of the 1-object, two
are deadheadings, and two correspond to the swap between vertices 2 and 5.
Theorem 2.7 below shows that this is the maximum number of edges incident
with any vertex in a minimum cardinality optimal route. To prove the theorem,
we first need the following lemma:

Lemma 2.6. Consider a minimum cardinality optimal route R = (v, va), . . .,
(Wi Uker). Suppose that v, =v; =v, = vforsomeve Vandl =i<j<r=k+
1. Moreover, suppose that vy + vi=1{+ 1,...,j— 1. Then, there exists an
alternative route R' = (vi,v3), . . . , (UL, Uk} using exactly the same edges and
the same assignment of objects to edges as R, such thatv, = vy forg=1,...i
andforg =r,...,k+ 1, and viy| = vy

Proof. Consider the directed multigraph MG corresponding to the subroute
of R from v; to v,. MG is Eulerian, i.e., the outdegree and indegree are equal at
each vertex. We construct R’ as follows: The first edges of R" are (vy, vy), . . .,
(Vi-1, v). Then, we pick (v, v;+) as the next edge of R'. This is possible since in
a minimum cardipality optimal route the object assigned to (v;, v;+|) is not the
one carried into v by (v;-y, v)). Delete now (v;, vy) from MG. As a result, v and
v;+ are the only vertices in which MG has odd degrees. Next, a new edge
leaving v;4) in MG is selected and deleted from MG, and the process continues
until finally v is reached.

R may define some precedence relations on its edges; specifically, an edge
reloading a dropped object cannot be used before the object is unloaded. These
relations are imposed on disjoint pairs of edges incident to a common vertex.
Therefore, at any time of the selection process, after using an edge of R going
into a vertex, there must be at Ieast one edge of MG leaving the current vertex,
which can be selected without violating the precedence relations,

As long as MG still contains edges, R’ can be augmented as follows: Let (u,
w) be the first edge of R that is still in MG, Clearly, u is on R’, and a predeces-
sor of u, if R had such one, has already been used by R’. (4, w) can now be
appended to R’ and the above process be applied till # is reached again. The
above process is completed when MG has no edges, and then R’ continues
exactly as R. ' m

Theorem 2.7. There exists an optimal route R in which every vertex v satisfies
the following: (i) v is incident with at most one ingoing edge carrying the b,
object, one outgoing edge carrying the a,~object, two edges associated with a
single drop (one entering v, the other leaving it), and at most one additional
pair of deadheadings (one entering v, the other leaving it). (ii) If there is a drop
at v, then v, # v. Moreover in this case, the drop is associated with the first
entrance to v and the last exit from it, and the edges of R associated with a, and
b, are used consecutively (among the edges incident with v).

Proof. Consider a minimum cardinality optimal route R.

426 ANILY AND HASSIN

‘Suppose there is a drop at v such that an object is carried into v by an edge ¢
and later carried out by an edge ¢’. We claim that this is possible only if ¢ and ¢’
are the first incoming and the last outgoing edges incident with v, respectively.
Otherwise, if ¢’ is not the last edge on R incident, then by Lemma 2.6, there
exits another optimal route in which e and ¢’ are consecutive. This contradicts
the minimality of R. If, on the other hand, ¢’ is the last exit from.v but ¢ is not
the first edge entering v, then v is incident to at least six edges. Therefore, there
is at least one pair of incoming and outgoing deadheadings where the outgoing
one is not the last exit from v. Again, Lemma 2.6 can be used to obtain an
alternative optimal route with two consecutive deadheadings, contradicting the
minimality of R. An implication of this observation is that at most one drop at v
is possible.

Suppose next that there are two incoming deadheadings into v, ¢; and ¢;, i <
J. Each of them is followed by an outgoing edge e;., and e;4,, respectively. By
the minimality of R, neither of e;,; and ¢;,; is a deadheading. Therefore, one of
these outgoing edges carries a, # 0, and the other carries an object previously
dropped at v. By the previous paragraph, there is at most one outgoing edge
reloading a dropped item from v, and this edge is the last exit from v. Moreover,
the object was dropped at v by the first edge, ¢, { < i entering v. Thus, e
carries a,, ¢;(carries the dropped item and is the last exit from v, and ¢ is
followed by an outgoing deadheading e;,. By LLemma 2.6, there exists an
alternative optimal route R' where ¢;4; immediately follows e;. R’ has two
consecutive deadheadings, contradicting the assumption that R has a minimum
number of edges. ‘

To complete the proof, note that if v = vy, and there is a drop at v; then by
Lemma 2.6, an alternative optimal route exists in which there are two consecu-
tive edges carrying the dropped item, contradicting the minimality assumption
on R,

Corollary 2.8. There exists an optimal route with no more than 3| V| edges. If
S = §,, then there exists an optimal route with no more than 2| V| edges.

Proof. From Theorem 2.7, there exists an optimal route with at most six
edges incident to each vertex, while if § = §,, there are at most four edges
incident to each vertex. Summing over all vertices and noting that each edge is
counted twice, we obtain the above bounds.

Theorem 2.9. If S = Sy, then there exists an optimal route without cycles of
deadheadings (except for one possible cycle containing the depot v\ when a,, =
by, = 0).

Proof. Consider a minimum cardinality optimal route R. Let C be acycle of
deadheadings. Let (v;, vi.1) be the first edge of C used by R.

Case 1. Suppose that i # 1. Since R is of minimum cardinality, (v;-;, vy) is not
a deadheading. Suppose it carries an r-object, r > 0. An alternative
optimal route can be constructed by replacing both (v;_,, v;) and (v;,

THE SWAPPING PROBLEM 427

vi+1) by an edge (v, u} with v = v;-; and u = vy, . The r-object will be
assigned to this new edge and then shipped along the edges of C, with
drops at each of its vertices, till it is brought to v;. The rest of the
route is not changed. Clearly, the new route is feasible and not longer
than R. Therefore, it is optimal. However, its cardinality is smaller
than that of R, contradicting the assumption that 8 is of minimum
- cardinality,

Case 2. Suppose that / = 1 and that at least one of 4,, and b,, is not 0. We will
- prove the case a, = 0; the other follows by symmetry. Let (v;, Uis1)
be the edge carrying the a,-object out of v; = v;. By Theorem 2.7,
there is no drop at v, and no other outgoing edge from v; in R. By
Lemma 2.6, there is an optimal route R’ using the same edge set as R
but where (v, v;4)) precedes (u), vp). Clearly, R’ is also of minimum
cardinality, However, Case 1 applles to R’ and the same contradic-

tion obtains. :

Corollary 2.10. IfS = Syand a, #+ 0 Vv € V, then there exists an optimal
route with no more than 2|V| edges.

Proof. In view of Theorem 2.9 and (2.3), there exists an optimal route
containing no deadheadings. Thus, by Theorem 2.7, each vertex is incident to
at most four edges.

3. POLYNOMIAL APPROXIMATIONS

In this section, we describe polynomial approximation algorithms with
bounded performance guarantees for the swapping problem. We follow a com-
mon procedure for generating such approximations: First, a relaxation of the
problem is solved and then it is extended to a feasible solution while increasing
its cost by a constant factor. The relaxation consists of a set of assighment
problems, and these are then *‘patched’’ to vield a route. Thus, the approach
resembles that of Gilmore and Gomory [5] for the TSP,

Our approximations use the existence of a bounded approximation for the
symmetric TSP. The best known bound is 1.5, obtained by Chnstoﬁdes algo-
rithm (see e.g., [8]).

Let OPT denote the length of an optimal route. We first establish a
polynomially computable lower bound on OPT:

Algorithm 3.1,
Forj=10, , M
Set A; = {v E Via, = j, b, # j}, B;={v € V|b, = j, a, #+ j}.

[Note that A; and B, are disjoint for all j.]
Set the cost ofassigm‘ng vE A;tou € B;to ey, the length of (v, u). [Note,
by Assumption 1.2, that this is the length of a shortest v — u path.]
Solve a minimum cost assignment problem on a complete bipartite graph
with vertex bipartition (A;, B)).

428 ANILY AND HASSIN

Let E; denote the set of edges in the optimal solution obtained by Algo-
rithm 3.1 for the j-th assignment problem. Let ¢(E)) denote the total cost of

Theorem 3.2. 2; c(E) = OPT.

Proof. If an object is shipped from its origin v to its destination « via a
sequence of drops, then in view of Assumption 1.2, the total length of this
part of the route is greater than or equal to c,,. Therefore, we conclude that
the part of the route in which the vehicle is loaded with j-objects is at least of
length ¢(£;). Summation over j yields the claimed inequality. |

The set of edges U, E; contains exactly two edges incident with each vertex
v € Vin which a, # b,, one from £, and one from E,,, . Thus, it consists of a
set of disjoint simple cycles without loops.

Algorithm 3.3.

3.3.1. Apply Algorithm 3.1 to compute E;j=0. .. ,m.LetCy,...,Cbe
. the cycles composing U; E;.

3.3.2, LetU = {u, ..., u} be a set of arbitrary representative vertices

fromC,,...,Ci,suchthatu; € Cii = 1, ..., k. Suppose the depot

is vy. If a,, = b,,, then add v, to U. else, v, must be chosen to
represent the cycle containing it. Apply a TSP approximation algo-
rithm to the subgraph induced by U/, to obtain a tour. 7 on these
vertices. '

Construct a route in G by superposing the edges in U; C; and 7.

If possible, improve the solution by replacing consecutive edges car-
rying the same object type by single edges and applying drops when-
ever there are cycles of deadheadings (as in the proof of Theorém
2.9). :

W Lo

W W
)

Theorem 3.4. Algorithm 3.3 produces a feasible route.

Proaf. We must show that the edges of (U; C;) U T can be ordered to form a
route. Such an order is the following one: Start at the depot. Follow T by a
deadheading to the next representative point. Then, follow the cycle repre-
sented by it. After returning to this representative, follow the next edge of T,
and so on. Clearly, the process terminates at the depot after all the required
swaps were completed, [|

Let APX denote the length of the route produced by Algorithm 3.3.
Theorem 3.5, APX = 2.5 OPT,

Proof. Every feasible route must visit the depot and each vertex of U; (4, U
B)) at least once. Therefore, by Assumption 1.2, the optimal solution to the TSP

THE SWAPPING PROBLEM 429

0 S3 13 S5 1 S 1y S

FIG. 4,

defined on the representative vertices constitutes a lower bound on the optimal
solution value. Christofides’ algorithm generates in Step 3.3.2 a tour of at most
1.5 the length of a shortest tour. Combining this with Theorem 3.2, we obtain
the claimed result.

Theorem 3.6. The ratio APX/OPT can be made arbitrarily close to 2.5 even
Sfor the simple swapping problem.

Proof. We prove the theorem by constructing a family of problems where
the ratio APX/OPT tends to 2.5. The construction is inspired by a similar one
by Cornuejols and Nemhauser [2]. Let & be an even positive integer. Consider n
= 2k points sy, . . ., 8, t,. .., located in the plane on the two parallel lines
y=0andy = V372 as follows: t)is located at (0, 0); s, at (k/2, 0); s;at [(i — 1)/2,
Oyforodd i, i> 1;s;at [(i — 1)/2, ‘\/5/2] foreven i. For i > 1, t;is located very
close to the right of s;. For computational purposes, we assume the distance
between s;and ¢;i > | to be zero. The layout of the points is iltustrated in Figure
4. Note that the segments (t;, s;s) i = 1, ..., k — 1, are of unit length.

Let G be the (complete, undirected,) graph with n = 2k vertices s, . . . , §,,
fiv .« ., ty, where the costs ¢, represent the Euclidean distance between « and
v. Weassume a, = 1,6, =2forv=yg,,...,8,anda, =2, b,=1forv =
ty, ..., t. Thus, this is a simple swapping problem. Suppose that s, is the
depot. The optimalroute is sy — ty—| — Sp—y. . .6y = S3—lr— Sqa—l4. . .5 — L
~— 8, whose length is & + 1.

A minimum assignment consists of two copies of the edges (s;, 1) i=1,. ..,
k, and its length is 2¢,,, = k. It has & disjoint simple cycles. Choosing s,, . . .,
s to represent these cycles, we approximate a shortest tour on these vertices
using Christofides’ algorithm. Choosing as a minimum spanning tree the path s,
— §3 = $4. . . — 5 — 5 (of length & — 1), and completing it to a tour by matching
s with 53 (by the edge of cost ¢, > k/2 — 1), we obtain a tour of length greater
than (34)/2 — 2. Superimposing the tour with the minimum assignment yields a
route of length (54)/2 — 2 (Fig. 5).

Finally, in Step 3.3.4, we replace paths §; — §;41 — fiyi=1,...,4k— 1by
edges (s;, t,+1), and s; — §) ~ £, by (s, #) (Fig. 6). The resulting solution is of
length greater than 5(k/2) — 4, As k tends to infinity, the ratio APX/OPT
approaches 2.5.

We now discuss a variation of Algorithm 3.3 where instead of arbitrarily
selecting representative vertices from Cy, . . . , Ci, as was done by Step 3.3.2,
we let the algorithm select a potentially good set of representatives,

430 ANILY AND HASSIN

FIG. 5.

The idea is to define an auxiliary graph G’ with k vertices each representing
one of the cycles Cy, . . . , C, produced by 3.3.1. (If ¢« = b for the depot, add an
additional vertex representing it.) The edge weights in G’ are equal to the length
of a shortest edge in G between any pair of vertices in the corresponding
cycles, Then, one may proceed by superposing an approximation to the TSP
sofution in G’ and the set of cycles in G. This, however, does not necessarily
define a feasible route, since edges that are adjacent in G’ do not necessarily
correspond to adjacent edges of G. This problem can be amended by perform-
ing the matching step of Christofides algorithm on the correct set of odd
vertices:

Algorithm 3.7.

3.7.1. Solve the assignment relaxation U; E; of the problem, as in 3.3.1.

- Let Cy, ..., Cibe the cycles composing U, E;.
3.7.2. Let G’ be an undirected graph with vertex set V' = {1, .. ., k} corre-
sponding to Cy, . . . , Ci, respectively. (Add a vertex corresponding to

the depot v, if a, = b,). Fori,j € V', let ¢} = min {c,.]4 € C;, v € C}.
Compute a spanning tree of minimum weight with respect to the costs

FIG. 6.

THE SWAPPING PROBLEM 431

¢', iIn G', Let T denote the set of edges in G associated with this
spanning tree.

3.7.3. Consider the subgraph consisting of the edges in U; £; and T, Let R be
the set of vertices with odd degree in it. L.et G" be a complete graph
induced by R with edge costs as in &, Compute a minimum cost perfect
maiching, M, in G". Superimpose the edges in U; £;, T, and M.

3.7.4. If possible, improve the solution by replacing directed paths by single
edges and deadheadings by drops while preserving feasibility.

Theorem 3.8. Algorithm 3.7 produces a feasible route. Let APX1 denote the
length of this route. Then APX1 = 2.5 OPT. Moreover, the ratio APX1/OPT
can be made arbitrarily close to 2.5 even for the simple swapping problem.

- Proof. As for Theorems 3.4, 3.5, and 3.6. |

We note that the performance guarantees of Algorithms 3.3 and 3.7 are
identical. However, 3.7 may be more efficient in practice because it does not
select the representatives arbitrarily but in a way that minimizes the length of
the spanning tree needed to patch the solution,

Remark 3.9. It is well known that one can obtain an approximation for the
TSP with a performance ratio of at most 2 by superposing two copies of a
minimum spanning tree. This ratio is worse than that of Christofides’ algo-
rithm, but it can be computed with lower complexity. In Algorithms 3.3 and 3.7,
the gain in complexity is not significant since the algorithm computes also a
minimum cost assignment, However, the resulting performance guarantee, if
we use two copies of minimum spanning trees, is easily shown to be bounded
by 3, and the following example proves that this bound is tight.

Example 3.10. Consider again the example used in the proof of Theorem 3.6
(see Fig. 4). An optimal solution to the assignment relaxation of the problem
uses (twice) each of the (s;, t) edges, and its length is 2C,, = k. A minimum
spanning tree consists of the k —~ 1 edges of unit length (1, s3), (L3, 54), - . .,
(te—1, St) (tr, 51). The edges obtained by superposing two copies of it to the
assignment relaxation are shown by Figure 7. Finally, we may replace paths s;

FIG. 7.

432 ANILY AND HASSIN

FIG. 8.

— t; — Sit1 — livy by a single edge (s; — t;). This is done fori=2,. ..,k — 1,
and the path s, — t, — s, — t, is replaced by the edge (sy, t)). The result is a tour
of length APX = 3k — 4. As k tends to infinity, the ratio APX/OPT approaches
3. The final route is illustrated in Figure 8.

4. FINAL REMARKS

As mentioned in Remark 1.3, the TSP is a special case of the swapping
problem, One may ask whether the algorithms discussed above have better
worst-case bounds when applied to the TSP. It turns out that the examples
shown above demonstrate that the performance guarantee of 2.5 is tight even
when applying the corresponding patching approximations on the TSP, The
optimal routes for both instances presented in the proof of Theorem 3.6 and
Example 3.10 are also the shortest possible tours on the same points. The
approximations obtained by the respective algorithms for these instances are
tours and they will be obtained also by the corresponding patching algorithms
- for the TSP. _

We made the assumption, represented by Eqs. (2.1}, that for each object type
the total demand is equal to the total supply. Suppose that this assumption is
relaxed, assuming instead that the total supply is at least as large as the total
demand. Thus, the desired final states are specified only for a subset of vertices
(referred to as ‘*demand vertices’’). A bound of 3.5 can be obtained as follows:
Solve an assignment problem with inequality constraints for each object type.
Duplicate the resulting solutions to obtain a set of cycles. Approximate a short-
est tour on the set of demand points (note that every feasible solution must visit
these points and therefore the tour is a lower bound on the solution). Combine
the tour and cycles to obtain a route, as in Theorem 3.4.

We have mentioned that the phenomenon demonstrated by Example 2.3
resembles that of the well-known Steiner tree problem on a network. The same
example can serve to show that drops at points with ¢ = » = 0 can reduce the
- length of an optimal solution also when the problem is defined in the Euclidean
plane. It is an interesting research topic checking whether such points can be

THE SWAPPING PROBLEM 433

characterized in an analogous way to that known for the Steiner problem in the -
plane.

REFERENCES

(1]
[2]
[3]
(4]
(5]

{6]
{7]

[8]
9]

M. J. Atallah and S. R. Kosaraju, Minimizing robot arm travel. STAM J. Comp., 17
(1988) 849--869.

G. Cornuejols and G. L. Nemhauser, Tight bounds for Christofides’ traveling
salesman heuristic. Math. Program. 14 (1978) 116-121.

G. N. Frederickson and D. J, Guan, Ensemble motion planning in trees. Proc.
FOCS 30 (1989) 66-71.

G. N. Frederickson, M. 8. Hecht, and C. E. Kim, Approximation algorithms for
some routing problems. SIAM [. Comput. 7 (1978) 178-193.

P, C. Gilmore and R. E. Gomory, Sequencing a one state-variable machine: A
solvable case of the traveling salesman problem. Operations Res. 12 {1964) 655~
679,

J. A, Hoogeveen (1990), Analysis of Christofides’ heuristic: Some paths are more
difficult than cycles. CWI report BS-R9005, Amsterdam.

D. S. Johnson and C. H. Papadimitriou, Performance guarantees for heuristics.
The Traveling Salesman Problem, (E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy
Kan, and D. B. Shmoys, Eds.) Wiley, New York (1985} Chap. 5.

M. Kubo and H. Kasugai, Heuristic algorithms for the single vehicle dial-a-ride
problem. J. Operational Res. Soc. Jpn, 33 (1990) 354-365.

H. Psarfatis, Analysis of an Q(n? heuristic for the single vehicle many-to-many
Euclidean dial-a-ride problem. Transportation Sci. 117B (1983) 133-145.

Received January 1950
Accepted December 1991

