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Abstract

We consider several variants of the classical Cops and Robbers game. We treat the version
where the robber can move R ≥ 1 edges at a time, establishing a general upper bound of
n/α(1−o(1))

√
logα n, where α = 1 + 1

R , thus generalizing the best known upper bound for the
classical case R = 1 due to Lu and Peng, and Scott and Sudakov. We also show that in this
case, the cop number of an n-vertex graph can be as large as n1− 1

R−2 for finite R ≥ 5, but linear
in n if R is infinite. For R = 1, we study the directed graph version of the problem, and show
that the cop number of any strongly connected digraph on n vertices is O(n(log log n)2/ log n).
Our approach is based on expansion.

1 Introduction

The game of Cops and Robbers, introduced by Nowakowski and Winkler [25] and independently
by Quillot [26], is a perfect information game played on a fixed graph G. There are two players,
a set of c cops, for some integer c ≥ 1, and a robber. Initially, the cops are placed onto vertices
of their choice in G (where more than one cop can be placed at a vertex). Then the robber, being
fully aware of the cops’ placement, positions himself on one of the vertices of G. Then the cops and
the robber move in alternate rounds, with the cops moving first; however, players are permitted to
remain stationary on their turn if they wish. The players use the edges of G to move from vertex to
vertex. The cops win and the game ends if eventually a cop steps into the vertex currently occupied
by the robber; otherwise, i.e. if the robber can elude the cops indefinitely, the robber wins.

The cop number of G, denoted by c(G), is the minimum number of cops needed to win on
G. This parameter was introduced by Aigner and Fromme [1], and there is now an extensive
literature on this fascinating problem. We direct the reader to the surveys [3], [14], and [18] for
detailed accounts of the known results. All results focus on connected graphs, because the problem
for a disconnected graph obviously decomposes into the sum of the answers for each connected
component.

The most well known open question in this area is Meyniel’s conjecture, published by Frankl
in [15]. It states that for every connected graph G on n vertices, O(

√
n) cops are enough to

win. This conjecture, if true, is best possible, as projective plane graphs (n-vertex graphs without
∗Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, email:

alan@random.math.cmu.edu. Research supported in part by NSF award DMS-0753472.
†School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University,

Tel Aviv 69978, Israel, e-mail: krivelev@post.tau.ac.il. Research supported in part by USA-Israel BSF grant 2006322,

by grant 1063/08 from the Israel Science Foundation, and by a Pazy memorial award.
‡Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15217, e-mail: ploh@cmu.edu.

1



cycles of lengths 3 and 4, and with all degrees at least c
√
n, for a constant c) are easily seen to

require at least c
√
n cops. So far, the progress towards establishing Meyniel’s conjecture has been

rather slow. Frankl [15] proved the upper bound of O(n log log n/ log n); some twenty years later
Chiniforooshan [10] improved it to O(n/ log n). Finally, the upper bound of n/2(1−o(1))

√
logn was

established independently by Lu and Peng [22], and Scott and Sudakov [27]. Bounds on the typical
behavior of the cop number for the random graph Gn,p have been obtained for various values of
p = p(n) by Bollobás, Kun and Leader [8] and by  Luczak and Pra lat [22]. Many other versions and
ramifications of the above described classical setting have been studied, such as the ranged version
in [9], limited visibility in [21], etc., but we do not pursue them here.

We employ an approach based on the notion of expansion, which has had many applications in
mathematics and theoretical computer science. Recall that a graph is said to be a c-expander if every
subset S of at most n/2 vertices has |N(S) \S| > c|S|. Surprisingly, although our expansion-based
method applies a different technique than that used by Lu-Peng and Scott-Sudakov, it produces
the same bound.

Furthermore, our method also allows us to address some natural variants of the problem. First,
we consider the directed graph version of the Cops and Robbers problem. The setting here is
a straightforward adaptation of the undirected setting described above, with the only difference
being that the players need to respect the direction of any edge while moving along it. Problems
for directed graphs (digraphs) are usually much more difficult. To the best of our knowledge, there
have been no results on this problem in this case. In Section 3, we observe that the essence of the
problem is to consider only strongly connected digraphs, i.e. those which have directed paths from
any vertex to any other vertex. We prove the following general upper bound.

Theorem 1.1. Every strongly connected digraph on n vertices has cop number O
(
n · (log logn)2

logn

)
.

We then use a purely expansion-based argument to provide an alternate proof of the best result
for general graphs.

Theorem 1.2. Every connected graph on n vertices has cop number at most n/2(1−o(1))
√

log2 n.

Our approach also works in the case when the robber moves faster than the cops. Indeed, this
setting was recently considered in [13]. The usual problem is less interesting if a cop can move
faster than the robber, because then one cop is sufficient: he can chase down the robber. (One
must introduce additional mechanisms to make that version nontrivial, as is done in [11].) So, we
consider the case when the robber moves at speed R > 1 and the cop moves at speed 1; the robber
can take any walk of length R from his current position, but he is not allowed to pass through any
vertex occupied by a cop. With our alternate approach, we are able to extend Theorem 1.2 for a
faster robber.

Theorem 1.3. Let R ≥ 1 be a given finite constant, and let α = 1 + 1
R . For every connected graph

on n vertices, n/α(1−o(1))
√

logα n cops are sufficient to catch any robber who moves at speed R.

Remark. Observe that for the original case R = 1, the constant α is precisely 2. Therefore, this
extends all current best results in the traditional setting.

It is also interesting to note that in the fast robber setting, the cop number can be drastically
different. Indeed, Proposition 5.1 in Section 5 exhibits an n-vertex graph for which the cop number
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jumps from 2 to Θ(
√
n) when the robber’s speed increases from 1 to 2. For higher speeds, we also

show that the general lower bound climbs beyond n1/2, and even reaches Ω(n) for an infinite-speed
robber.

Theorem 1.4. For any given robber speed R ≥ 5, the following hold for sufficiently large n.

(i) If R <∞, there exists a connected n-vertex graph which requires at least n1− 1
R−2 cops.

(ii) If R =∞, there exists a connected n-vertex graph which requires at least 10−6 · n cops.

Throughout our paper, we will omit floor and ceiling signs whenever they are not essential, to
improve clarity of presentation. All logarithms are in base e ≈ 2.718 unless otherwise specified. The
following asymptotic notation will be utilized extensively. For two functions f(n) and g(n), we write
f(n)� g(n), f(n) = o(g(n)), or g(n) = ω(f(n)) if limn→∞ f(n)/g(n) = 0, and f(n) = O(g(n)) or
g(n) = Ω(f(n)) if there exists a constant M such that |f(n)| ≤M |g(n)| for all sufficiently large n.
The number of vertices n is assumed to be sufficiently large where necessary.

2 Preliminaries

Previous attempts to solve the general case of this problem have relied on the following two ob-
servations, which we restate here in forms that are convenient for our analysis. Recall that c(G)
denotes the cop number of G.

Lemma 2.1. Let G be a connected n-vertex graph.

(i) If v is a vertex of maximum degree ∆, then c(G) ≤ 1 + c(G′), where G′ is a connected graph
with at most n− 1−∆ vertices.

(ii) If v1v2 . . . vt is a shortest path between v1 and vt, then c(G) ≤ 1+c(G′), where G′ is a connected
graph with at most n− t vertices.

Part (i) follows by permanently stationing a cop at v, thereby prohibiting the robber from
entering {v} ∪ N(v). Part (ii) uses a result of Aigner and Fromme [1] which establishes that a
single cop can ensure that after finitely many moves, the robber never enters {v1, . . . , vt}. In both
situations, if G[U1], . . . , G[Uk] are the connected components of the remainder of the graph, then
only maxi c(G[Ui]) more cops are sufficient to capture the robber.

It is worth noting that the result of Aigner and Fromme used in part (ii) relies critically on
the bidirectionality of the edges, and on the robber moving only one edge per turn. In order to
consider more general settings, we use a new approach based on expansion. Let ∂S denote the set
of all vertices which are outside S, but adjacent to some vertex in S.

Lemma 2.2. Let G be a connected n-vertex graph. Suppose that G has a set of vertices S with
|S| < n/2, but |∂S| ≤ p|S| for some 0 < p < 1. Then c(G) ≤ p|S|+ c(G′), where G′ is a connected
graph with at most n− |S| vertices.

Remark. This result will still hold even when the robber is permitted to move at speed R > 1.

Proof. Permanently station one cop on each vertex in ∂S. Let G[U1], . . . , G[Uk] be the connected
components of G \ ∂S. The barrier of cops will prevent the robber from ever entering ∂S, so in
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particular, he will be forced to remain within a single connected component G[Uj ]. Therefore, as
before, only maxi c(G[Ui]) more cops are required to capture the robber.

It remains to show that |Ui| ≤ n− |S| for all i. Observe that since |S| < n/2, every connected
component spanned by S has size at most |S| < n/2 < n−|S|. On the other hand, every connected
component spanned by G \ (S ∪ ∂S) obviously has size at most n − |S| − |∂S| ≤ n − |S|. This
completes the proof. �

Although all statements in this paper are about deterministic graphs, we will use the probabilis-
tic method to develop strategies and provide constructions. We will repeatedly use the Chernoff
bound in our analysis, so we record a version of it here. (See, e.g., [2].)

Fact 2.3. For any ε > 0, there exists cε > 0 such that any binomial random variable X with mean
µ satisfies

P [X < (1− ε)µ] < e−
ε2

2
µ and P [X > (1 + ε)µ] < e−cεµ,

where cε is a constant determined by ε. When ε = 1/2, we may take c1/2 = 1
10 .

3 Directed graphs

Recall that a digraph is strongly connected if there is a directed path from any vertex to any other
vertex, weakly connected if its underlying undirected graph is connected, and disconnected if its
underlying undirected graph is disconnected. We claim that the essence of the directed case of this
problem is to investigate the cop number of an arbitrary strongly connected digraph D. Indeed, as
in the case of ordinary graphs, if the underlying undirected graph G is disconnected, with connected
components G[V1], . . . , G[Vt], then the cop number of D is clearly the sum of the cop numbers
of D[V1], . . . , D[Vt]. The following proposition shows that the weakly connected case reduces to
solving the strongly connected case.

Proposition 3.1. Let D be a directed graph, whose strongly connected components are D[V1], . . . ,
D[Vt]. Let ci denote the cop number of D[Vi], and construct a directed acyclic graph D′ with vertex
set [t], where

−→
ij is an edge if and only if D has an edge from Vi to Vj. Then the problem of

determining the cop number of D reduces to an optimization problem involving only D′ and the
ci’s, for i = 1, 2, . . . t.

Proof. In a directed acyclic graph, we call v a source vertex if it has in-degree zero, and we say
that v feeds into w if there is a directed path from v to w. The first observation is that it is never
useful to initially position cops in any Vi where i is a non-source vertex of D′. Indeed, consider
positioning those cops in a strong component V ′i , where i′ is a source vertex of D′ which feeds into
i instead. Let Vj be the strong component containing the robber’s initial vertex. If i does not feed
into j, then this alternate placement makes no difference, because the cops in Vi would be useless
anyway. Otherwise, if i feeds into j, let all cops initially stay stationary until the relocated cops
move to their old positions in Vi. Then, run the old algorithm (which had those cops starting in
Vi).

Therefore, we only need to choose the numbers of cops to place in the strong components
corresponding to source vertices of D′. Assign an integer variable xi to each source. Consider any
vertex j ∈ D′, and let S be the set of source vertices which feed into it. We must have the inequality
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∑
S xi ≥ cj , because if the robber started in Vj , then the only sources of cops are from the Vi with

i ∈ S. We thus introduce one constraint per vertex of D′.
It remains to show that if all constraints are satisfied, then the robber certainly can be caught.

Let the robber’s initial position be in Vj . Route all possible cops into Vj . By the constraints, we
will be able to move at least cj cops there. If the robber stays in Vj , he will certainly be caught
eventually, so he must exit to another strong component Vk. In D′, the set of sources which feed
into k is a superset of those which feed into j, so we can move the cops in Vj to Vk, and move the
cops from the other sources directly to Vk. This will force the robber out of Vk, and the process
must terminate eventually because D′ is finite. �

Solving the optimization problem is outside of the scope of this paper, since it has an entirely
different flavor. Instead, we now proceed to prove Theorem 1.1. Diameter-based arguments break
down completely, so previous bounds for general graphs (e.g., Frankl [15], Chiniforooshan [10], and
Lu and Peng [22]) do not apply. However, expansion is immune to this difficulty. In the context
of directed graphs, let us call a digraph a c-in-expander if every subset S of at most n/2 vertices
has |∂−S| ≥ c|S|, where ∂−S is the set of all vertices v 6∈ S which have a directed edge into S.
Let us bring some basic tools from the previous section to the directed setting. We omit the proof
because it follows essentially the same lines as Lemmas 2.1(i) and 2.2.

Lemma 3.2. Let D be a strongly connected n-vertex digraph.

(i) If v is a vertex of out-degree ∆, then c(D) ≤ 1+c(D′), where D′ is a strongly connected digraph
with at most n− 1−∆ vertices.

(ii) Suppose that D has a set of vertices S with |S| < n/2, but |∂−S| ≤ p|S| for some 0 < p < 1.
Then c(D) ≤ p|S| + c(D′), where D′ is a strongly connected digraph with at most n − |S|
vertices.

The previous lemma is cumbersome to apply by itself. However, it allows us to clean up our
graph, at the cost of reserving a few cops for this purpose. We record the following statement,
which is more convenient to use.

Corollary 3.3. Let D be a strongly connected digraph with n vertices, and let 0 < p < 1 be
arbitrary. Then c(D) ≤ pn + c(D′), where D′ is a strongly connected digraph with at most n
vertices and maximum out-degree at most 1/p, which is also a p-in-expander.

Proof. We repeatedly apply Lemma 3.2. As long as there is a vertex v of out-degree at least 1
p ,

part (i) shows that at the cost of one cop, we can reduce the number of vertices by at least 1
p + 1.

Similarly, if there is a set S of at most half the vertices with |∂−S| ≤ p|S|, we can reduce the number
of vertices by at least |S|, at the cost of p|S| cops. Note that in both cases, the number of cops
expended is at most a p-fraction of the number of vertices discarded. Therefore, if we repeat this
process until exhaustion, we will have a digraph D′ with m ≤ n vertices, with the stated properties,
such that c(D) ≤ p(n−m) + c(D′) ≤ pn+ c(D′), as claimed. �

We are now ready to prove Theorem 1.1. Corollary 3.3 implies that it is an immediate conse-
quence of the following final lemma.

Lemma 3.4. Let p = 13(log logn)2

logn . Every strongly connected digraph D on m ≤ n vertices with
maximum out-degree at most 1/p and in-expansion at least p can be guarded by at most 2pn cops.
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Proof. Note that if m ≤ pn, we are trivially done by placing a cop on each vertex of D. So,
we may assume that m > pn. Let r = 6

p log 4
p . For each vertex v, let B+(v) denote the set of all

vertices which are reachable from v by (directed) walks of length at most r. Similarly, for S ⊆ V ,
let B−(S) contain every vertex that can reach some vertex in S by a directed walk of length at
most r.

Our first claim is that it is possible to position 2pn cops so that for every subset S of size
1 ≤ |S| ≤ 2p−r, the set B−(S) contains at least |S| cops. Indeed, Inequality A.1 from the Appendix
gives

2p−r(1 + p)r ≤ np/2 < m/2,

so for such a set S, the in-expansion property ensures that |B−(S)| ≥ |S|(1 + p)r. Note that
Inequality A.1 from the Appendix also shows that (1 + p)r ≥ 16

p log n.
Therefore, if we position cops randomly, by independently placing a cop at each vertex with

probability p, the expected number of cops in B−(S) is at least |S| · 16 log n. The Chernoff bound
(Fact 2.3) shows that the probability that this is below half its expectation is at most e−

1
8
|S|·16 logn ≤

n−2|S|.
Since the number of subsets of s vertices is at most ns, a union bound over all S of size s shows

that with probability at least 1 − n−s, every such B−(S) contains at least |S| · 8 log n ≥ |S| cops.
Taking another union bound over all s ∈ {1, . . . , 2p−r}, we see that whp,1 this holds for every
1 ≤ |S| ≤ 2p−r. Also, the Chernoff bound implies that whp, at most 2pn cops were placed by the
random process. Putting these two together, we see that it is indeed possible to place only 2pn
cops so that for every S of size 1 ≤ |S| ≤ 2p−r, the set B−(S) contains at least |S| cops. (This is
a non-constructive proof in the sense that we do not provide an efficient deterministic algorithm
for cop placement; however, we have shown that the random algorithm succeeds nearly all of the
time.)

Now assume that the cops are placed as above. Let the robber’s position be v. By the maximum
out-degree condition, |B+(v)| ≤ 1 + p−1 + . . . + p−r < 2p−r. We now use Hall’s theorem to show
that for each w ∈ B+(v), there is a distinct cop cw which can reach it within r moves. Indeed,
for this we consider an auxiliary bipartite graph where the left side is a copy of the vertex set of
B+(v), and the right side contains one vertex for each of the 2pn cops placed above. We place edges
between vertices w on the left and all vertices on the right corresponding to cops within distance
r of w. By the previous argument, for every subset S of the left side, at least |S| vertices on the
right have neighbor(s) in S. This verifies the Hall condition. Therefore, we can send a distinct cop
to each vertex of B+(v), so that after r moves the entire set B+(v) is occupied by cops. As this is
the complete set of possible positions for the robber after r moves, this results in his capture. �

4 General graphs

In the previous section, we used Hall’s theorem to route distinct cops to each position which needed
to be blocked. This argument can be improved by performing several iterations. The main idea
is to draw conclusions from the failure of the Hall condition. The k = 1 version of the following
lemma essentially appears in [22], but our statement has an expansion flavor built in, and so is
more amenable to our approach.

1with probability tending to 1 as n→∞
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Lemma 4.1. Given a bipartite graph with parts A and B and a number k, it is always possible to
partition A = S ∪ T such that |N(S)| ≤ k|S|, and for every subset U ⊆ T , we have |N(U)| ≥ k|U |.

Proof. Start with S = ∅. As long as there is a subset U ⊆ A with |N(U)| ≤ k|U |, add U to S,
and delete U from A. It is clear that at the end of this process, if we consider the original graph,
|N(S)| ≤ k|S|. However, in our modified graph, every subset of the remaining A expands by at
least k times in B. �

Next, we isolate a component of our directed graph proof, so that we can use it in a modular
form. Let Br(S) denote the set of all vertices which are within distance r from at least one vertex
in S.

Lemma 4.2. Let n, p, r be given, with np sufficiently large. In every n-vertex graph G, it is possible
to distribute 2pn cops such that for every set S with |Br(S)| ≥ 16

p |S| log n, there are at least |S|
cops in Br(S).

Proof. Position cops randomly, by independently placing a cop at each vertex with probability
p. For each S in the statement, the expected number of cops in Br(S) is at least 16|S| log n. The
Chernoff bound (Fact 2.3) shows that the probability that this is below half its expectation is
e−

1
8
·16|S| logn ≤ n−2|S|.
Since the number of subsets of s vertices is at most ns, a union bound over all S of size s shows

that with probability at least 1 − n−s, every such Br(S) contains at least 8|S| log n ≥ |S| cops.
Taking another union bound over all s ∈ {1, . . . , n}, we see that with probability at least 1 − 2

n ,
this holds for every 1 ≤ |S| ≤ n. Yet Bin [n, p] is at most 2np whp by the Chernoff bound, so
we conclude that there is positive probability of our procedure giving all of the desired properties,
using only 2pn cops. �

Next, we translate Corollary 3.3 to the case of undirected graphs, via Lemmas 2.1(i) and 2.2.
The proof of the following statement is analogous to Corollary 3.3, so we do not record it again.

Corollary 4.3. Let G be a connected graph with n vertices, and let 0 < p < 1 be arbitrary. Then
c(G) ≤ pn+c(G′), where G′ is a connected graph with m ≤ n vertices and maximum degree at most
1/p, which is also a p-expander.

In light of this corollary, it is clear that Theorem 1.2 is immediate from the following final
lemma.

Lemma 4.4. There is a function p = p(n) = 2−(1−o(1))
√

log2 n for which the following holds. Every
connected graph G on m ≤ n vertices with maximum degree less than 1/p and expansion at least p
can be guarded by at most (1 + o(1))

√
log2 n · 2pn cops.

Proof. As in the proof for directed graphs, we may assume that m > pn, or else we are trivially
done. Inequality A.2 shows that there is a function p = 2−(1−o(1))

√
log2 n and a positive integer

l = (1 + o(1))
√

log2 n such that when we define k = 16
p log n, we have the inequalities

kl+1 ≤ (1 + p)−2lnp/2 and (1 + p)2
l ≥ k. (1)

We will split the cops into l+ 1 groups C0, C1, . . . , Cl, each of size 2pn. Choose the initial positions
of the cops in Ci by applying Lemma 4.2 with parameter r = 2i. Let the robber’s initial position
be v.
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Let N0 = B1(v) be the set of vertices that the robber can reach in 1 move. By the maximum
degree condition, |N0| ≤ 1

p < k. Consider the auxiliary bipartite graph in which A = N0, B = V ,
and a is adjacent to b if and only if they are at distance at most 1 in G. Then Lemma 4.1 implies
that we can partition N0 = S0 ∪ T0 such that (in G) |B1(S0)| ≤ k|S0| and every subset U ⊆ T0 has
|B1(U)| ≥ k|U |. Therefore, by construction of C0, Hall’s theorem shows us how to send a distinct
cop from C0 to each vertex of T0 in the first move, preventing the robber from ever occupying a
vertex of T0.

Thus the robber’s position after his second move is restricted to N1 = B1(S0), and |B1(S0)| ≤
k|S0| ≤ k2. Repeating the same trick, we can partition N1 = S1 ∪ T1 and use the cops in C1 to
prevent the robber from ever entering T1, yet |B2(S1)| ≤ k|S1| ≤ k3. Hence the robber’s position
after his 4th move is restricted to N2 = B2(S1).

The radii of the balls double at each iteration of this procedure, so we eventually conclude that
after his 2lth move, the robber is still contained within a set Nl = B2l−1(Sl−1) of size at most kl+1.
However, when we iterate the argument a final time, the partition Nl = Sl ∪ Tl must have Sl = ∅.
Indeed, since G is a p-expander, every non-empty set S of size at most (1 + p)−(r−1)m/2 > (1 +
p)−(r−1)np/2 has |Br(S)| ≥ (1+p)r|S|. As Inequality (1) ensures that |Nl| ≤ kl+1 ≤ (1+p)−2lnp/2
and (1 + p)2

l ≥ k, we conclude that Sl is indeed empty. Therefore, the cops in Cl can completely
cover Nl within 2l moves. Since Nl was the set of possible positions for the robber after his 2lth
move, the robber is captured. �

5 Fast robber

In this section, we assume that the robber can traverse up to R edges in a single move. Cops may
only move by a single edge per move. We begin by observing that the cop number of a graph can
dramatically increase even if the robber’s speed only grows to R = 2.

Proposition 5.1. Let G be the 1-subdivision of Kn, where a vertex is added on each edge. The
ordinary cop number of G is 2, but if the robber can move at speed 2, then the cop number rises to
dn/2e = Θ(

√
|V (G)|).

Proof. Call a vertex of a 1-subdivision an internal vertex if it was added to subdivide an edge,
and a join vertex otherwise. In the ordinary setting, by placing two cops on arbitrary join vertices
a, b, they can catch the robber within 3 moves. Indeed, if the robber starts on the internal vertex
between two join vertices u,w, then both cops move toward u,w on their first move. Regardless
of which of u,w the robber moves to, a cop will be adjacent, and can catch him on the next turn.
Otherwise, if the robber starts on a join vertex v, then the cop at a moves to the internal vertex
between a and v. The robber must move to an internal vertex, say between v and w. The cop at a
follows him to v, and the other cop moves to the internal vertex between b and w. The robber will
now be caught in the next round.

On the other hand, if the robber moves at speed 2, then dn/2e cops are required to catch him.
To see this, note that any m < dn/2e cops can be immediately adjacent to only at most 2m < n

join vertices. So, the robber can choose a non-dominated join vertex, say v, to start on and wait.
When a cop moves adjacent to him, there will be at least one join vertex w with no adjacent cop.
Importantly, the vertex between v and w is unoccupied, since otherwise a cop would be adjacent
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to w. So, the robber can advance to w in a single move, and again be nonadjacent to any cop. He
can repeat this indefinitely, eluding dn/2e − 1 cops.

Note that if dn/2e cops are used, they can initially sit on internal vertices so that all join vertices
are dominated. The robber must then select an internal vertex for his initial position, say between
join vertices v and w. These two vertices are not dominated by the same cop, because the only
vertex which does is occupied by the robber. So, the two cops which dominate v and w can advance
to occupy v and w in their first turn. This traps the robber, and he will be captured in the next
round. �

Let us now turn our attention to upper bounds. Unfortunately, diameter-based arguments
completely break down, because Lemma 2.1(ii) does not hold for fast robbers. However, since even
a fast robber cannot pass through vertices occupied by cops, Lemma 2.2 still applies. Therefore,
we can adapt the proof from the previous section to this case. The first step is to extend Lemma
2.1(i) to this setting.

Lemma 5.2. Let n, p,R be given, with np sufficiently large. Every n-vertex graph G has a set U
of 2pn vertices such that the following holds. Place R cops on each vertex of U , and let the robber
choose a starting position. Then there is a set S of size at most

(
16
p log n

)2R such that the robber’s
position after his first move must lie in S.

Proof. Let k = 16
p log n. We construct U such that that every vertex v with |B1(v)| ≥ k has at

least |B1(v)| · p2 vertices of U in N(v). By independently including each vertex with probability p,
the probability that this property fails at a fixed v is at most e−kp/8 = n−2 by the Chernoff bound.
Combining a union bound over all v with the fact that Bin [n, p] is at most 2np whp, we see that
we have positive probability of obtaining the desired construction.

Now let C1, . . . , CR be R sets of cops, where each set has one cop on each vertex of U . The
robber cannot select an initial vertex with degree at least k, or else he will be adjacent to a cop in
C1 (who will catch him immediately, since cops move first). So, assume that the robber’s initial
vertex v has |B1(v)| ≤ k.

We will simultaneously dispatch the cops in C2, . . . , CR, so that in their first move, they occupy
high-degree vertices in the vicinity of v. Consider the vertices of B1(v) which have degree at least
2
pk. By construction, each such vertex will have at least k ≥ |B1(v)| cops in C2 in its neighborhood,
so by the greedy algorithm, we may send cops in C2 to occupy these vertices before the robber has
a chance to move. Since the robber cannot pass through any cops, he must avoid these vertices
forever. Let S1 ⊆ B1(v) be the remaining vertices, and let S2 = B1(S1). These are the potential
positions that the robber can reach within distance 2, and we have |S2| ≤ 2

pk
2.

Repeating this argument again, we see that we may send cops in C3 to occupy vertices in S2

that have degree at least 2
p ·

2
pk

2 =
(

2
p

)2
k2. Then, S3 = B1(S2) is the set of potential positions that

the robber can reach within distance 3, and |S3| ≤
(

2
p

)2
k2 · |S2| ≤

(
2
p

)3
k4. Continuing in this way,

we see that after dispatching CR, we have restricted the set of positions that the robber can reach
within distance R to a set of size at most(

2
p

)2R−1−1

k2R−1
< k2R .

This is the maximum distance he can cover in his first move. �
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Now we are ready to extend our earlier proof to the fast robber setting. Since Lemma 2.2 holds
for fast robbers, the obvious translation of Corollary 3.3 implies that Theorem 1.3 is a consequence
of the following lemma.

Lemma 5.3. Let R be a positive integer, and let α = 1 + 1
R . There is a function p = p(n) =

α−(1−o(1))
√

logα n for which the following holds. In every connected graph G on m ≤ n vertices with
maximum degree less than 1/p and expansion at least p, (1 + o(1))

√
logα n · 2pn cops can always

capture a speed-R robber.

Proof. As usual, we may assume that m > pn, or else we are trivially done. Define the sequence
d0, d1, . . . via the recursion d0 = R, di+1 = di+

⌈
di
R

⌉
. Let ri =

⌈
di
R

⌉
. Inequality A.3 shows that there

is a function p = α−(1−o(1))
√

logα n and a positive integer l = (1 + o(1))
√

logα n such that when we
define k = 16

p log n, we have the inequalities

k2R · kl ≤ (1 + p)−rl
np

2
and (1 + p)rl ≥ k. (2)

We use Lemma 5.2 to distribute 2Rpn cops such that the robber’s position after his first move
will always be contained in a set N0 of size at most k2R . We split the remaining cops into l + 1
groups C0, C1, . . . , Cl. Choose the initial positions of the cops in Ci by applying Lemma 4.2 with
parameter ri. Let the robber’s initial position be v.

The rest of the proof is nearly identical to that of Lemma 4.4. At each step, we consider the
robber’s set of possible intermediate positions in Bdi(v), which he occupies on or after his bdi/Rc-th
move, but strictly before the completion of his (bdi/Rc + 1)-st move. We let this set be Ni, and
inductively assume it has size at most k2R · ki.

Since the cops move first, they can travel by distance bdi/Rc+ 1 ≥ ri by this time. Lemma 4.1
partitions Ni = Si∪Ti such that |Bri(Si)| ≤ k|Si| and every subset U ⊆ Ti has |Bri(U)| ≥ k|U |. By
construction of Ci, Hall’s theorem shows us how to send a distinct cop from Ci to each vertex of Ti.
Hence the robber actually cannot occupy Ti anytime after his bdi/Rc-th move. Therefore, the set of
positions in Bdi+1

(v) which the robber may occupy between his bdi+1/Rc-th and (bdi+1/Rc+ 1)-st
moves is restricted to some Ni+1, of size at most k2R · ki+1.

This procedure terminates because when we partition Nl = Sl ∪ Tl, the expansion property
ensures that Sl = ∅. Indeed, the inequalities in (2) are precisely what are required to show that
the sets are small enough to expand, and that their radii are large enough for the expansion factor
to exceed k. Therefore, the cops in Cl can completely cover Nl within rl moves. Since Nl was the
set of possible positions for the robber within distance dl, the robber is captured. �

6 Lower bound for infinitely fast robber

We now proceed to prove that the Ω(
√
n) general lower bound can be sharpened considerably in

the setting when the robber moves faster than the cops. As a warm-up, we start with the second
part of Theorem 1.4, which states that there are n-vertex graphs on which an infinitely fast robber
can always evade cn cops, for an absolute constant c. The graphs will be instances of Gn,p with
p = 200/n. We will need some routine lemmas about Gn,p.

Lemma 6.1. Let p = 200/n. Then, whp every set of s ≤ 0.6n vertices in Gn,p has average degree
at most 0.9np.
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Proof. Note that the average degree condition is equivalent to enforcing that each such set spans
at most s

2 · 0.9np edges. We will take a union bound, but we split the range for s into three parts.
First, consider any set S of 0.3n < s ≤ 0.6n vertices. The number of edges in S is Bin

[(
s
2

)
, p
]
, so

s
2 · 0.9np exceeds its mean by a factor of at least 50%. Therefore, the Chernoff bound (Fact 2.3)

implies that the probability that S fails is at most e−0.1· s
2

2
·p ≤ e−3s. Taking a union bound over all

such S with 0.3n < s < 0.6n, we accumulate a failure probability of at most

0.6n∑
s=0.3n

(
n

s

)
e−3s ≤

0.6n∑
s=0.3n

(en
s
e−3
)s
≤

0.6n∑
s=0.3n

( e

0.3
e−3
)s
≤

0.6n∑
s=0.3n

2−s. (3)

Next, we consider s in the range log n < s ≤ 0.3n. Here, we use a simpler bound for the
probability that a given set of s vertices spans more than s

2 · 0.9np edges. Combining this with a
union bound over all S of these sizes, we bound the total failure probability in this range by

0.3n∑
s=logn

(
n

s

)( s2

2
s
2 · 0.9np

)
p
s
2
·0.9np ≤

0.3n∑
s=logn

(en
s

)s( es

0.9np

) s
2
·0.9np

p
s
2
·0.9np ≤

0.3n∑
s=logn

[
en

s
·
( es

0.9n

)90
]s
.

(4)
Since the quantity in the square brackets increases with s (its exponent is +89), we may replace s
with its maximum value in this range, to obtain an upper bound of:

0.3n∑
s=logn

[
en

0.3n
·
(
e · 0.3n

0.9n

)90
]s

=
0.3n∑

s=logn

[
e

0.3
·
(e

3

)90
]s
<

0.3n∑
s=logn

2−s. (5)

For the final range 1 ≤ s ≤ log n, we may substitute log n for s into inequality (4), for the same
reason as above. So, the total failure probability in that range is at most

logn∑
s=1

[
en

log n
·
(
e log n
0.9n

)90
]s
≤ log n · en

log n
·
(
e log n
0.9n

)90

= O

(
log90 n

n89

)
. (6)

Combining inequalities (3), (5), and (6), we obtain the desired result. �

Our next lemma allows us to delete small (but linear-size) vertex subsets without destroying
too many edges. Let us say that an edge is covered by a vertex subset if one of its endpoints is in
the subset.

Lemma 6.2. Let λ, c be positive real constants such that c > e · (e/4)4λ. Then, for p = λ/n, whp

every set of cn vertices in Gn,p covers at most 4np · cn edges.

Proof. Any given set of cn vertices is potentially incident to
(
cn
2

)
+ c(1− c)n2 ≤ cn2 edges, each

of which is independently present with probability p. So, the probability that over 4np · cn appear
is at most (

cn2

4np · cn

)
p4np·cn ≤

(
e

4p

)4np·cn
p4np·cn =

(e
4

)4λ·cn
.

Therefore, taking a union bound over all subsets of size cn, the total failure probability is at most(
n

cn

)
·
(e

4

)4λ·cn
≤
[
e

c
·
(e

4

)4λ
]cn

= αcn,
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for some constant α < 1. Hence this probability tends to zero, as claimed. �

We are now ready for the proof of Theorem 1.4(ii).

Proof of Theorem 1.4(ii). Let c = 800−2, and let G be an instance of Gn,p with p = 200/n.
The previous lemmas, together with a classical result regarding the giant component, show that we
can ensure G has the following properties whp:

(i) G has at least 99n edges (Chernoff).

(ii) Every subset of cn vertices covers at most 800cn edges.

(iii) Every subset of 800cn vertices covers at most 8002cn edges.

(iv) Every subset of at most 0.6n vertices has average degree at most 0.9np.

(v) G has a connected component H which contains at least 0.99n vertices (Theorem 6.11 in [7]).

We claim that these properties are enough to allow the robber to escape cn cops indefinitely on
the connected graph H. This will establish Theorem 1.4(ii) because c = 800−2 and H has at least
0.99n vertices by (v).

Indeed, suppose that there are only cn cops, and let C be the set of vertices that they initially
occupy. Let C+ be the union of C with all immediate neighbors of vertices in C, and let U be
the complement of C+. Property (ii) shows that |C+| ≤ 800cn, so by (iii), the total number of
edges covered by C+ is always at most 8002cn = n. So, G[U ] induces at least 98n edges, and hence
has average degree at least 0.98np. Some connected component of G[U ] must have at least that
average degree, and (iv) shows that it must then have size at least 0.6n. Therefore, G[U ] always
has a connected component of at least this size.

The robber’s strategy is to initially place himself in an arbitrary vertex v of the largest connected
component of G[U ], which has size at least 0.6n. After the cops move, let U ′ be the complement of
the new C+. There must still be a connected component of size at least 0.6n in G[U ′]; the robber
selects an arbitrary vertex x in it. Since these two large components both have size at least 0.6n,
they must overlap in some vertex w. Therefore, there is a path P1 from v to w entirely contained in
U , and a path P2 from w to x entirely contained in U ′. Yet even though the cops have moved, by
definition of U , their current positions are still outside of U , since U excluded their old immediate
neighborhoods. Therefore, both paths Pi completely avoid all cops, so the robber can indeed move
to x in his turn. This preserves the condition that he is always in the largest connected component
outside C+, so he can repeat this indefinitely. �

Remark. A more careful implementation of the above argument allows the robber to escape when
his speed R is not infinite, but rather at least C log n for some large enough constant C > 0. This is
due to the fact that the large connected subgraph of G[U ] in the above argument can be chosen in
addition to be of logarithmic diameter, allowing the robber to escape from it to U ′ in a logarithmic
number of steps. A similar argument is presented in more detail in the next section.

7 Lower bounds for finite-speed robber

We now extend the ideas of the previous section to prove the first part of Theorem 1.4. In the last
section, connectivity alone was enough, since the robber could move infinitely quickly. Here, we
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also need to control the lengths of the paths involved. The graph will still be an instance of Gn,p,
but this time p will be of order n

1
R−2
−1. As usual, we begin by stating some routine facts about

Gn,p.

Lemma 7.1. In Gn,p, whp there is an edge between every pair of disjoint sets of size s0 = 3
p log n.

Proof. For any fixed pair of disjoint sets of size s0, the probability that all crossing edges are
absent is at most (1 − p)s20 . There are at most

(
n
s0

)2 ways to choose these sets, so a union bound
implies that the probability that this property does not hold in Gn,p is at most(

n

s0

)2

(1− p)s20 ≤
(
en

s0

)2s0

e−ps
2
0 =

[(
en

s0

)2

e−ps0

]s0
≤
[
n2e−3 logn

]s0
= n−s0 = o(1).

�

Lemma 7.2. In Gn,p, whp every set of size s ≤ s0 = 3
p log n spans at most s · 6 log n edges.

Proof. For fixed s, the number of sets of s vertices is
(
n
s

)
. The probability that a particular set

of s vertices spans at least k = s · 6 log n edges is at most
(s2/2
k

)
pk. Therefore, the probability that

our property fails for a certain fixed s is at most:(
n

s

)
·
(

s2/2
s · 6 log n

)
ps·6 logn ≤

(en
s

)s
·
(

esp

12 log n

)s·6 logn

=

[
en

s
·
(

esp

12 log n

)6 logn
]s

≤
[
en ·

(e
4

)6 logn
]s
.

Since (e/4)6 ≈ e−2.3, this probability is at most n−s for large n. Taking a final union bound over
all s ≤ s0, we see that the total failure probability is still o(1), as claimed. �

Lemma 7.3. Let γ > 0 be fixed, and suppose np→∞. Then Gn,p has the following property whp.
For every integer t between γnp and γ3

2e5
n, every subset U of t vertices has the property that the

number of vertices v /∈ U with dU (v) ≥ γnp is at most 3 · t
γnp .

Proof. Let k = 3 · t
γnp . For each fixed t, there are

(
n
t

)
ways to choose the set U , and at most

(
n
k

)
ways to choose k vertices outside U . For each of these vertices, the number of neighbors in U is
distributed as Bin [t, p], and the probability that this Binomial random variable exceeds γnp is at
most

(
t

γnp

)
pγnp. Putting this all together, the probability that our property fails for a certain fixed

value of t is at most:(
n

t

)
·
(
n

k

)
·
[(

t

γnp

)
pγnp

]k
≤

(
n

t

)2

·
[(

t

γnp

)
pγnp

]k
≤

(en
t

)2t
·
[
etp

γnp

]γnp·k
=

(en
t

)2t
·
[
et

γn

]3t

=
[
e5

γ3
· t
n

]t
.
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Since t is at most T = γ3

2e5
n, the final bound is at most 2−t. Summing over all t from γnp to T , we

see that since np→∞, the total failure probability is still o(1), as desired. �

Now we move to Theorem 1.4(i), which is more convenient to prove in the following (equivalent)
reparameterized form.

Proposition 7.4. Let c > 0 be fixed, and let p = c3

30000n
c−1. Then whp Gn,p has the property that

a robber with speed 1
c + 2 can always escape from n1−c cops.

Proof. Condition on the high-probability properties in Lemmas 7.1, 7.2, and 7.3 with γ = c/4.
Also condition on the high-probability event that all degrees of Gn,p are between 0.9np and 1.1np.
Note that np = c3

30000n
c.

Let us specify the robber’s winning strategy. The cops place themselves first. Let C be the
set of vertices occupied by cops, and let C+ be the union of C with all immediate neighbors of
vertices in C. Since |C| ≤ n1−c and all vertices have degree at most 1.1 · c3

30000n
c, it follows that

|C+| ≤ γ3

2e5
n, where γ = c/4.

The robber’s strategy uses the notion of the k-core of a graph, which is the largest induced
subgraph that has all degrees at least k. It is well known that the k-core can always be obtained by
repeatedly deleting all vertices of degree less than k, and the result is independent of the order in
which these deletions are performed. Let H be the np

3 -core of the graph induced by vertices outside
C+. Our first claim is that H always has size at least (1− c3)n.

Indeed, since we conditioned on all degrees exceeding 0.9np, as well as on the result of Lemma
7.3 with γ = c/4, the deletion of C+ cannot hurt our minimum degree condition by very much.
To be precise, the resulting graph has minimum degree at least (0.9− γ)np, except for some small
set of vertices U1 of size at most 3

γnp · |C
+| ≤ 106

c4
n−c · |C+|. Applying the same result again, we

find that after deleting U1, the resulting graph has minimum degree at least (0.9 − 2γ)np, except
for some even smaller set U2 of size at most

(
106

c4
n−c

)2 · |C+|. Repeatedly applying this result, we
see that since |C+| ≤ n, this procedure must certainly terminate within 2/c iterations, giving a
subgraph with all degrees at least

(
0.9 − 2

cγ
)
np > np

3 . The total number of deleted vertices is at
most

|C+| ·

[
1 +

(
106

c4
n−c

)
+
(

106

c4
n−c

)2

+ · · ·

]
< |C+| · 2 < c3n,

as claimed.
The robber’s strategy is to choose an arbitrary vertex in H for his initial position. The cops

then make their move, and occupy a new set of vertices C ′. Let H ′ be the new np
3 -core of the graph

induced by all vertices except those in C ′ and its immediate neighborhood. Our final claim is that
the robber can always move to a vertex in H ′. Clearly, this will imply that the robber can evade
the cops indefinitely.

We must show that there exists a path of length at most 1
c +2 from the robber’s current position

to a vertex in H ′, which completely avoids C ′. The main observation is that C ′ ⊆ C+, because C+

was defined to include all possible positions of cops in their next turn. Therefore, since the robber
is in H (the np

3 -core of G \C+), he has quite a lot of freedom to move without running into any of
the cops positioned at C ′.

More precisely, we will show that by traversing at most 1
c +1 edges in H, the robber can already

reach s0 = 3
p log n vertices. Indeed, let S0 = {x}, S1, S2, . . . , be the sequence of sets in a breadth-

first search performed in H from the robber’s current position x. Let Ti = S0 ∪ S1 ∪ · · · ∪ Si. Thus
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Ti+1 = Ti ∪NH(Ti). Now suppose that |Ti+1| ≤ s0. It follows from our conditioning on Lemma 7.2
that

e(Ti+1) ≥ |Ti|
(np

3
− 6 log n

)
.

Applying this same result once again we see that

|Ti+1| ≥
e(Ti+1)
6 log n

≥ np|Ti|
20 log n

.

Since np = c3

30000n
c, it follows that if i0 = 1

c + 1 then |Ti0 | ≥ s0.
Yet we also conditioned on Lemma 7.1, so since |H ′| ≥ (1− c3)n, there is an edge between Ti0

and H ′. Therefore, since the robber is permitted to traverse 1
c + 2 edges in a single move, he can

indeed land on a vertex in H ′ without passing through any vertex (in C ′) currently occupied by a
cop. �

8 Concluding remarks

We have considered the directed version of the classical Cops and Robbers game, and also the
version where the robber moves R edges at a time, but the cops move only one edge at a time. Our
approach generalized the best known upper bound to the fast robber setting, but coincidentally
only reproved the same asymptotic in the original setting. However, for directed graphs, our general
upper bound is weaker than the corresponding bound for the undirected case. It would be nice to
obtain an upper bound for directed graphs with asymptotics similar to our other upper bounds in
this paper. On the other hand, it may also be interesting to study the lower bound for directed
graphs.

On the topic of lower bounds, the fast robber lower bound of n1− 1
R−2 we derived is only inter-

esting for R ≥ 5. It would be nice to know whether or not an ω(
√
n) lower bound can already be

achieved for R = 2. Another possible version to address is when the cops and the robber both move
at the same speed R > 1. Our upper bound on the number of cops in the fast robber scenario still
carries over, since faster cops are more powerful. It would be interesting to decide whether there is
a better lower bound of ω(

√
n) for this case.

Acknowledgment. The authors would like to thank the anonymous referees for their careful
reading of this paper.
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A Routine inequalities

Inequality A.1. Let p = 13(log logn)2

logn , and let r = 6
p log 4

p . Then

2p−r(1 + p)r ≤ np

2
and (1 + p)r ≥ 16

p
log n.

Proof. The left hand side of the first inequality is at most

2p−r(1 + p)r ≤ 2p−repr = 2p−r
(

4
p

)6

≤
(

4
p

)r+6

.

Therefore, it suffices to show that
(

4
p

)r+7 ≤ n, or equivalently, that

(r + 7) log
4
p
≤ log n

Yet r + 7 ≤ 2r, and 2r log 4
p = 12

p

(
log 4

p

)2, so plugging in the definition of p, we see that this is
indeed less than log n.

For the second inequality, since p is small,

(1 + p)r ≥ epr/2 =
(

4
p

)3

>
16
p

log n,

since 1
p = logn

13(log logn)2
. This completes the proof. �

Inequality A.2. There is a function p = p(n) = 2−(1−o(1))
√

log2 n and a positive integer l =
(1 + o(1))

√
log2 n such that when we define k = 16

p log n, we have the inequalities

kl+1(1 + p)2
l ≤ np/2 and (1 + p)2

l ≥ k.

Proof. First observe that we will have log 1
p = Θ(

√
log n), so log k = (1 + o(1)) log 1

p . Let l be
the smallest positive integer for which the second inequality is satisfied. This immediately gives
(1 + p)2

l ≤ k2. Also,

l =
⌈

log2

(
log k

log(1 + p)

)⌉
=
⌈

log2

(
(1 + o(1))

1
p

log
1
p

)⌉
= (1 + o(1)) log2

1
p
.
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To establish the first inequality, we have kl+1(1 + p)2
l ≤ kl+1k2, so it suffices to show that

(l + 3) log2 k ≤ log2

np

2
(7)

From the asymptotics of p, we have

l + 3 = (1 + o(1)) log2

1
p

log2 k = (1 + o(1)) log2

1
p

log2

np

2
= (1− o(1)) log2 n,

so it is clear that Inequality (7) is satisfied for an appropriate choice of p = 2−(1−o(1))
√

log2 n. �

Inequality A.3. Let R > 1 be given, and define the sequence d0, d1, . . . via the recursion d0 = R,
di+1 = di +

⌈
di
R

⌉
. Let ri =

⌈
di
R

⌉
. Then there is a function

p = p(n) =
(

1 +
1
R

)−(1−o(1))
q

log
1+ 1

R
n

and a positive integer l = (1 + o(1))
√

log1+ 1
R
n such that when we define k = 16

p log n, we have the

inequalities
k2R · kl(1 + p)rl ≤ np

2
and (1 + p)rl ≥ k.

Proof. The proof is nearly identical to the previous lemma. We will have log 1
p = Θ(

√
log n), so

log k = (1 + o(1)) log 1
p . Let l be the smallest positive integer for which the second inequality is

satisfied. Since rl+1 ≤ 2rl, this immediately gives (1 + p)rl ≤ k2.
Let us estimate an asymptotic upper bound for l. Observe that di ≥

(
1+ 1

R

)
di−1, so rl ≥

(
1+ 1

R

)l.
Hence if we let l′ satisfy

(1 + p)(1+ 1
R

)l
′

= k,

then l ≤ l′. Yet

l′ = log1+ 1
R

log k
log(1 + p)

= log1+ 1
R

(
(1 + o(1))

1
p

log
1
p

)
= (1 + o(1)) log1+ 1

R

1
p
.

To establish the first inequality, we initially noted that (1 + p)rl ≤ k2, so k2R · kl(1 + p)rl ≤
k2R+2+l. Thus it suffices to show that

(2R + 2 + l) log1+ 1
R
k ≤ log1+ 1

R

np

2
(8)

From the asymptotics of p, we have

2R + 2 + l ≤ (1 + o(1))l′ = (1 + o(1)) log1+ 1
R

1
p

log1+ 1
R
k = (1 + o(1)) log1+ 1

R

1
p

log1+ 1
R

np

2
= (1− o(1)) log1+ 1

R
n,

so inequality (8) is clearly satisfied by appropriately choosing log1+ 1
R

1
p = (1 − o(1))

√
log1+ 1

R
n.

This is precisely the asymptotic claimed in our statement. �
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