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Who should be given priority in a queue?
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Abstract

We consider a memoryless single server queue with two classes of customers, each having its fixed entry fee. We show
that profit and social welfare may benefit from a service discipline based on relative priorities.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

We consider a single server queueing model where
customers require service whose length follows an ex-
ponential distribution with mean which we assume
without loss of generality to be 1. Each customer be-
longs to one out of two classes of customers. The po-
tential arrival process of customers of class i (called
i-customers) is Poisson with rate �i , i = 1, 2. We as-
sume that these rates are large so that if all potential
customers from some class join, the queue will ex-
plode. Class-i customers suffer a cost of Ci per unit
of time while waiting in the queue (including service
time), and are rewarded by Ri due to service comple-
tion. An i-customer who decides to enter pays a fee of
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Ti , Ti < Ri . Thus, the expected utility of an i-customer
who joins the queue is Ri − Ti − CiWi , where Wi is
his expected time in the system, i = 1, 2. Lastly, we
assume that the customer cannot observe the queue
length before joining, and that the server can distin-
guish between the customer types and set priorities
and fees that discriminate between the classes.

Suppose that R1 > R2 and also C1 > C2. For the
customers who already joined the queue, the value of
R is of no relevance, and their total cost of waiting
is minimized if class 1 obtains priority over class 2.
However, if such priority is announced, it will affect
the arrival process, encouraging more 1-customers and
less 2-customers to join. Overall, the effect may be
negative. In this paper we will investigate the question
of which class should be given priority.

Typically, there are three criteria to consider when
dealing with decision making in queueing systems.
The first is that of self-optimization. Here an individual
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wants to maximize his personal reward. In particular,
an i-customer joins if his expected utility from joining
is positive, he does not join if it is negative, and he is in-
different between the two options if it is zero. The sec-
ond criterion is that of social optimization. Here, en-
try fees are considered as transfer payments and hence
not included in the utility function. The goal is to find
joining rates, q1 and q2 that maximize the rate of soci-
ety gain, which is q1(R1 − C1W1) + q2(R2 − C2W2).
To administrate these arrival rates, the social planner
may determine entry fees such that when customers
consider their self-optimization, they end up with the
socially optimal joining rates. The third criterion is
profit maximization. Here, the service provider is in-
terested in maximizing q1T1 + q2T2. Customers join
if it is in their self-interest to do so. So a fee which is
too high, may deter many of them from joining and
hence charging too much will not be in the benefit of
the profit maximizer.

A standard argument (see [5] or [8, p. 49]) can be
used to show that given the unobservable nature of the
queue, the server can extract all of the consumer sur-
plus. Therefore, the objective of the profit maximizer
and the social objective turn out to be identical, and
the profit maximizing entry fees also maximize social
welfare.

It is also well known that for any given joining rates
social welfare is maximized by the C�-rule, which
says that customer classes with a high value of C�
should get priority of those with lower values. Mendel-
son and Whang [12] have shown that the socially op-
timal arrival rates can also be obtained by setting ap-
propriate entry fees under the C�-rule. It follows from
the previous paragraph that the C�-rule will also be
applied by a profit maximizing server.

In this paper we concentrate on two second-best
optimization problems, assuming that the server is not
free to select any prices of his choice. We consider
two models. In the first, the fees are fixed and the
server’s only way to control the queue is by choosing
a priority scheme. We are interested in whether giving
priority to the class with higher waiting cost, which is
optimal under the optimal entry fees, is still optimal
when these fees are fixed. In the second, the server can
choose a single price that will apply to both classes.

Our analysis indicates that with fixed prices the
server may be able to do better by assigning strict rel-
ative priorities. We prove this by analyzing the model

under a generalized priority scheme called discrim-
inatory processor sharing (DPS). Under this model
there exist nonnegative parameters p1 and p2 =1−p1
representing relative priority of customers of the two
classes. If ni customers are present in the system,
i=1, 2, an i-customer obtains pi/(n1p1+n2p2) of the
service capacity of the server. In particular, the total
capacity dedicated to class-i is nipi/(n1p1 + n2p2).
Of course, p1 ∈ {0, 1} means that one of the classes
obtains absolute priority.

Remark 1.1. Since service times are exponential with
a common mean, the DPS model is equivalent to the
following scheme: There is no physical entrance into
service; the server produces some goods whose recip-
ient will be determined when production ends; the ac-
tual recipient is decided by a lottery conducted upon
production completion among all customers presented
in the queue. The odds that a tagged i-customer obtains
the good are proportional to pi . Thus, the recipient is
an i-customer with probability nipi/(n1p1 + n2p2).

The DPS discipline is well established in the queue-
ing, computer science and communication literature.
See, for example, [9,7,11,13]. In particular, delays in
the Internet due to the bandwidth allocation are often
measured by a DPS model, see [1,4].

Hayel and Tuffin [10] defined a similar DPS model
but assume that the utility of a i-customer who joins
is W

−�i

i − Ti for some parameter �i > 0, i = 1, 2.
They report that in all their numerical experiments the
priority schemes for the optimal entry fees were to give
priority to one of the classes. As the C� rule does not
suit their model, a different proof or an explanation for
this phenomenon is still an open problem. In the case
of fixed prices, their findings are qualitatively similar
to ours.

In the next section we give some preliminary results.
In Section 3, we characterize the equilibrium solution.
We first characterize the boundary equilibria where
only one class joins, and then the internal equilibria
where customers from the two classes join. We de-
rive necessary and sufficient conditions for each type
of these equilibria. In Section 4, we consider profit
and social welfare maximization. We give a numeri-
cal example where the optimal priority parameters are
strictly between zero and one and the equilibrium ar-
rival pattern is internal. In Section 5, we solve the
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model with a single price common to both classes. We
show that under the common optimal entry fee, giv-
ing absolute priority to one of the classes is optimal.
Yet, this class is not always the one selected by the
C�-rule.

2. Preliminary results

We assume the following two-stage decision mak-
ing process. First, a central planner determines the pa-
rameters p1, p2, and possibly also T1, and T2. These
values are announced and become a common knowl-
edge among the customers. They, in their turn, decide
whether or not to enter and pay their class entry fee.
Note that the queue size is not observable to them
and no refund or reneging is possible once a customer
joins. Not joining (called balking) comes with no cost
or reward. Note that associating zero value with balk-
ing is without loss of generality.

As said, customers have two possible actions: To
join or not to join the queue. We now introduce an ad-
ditional option, that of mixing between these two op-
tions with some probability. Thus, any strategy can be
characterized by a joining probability, say p. A strat-
egy profile is now a set of joining probabilities, one
for each customer. A strategy profile is called sym-
metric if according to it all use the same strategy. A
symmetric Nash equilibrium strategy profile, is a join-
ing probability p such that if used by all, then under
the resulting steady-state conditions, no individual has
any incentive to deviate to some other strategy.

Suppose that i-customers join with probability �i ,
then their effective arrival rate or joining rate is
qi = �i�i . In equilibrium, if qi > 0 then joining is a
best response for i-customers, and if qi < �i then balk-
ing is a best response. Thus, 0 < qi < �i means that
i-customers are indifferent between joining and
balking (and they might as well mix between the two
with any probabilities, in particular, the equilibrium
probabilities).

Denote by Wi(q1, q2), i = 1, 2, the expected time
in the system of an i-customer who joins, when the
joining rates are q1 and q2. We refer to this time as
the waiting time. Note that W1(0, q2) is the expected
waiting time for an 1-customer who joins when all his
peers balk. To simplify the exposition, we suppress q1
and q2 from Wi(q1, q2) and use instead Wi .

We denote by (q∗
1 , q∗

2 ) a pair of equilibrium ar-
rival rates. There are three options regarding this pair:
(1) CiWi �Ri − Ti if q∗

i = 0, (2) CiWi = Ri − Ti if
0 < q∗

i < �i , and (3) CiWi �Ri − Ti if q∗
i = �i . The

third option, is ruled out here since by assumption
qi = �i implies Wi = ∞. In particular, the condition
q∗
i < �i automatically holds and hence the second op-

tion reduces in fact to q∗
i > 0.

Denote �k = (Rk − Tk)/Ck , then in equilibrium

q∗
k (�k − Wk) = 0, k = 1, 2. (1)

Without loss of generality we assume that Ri �Ti +
Ci (recall that the service rate is 1), or

�i �1, i = 1, 2. (2)

Suppose that 1-customers obtain absolute priority
over 2-customers (i.e. p1 = 1 and p2 = 0) and their
arrival rates are q1 > 0 and q2 �0, respectively, with
q1 + q2 < 1.

Without loss of generality we make the standard as-
sumption that R1 > C1/�, and this implies that q1 > 0
when p1 = 1. Then, their mean waiting times are

W1 = 1

1 − q1
and

W2 = 1

(1 − q1)(1 − q1 − q2)
(3)

(see Lemma 3.1 below or [11, p. 122]).
By (1) and (3)

q∗
1 = 1 − 1

�1
(4)

and

q∗
2 = max

{
0,

1

�1
− �1

�2

}
.

3. The equilibrium

We now solve the general case. Let � = q1 + q2
denote the total arrival rate. The following lemma is
due to Fayolle et al. [6].

Lemma 3.1.

W1 = 1 − p1�

(1 − �)(1 − q1p1 − q2p2)
, (5)
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W2 = 1 − p2�

(1 − �)(1 − q1p1 − q2p2)
. (6)

Remark 3.2. Fayolle et al. [6] derived the expected
waiting time formulas also when the service rates �i

of i-customers, i = 1, 2, differ. Let �i =qi/�i then for
i �= j

Wi = 1

�i (1 − �)

[
1 + �i�j (pj − pi)

D

]
,

where �=�1+�2 and D=�1p1(1−�1)+�2p2(1−�2).
This relation can be used to solve our model also for
this generalized case. However, the resulting formulas
are considerably more complicated and we chose to
restrict our derivation to the special case where �1=�2.

3.1. Boundary equilibria

The arrival rates q1 and q2 with q1 > 0 and q2 = 0
define an equilibrium if and only if C1W1 = R1 − T1,
or equivalently

W1 = �1 (7)

and C2W2 �R2 − T2, or equivalently,

W2 ��2. (8)

In this case, 1-customers face a single class FCFS
M/M/1 queue and W1 = 1/(1 − q1). Substituting in
(7) we conclude (as in (4)) that

q∗
1 = 1 − 1

�1
. (9)

Considering the ratio W2/W1 from (5) and (6), and
then substituting � = q1, (7) and (9), gives

W2 = W1
1 − p2�

1 − p1�
= �1

1 − p2(�1 − 1/�1)

1 − p1(�1 − 1/�1)

= �1
�1p1 + p2

�1p2 + p1
. (10)

Note that W2 would be the expected queueing time
for a 2-customer if he joined. This of course does not
contradict the fact that under the equilibrium solution
none of them actually joins.

A necessary and sufficient condition for q∗
1 as given

in (9) and q∗
2 =0 to define a pair of equilibrium arrival

rates is that W2 ��2 where W2 is given in (10). Sub-
stituting p2 =1−p1 in (10), this condition amounts to

p1 � �1(�2 − 1)

(�1 + �2)(�1 − 1)
≡ B. (11)

Remark 3.3.

1. By (2), B �0.
2. If �2 > �2

1 then B > 1 and hence a boundary equi-
librium with q∗

1 > 0 and q∗
2 = 0 is not possible re-

gardless of the priority parameters.

By interchanging the roles of the indices 1 and 2,
a solution with q∗

1 = 0 and q∗
2 = 1 − 1/�2 defines an

equilibrium if and only if

p2 � �2(�1 − 1)

(�1 + �2)(�2 − 1)

or, since p1 + p2 = 1

p1 � �2
2 − �1

(�1 + �2)(�2 − 1)
≡ A. (12)

Note that by (12), (11), and (2)

B − A = (�1 − �2)
2

(�1 + �2)(�1 − 1)(�2 − 1)
�0. (13)

The following remark is the counterpart of Remark
3.3.

Remark 3.4.

1. Since w.l.o.g. �1 �1, it follows that A�1.
2. If �1 > �2

2 then A < 0 and hence a boundary equi-
librium with q∗

1 = 0 and q∗
2 > 0 is not possible re-

gardless of the priority parameters.

3.2. Internal equilibria

We now focus our attention on equilibria with ar-
rivals from both classes, i.e. internal equilibria. In an
internal equilibrium

Wi = �i , i = 1, 2. (14)

With Lemma 3.1, this condition leads to

W1

W2
= 1 − �p1

1 − �p2
= �1

�2
. (15)
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Remark 3.5. Assume that �1 �= �2. Then, from (15),
a necessary condition for the existence of an internal
equilibrium is that the class with higher net benefit to
cost ratio obtains a lower priority parameter.

Theorem 3.6. Suppose that �1 = �2 = �. If p1 = p2 =
1
2 then any pair q1, q2 �0 such that q1 + q2 = 1 −
1/� defines an equilibrium. If p1 �= p2 then there
is a unique equilibrium which is a boundary one. In
particular, if pi > pj , then qi = 1 − 1/�i and qj = 0.

Proof. By (15), when �1 = �2 an internal equilibrium
exists only if p1 = p2 = 1

2 . With these priority param-
eters, the model, in terms of mean waiting time, is
reduced to an M/M/1 queue without priority. Hence,
Wi = 1/(1 − �), i = 1, 2. With the equilibrium condi-
tion (14), � = 1/(1 − �), or � = 1 − 1/�. �

Remark 3.5 says that if �1 > �2 then a necessary
condition for an internal equilibrium is that p1 < 1

2 .
In fact, a sharper bound exists and is derived from
(11), namely, a necessary condition for an internal
equilibrium is that

p1 <
�1(�2 − 1)

(�1 + �2)(�1 − 1)
. (16)

From (15), in an internal equilibrium

� = �2 − �1

�2p1 − �1p2
. (17)

The equilibrium rates, q∗
1 and q∗

2 are determined by
W1 = �1, where W1 is given in (5), and q1 + q2 = �,
where � satisfies (17). Solving for q∗

1 and q∗
2 the result

is

q∗
1 = �2

�2p1 − �1p2
− 1

�1p1 − �2p2
(18)

and

q∗
2 = 1

�1p1 − �2p2
− �1

�2p1 − �1p2
. (19)

The following theorem summarizes the results.

Theorem 3.7. If �1 �= �2, then for any p1 ∈ [0, 1]
there exists a unique equilibrium. The corresponding
joining rates are:

1. If 0�p1 �A then q∗
1 = 0 and q∗

2 = 1 − 1/�2.
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γ1=1.6, γ2=1.35

p1

Fig. 1. Equilibrium arrival rates.

2. If A < p1 < B then q∗
1 and q∗

2 are given by (18) and
(19).

3. If 1�p1 �B then q∗
1 = 1 − 1/�1 and q∗

2 = 0.

Remark 3.8. Theorem 3.7 partitions the unit interval,
representing possible values for p1, into three (not
necessarily non-empty) subintervals according to the
type of equilibrium. Depending on the parameters �i ,
i = 1, 2, one or even two of these subintervals may be
empty.

Fig. 1 illustrates the equilibrium arrival rates when
�1 = 1.6 and �2 = 1.35. Note that with these values
A = 0.2155 and B = 0.3164.

Remark 3.9. The assumption of large potential ar-
rival rates can be somewhat relaxed now. We only need
to assume that the potential arrival rates are larger than
the values of the equilibrium arrival rates specified in
Theorem 3.7.

Remark 3.10. It is well known, see [2], [3] or [8,
pp. 56–57], that in a FCFS system without class dis-
crimination, a class dominance phenomenon prevails.
Specifically, in case of high potential arrival rates,
there exists a unique equilibrium in which customers
only from a single class join the queue. As we have
seen, the introduction of relative priorities may lead
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to an equilibrium in which customers from more than
one class join the queue.

Remark 3.11. The analysis in [10] is quite similar. In
particular, a distinction between boundary and internal
equilibria is made. Yet, an explicit derivation for the
optimal p1 (given Ti , i = 1, 2) seems harder.

4. Profit maximizing priority parameters

We now consider the design of profit maximizing
priority parameters when the other parameters, in par-
ticular entry fees, are given. As shown in Section 3 the
relevant input parameters required are �1 and �2. The
problem is to select p1 ∈ [0, 1] such that q∗

1 T1 +q∗
2 T2

is maximized.
We maximize profits over the non-empty interval

max{0, A}�p1 � min{B, 1}. At the ends of the inter-
val, one class actually has absolute priority over the
other. For example, suppose that p1 = max{A, 0}. If
0 < A < 1 then we are in the first case of Theorem
3.7, where q∗

1 = 0 and q∗
2 = 1 − 1/�2. If A < 0 then

the 2-customers enjoy absolute priority, but some 1-
customers join too. A similar situation occurs with the
two classes swapping roles when p1 = min{B, 1}.

By (18) and (19), the expected rate of profit is

� =
[

�2

�2p1 − �1p2
− 1

�1p1 − �2p2

]
T1

+
[

1

�1p1 − �2p2
− �1

�2p1 − �1p2

]
T2

=
[

�2

p1(�1 + �2) − �1
− 1

p1(�1 + �2) − �2

]
T1

+
[

1

p1(�1 + �2) − �2
− �1

p1(�1 + �2) − �1

]
T2

=
[

�2

x − �1
− 1

x − �2

]
T1 +

[
1

x − �2
− �1

x − �1

]
T2

= D

x − �1
− �

x − �2
, (20)

where x = p1(�1 + �2), D = �2T1 − �1T2, and � =
T1 − T2. This function needs to be optimized over
p1 ∈ [max{0, A}, min{B, 1}].

The first-order optimality condition in the case of
an internal solution is

d�

dx
= − D

(x − �1)
2 + �

(x − �2)
2 = 0

or

x2(D − �) − 2x(D�2 − ��1) + (D�2
2 − ��2

1) = 0.

The roots x+ and x− of this quadratic equation, which
exist if D��0, are candidates for an optimal value of
x (and hence x/(�1 + �2) is candidate for an optimal
value of p1)

x± = D�2 − ��1 ± √
D�(�2 − �1)

(D − �)
. (21)

We now check which of these solutions corresponds
to a local maximum of �

d2�

dx2 = 2D

(x − �1)
3 − 2�

(x − �2)
3 .

Note that x±−�1=[(�2−�1)/(D−�)](D±√
D�) and

x±−�2=(�2−�1)/(D−�)(�±√
D�). Also, D(x±−

�2)
3 − �(x± − �1)

3 = ((�1 − �2)/(D − �))3D�(D −
�)(�1/2 ± D1/2)2. Substituting these equations, we
obtain that the sign of d2�/dx2 is as that of (�1 −
�2)(�±√

D�)(D±√
D�). Note that (�−√

D�)(D−√
D�) = 2

√
D�(

√
D� − ((D + �)/2)) < 0. We con-

clude that: If �1 > �2 then only x− is a local maximizer
of � (and x+ gives a local minimum). If �1 < �2 then
only x+ gives a localmaximum.

If the candidate solution is internal to [max{0, A},
min{B, 1}] then it is optimal. Otherwise, the optimal
value is the appropriate edge of this interval. The fol-
lowing summarizes it all.

Theorem 4.1. Denote the optimal value by p∗
1 . If

0�A < p∗
1 < B �1 then the corresponding equilib-

rium is internal with rates given in (18) and (19). Oth-
erwise, if p∗

1 =max{0, A}, there are two possibilities:

1. A�0 (and p∗
1 �0): The resulting equilibrium is a

boundary one with q∗
1 =0 and q∗

2 =1−1/�2. Also,
any p1 ∈ [0, A] is optimal too.

2. A < 0 (and p∗
1 = 0): The resulting equilibrium is

internal with q∗
1 =1/�2 − �2/�1 and q∗

2 =1−1/�2.

The case where p∗
1 = min{B, 1} is dealt similarly.
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Fig. 2. Profits as a function of p1 in the interval [A, B].

Fig. 2 shows an instance where for given fees (T1 =
4, T2 = 7) and net benefit to cost ratios (�1 = 2, �2 =
1.25), the optimal value of p1 is 0.694, and it is strictly
within the interval A = 0, B = 0.1538.

Remark 4.2. The paper [10] contains a numerical ex-
ample showing that in their model it is possible that
the optimal p1 is strictly between zero and one.

5. Profit maximization with a common entry fee

We now assume that the entry fees are chosen by
the server but they are restricted to be equal (an in-
teresting example is when both must be 0). Our main
finding is that giving absolute priority to one of the
classes is optimal under the optimal common entry.
Moreover, the class obtaining this absolute priority is
not necessarily the one prescribed by the C� rule.

Theorem 5.1. Under the optimal common entry fee
one of the classes obtains absolute priority.

Proof. By (20) with T1 = T2 = T and p1 ∈
[max{0, A}, min{1, B}], the profit rate is

� = − (�2 − �1)T

p1(�1 + �2) − �1
.

For any given value of T , the objective of the
queue manager is to maximize � over p1 ∈
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Fig. 3. Profits and joining rates as a function of T .

[max{0, A}, min{1, B}]. The (partial) derivative of �
with respect to p1 is proportional to (�2 − �1). There-
fore, if �2 > �1, the optimal p1 is in the upper end of
the interval, and this is equivalent to giving absolute
priority to 1-customers (though 2-customers may still
arrive). Similarly, if �2 < �1 then p1 = 0 is optimal.
�

The optimal common price, with absolute priorities,
is computed as follows. Let qij denote the joining rate
of j -customers when class i obtains absolute priority.
Then qii=1−Ci/(Ri−T ) and qij =1−qii−Cj/((Rj −
T )(1 − qii)), as long as these values are in [0,1]. A
value not in this interval should be set to 0. The profit
�i which is defined as profit associated with the price
T , pi =1 and pj =0 is �i =T (qi1 +qi2). We compute
�1 and �2 and take the maximum.

For example, suppose that R1 = 5, R2 = 3, C1 = 2,
and C2 = 1. Fig. 3 shows the profits and joining rates.
In this example, q12 = 0 for every value of T . The
maximum profit is obtained for T ≈ 1.4 and p1 = 0.
We observe that the C� rule dictates p1 = 1.

We conclude with some observations that can be
deduced from Fig. 3.

With p1 = 1 1-customers join as long as q11 = 1 −
C1/(R1−T ) > 0, or T < 3. The joining of 1-customers
discourages all 2-customers from joining, and hence
q12 = 0 for any T �0. The profit is as in a single class
model, and it is maximized at T =R1−√

C1R1=1.84.
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With p1 = 0, 2-customers join as long as q22 = 1 −
C2/(R2−T ) > 0 or T < 2. 1-customers still join, and it
is interesting to observe that their joining rate initially
increases with T . The reason is that 2-customers are
more sensitive to changes in T , having a smaller value
of R. Their joining rate q22 steeply decreases and the
reduced expected waiting time for 1-customers caused
by this more than compensates for the increase in T .

The maximum profit is obtained with p1 = 0 and
T ≈ 1.4. We observe that this outcome differs from
the C� rule which dictates p1 = 1.
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