Greedy Heuristics with Regret, with Application to the Cheapest
Insertion Algorithm for the TSP

Refael Hassin* Ariel Keinan f

Abstract

We considers greedy algorithms that allow partial regret. As an example we consider a
variant of the cheapest insertion algorithm for the TSP. Our numerical study indicates that in
most cases it significantly reduces the relative error, and the added computational time is quite
small.

Keywords: Cheapest insertion heuristic, greedy algorithm with regret, traveling salesman
problem

Introduction

Many common heuristics for combinatorial optimization problems are considered as greedy.
These are constructive heuristics, designed to produce solutions of reasonable quality without
investing the time needed to compute better solutions by other methods, such as meta-heuristics,
based on iterative improvements. Greedy algorithms make irrevocable decisions about the con-
struction of a solution, based on local considerations such as preferring the choice that gives
immediate best reward or minimum cost. In this note we examine the possibility of improving
the quality of a greedy algorithm by allowing it to reconsider decisions made in past steps. We
maintain however the greedy spirit of the algorithm by allowing only limited regret, so that the
result is still a fast constructive algorithm.

Hassin and Levin [2] applied the idea of a greedy algorithm with limited regret to the set
covering problem, by allowing the reversal of an earlier decision to include a given set in the
solution, if its present impact contradicts the greedy choice. In other words, a decision that
wouldn’t have been made given the current costs, can be reversed. They proved that such a
modification improves the worst case error for the weighted set covering problem.

This note presents a preliminary study of the possible practical benefits associated with
incorporating limited regret into greedy heuristics. In this study, we apply the idea to a well
known greedy type algorithm for the traveling salesman problem, and run a computational
experiment to check its usefulness.

It should be emphasized that our goal in this study is to examine the effect of allowing regret
in the greedy approach. A variant that may be competitive with known best heuristics should
incorporate further features such as randomization and repeated application, for example as
suggested by Brest and Zerovnik [1]. However, we chose to apply the idea to the generic
cheapest insertion algorithm so that its effect can be assessed without the need to calibrate the
parameters of a more sophisticated algorithm.

We find that indeed incorporating limited regret considerably reduces the average relative
error of the algorithm. Specifically, we have applied the algorithm to all TSPLIB undirected
problems with less than 4000 vertices and obtained an average typical reduction of the relative
error from 16.4% to 11.8%. The added running time is about 70%.

*Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv 69978, Israel. Tel:
497236409281 Email: hassin@math.tau.ac.il

tDepartment of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv 69978, Israel. Email:
keinan.ariel@gmail.com

This result indicates that such ideas are potentially useful for a variety of other greedy type
algorithms, and encourages further theoretical and computational study.

1 The algorithm

Let G = (V,E) , V = {v1,...,v,}, be a complete edge-weighted undirected graph, with V =
{1,...,n}. Denote by ¢;; the length of (z,j) € E.

A tour is a Hamiltonian cycle in G, that is, a simple cycle with n vertices. A partial tour
is a pair of parallel edges, or a simple cycle in G with at most n — 1 vertices. For a partial
tour T and a vertex k ¢ T we define insert(T, k) to be the cycle obtained by deleting an
edge (i,j) € T and inserting instead the two edges (i, k) and (k,j). We say that k is inserted
into T. We define by ¢(T, k) the length increase caused by the insertion of k into 7', that is
(T, k) = c(insert(T, k)) — c(T).

The Cheapest Insertion algorithm is a well known heuristic for the traveling salesman prob-
lem [3]. Moreover, when G is undirected and the edge lengths satisfy the triangle inequality,
Rosenkrantz, Stearns, and Lewis [4] proved that it returns a solution of length at most twice
the optimal. The algorithm is described in Figure 1. In our version, the initial partial tour is a
minimum cost 2-edge cycle. Alternatively, it could start with an arbitrary vertex as the initial
partial tour.

Cheapest Insertion

input

A weighted graph G = (V, E).

begin

k,l:=argmin{c;; +¢;; : i,j € Vi # j}.
T = (k,1,k).

while T is a partial tour
v:=argmin{c(T,k) : k ¢ T}.
T := insert(T, v).

end while

end Cheapest Insertion

Figure 1: The Cheapest Insertion algorithm

For a partial tour T and a vertex k € T' we define delete(T, k) to be a shortest cycle obtained
by deleting from T the two edges incident with k, say (i, k) and (k, j), and replacing them by
(i,7). We say that k is deleted from T and mark the resulting subtour by delete(T, k). Thus,
deletion is the inverse operation of insertion. We define by ¢~ (T, k) the length reduction caused
by the deletion of k from T', that is ¢~ (T, k) = ¢(T') — c(delete(T, k)).

We propose a modification of the cheapest insertion algorithm, which we call cheapest inser-
tion with regret. The algorithm is described in Figure 2. At each step, we compare the cheapest
next insertion and the maximum length reduction caused by deleting a vertex (which is not one
of the subtour vertices participating in the insertion) from the current subtour.

Note that the deletion operation does not necessarily reverse a previous insertion, since it
may be that the deleted vertex has been added with different edges than those which are now
deleted. Still we might think about the deletion step as a regret in the sense that we allow giving
up part of the subtour if we see that it costs more than the new insertion.

A further step in the direction of the new algorithm would be to allow more than a single
deletion, however this might result in long series of insertion and deletions and even in lack of
convergence of the algorithm caused by cyclic sequences of subtours, as we illustrate in the next

section. In contrast, the version we propose converges since at each step we either obtain a
subtour with an additional vertex, or we get a strictly shorter subtour with the same number
of vertices as before.

Cheapest Insertion with Regret

input

A weighted graph G = (V, E).

begin

k,l:=argmin{c;j +¢j; : 1,5 € V,i # j}.
T:= (k1 k).

while T is a partial tour
v:=argmin{c(T, k) : k ¢ T}.
(i,7) := the edge of T replaced in insert(T,v).
w:=argmax{c (T k) : k€ T\ {i,j}}.
if ¢(T,v) > ¢ (T,u)
then
T := insert(T,v).
else
T := insert(delete(T, u),v).
end if
end while
end Cheapest Insertion with Regret

Figure 2: The Cheapest Insertion with Regret algorithm

2 An example

Figure 3 (a)-(f) illustrates how the algorithm works. We consider six points in the plane at
locations (0, 3), (0,4), (1,0), (1,1), (1, 3), and (2, 3), with the Euclidean distances. The algorithm
starts with a shortest 2-edge cycle on the points at (1,0) and (1,1), and then inserts the point
(1,3) reaching illustration (a). At this instant, the best insertion is of (2,3) costing v/10 — 2 ~
1.16. This insertion allows only one deletion, of (1,1) of value 0 < 1.16 and thus the deletion
is not done. The subsequent iterations are illustrated in the figure, showing also the relevant
¢(T, k) values for non-cycle points and ¢~ (T, k) values for cycle points. An interesting step is
the passage from (b) to (c) which involves an insertion and a deletion.

A natural extension of the algorithm allows for several deletions while executing an insertion
step, if all of these deletions do not interfere with the insertion and have higher values. We
have tried this version and found out that in some cases it gives better results, but in others it
tends to cycle. The latter phenomenon is not restricted to pathological cases but does happen
often. To illustrate the possibility of cycling we slightly modify our example and assume that
the upper left point is slightly higher, at (0,4 + ¢) for some small € > 0. The first cycles are as in
illustrations (a)-(c). However, at this instant, there is a second deletion with value higher than
the planned insertion, that of deleting the bottom point of the cycle, with value 2.47 > 1.24.
Performing this deletion, the algorithm moves to the cycles given in (d’)-(f”) and then back to

(c)-

1.41

1.93

1.41

0.07, 0.18

® 193

()
0.59 I;-

Figure 3: Example

1.41

1.93+¢

0.59

®1.93
(")

1.24

3 Computational Results

We have tested the cheapest insertion with regret algorithm on the test problems in the TSPLIB
(http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html). The results for the symmetric in-
stances are given in Table 1. The first column gives the problem’s name including the number of
vertices in the graph. The second column gives the type of the distance function, as explained in
the TSPLIB site. The third column gives the error of the standard cheapest insertion algorithm
over the optimal solution as given in TSPLIB. It is given in percents and rounded to the nearest
integer. The fourth column gives the same results but when the cheapest insertion with regret
algorithm is applied to the instance. We note that the average error obtained for the standard
algorithm is 16.4% whereas when regret is allowed the average ratio decreases to 11.8%. The
number of iterations in the standard algorithm is of course |V|, and when regret is allowed it
goes up to approximately 1.7|V| reflecting the added iterations in which there is also a deletion.

References

[1] J. Brest and J. Zerovnik, “A heuristic for the asymmetric traveling salesman problem,”
The 6th Metaheuristic International Conference, MIC2005, 2005.

[2] R. Hassin and A. Levin, “A better-than-greedy approximation algorithm for the min-
imum set cover problem,” STAM J. on Computing 35 (2005) 189-200.

[3] D.S. Johnson and C.H. Papadimitriou, Performance guarantees for heuristics. Ch. 5
in The Traveling Salesman Problem, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan,
and D.B. Shmoys, (editors), Wiley & Sons, Chichester (1985).

[4] D.J. Rosenkrantz, R.E. Stearns, and P.M. Lewis II, “An analysis of several heuristics
for the traveling salesman problem”, STAM J. Comput. 6, 563—-581, 1977.

|| Problem || Type | CI | CIR || || Problem || Type | CI | CIR ||

bayg-29 matrix | 15 8 pr-226 euc 13 10
bays-29 matrix | 5 5 gr-229 geo 13 11
dantzig-42 || matrix | 14 11 gil-262 euc 17 11
swiss-42 matrix | 16 11 pr-264 euc 19 16
gr-48 matrix | 16 7 pr-299 euc 20 16
hk-48 matrix | 14 7 lin-318 euc 18 13
eil-51 euc 9 7 rd-400 euc 22 15
berlin-52 euc 19 16 f-417 euc 21 7
brazil-58 || matrix | 16 11 gr-431 geo 13 12
st-70 euc 17 9 pr-439 euc 22 16
eil-76 euc 13 11 pcb-442 euc 20 12
pr-76 euc 16 14 d-493 euc 14 12
gr-96 geo 27 18 ali-535 geo 20 17
rat-99 euc 20 15 si-h35 matrix | 2 2
kroA-100 euc 19 12 pa-561 matrix | 24 20
kroB-100 euc 14 10 u-574 euc 18 14
kroC-100 euc 22 16 rat-575 euc 18 14
kroD-100 euc 18 15 p-654 euc 17 10
kroE-100 euc 15 9 d-657 euc 19 16
rd-100 euc 16 10 gr-666 geo 20 15
€il-101 euc 14 10 u-724 euc 21 15
lin-105 euc 18 11 rat-783 euc 18 15
pr-107 euc 19 15 pr-1002 euc 17 15
gr-120 matrix | 13 10 si-1032 matrix | 0 1
pr-124 euc 12 3 u-1060 euc 21 17
bier-127 euc 19 15 vm-1084 euc 16 12
ch-130 euc 16 10 pcb-1173 euc 22 15
pr-136 euc 14 14 d-1291 euc 16 14
gr-137 geo 18 15 rl-1304 euc 24 18
pr-144 euc 25 5 rl-1323 euc 24 16
ch-150 euc 19 13 nrw-1379 euc 17 12
korA-150 euc 13 10 f1-1400 euc 16 9
korB-150 euc 20 17 u-1432 euc 12 8
pr-152 euc 22 11 f-1577 euc 18 15
u-159 euc 20 11 d-1655 euc 17 14
si-175 matrix | 4 3 vm-1748 euc 19 15
brg-180 matrix | 24 11 u-1817 euc 16 13
rat-195 euc 18 13 rl-1889 euc 23 19
d-198 euc 12 7 d-2103 euc 10 5
korA-200 euc 20 12 u-2152 euc 17 12
korB-200 euc 22 16 u-2319 euc 9 4
gr-202 geo 16 14 pr-2392 euc 21 19
ts-225 euc 26 14 pcb-3038 euc 17 14
tsp-225 euc 19 10 f-3795 euc 12 10
Table 1

