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1 Introduction

The main result of the theory of repeated games is the Folk Theorem (Aumann and Shapley

(1994), Rubinstein (1994), Fudenberg and Maskin (1986)). It states that in infinitely repeated

games, when the players are sufficiently patient every feasible and individually rational payoff

can be sustained by a subgame-perfect equilibrium. In particular, all efficient and individu-

ally rational payoffs can be obtained as equilibrium payoffs. This classical result relies on the

assumption that the players have perfect monitoring: each player’s actions are perfectly ob-

servable by his opponents. The extent to which the players can cooperate when they do not

observe the opponents’ actions, but rather receive noisy signals that depend on the actions

taken, is still mostly unknown.

In this paper, we analyse two-player repeated games in which the players cannot fully

monitor each other’s actions. Rather, players receive noisy signals that reveal with a positive

probability their own payoffs. This model encompasses in particular the cases of full monitoring

and the case where the players always observe their own payoffs, as discussed in Lehrer (1992c).

When a player observes only his own payoffs, he cannot fully monitor but he can obtain partial

information about the other player’s actions. A natural question arises as to whether this

information is sufficiently rich to enable the players to sustain efficient payoffs in equilibrium.

The main contribution of the current paper is showing that any strictly Pareto efficient payoff

can be supported by a sequential equilibrium, if costly communication is available and the

players are sufficiently patient. A simple consequence of this result is that any combination of

a strictly Pareto efficient payoff and Nash equilibrium payoff of the one-shot game, can be also

supported by a sequential equilibrium.

In general, repeated games with imperfect monitoring may be divided into two types. The

first type consists of games where players obtain private signals and their strategies may depend

on these signals. In a series of papers1, Lehrer discusses this subject and fully characterizes the

set of equilibrium payoffs in certain families of undiscounted games. Our model is closest to

the one explored in Lehrer (1992c). In undiscounted repeated games any action that a player

takes seldom enough has no effect on his total payoff. Indeed, in Lehrer (1992c) the equilibrium

construction relies on statistical tests that become rare as the game unfolds, and therefore have

no impact on the payoffs. None of the techniques employed to sustain equilibrium payoffs in

undiscounted games could be employed in the current paper.

The second type of repeated games with imperfect monitoring consists of games with pu-

blic monitoring. In these games, after each period, all players observe the same signal which

determines, along with the players’ own actions, their payoffs. The solution concept typically

1See Lehrer (1989, 1990, 1992a,b).
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employed in such games is public equilibrium, where players cannot use their private informa-

tion; the strategies may depend only on the public signals (see, Abreu et al. (1986) Abreu et

al. (1990) and Fudenberg et al. (1994)). This paper belongs to the first type.

Characterizing the set of equilibrium payoffs for infinitely discounted repeated games with

private monitoring was described by Kandori (2002) as ‘a simple hard open question’. More

than ten years later, this question still remains difficult and open both for discounted and for

undiscounted games. The difficulties in analysing repeated games with private signals might

stem from different sources: (i) identifying the power of the correlation between the players

that might be internally generated by private monitoring; (ii) detecting profitable deviations

from the equilibrium path; (iii) establishing punishments and continuation payoffs for the cases

when a deviation is detected; and (iv) specifying a system of beliefs to accompany the strategies

of the players in order to create sequential equilibrium. For a comprehensive discussion of these

issues the reader is referred to Mailath and Samuelson (2006). In what follows we elaborate on

these difficulties and specify which ones are particularly relevant to our model.

The first difficulty in studying equilibrium payoffs in repeated games with imperfect mo-

nitoring, is that private monitoring may actually serve as a correlation mechanism among the

players. In Lehrer (1991) this effect is called internal correlation . The extent to which private

signals may serve as an internal correlation device is still open. However, in the current context,

internal correlation does not play a role because no correlation is needed to sustain efficient

payoffs.

The common pattern of equilibrium strategies in repeated games is that players follow a play

path unless a deviation occurs. Play paths are designed in a way that makes profitable devia-

tions detectable. The second difficulty to establish an equilibrium with imperfect monitoring,

is that profitable deviations might go unnoticed and therefore undetectable. However, when

the payoffs are observable with a positive probability, as in this paper, all profitable deviations

from efficient payoffs are detectable with positive probability. Thus, this difficulty too does not

arise in our model.

The two main contributions of this paper lie in the methods it offers for handling difficulties

(iii) and (iv). The punishment phase is designed using a new tool that we call the information

matrix and the beliefs are devised using a combination of communication and a specification

of off-equilibrium path beliefs.

Punishments and the information matrix When a deviation is detected during the

play path, the players switch to a temporary punishment mode. While detecting profitable

deviations from strategies leading to efficient payoffs is easy, dealing with the punishment

phase and establishing proper continuation payoffs is not trivial. In some cases though, as
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when the desired equilibrium payoff strictly Pareto dominates a one-period Nash equilibrium,

a punishment can be easily designed: when a deviation occurs, the players switch to playing

the dominated one-period Nash equilibrium. In such cases (see Fudenberg and Levine (2007),

for example) a Nash-threat folk theorem is established. However, when the target equilibrium

payoff does not strictly Pareto dominate a one-period Nash equilibrium, when players wish

to effectively punish the deviator, they typically do it by playing mixed (minmax) actions.

These actions are often not stage-game best responses. In order to provide incentives for

the players to nevertheless use these mixed actions, the equilibrium strategies should specify

continuation payoffs that would make the punishing player indifferent to all pure actions used.

This method was developed by Fudenberg and Maskin (1996). When the monitoring is full,

designing continuation payoffs that would incentivize the players to follow the punishment

scheme is not difficult. However, when players cannot fully monitor each other, coordinating

the continuation payoffs becomes difficult. The challenge is to design an effective punishment

scheme in which players can only observe their own payoffs (with positive probability) and not

others’.

In order to better explain this challenge, imagine that Player 2 wishes to punish Player 1.

The problem is that Player 1 observes only his own payoff; he does not know Player 2’s actions

nor her payoffs, and he does not know what she knows about him. Without proper (future)

continuation payoffs (to be given after the punishment phase is over) Player 2 would have no

incentive to abide by the punishment instructions; she could profitably deviate without being

detected. How then can we make sure that Player 2 follows her strategy and keeps punishing

Player 1? The way to do it is to increase her future payoff when, during the punishment, she

uses a low-paying action, and to reduce her future payoff when she uses a high-paying action.

This way we make her indifferent between all actions used. But how can the players agree on

continuation payoffs if they do not share the same information?

One of the two main contributions of this paper is to develop a method that enables a

construction of adequate continuation payoffs. Despite the fact that the punished player cannot

observe the punishing player’s payoffs, we design a scheme that enables the players to coordinate

the continuation payoffs, a scheme which in turn renders the strategies incentive compatible.

This means, in particular, that the information embedded in the punished player’s own payoff, as

reflected in the information matrix, is sufficiently rich to sustain efficient payoffs in equilibrium

by designing an effective punishment phase. The method by which we design the punishment

scheme is constructed by translating the private information available to the punished player to

a 0, 1 matrix, called the information matrix. This information matrix enables us to find proper

continuation payoffs after every history of punishment.
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Communication and beliefs. The fourth difficulty is rooted in the definition of sequential

equilibrium (Kreps and Wilson (1982)). The definition requires that an elaborate system of

beliefs accompanies the strategies and that players would always best-reply to these beliefs.

The beliefs should be defined after any history following any number of deviations from the

equilibrium path, regardless of the number of deviating players, their identities, and the actions

played. However, when players do not share common information about histories, keeping track

of all their possible beliefs, regardless of how far from the equilibrium path they had gone, is a

demanding task.

There are three ways to prevent players’ beliefs from drifting too far apart: introducing

communication, introducing a mediator and assuming substantial assumptions on the signal

structure, such as that the signals are highly correlated (‘almost public’) or almost accurate

(‘almost perfect’). These are discussed below.

Games with communication. When a communication device that generates public signals

is present, its signals can be used to coordinate the beliefs of the players. However, the presence

of a communication device introduces yet a new challenge: how to provide the players with

proper incentives to signal honestly. Compte (1998) and Kandori and Matsushima (1998)

analyse games with communication. In these papers the general results involve at least three

players. The players have incentives for honest signalling regarding a deviation because a

deviation of a player is detected by a subset of players whose members are not affected by the

punishment of the deviator. Therefore, the players that detect a deviation are not hurt when

triggering a punishment. When signals are highly correlated, Kandori and Matsushima (1998)

provide conditions to guarantee strict truth-telling incentives. In addition, following Abreu et

al. (1991) that investigated the effect of delayed revelation of public signals, Compte (1998)

and Kandori and Matsushima (1998) employ a delayed communication for their two-players’

models. The communication is conducted every T periods, and T increases as the players

become more patient. The delay aims to increase efficiency by accumulating more information

through communication (and thus making statistics-based decisions more accurate). Obara

(2009) develops the ideas of delayed communication in games with more than two players when

monitoring is almost public.

Fudenberg and Levine (2007) take a different approach, which does not require delayed

communication. They obtain conditions under which a perfect public equilibrium is robust

to small perturbations. They use a one-period Nash equilibrium for punishment, and thus

the resulting set of payoffs supported in equilibrium is restricted to those payoffs that Pareto-

dominate a one-period Nash equilibrium payoff.

Games with a mediator. Lehrer (1992a) added a mediator to two-player repeated games
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with private deterministic signals, and characterized the set of correlated equilibria payoffs.

Hillas and Min (2016) generalized Lehrer’s result to a model with stochastic signals. Recall that

in games with imperfect monitoring, the histories may serve as a (internal) correlation device.

However, in the presence of a mediator, this internal correlation plays no role. The correlation

is already provided by the external mediation device. Renault and Tomala (2004) generalize

Lehrer’s result to an arbitrary number of players by adding the assumption that the players

can also communicate with the mediator, thus using the solution concept of communication

equilibrium (see, Forges (1986)).

In a recent work, Sugaya (2017) characterized a limit set of the communication equilibrium

payoffs when the payoffs are random and one’s own payoffs are observed by each player. Sugaya

uses the randomization produced by a mediator in order to obtain signals with full support.

The advantage of the full support is that it enables one to bypass the need to deal with beliefs

off-equilibrium. The downside, however, is that due to this randomization, efficient payoffs may

be only approximated in equilibrium, while in our model, they are obtained accurately.

Games with specific assumptions regarding the signal structure. Results that assume

no form of communication or mediation assume strong assumptions regarding the monitoring

structure. For example, Mailath and Morris (2002) obtain conditions for public perfect equi-

librium to be robust under small perturbations in monitoring (perturbations that make the

monitoring private). They obtain conditions for folk theorem when monitoring is almost per-

fect and almost public. Hörner and Olszewski (2006) obtain a more general result related to

monitoring that is almost public. They obtain a Folk Theorem under a standard dimensionality

condition.

Another type of monitoring assumptions is made by Sugaya (2015). He obtains a Folk

Theorem for two-player games with no communication while assuming that the signals have a

full-support, and that any deviation of a player against any pure action of the opponent changes

the distribution of the opponent’s signals. In our model, in contrast to this assumption, when

a player receives the same payoff upon playing against two different actions of the opponent,

the signals he receives might be the same as well.

The monitoring structure examined in this paper is neither almost-public nor almost-perfect.

Yet, we show that the payoffs provide information that is detailed enough to allow for supporting

all efficient payoffs and having a minmax scheme for cases in which deviations are detected.

This is the first main contribution of this paper.

The treatment of beliefs. Players form beliefs regarding their opponents’ private history

with or without communication. Coordinating these beliefs is especially complicated when the

private signals indicate that the game is off the equilibrium path. The equilibrium strategies
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that are common in the private monitoring literature have two ways with which to avoid dealing

with off-equilibrium path beliefs. There are strategies, called belief-free, that each player plays

optimally following every private history, independently of his beliefs regarding the opponents’

private histories (see, for example, Piccione (2002), Ely and Välimäki (2002) and Ely et al.

(2005)). Thus, there is no need to specify the beliefs of the players. Typically, the set of equili-

brium payoffs that use belief-free strategies is limited, and frequently does not even contain all

individually rational efficient payoffs. In fact, Kandori (2011) demonstrates that even strate-

gies conditioned on beliefs regarding the last action alone (strategies called ‘weakly belief-free’)

may improve efficiency over belief-free strategies. When playing belief-based strategies, on the

other hand, each player plays a best reply to his beliefs. For example, in Bhaskar and Obara

(2002) the prisoner’s dilemma is analyzed, and the strategies induce two possible states for

each player, ‘cooperating’ and ‘deviating’. The entire belief system, in this case, boils down to

beliefs about the state of the players. An initial randomization device chooses between the two

states, while both states enjoy positive probability along the play. Therefore, any realization

of private signals is obtained with a positive probability on the equilibrium path, and there are

no off-equilibrium path beliefs. In this case, the efficient payoff, induced by pure strategies,

can only be approximated. Other papers assume full-support of private signals following any

pure-actions profile or, when full-support of signals is not assumed, as in Sugaya and Wolitzky

(2016), the players are instructed to mix their actions in order to retain full-support of private

signals. Here, as in results using belief-free strategy, the need to randomize often prevents exact

efficient payoffs from being achieved.

Our model assumes a minimal form of communication: a single costly private signal is

available to each player. This minimal communication is used only off-equilibrium path. In

other words, in equilibrium, the communication channel will never be used. Communication

takes place only when a player observes a signal that bluntly reveals a deviation. Such a

situation is impossible when the signals always have full support. Our paper adds to the

current literature the insight that the private information available to the players is rich enough

to enable cooperation when (a) players observe their own payoffs with some positive probability,

and this event becomes common knowledge; and (b) a costly communication channel is available.

A special case of our model is when own payoffs are observed with probability 1. In this case,

both conditions hold, in particular, any strictly efficient strictly individually rational payoff can

be obtained as sequential equilibrium payoff.

In order to circumvent dealing with off-equilibrium path beliefs, most of the private moni-

toring literature either assumes or forces (through proper mixing) full support of the private

signals observed, leaving no signal off-equilibrium path. Full-support strategies typically cannot

precisely support efficient payoffs, but rather approximate them. In contrast, efficient payoffs
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in our model are obtained as equilibrium payoffs. Our model involves signals that are off-

equilibrium path and the strategies instruct the players what to do after observing them. This

is why we cannot shy away from specifying the beliefs held by players off-equilibrium path, fol-

lowing any private history. Moreover, we must show that the players indeed best reply to these

beliefs. The challenge becomes even more complicated when simultaneous deviations of both

players are considered. In equilibrium deviations are unprofitable and mutual deviations occur

indeed with probability zero. However, the notion of sequential equilibrium still requires the

existence of a consistent system of beliefs following every history, including after simultaneous

deviations. Furthermore, the actions prescribed by each player’s strategy must best reply to his

respective beliefs. Finding such a system is a difficulty that never rises when signals have full

support. Since the information structure explored in this paper typically does not provide a full

support of signals, we have to explicitly construct proper beliefs after all histories, no matter

how far from the equilibrium path these histories are. This is the second main contribution of

this paper.

Relevant economic situations. The main concern of the paper is the ability to sus-

tain cooperation through the ability to effectively sanction an opponent when deviating from

this cooperation. Specifically, it is concerned with the ability to differentiate between effective

sanctions (minmaxing actions) that might damage the sanctioning player as well as the sancti-

oned one, and non-effective sanctions (actions that reduce the sanctioned player’s payoffs, but

are not minmax, meaning, the sanctioned player may recover at least some of his losses when

reacting accordingly).

The structure of the paper.

Section 2 presents motivating economic situations for the paper’s topic. Section 3 presents

an example that demonstrates some of the challenges, and ideas for coping with these challenges.

Section 4 details the model and introduces the main result. Section 5 presents the information

matrix, a key technical tool employed in the proof process. The proof of the main result appears

in Section 6, including the description of the beliefs held by the players. Section 7 concludes

with some final comments. All proofs appear in Appendix A, and a formal detailed treatment

of off equilibrium path beliefs in Appendix B.

7



2 Motivating economic situations

2.1 Games with more than one sanction

Consider two rivaling firms. Both want to sustain a cooperative mode of operation. One way to

enforce cooperation is by sanctioning a firm that deviates from it. The ability to impose effective

sanctions is therefore crucial to support a cooperative mode of operation. The main problem

addressed in this paper arises when there exist more than one way to sanction an opponent.

One sanctioning action - the minmaxing one - might be more effective than others. This action,

however, might be also harmful to the sanctioning player, and he might be reluctant to use it

as a result.

When actions are not observed directly, an additional difficulty might arise: using a less

effective sanction instead of a more effective one may go undetected, and contribute to the

incentives to avoid using more effective sanctions. Using only the less effective sanctions reduces

the set of efficient payoffs that can be supported in equilibrium. This is why it is important to

introduce incentives for a firm to use the more effective sanctions. The problem is that effective

and less effective sanctions might yield the same payoff to the punished player (if played against

the best reply to the effective sanction), and thus become indistinguishable from the punished

player’s point of view. However, the latter may partially recover his loss when playing against

the less effective sanction. For this purpose, he needs to be able to distinguish between more

and less effective sanctions. This, however, requires the use of actions different from his simple

best-reply.

Consider Google competing with Amazon over comparison shopping services. Each company

might choose to effectively sanction its opponent, for instance by (secretly) offering significant

discounts to some main vendors (i.e., secret price cuts), thus lowering the price for the consumers

and increasing traffic. This sanction results in a lower demand for the rival’s services, but it

also damages the profits of the sanctioning firm. However, the firm may also find other ways

to decrease its opponents’ revenue, while causing less damage to itself. This can be done for

example, by leveraging on other activities of the firm as a way to increase its own traffic (with no

price reductions). Google, for instance, was found to promote its comparison shopping services

through its search engine2. The latter sanction is not as effective, because the sanctioned firm

may employ similar strategies to recover some of its losses in case it finds out the reasons for

the losses. In case of secret price cuts, there is no way to recover some of the losses.

We model this situation as two-player strategic game. The row player represents Google

2This practice was eventually discovered and deemed as a breach of the EU antitrust rules, resulting in 2.42

billion euros fine by the European Commission.
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while the column player represents Amazon. The actions available to both are cooperate (co),

leverage (lv) and price cuts (pc). When Google employs pc, the minmaxing action, Amazon’s

profits cannot exceed 0, regardless of Amazon’s actions. However, if Google chooses to play

lv, Amazon can also play lv and thereby recover some its profits with a payoff of 2. When

both play co the payoff is (5,5). However, by deviating to lv, Google increases its payoff while

lowering the payoff of Amazon.

In order to prevent Google from deviating, Amazon can threaten to use lv in case of devi-

ation. However, in order to support the entire set of Pareto efficient payoffs, (including those

where Amazon obtains payoffs lower than 2) as sequential equilibrium payoffs, the threat should

be able to reduce Amazon’s payoff below 2. This can be done only by playing pc. However,

when only the payoffs are observable, and Google is supposed to play pc, then the best reply

of Amazon is to play co. Yet, if Google believes that Amazon is playing co, then Google may

deviate to lv, the less effective sanction, without being detected.3

We show that when own payoffs are observed, pc can be made a credible threat, therefore

enabling a richer set of efficient equilibrium payoffs.

co lv pc

co 5,5 0,8 0,0

lv 8,0 6,2 -1,0

pc 0,0 0,-1 -1,-1

Table 1: Rivaling firms payoff matrix.

2.2 Cournot game

In a repeated Cournot competition4, the minmaxing action is to produce an output that equates

the market clearing price to the marginal cost. Denote this quantity q̄. The best reply against

that minmax action is to produce nothing. When a firm does not produce, its profits are zero

3Another situation in which such a payoff matrix could be applicable is that of when two firms that compete

repeatedly (on quality score and price) in auctions for projects. In sealed bid auction the actions are not

observed while the outcome (including own payoffs) is. Cooperation in this scenario means tacit collusion. The

effective sanction means bidding aggressively, in which case no firm can profit. The less effective sanction could

be, for instance, investing in technology or knowledge, thus increasing the quality score. Increased quality score

produces a loss to the opponent, as long as the opponent cooperates. However, if the opponent realizes that it

is increased quality score that causes the losses, he may invest in increasing the quality score as well, and thus

recover some of his losses. Our model enables threat that sustain a richer set of efficient equilibrium payoffs.
4We are grateful to an anonymous referee suggesting this example and the following one.

9



P

Q

MC

q̄ 2q̄

Figure 1: The Cournot game demand curve.

(assuming no fixed cost) regardless of the rivaling firm’s actions. Thus, when a firm observes

only its own payoffs, there are profitable deviations from the minmaxing action that are not

observed by the opponent.

A similar deviation exists when playing the mutual minmax actions, namely both firms

produce q̄. If the demand curve is as in Figure 1, then when the total amount produced is 2q̄,

the price is zero. Therefore, when one player slightly reduces the amount it produces, it is not

going to be detectable by the opponent who observes only its own payoffs.

In a repeated Cournot game with observable payoffs, supporting the entire Pareto efficient

frontier requires the kind of construction provided in this paper.

2.3 Games with a costly option to deter the opponent.

Consider a repeated game with positive payoffs, where at each period each opponent may choose

to stay out or enter and take an action. Staying out yields a payoff of zero, regardless of the

opponent’s action. Among the actions available when a player enters there is a costly deterrence

action, aimed to make the opponent opt to stay out. This is the minmax action, and the best

response to which is to stay out. When a player plays ‘out’, which always yields a payoff of

zero, a deviation of the opponent from playing ‘deter’ is not observable. Furthermore, when

the mutual minmax is being played, a deviation from ‘deter’ to ‘out’ is also undetectable.

In the following table Ai stands for the set of available actions beyond ‘deter’ that are

available to Player i, if she decides to enter. The payoffs related to Ai are not specified. Here

and in all following examples, Player 1 is the rows player and Player 2 the columns player.
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out A2 deter

out 0,0 0,-c

A1

deter -c,0 -c,-c

Table 2: The payoff matrix of a game with ‘deter’ and ‘out’ actions.

Suppose that a player can observe only its own payoffs. When a player is instructed to

play the costly ‘deter’ option, a deviation from this action is undetectable. A main goal of this

paper is to construct strategies in equilibrium that enable players to use actions like ‘deter’,

despite the partial observability of opponents’ actions.

3 An elaborate example: a two-player repeated game

with observable payoffs and unobservable actions

The purpose of this section is to demonstrate the main ideas of the paper using a specific game.

Example 1.

Consider the following infinitely repeated two-player game. The possible actions of Player 1

(henceforth, he – the rows player) are Top (T), Middle (M) and Bottom (B), while those of

Player 2 (henceforth, she – the columns player) are Left (L), Center (C) and Right (R). After

each period, the players privately observe their own payoff, here for simplicity, we assume that

this occurs with probability 1. They cannot directly observe the other player’s action nor his

or her payoff. In addition, during each period, the players may send a costly message.

L C R

T 3,3 0,4 0,-2

M -2,-1 4,0 -2,-2

B 5,-1 -2,0 -3,-2

Table 3: The payoff matrix

When Player 2 plays C and obtains a payoff of 0, for instance, she cannot distinguish

between Player 1 playing M or B. In this game there are pure minmax actions, B and R.

When these actions are played against the respective best-responses, they yield a payoff of 0
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Figure 2: The set of feasible payoffs.

for the player being minmaxed. The efficient payoffs are in the segment connecting p0, 4q and

p3, 3q and in the one connecting p5,�1q and p3, 3q. The unique one-shot Nash Equilirium is

pM,Cq with the payoff of p4, 0q.

The Folk Theorem states that in an infinitely repeated game under full monitoring, when

the players are sufficiently patient, any feasible and individually rational vector of payoffs is

an equilibrium payoff. The question we are concerned with is, what payoffs other than the

one-period Nash equilibrium can be obtained in equilibrium? For example, can p3, 3q be a

sequential equilibrium payoff?

Consider the ‘classical’ equilibrium structure: the players play a master plan until one player

deviates, and then switch to a punishment phase, followed by a continuation game. At first

glance, obtaining p3, 3q in equilibrium does not appear too complicated. The pair pT, Lq yields

the payoff p3, 3q and moreover, any profitable deviation from pT, Lq is detectable. For instance,

Player 1 can profitably deviate to B, and Player 2 to C, but these deviations are immediately

detected. The difficulty in obtaining p3, 3q as an equilibrium payoff is not in detecting deviations.

However, the design of the punishment phase, and more importantly, the following continuation

game, is not trivial. Designing an effective punishment for games with an information structure

where players observe only their own payoffs, is one of two main contributions of this paper.

To better understand the difficulty in constructing punishment, suppose that Player 1 devi-

ated, and that Player 2 should punish him by playing the minmaxing action R. Action R can

be played, for example, against Player 1’s minmax action, M (mutual minmax, as in Fudenberg

and Maskin (1986)). If pM,Rq is played, the payoff is p�2,�2q. However, both players have

profitable deviations that are undetectable: Player 1 can deviated form M to T , and Player 2
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from R to L. The mutual minmax is an effective punishment only if deviating from it makes

the punishment duration longer. Facing undetectable deviations, this is a chalenge.

Another possibility is that against R Player 1 will play his only best response, T . Now there

are no profitable deviations for Player 1. However, knowing that he plays T , Player 2 may

profitably deviate to C without him noticing.

If C would also be minmax action, this problem could be solved easily: C could be played

instead of R during the punishment of Player 1. In our case, however, C is not a minmax

action, meaning that he has at least one action that when played against C yields him a payoff

larger than the minmax payoff, 0. In our example, when M is played against C his payoff is 4.

If M would also be a best response to R, that is, if his payoff when pM,Rq is played would

be zero, we could instruct Player 1 to play M instead of T . In this case, the deviation to C

would be immediately detected: he would notice getting 4 instead of 0. Moreover, when such a

deviation is detected, it becomes common knowledge, and switching to punishing her, or merely

reducing her continuation payoff in another manner, would make it unprofitable.

So far, we obtained that C is Player 2’s undetectable deviation, because it gives Player 1

a payoff of 0 when played against T . Furthermore, all his actions that yield a non-zero payoff

against C, and could therefore detect the deviation to C, are not best responses to R. Allocating

some small probability to playing action C (instead of playing R with probability 1) will keep

the payoff of Player 1 at 0 when playing T , and keep his payoff negative when playing M and

B. When she minmaxes him, instead of playing R with probability 1, she can allocate some

probability to playing C, and if the probability is small enough, it will still minmax him. We

can increase the probability of C until the payoff of Player 1 in another row, in our case row

M , becomes 0. We end up with the minmaxing mixed action of 1{3 to action C and 2{3 to

action R. Both T and M are now Player 1’s best replies .

The strategies constructed above are such that Player 2 minmaxes Player 1, Player 1 answers

with a strategy composed of best-replies, and Player 2 cannot deviate to profitable actions

outside the support of her strategies. Nonetheless, a new issue rises. When implementing this

action, Player 2 is asked to randomize between C and R, while her payoff when playing C is

higher. For the randomization to be a part of an equilibrium, playing C and R should have

different continuation payoffs that would make C and R payoff equivalent in her eyes. For this

to happen, he should be able to differentiate, at least with some probability, between periods

when she plays C, and periods when she plays R. In this game, he can differentiate between

them when playing M , which is also a best response.

During the punishment phase, Player 2 minmaxes Player 1 by playing C with probability

1{3 and R with probability 2{3, and Player 1 plays T with some probability P pT q and M

with the probability P pMq � 1 � P pT q. During the punishment phase, when Player 1 plays

13



M he updates her continuation payoff in a way that makes her indifferent between playing C

and R. So, for example, following the first period of the punishment phase, if Player 1 played

M and observed 4, it means that Player 2 played C, which yields her the expected payoff of

4 � 4P pMq. When she plays R, however, she gets �2. The difference between these payoffs is

p1 � δqr4P pMq � 6s, where δ denotes the (common) discount factor. This punishment phase

lasts N periods and is followed by a continuation game. The continuation game begins with

two periods of communication. In these periods a one period Nash equilibrium is played and

messages are transferred. The change in the continuation payoffs that balances this difference

happens only when Player 1 plays M and is able differentiate between Player 2’s actions, hence

it is divided by P pMq. In addition, the continuation payoff is realized in N � 2 periods after

the current one. Therefore the difference between the continuation payoffs that follow C and

R should be p1�δqr4P pMq�6s
δN�2P pMq

.

The continuation payoff established during the punishment phase is obtained by playing one

of two pre-specified strategies, one that supports Player 2’s high payoff and one that supports a

low payoff. Both strategies yield the same payoff for Player 1, and thus he is indifferent between

the two. Which of the two strategies will be played is determined by a randomization solely

controlled by Player 1. He randomizes between high and low payoffs in a way that induces the

desired continuation payoff.

The First period of the communication phase is dedicated to a communication regarding

the identity of the punished player. The need for this additional period of communication is

explained in Section 6.1.3. The second communication period is used for conveying the message

regarding the continuation payoff. In order to communicate the continuation payoff, only two

signals are needed: one for the high and the other for the low continuation payoff.

We use Example 1 to clarify one more point. The case where Player 2 deviates is treated

in an analogous way: two different continuation payoffs for Player 1 are needed, with identical

payoffs for Player 2. This implies that in order to implement all possible continuation payoffs,

a two-dimensional set of payoffs should be available. Specifically, an internal payoff in the set

of feasible payoffs needs to be supported by an equilibrium.

A careful look at the payoff matrix reveals that from any pair of actions yielding a payoff

internal to the set of feasible individually rational payoff, there is a profitable deviation that

is not immediately detected. For example, from pB,Rq Player 1 can deviate to M , and Player

2 will not notice, since she gets a payoff of �2 in both cases. In our example, the efficient

frontier of the set of payoffs is not a straight line, and so a subset of the convex combinations

of the payoffs of the strictly efficient frontier p0, 4q, p3, 3q and p5,�1q is internal to the set of

payoffs. Supporting a subset of these combinations of payoffs by a sequential equilibrium is

done in the same way p3, 3q is supported: at each period one of the pairs pT,Cq, pT, Lq or pB,Lq

14



is played. Any profitable deviation from these actions is immediately detected, and is followed

by a punishment phase. Some convex combinations of p4, 0q and payoffs on the strictly Pareto

efficient frontier are also internal to the set of feasible individually rational payoffs and can be

obtained in a similar way. However, we cannot rely on having such internal payoffs available in

the general case, so we describe another way to produce internal points as sequential equilibrium

payoffs.

Example 1 demonstrates some of the problems of designing the punishment scheme, as well

as a general direction of how to solve them.

4 The Model and Main Result

4.1 The model

We study two-player repeated game with imperfect monitoring. After each stage the players

obtain a stochastic signal whose distribution depends on the pair of actions played. We assume

that each player observes his payoff with a positive probability and that when he observes it,

this event is common knowledge. In addition, we assume that players may communicate with

each other using costly messages.

The base game5: The base game is defined by the following items.

• Action sets: Each player i � 1, 2 has a finite pure actions set Ai. Denote A :� A1 �A2

the set of pure action profiles.

• Utility functions: When the action profile pa1, a2q P A is played Player i obtains the

payoff Uipa1, a2q. For the sake of convenience we extend the domain of Ui in a linear fashion

as follows. For every pλ, λ1q P R|A1|�|A2|, define Uipλ, λ
1q � ΣajPA1ΣbkPA2λjλ

1
kUipaj, bkq.

Denote by ∆pAiq the set of player i’s mixed actions. Thus, when the players play the pair

pp, qq P ∆pA1q � ∆pA2q, Uipp, qq is the expected payoff of Player i.

• Monitoring: let Θi be the set of possible signals of Player i. When the action profile

pa1, a2q P A is played, a pair of signals pθ1, θ2q P Θ1 �Θ2 are randomized according to the

(joint) distribution of the random variables pψ1pa1, a2q, ψ2pa1, a2qq. The random variables

satisfy that for any pa1, a2q P A there is a positive probability denoted by Iipa1, a2q that

player i observes his own payoff.

Formally, @pa1, a2q P A, Dpθ1pa1, a2q, θ2pa1, a2qq P Θ1 � Θ2 such that P pψipa1, a2q �

θipa1, a2qq � Ii and P pψipa
1
1, a

1
2q � θipa1, a2qq � 0, @pa11, a

1
2q P A such that uipa

1
1, a

1
2q �

uipa1, a2q.

5We call the base game also one-shot game or stage game.

15



Moreover, the fact that Player i knows his own payoff is common knowledge (see comment

on monitoring below).

Formally, denote Υipa1, a2q the event that Player i knows his payoff when action profile

pa1, a2q P A is played, that is, Υipa1, a2q � tψipa1, a2q � θipa1, a2qu. Then there exists

θj P Θj such that P pψjpa1, b1q � θj|Υipa1, a2qq � 1, and P pΥipa1, a2q|ψjpa1, b1q � θjq � 1.

• Communication: Each player has the possibility to convey a message to his opponent

during each period. Player i can either send a signal, or keep silence. The set of available

signals for player i is Ξ � tξ, φu, where ξ is a costly signal and φ represents the option of

conveying no signal. The cost of conveying a message for player i is ci ¡ 0.

The repeated game: In the repeated game, the private history of Player i at the end of period

t is an element of H t
i � pAi � Θi � Ξ2qt. For the formal definitions of strategies, assessments

and sequential equilibrium the reader is referred to Maschler et al. (2013).

At period t, when the pair of actions played is pa1, a2q P A, Player i receives a random signal

ψtipa1, a2q, where pψt1pa1, a2q, ψ
t
2pa1, a2qq has the same distribution as pψ1pa1, a2q, ψ2pa1, a2qq.

Finally, pψ1pa1, a2q, ψ2pa1, a2qq, t � 1, 2, 3... and pa1, a2q P A are all independent.

A comment on monitoring: The monitoring item seems to require a little elaboration.

Suppose, for instance, that with probability ε ¡ 0 both players observe their own payoffs and

with probability 1 � ε they get no information. In this case, when the players get to observe

their own payoffs, this event becomes common knowledge. In particular, when a player receives

information about his own payoff, he knows that his opponent observes her own payoff as well,

and that she knows that he observes his own, etc.

To further explain, suppose that the payoff matrix is as in table 4. Suppose also that the

signal that the players observe regarding own payoff is noisy in the following way: a player

observes the sum of his own payoff and a noise that is either �1, 0 or 1 (with some known

distribution over the noise). Then Player 2 always knows her payoff, and Player 1 knows his

payoff when playing B. However, when Player 1 plays T, he knows his own payoff only when

he observes a signal in the set t�1, 0, 2, 3u. The monitoring condition is fulfilled if when a

signal from that set that was observed, it is common knowledge (that a signal from that set is

observed). However, when observing a signal of 1, Player 1 cannot be certain about her payoff,

which can be either 0 or 2, and observing such a signal needs not be common knowledge.
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L R

T 0,1 2,0

B 3,1 -5,5

Table 4: A payoff matrix

4.2 The main result

Let F denote the convex hull of the set of feasible payoffs, and let EF denote the set of feasible

payoffs that are strictly Pareto efficient. That is6,

EF �
 
pu1, u2q P F ; for any pu11, u

1
2q P F, u

1
i ¡ ui implies u1�i   u�i

(
.

Let mi be the minmax payoff of Player i.

mi � min
q�iP∆pA�iq

max
aiPAi

Uipai, q�iq.

Without loss of generality assume mi � 0, i � 1, 2. A payoff is strictly individually rational

if it is positive. Denote the set of positive payoffs of player i by IRi, and let IR � IR1 X IR2.

IR is the strictly positive orthant of R2.

The game is played repeatedly, and the stream of payoffs is evaluated using a common

discount factor 0   δ   1: the total payoff of player i is p1 � δq
°8
t�1 δ

t�1Uipa
t
1, a

t
2q, where ati

denotes the action played by Player i at period t. The main result of the paper is that all strictly

efficient payoffs that are strictly individually rational, and moreover, any convex combination

of these payoffs and one-period Nash equilibria payoffs are sequential equilibrium payoffs when

the players are sufficiently patient. Formally,

Theorem 1. For every payoff pu1, u2q of the two following types:

(a) pu1, u2q is strictly efficient and strictly individually rational payoffs: tpu1, u2q P EF X IRu;

(b) pu1, u2q is not efficient, but is in the convex hull of one-period Nash equilibrium payoffs

and the payoffs of (a) above,

there exists 0   δ1   1 such that for every δ ¡ δ1, pu1, u2q is a sequential equilibrium payoff

when the discount factor is δ.

In Nash-threat folk theorems, the set of payoffs achieved in equilibrium is the set of feasible

payoffs that Pareto dominate a one-period Nash equilibrium. The set of payoffs described in

6We denote �i � 3� i.
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item pbq does not coincide with this set, it may include payoffs where one player obtains less

than his one-period Nash equilibrium payoff.

For the sake of simplicity we prove the theorem assuming that each player observes his own

payoff with probability 1. In Section 6.5 we explain why the proof, with minor modifications,

actually shows the theorem with the general setup described above, where payoffs are observed

only with some positive probability.

5 The Information Matrix

In this section we explore the structure of the information available to the players. To simplify

the discussion, we consider only the information available to Player 1 (that of Player 2 is

analogous). During each period the information Player 1 obtains consists of his own action and

his own payoff.

For every pair of sets A1
1 �A

1
2 � A1 �A2, we define a matrix MpA1

1, A
1
2q that consists of 0’s

and 1’s. The number of the rows in MpA1
1, A

1
2q is the number of different action-payoff pairs

(i.e, pairs of the type (pure action, realized payoff)) that are possible for Player 1 when using

actions in A1
1 against any full-support distribution over A2. The number of columns is the

number of actions in A1
2. The cell of MpA1

1, A
1
2q that corresponds to the row pa1, U1pa1, a2qq and

the column a2 is 1, and otherwise, is 0. This matrix maps the ways by which the information of

Player 1 depends on his and his opponent’s actions. We refer to this matrix as the information

matrix of Player 1 corresponding to pA1
1, A

1
2q. The matrix MpA1

1, A
1
2q is used to design the

punishment phase, as well as future continuation payoffs of the punishing player.

For λ P Rn, let supppλq be the set ti; λi � 0u. For any pair of mixed actions pp, qq P ∆pA1q�

∆pA1q we replace suppppq by p and supppqq by q. For instance, Mpp, qq �Mpsuppppq, supppqqq

and MpA1
1, qq � MpA1

1, supppqqq. Also denote the vector space spanned by the columns of

MpA1
1, A

1
2q by V pA1

1, A
1
2q.

5.1 Example 1 revisited: The information matrix

Consider the game described in Table 1. We illustrate the case where A1
1 � A1 and A1

2 � A2 in

Table 5.

The pair pT, 3q, for instance, stands for playing T and receiving the payoff 3. Since this happens

only when Player 2 plays L, the respective entry is 1, and it does not happen when Player 2

plays C or R, where the respective entries are 0. Note that in each row there is at least one ’1’

and the number of 1’s in each column is equal to the number of actions in A1.
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L C R

(T,3) 1 0 0

(T,0) 0 1 1

(M,-2) 1 0 1

(M,4) 0 1 0

(B,5) 1 0 0

(B,-2) 0 1 0

(B,-3) 0 0 1

Table 5: The information matrix MpA1, A2q.

5.2 Possible deviations

Suppose that q� is the action by which Player 2 is minmaxing Player 1. Let A1
1 be the set of

pure best replies to q�. Player 2 might have the following three types of deviations from q�:

(i) A deviation to a (possibly mixed) action q1 such that supppq1q � supppq�q but V pA1
1, q

1q �

V pA1
1, q

�q. Such deviations are made unprofitable by proper continuation payoffs that are

constantly updated by Player 1, based on his information matrix.

(ii) A deviation to a (possibly mixed) action q1 such that supppq1q � supppq�q, and V pA1
1, q

1q �

V pA1
1, q

�q. These deviations are made unprofitable by using the continuation payoffs

designed to make Player 2 indifferent between all actions in the support of q�.

(iii) A deviation to a (possibly mixed) action q1 such that supppq1q � supppq�q. Designing a

minmaxing strategy such that there does not exist any strictly profitable deviation of this

kind is the content of the Lemma 1.

In what follows we find a minmax action q� (of Player 2) that enables one to design con-

tinuation payoffs that take care of deviations of types (i) and (ii), and is immunized against

deviations of type (iii).

5.3 Finding a minmax action

The next lemma uses the information matrix. It guarantees that there is a minmax action, q�,

immunized against deviation of types (i) and (iii). (A deviation of type (ii) is handled later,

in Lemma 2.) It requires a few pieces of notations. For λ P Rsupppqq denote by Mpp, qqλ the

product of the matrix Mpp, qq and the vector λ. The vector λ is in R|A2|. It represents the

difference between two mixed actions and it typically contains negative coordinates. Denote

∆2 the set of all q P ∆pA2q such that U1pp, qq ¤ 0, @p. Since m1 � 0, ∆2 is not empty.
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Lemma 1. There exists a pair of distributions pp�, q�q P ∆pA1q � ∆2 such that

(1) U1pp
�, q�q � 0,

(2) U1pa1, q
�q � 0 ñ a1 P supppp�q,

(3) @q1 P ∆2, Mpp�, A2qq
1 �Mpp�, A2qq

� ñ U2pp
�, q1q ¤ U2pp

�, q�q,

(4) @q1 P ∆pA2q and λ P R|A2|, if supppq1q, supppλq � supppq�q, then

Mpp�, A2qq
1 �Mpp�, A2qλñ U2pp

�, q1q � U2pp
�, λq.

(5) @q1 P ∆pA2q, and λ P R|A2|, if supppλq � supppq�q and Mpp�, A2qq
1 � Mpp�, A2qλ, then

U2pp
�, q1q ¤ U2pp

�, λq.

The proofs of all the lemmas including this one appear in the Appendix.

The mixed action q� is, by requiring q� P ∆2, a minmax action, and by (1) and (2) of Lemma

1, p� is a full support distribution over Player 1’s best replies. When the players play the pair

pp�, q�q, the expected frequency of the signals obtained by Player 1 is in the space spanned (in

the algebraic sense) by the columns of Mpp�, q�q. From (3) there is no other minmax action, as

profitable for Player 2 as q�, that induces the same distribution of signals when played against

p�. From (4), for any linear combination λ and mixed action q1 that induce the same signals

(i.e., Mpp�, A2qq
1 � Mpp�, A2qλ) and whose support is included in supppq�q, yield the same

payoff for Player 2 (i.e., U2pp
�, q1q � U2pp

�, λq). This property renders any deviation of type

(iii) (see above) unprofitable.

Let λ be a linear combination and q1 be a mixed action whose support is not included in

supppq�q. Suppose that λ and q1 induce the same signals (i.e., Mpp�, A2qq
1 � Mpp�, A2qλ).

Then, by (5), q1 yields a payoff for Player 2 that does not exceed that defined by λ (i.e.,

U2pp
�, q1q ¤ U2pp

�, λq). This renders any deviation of type (i) unprofitable.

5.4 The use of the information matrix related to Example 1.

It turns out that q� � p0, 1
3
, 2

3
q satisfies the properties of the previous lemma. As for the action

of Player 1, p� may be any full support distribution over the best replies: pP pT q, 1 � P pT q, 0q,

0   P pT q   1. For the sake of simplicity, let p� be p1
2
, 1

2
, 0q. Consider the information matrix

Mpp�, A2q, described in Table 6.

The purpose of the information matrix is to construct the continuation payoff after the

punishment phase. Player 1 updates the continuation payoffs of Player 2 based on the signals
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L C R

(T,3) 1 0 0

(T,0) 0 1 1

(M,-2) 1 0 1

(M,4) 0 1 0

Table 6: Mpp�, A2q - the information matrix when Player 1 plays p�.

he observes during the punishment phase. At each period of the punishment his information

could be one of the four pairs represented by the four rows of the matrix. For the sake of

example let us enumerate these rows as s � 1, ..., 4. Thus, s � 1 stands for the signal pT, 3q,

while s � 2 for pT, 0q, etc. The punishment phase is meant to last N stages and is followed by

a continuation game that begins with two communication periods. After these N � 2 stages

the game continues with a continuation that depends on what happened during these stages.

We define 4N variables X t
s, s � 1, ..., 4; t � 0, ..., N � 1. When Player 1 observes the s-th

signal at time t (t � 0, ..., N � 1) of the punishment phase, he adds the amount X t
s to the

continuation payoff of Player 2.

More specifically, suppose that Player 2 plays C at t � 0 (of the punishment phase). Player

1 plays T with probability 1
2

and observes pT, 0q (recall, he plays p1
2
, 1

2
, 0q). In this case X0

2 is

added to the continuation payoff of Player 2. Likewise, with probability 1
2

Player 1 plays M ,

observes pM, 4q and X0
4 is added to the continuation payoff. We obtain that when Player 2

plays C her expected payoff, taking into account the current payoff and the future expected

change of continuation payoff (to be realized N � 2 periods in the future), is

p1 � δq

�
1

2
4 �

1

2
0

�
� δN�2

�
1

2
X0

2 �
1

2
X0

4

�
(1)

and when playing R her expected payoff is,

p1 � δqp�2q � δN�2

�
1

2
X0

2 �
1

2
X0

3

�
. (2)

However, if Player 2 deviates and play L, her expected payoff is,

p1 � δq

�
1

2
3 �

1

2
p�1q

�
� δN�2

�
1

2
X0

1 �
1

2
X0

3

�
. (3)

Recall that Player 2 is prescribed to play q� � p0, 1
3
, 2

3
q. In order to make her indifferent between

C and R and weakly preferring them over L, the figures in Eqs.(1) and (2) should coincide and

they should be at least that of Eq.(3).
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More generally, the variables X t
r should solve the following system of linear equations, where

Mspp
�, a2q be the sth entry of the information column Mpp�, a2q:

U2pp
�, Cqp1 � δqδt � δN�2

4̧

s�1

1

2
Mspp

�, CqX t
s � U2pp

�, Rqp1 � δqδt � δN�2
4̧

s�1

1

2
Mspp

�, RqX t
s

U2pp
�, Lqp1 � δqδt � δN�2

4̧

s�1

1

2
Mspp

�, LqX t
s ¤ U2pp

�, Cqp1 � δqδt � δN�2
4̧

s�1

1

2
Mspp

�, CqX t
s,

QQQQQQQQQQQQQQQ t � 0, ..., N � 1.

It turns out that a certain condition related to the independence of columns of the information

matrix (detailed in Lemma 6 in the appendix) enables one to solve this system, as stated in

Lemma 2.

5.5 The general case

We turn to the design of the continuation payoffs in the general case. Let S be the number

of rows in the information matrix Mpp�, A2q. Let apsq be the action in A1 associated with

the s-th row of the information matrix Mpp�, A2q. For every s (s � 1, ..., S), let X t
s be the

variable corresponding to the case where Player 1 plays apsq at time t and receives the signal

corresponding to the s-th row. We refer to X t
s as stage-accumulated payoffs. The signal

obtained by Player 1 at time t when playing apsq will affect the continuation payoff of player 2

through X t
s. Specifically, suppose that Player 2 plays a2 at time t, t � 0, ..., N � 1. Then, the

expected changes in her continuation payoffs (evaluated from the beginning of the punishment

phase) is δN�2r
°S
s�1 p

�papsqqMspp
�, a2qX

t
ss. This continuation payoff of Player 2 should make

her indifferent between all the actions in the support of q�: her stage-payoff plus the resulting

continuation payoff should be constant across supppq�q. That is,

p1 � δqδtU2pp
�, a2q � δN�2r

Ş

s�1

p�papsqqMspp
�, a2qX

t
ss

has to be constant across all a2 P supppq�q. Furthermore, actions out of supppq�q must be less

profitable than those in supppq�q. Lemma 2 guarantees the existence of continuation payoffs

that satisfy these requirements.

There is, though, another consideration that should be taken into account. The stage-

accumulated payoffs are accumulated along the punishment phase. This accumulation should

not be too large: it must fit within a certain range of possible continuation payoffs. This is the

purpose of the last inequality in Lemma 2. We will elaborate more about it in Section 6.1.2.

Let Q� be a subset of A2 such that V pp�, Q�q � V pp�, q�q, and the columns of Mpp�, Q�q

are independent.
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Lemma 2. For any e P p0, 1q, D ¡ 0 and an integer N , there exists δ2 P p0, 1q such that for

any δ ¡ δ2 there are numbers Kt P R, t � 0, ..., N � 1, and a solution to the following system

of linear inequalities (with X t
s being the unknowns),

$''''&
''''%

U2pp
�, a2qp1 � δqδt � e

S°
s�1

p�papsqqMspp
�, a2qX

t
s � Kt a2 P Q

�, t � 0, ..., N � 1

U2pp
�, a2qp1 � δqδt � e

S°
s�1

p�papsqqMspp
�, a2qX

t
s ¤ Kt a2 R Q

�, t � 0, ..., N � 1

N�1̧

t�0

min
s

 
X t
s

(
� 0,

and

N�1̧

t�0

max
s

 
X t
s

(
¤ D.

The exact values of e and D will be determined in Section 6.1.2. Note that a deviation

of type (ii) (see Section 5.2) is to an action whose support is not a subset of Q�. Due to the

inequalities in the second row of the linear system a deviation of this type is unprofitable.

6 Proof of the Main Result

The next lemma is essential for defining the equilibrium strategies. It guarantees that suitable

continuation payoffs always exist, within a close proximity to the target payoff. Technically,

it ensures that for any efficient payoff pu1, u2q there is an ε-environment so that any efficient

payoff pv11, v
1
2q in this environment has a rectangle of payoffs that satisfies (a) pv11, v

1
2q Pareto

dominates any payoff in the rectangle; (b) for any pv1, v2q in the rectangle there is a profile of

strategies supporting it such that any profitable deviation is detected, and all future payoffs

are always within an ε distance from pv1, v2q.

Condition (b) implies, in particular, that pu1, u2q itself can be obtained using strategies such

that any profitable deviation is detectable and any future payoff is within an ε distance from

the target payoff pu1, u2q. These strategies will be used in the play path, while the strategies

leading to other payoffs in the rectangle will be used as continuation payoffs.

Let Bppu1, u2q, εq be the ball of radius ε ¡ 0 around pu1, u2q.
7 For a strategy profile σ �

pσ1, σ2q define Uipσ1, σ2, δ, hptqq to be the future payoff of Player i following a history hptq of t

periods that have positive probability under σ and when the discount factor is δ.

7That is, Bppu1, u2q, εq �
 
pv1, v2q; pv1 � u1q

2 � pv2 � u2q
2 ¤ ε2

(
.

23



Lemma 3. For every pu1, u2q P EF and ε ¡ 0, there exist D1, D2 ¡ 0 and δ3 P p0, 1q,

such that for any pv11, v
1
2q P EF X Bppu1, u2q, εq, 1 ¡ δ ¡ δ3 and any payoff pv1, v2q in the

convex hull of tpv11, v
1
2q, pv

1
1 �D1, v

1
2q, pv

1
1, v

1
2 �D2q, pv

1
1 �D1, v

1
2 �D2qu there exists a strategy

profile σ � pσ1, σ2q such that:

(i) the payoff of the strategy profile pσ1, σ2q in the repeated game with discount δ is pv1, v2q;

(ii) any profitable deviation from σi is detected with probability 1;

(iii) for every time t and a history hptq that has a positive probability under σ, Uipσ1, σ2, δ, hptqq P

Bppv1, v2q, εq.

Note that by this lemma, for a given ε the same δ3 applies for the entire convex hull

mentioned in the lemma.

In order to illustrate the lemma we revisit Example 1. Suppose that the target payoff is

p4, 1q. Figure 3 sketches the rectangles guaranteed by Lemma 3. On the play path that supports

p4, 1q all continuation payoffs are efficient and are located in Bpp4, 1q, εq. Each such continuation

payoff Pareto dominates a rectangle contained in the convex hull of payoffs that are strictly

efficient, and the same Pareto efficient minus the communication costs.

�3 �2 �1 1 2 3 4 5

�3

�2

�1

1

2

3

4

5

p�c1, 4q

Bpp4, 1q, ε)
p�c1, 4 � c2q

p5,�1 � c2q
p5 � c1,�1 � c2q

x

y

Figure 3: The rectangles referred to in Lemma 3 applied to Example 1.

We describe the equilibrium strategies that yield the payoffs of type (a) of Theorem 1.

As for type (b), one may employ a standard convexifying argument. Indeed, suppose the

target payoff, u � pu1, u2q, is a convex combination of a payoff on the strictly efficient frontier,

vEF � pvEF1 , vEF2 q and a one-period Nash equilibrium payoff, vNE � pvNE1 , vNE2 q. The payoff
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on the strictly efficient frontier is a convex combination of (at most) two pure actions’ payoffs,

both efficient, let them be uEF and ũEF . There exist α, α̃, (0 ¤ α, α̃, 1� α� α̃ ¤ 1), such that

u � αuEF � α̃ũEF � p1 � α � α̃qvNE. Then, by Sorin (1986), there is an infinite sequence of

vNE, uEF and ũEF , whose discounted sum equals u. Moreover, the continuation payoffs, for

sufficiently large discount factor, are always close to the target payoff. The players can switch

between the actions according to the sequence, until a deviation from the strategies is observed

(deviations from the one-period Nash equilibrium are, by definition, not profitable). If and

when this happens, the players switch to playing the punishment phase.

6.1 The phases of the equilibrium strategies

The equilibrium strategies have three phases:

• The play path

• The punishment phase

• The continuation game

The players follow the play path forever or until a deviation is detected. If and when a

deviation is detected, they switch to the punishment phase, followed by a continuation game

until another deviation is detected, and if so, they play a punishment phase again, etc.

We describe in details the instructions to the players during the different phases. Let the

payoff on the strictly efficient frontier we wish to support be pu1, u2q.

6.1.1 The play path

The play path strategy coincides with the strategy profile pσ1, σ2q whose existence is guaranteed

by Lemma 3. When pu1, u2q is strictly individually rational, from (iii) of the lemma so are

all continuation payoffs. From (ii) any profitable deviation is both detected and common

knowledge. Then, after a profitable deviation8, the players know when the punishment phase

begins.

6.1.2 The punishment phase

In case a deviation has been detected, this detection is common knowledge, and the players

move to the punishment phase. In what follows, we assume that the deviating player is Player

8A non-profitable deviation may go unnoticed. Being non-profitable to begin with, the possible lack of

punishment does not affect the incentives to follow the equilibrium path. Beliefs following such a deviation are

detailed in Appendix B.
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1. The case where Player 2 deviated is treated in a similar way. The case of simultaneous

deviations is elaborated in Section 6.3. The punishment phase consists of N periods (N is to

be determined in Lemma 4) while Player 1 and Player 2 play constantly the distributions p�

and q� whose existence is guaranteed by Lemma 1.

During the punishment, Player 1 updates the continuation payoffs of Player 2. The stage-

accumulated payoff, which depends on the actions taken at the t-th period of the punishment

phase is X t
s, defined in Lemma 2. Lemma 2 is employed with e � δN�2 and D � D2 (determined

in Lemma 3), so that Player 2 has the proper incentives to follow the punishment randomiza-

tions, and the stage-accumulated payoffs fit within the range of available continuation payoffs

included in the rectangle described in Lemma 3.

6.1.3 The continuation game

Fix one stage-game Nash equilibrium actions pair
�
pNE, qNE

�
, and denote UppNE, qNEq �

pvNE1 , vNE2 q. The continuation game begins with two periods of communication. During these

periods ppNE, qNEq is played, while the punished player, here Player 1, conveys messages.

At the first period, the punished player conveys a message stating that he was the punished

player. This message is redundant in scenarios where a single player deviated, but is needed in

the case of simultaneous deviations. If both players simultaneously deviate, their beliefs about

the identity of the player being punished may not agree. This message is aimed at synchronizing

the beliefs of the players. We elaborate more on this issue in Section 6.3.

At the second period the continuation payoff is communicated. The continuation of the

game is determined by the public messages conveyed during both communication periods and

depends on whether the punishment that has just ended followed a deviation from the play

path or from a continuation play. Let pv11, v
1
2q be the continuation payoff that would prevail

without deviation at the time a deviation was detected the first time (i.e., a deviation from

the play path). We divide the discussion regarding the first period of communication into two

possible situations.

Situation 1: Continuation that follows a punishment due to a deviation from

the play path

There are two cases to consider:

1. Both players or none conveyed messages during the first period of the conti-

nuation game.

In case at the first communication period both players conveyed a message stating that

they were punished, or if no player conveyed a message, no messages are needed during

the second period. The continuation payoff in this case is pv11 �D1, v
1
2 �D2q.

26



2. A single player conveyed a message during the first period of the continuation

game.

In case a single player, say Player 1, conveyed a message claiming that he was the one

being punished, in the second communication period Player 1 conveys a message regarding

the continuation payoffs. Player 1 randomizes between two possible continuation payoffs:

the high, pv11, v
1
2q, and the low, pv11�

1�δ
δ
c1, v

1
2�D2q, both within the rectangle guaranteed

by Lemma 3. A message sent in the second period indicates that the continuation payoff

is the high payoff, while no message indicates that it is the low one. Note that Player 1

is indifferent between these payoffs, when accounting for the message cost.

As for Player 2, the expected continuation payoff of Player 2 reflects the stage-accumulated

payoffs and should be v12 � D2 �
°N�1
t�0 X t

s. This payoff is generated by randomizing

with probability
°N�1

t�0 Xt
s

D2
for the payoff pv11, v

1
2q and with the complement probability for

pv11 �
1�δ
δ
c1, v

1
2 � D2q. The reason is that

�°N�1
t�0 Xt

s

D2

	
v12 �

�
1 �

°N�1
t�0 Xt

s

D2

	
pv12 � D2q �

v12 �D2 �
°N�1
t�0 X t

s.

Situation 2: Continuation that follows a punishment for a deviation from the con-

tinuation play

Here as well, we use the same rectangle guaranteed by Lemma 3 and determined by pv11, v
1
2q

(recall, this is the the continuation payoff at the first time the deviation has been detected).

However, the target payoff in situation 2 might be lower than the original equilibrium payoff,

and the messages costs reduce it further. Some small adjustments, compared to situation 1, are

needed in order to guarantee that the continuation payoff is always within the original rectangle.

In case both players or non conveyed messages during the first period of the continuation

game, the same rule holds: no messages are needed during the second period, after which the

continuation payoff is pv11 � D1, v
1
2 � D2q. Otherwise, assume that Player 1 was the only one

conveying a message stating that he was the punished player. Let Player 1’s continuation payoff

at the time of the last deviation be u11. Player 2’s post punishment payoff depends on the signal

conveyed by Player 1. Player 1’s post punishment payoff, denoted w1
1, is defined as follows:

w1
1 �

$''&
''%
v11 �D1, if u11   v11 �D1

u11, if v11 �D1 ¤ u11 ¤ v11

v11 �D1, if u11 ¡ v11 �D1.

(4)

Among the three possible continuation payoffs, the first involves an increase in the continu-

ation payoff, compared u11. The increase should be small enough to keep the total reduction of

payoff (due to the punishment and the continuation game) large enough to cancel out a gain
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from a single period deviation. In this case, the post punishment payoff is higher than the fu-

ture payoff at the time of deviation detection in order to remain within the rectangle mentioned

in Lemma 3. All continuation payoffs are always within an ε distance from the target payoff,

therefore at most ε is added to the future payoff.

In case v11�D1 ¤ w1
1 ¤ v11�

D1

2
, the two payoffs pw1

1�
1�δ2

δ2
c1, v

1
2q and pw1

1�
1�δ
δ
c1, v

1
2�D2q lie

in this rectangle. These payoffs will serve as the continuation payoffs. Otherwise, the payoffs

pw1
1, v

1
2q and pw1

1�
1�δ
δ
c1, v

1
2�D2q will be the continuation payoffs. In both cases, when Player 1 is

conveying a signal in the second period, he actually signals that the continuation payoff should

be the high one. The first pair of continuation payoffs, designed for the lower w1
1, compensate

for the cost of message at the first communication period. That is, the addition of 1�δ
δ
c1 is for

the sake of preserving the incentive of Player 1 to communicate the message stating he was the

punished player, even when w1
1 is the lowest possible.

The punishment reduces the future payoff enough to make a deviation unprofitable, if it

does so when future payoff is the lowest. When considering deviations from the play path, the

lowest possible continuation payoff is ui�ε. When addressing a deviation from the continuation

play, the lowest possible continuation payoff is u1i � v1i � ε. Combining these two observations,

we conclude that for the punishment to reduce future payoff enough, it suffices that:

u1i ¤ ui � 2ε�Di. (5)

The strategies depend on the parameters N , ε and δ, whose existence is guaranteed by

Lemma 4 below.

6.2 Deviations are not profitable

6.2.1 A deviation from the play path or from the continuation game is not pro-

fitable

Suppose that along the play path or during a continuation game Player i’s payoff is u1i. For a

deviation of Player i to be unprofitable, it is sufficient that the punishment is severe enough

so that the one period gain due to the deviation, plus the post deviation payoff (the payoffs

during the punishment, plus the payoffs during the first two periods of the continuation game

plus the continuation payoff) is lower than u1i. At most ε is added to the future payoff after the

punishment and the communication periods, and so the highest continuation payoff is u1i � ε

(recall, D1, D2   ε). Let ūi and ui be the highest and lowest (respectively) feasible payoffs of

Player i. The requirement, formally, is:

p1 � δq pūi � uiq � δ
1 � δN

1 � δ
0 � δN�1p1 � δ2qvNEi � δN�3pu1i � εq   u1i. (6)
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The last item is an upper bound of the continuation payoff. From (5) and (6) we conclude

that a deviation is unprofitable if @i P t1, 2u:

1 � δ  
p1 � δN�3qpui �Di � 2εq � δN�3ε

ūi � ui � δN�1p1 � δqvNEi
. (7)

Ineq. (7) aids establishing a lower bound for the discount factor. In spirit, this is similar

to Ineq. (5) in Fudenberg and Maskin (1986). Both aim to verify that the players are patient

enough so that the future reduction of payoffs due to punishment shall cancel out the current

gain from deviation.

There is yet another kind of deviation. In the first two periods of the continuation game

the players play a one shot game Nash equilibrium and convey messages. Thus, a profitable

deviation could only be either not conveying a message stating that one is the punished player

when indeed one is, or conveying a message that one has been punished while one has not been.

For the punishing player it is not profitable to convey a message because (a) communication is

costly and (b) such a message is followed by the lowest continuation payoff, v1i�Di (see 6.1.3).

For the player who was punished, it is sufficient to show that he prefers to convey the

message even when the future payoff is the lowest possible, ui� ε�Di (recall, the continuation

payoff after the first two communication periods are always within the rectangle). In this case

the payoffs used for continuation payoffs are pv11 �
1�δ2

δ2
c1, v2q and pv11 �

1�δ
δ
c1, v2 � D2q. It is

then sufficient to guarantee that for i P t1, 2u:

p1 � δqp�ciq � p1 � δqδvNEi � δ2pui � ε�Di �
1 � δ

δ2
ciq ¥ p1 � δqδvNEi � δ2pui � ε�Diq. (8)

Basic algebra shows that it holds as an equality.

A profitable deviation at the second period of the communication phase could be only by

altering the probability of sending a message (regarding the continuation payoff). However,

the player conveying the message is indifferent between the two options (see 6.1.3). This shows

that there is no profitable deviation from the second period either.

6.2.2 A Deviation from the punishment phase is not profitable

During the punishment phase, the punished player, Player 1, plays his best responses, therefore

he has no profitable deviations. As for Player 2, due to Lemma 2 (applied, recall, with e � δN�2

and D � D2) she is indifferent between all actions in Q�, and weakly preferring them over

actions not in Q�. Thus, all possible deviations are not profitable.

The following lemma proves that values of the parameters δ, ε and N can be found to satisfy

all the equilibrium requirements simultaneously.
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Lemma 4. For every pu1, u2q P EF X IR there exists δ4 P p0, 1q such that @δ ¡ δ4, parameters

ε and N can be found so as to satisfy Ineq. (7) for D1, D2 derived from Lemma 3 and allow the

linear system of Lemma 2 to have a solution.

6.3 The case of simultaneous deviations

The solution concept of sequential equilibrium requires that the players have beliefs about the

history of the game, and play a best response to other players’ strategies based on these beliefs.

The combination of strategies and beliefs is called assessment. During the game, the beliefs are

updated in a Bayesian manner. In case the observed signal is inconsistent with following the

instructions to the players the beliefs are derived from a converging system of assessments in

which the strategies have full support (thus Bayesian updating of the beliefs is possible following

any signal).

In our construction there are three phases of the game: the play path, the punishment

phase and the continuation play. For each such phase there are specific instructions that are

best replies when the belief is that the opponent is at the same phase. When players follow

these instructions, the beliefs are easily constructed: each player believes with probability 1

that his opponent is conforming. When a single player deviates and the deviation is detected,

the beliefs are simple as well: the conforming player detects the deviation, and the deviating

player knows that his deviation was observed.

The case where beliefs should be explicitly designed is when both players simultaneously

deviate. These beliefs require a delicate construction. In order to illustrate the idea of how to

construct the beliefs, consider the following example.

Example 2. nnnn

L C R

T 3,3 0,4 0,-2

M -2,-1 4,0 -2,-2

B 5,-1 -2,4 -3,-2

Table 7: The payoff matrix of Example 2.

Suppose that on the equilibrium path the players are instructed to play pT, Lq and they

simultaneously deviate: Player 1 deviates from T to B, and Player 2 from L to C. Then,

Player 1 gets �2 instead of 5, thus knowing that Player 2 deviated as well, but Player 2 gets 4,

which is the payoff she expects to obtain when deviating while Player 1 is conforming. In this
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case, Player 2, knowing that for Player 1 any deviation is not profitable (due to the subsequent

punishment), will place zero probability on the event that Player 1 deviates, and will assume

that she was the only one deviating. Thus, she believes that she is the one to be punished.

Note that in some scenarios, the beliefs can be simply derived from Baysian updating. This

happens when the signals are compatible with the assumption that the opponent is conforming.

In this case, a player believes that the opponent is indeed conforming. So a player either believes

with probability 1 that the opponent conforms, or knows the opponent deviated. In the later

case, a player that deviated and observed a deviation of the opponent may not know whether

his own deviation was observed by the opponent.

To further explain, consider a slight change:

Example 3. nnnn

L C R

T 3,3 0,4 0,-2

M -2,-1 4,0 -2,-2

B1 5,-1 -2,3 -3,-2

B2 5,-1 5,3 -3,-2

Table 8: The payoff matrix of Example 3.

Suppose that on the equilibrium path the players are instructed to play (T,L), yet they si-

multaneously deviate: Player 1 to B1 and Player 2 to C. Player 2 observes a payoff of 3, which

indicates a deviation of Player 1. However, it does not indicate whether the deviation was to

B1 or B2. A deviation to B1 allows Player 1 to detect Player 2’s deviation, while a deviation

to B2 does not. Both know that the opponent deviated. The belief of Player 1 is that Player 2

observed his deviation (he knows that she knows that he deviated). The belief of Player 2 needs

to be defined. She does not know whether her deviation was observed. In fact, in this case, the

beliefs of Player 2 may differ according to different limits of perturbations of beliefs.

In our equilibrium construction, following a single or simultaneous deviation, a player has a

well-defined best reply if he places a mass-point probability on one of the following possibilities:

no player is to be punished, Player 1 is to be punished or Player 2 is to be punished. We show

how to obtain such beliefs when off-equilibrium they are derived from a converging sequence of

perturbations in the following.
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6.4 The beliefs off the equilibrium path

Appendix B elaborates on the formal definitions of the converging perturbations leading to the

off equilibrium path systems of beliefs and their corresponding best replies. The general idea is

that either (a) the mass-point limit leads a player to belief that a certain single deviation should

be punished or (b) there is common knowledge that both players simultaneously deviated. The

corresponding best replies follow from the instructions of the different phases. Appendix B also

demonstrates the beliefs construction on the situations described in Examples 2 nd 3 above.

6.5 A Generalization of the information structures

6.5.1 Observing payoffs and an additional signal

The lemmas above referred to a monitoring structure where the only signal a player observes

is his own payoff.

Consider an information structure where the players are informed of their own payoffs, and

in addition, on some random signal that may depend on the actions taken. During all phases,

any information other than the payoffs can be ignored without interfering with the equilibrium

construction. Even signals that indicate deviations are ignored as long as they have no effect on

observed payoffs. In the case where only payoffs are observable, a deviation is made unprofitable

by punishments that follow detections, which are solely based on observed payoffs. This kind

detection is effective also is cases where additional information is available and is being ignored.

In case of simultaneous deviations, the additional information may change the structure of

the beliefs regarding the identity of the deviator. However, the general idea in Section 6.3 still

holds: either there is common knowledge regarding the mutual deviation, or there is some order

of ignorance, where the ‘assume ignorance’ rule applies just as well. Thus, the proof generalizes

to the case of additional information with minor adjustments.

6.5.2 Observing own payoff with positive probability

Now consider an information structure where each player observes his own payoff only with

some positive probability, and that this observation when occurs is common knowledge. The

equilibrium we constructed relies on the detectability of profitable deviations, and on the ability

of a punished player to properly define and communicate continuation payoffs. Only minor

changes are needed in the equilibrium construction. In order to compensate for being detected

only with some probability, the weight of the punishment phase should increase compared to a

single period’s weight.
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For simplicity, let I be the minimal probability of observing own payoff, across all pairs of

actions. Ineq. (6) becomes,

p1 � δqpūi � uiq � I
�
δN�1p1 � δ2qvNEi � δN�3pu1i � εq

�
� δp1 � Iqu1i   u1i

or

p1 � δq
�
ūi � ui � IδN�1p1 � δqvNEi � u1i

�
  δIu1i � IδN�3pu1i � εq.

If the left hand side is negative, then for a small enough ε it trivially holds. Otherwise, Ineq.

(7) becomes for the lowest possible continuation payoff,

1 � δ  
δpui �Di � 2εq � IδN�3pui �D2 � εq

ūi � ui � IδN�1p1 � δqvNEi � puu �Di � 2εq
.

This requires small enough ε and more patient players.

The linear systems of equations (Lemma 2) that defines the continuation payoffs should be

slightly changed. Let Ipapsq, a12q be the probability that Player 1 observes his payoff when the

action profile papsq, a12q is played. The updates of the continuation payoffs should be adjusted

to the updates being made only with that probability. To be accurate, the linear system in

Lemma 2 should be:

$''''&
''''%

U2pp
�, a12qp1 � δqδt � e

S°
s�1

p�papsqqMspp
�, a12qX

t
sIpapsq, a

1
2q � Kt @a12 P Q

�, t � 0, ..., N � 1

U2pp
�, a12qp1 � δqδt � e

S°
s�1

p�papsqqMspp
�, a12qX

t
sIpapsq, a

1
2q ¤ Kt @a12 R Q

�, t � 0, ..., N � 1

N�1̧

t�0

min
s

 
X t
s

(
� 0,

and
N�1̧

t�0

max
s

 
X t
s

(
¤ D.

This linear system has a solution for the same reason the former systems did (the linear inde-

pendence of the columns of the information matrix).

The signals conveyed during the communication phase are still observed with probability 1,

and thus Ineq. (8) is left unchanged. In addition, Lemma 3 (ii) should read: “any profitable

deviation is detected with a positive probability”.

The rest of the proof does not require any modification, and the loss in the accuracy of the

signals mainly manifests itself in requiring extra patience on the part of the players.
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7 Four final comments

7.1 Ties of payoffs

The difficulty of detecting deviations arises in our model only when there are ties between

payoffs. Such ties appear in many classes of games, for example in auction games when the

bidders are informed only of the outcome. More examples where such ties exist can be found

in Section 2.

7.2 Supporting additional payoffs as sequential equilibrium payoffs

A full Folk Theorem would refer to the entire set of payoffs that could be obtained in a repeated

game. Here we described only how to sustain Pareto efficient payoffs and the payoffs in the

convex hull of the strictly Pareto efficient and one-period Nash equilibrium payoff. A natural

question is what other payoffs could be supported.

Deviations from actions that produce payoffs that are not strictly efficient are not always

detectable. The techniques presented in this paper are not easily generalized to these cases, as

can be seen in the following example.

Example 4. dddddd

L C R

T 3,3 3,0 0,1

M 1,2 1,1 0,2

B 2,0 2,-1 0,0

Table 9: Weak Pareto efficient cannot be a sequential equilibrium payoff

Here, the weakly Pareto efficient payoff p3, 0q cannot be a sequential equilibrium payoff. The

reason is that C and L yield the same payoff for Player 1, no matter what he plays. Therefore,

based on the signals he receives, Player 1 cannot detect a deviation of Player 2 from C to L.

Furthermore, due to such deviation Player 2 does not lose information (by playing L she can

distinguish between any two actions that she can distinguish between when playing C).

We conclude that when players observe their own payoff, typically, one cannot get a full

Folk theorem.
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7.3 Three players model

Extending the result presented here to games with three players or more is not straightforward.

In a two-player game when a single player deviation takes place, there is common knowledge

regarding the identity of the deviator. When three or more players are involved, either a mecha-

nism that reveals the deviator’s identity must be present or a punishment that simultaneously

sanctions several players should be available. One situation where such a sanction is available

is when attempting for a Nash-threat folk theorem.

7.4 Zero-cost communication

In this paper communication is costly. A careful reading of the proof reveals that communication

takes place only off equilibrium. The construction used here relies on the positive cost of

communication. Reducing the cost of communication to zero (‘cheap-talk’) gives rise to a whole

different use of communication. When communication is free, it can be used in every period of

the game without harming efficiency. In Ashkenazi-Golan and Lehrer (2019) we explore the free

communication model and obtain a full characterization of the sequential equilibrium payoffs,

using an equilibrium structure different from the one presented here.
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8 Appendix A- Proofs

We start with a technical lemma which will be needed later.

Lemma 5. For any A1
1 � A1 and λ, λ1 P R|A2|, if MpA1

1, A2qλ
1 �MpA1

1, A2qλ, then¸
akPA2

λ1k �
¸

akPA2

λk.

Proof. The columns of the information matrix Mpp,A2q consist of zeros and ones. The number

of ones in each column equals the number of rows in the support of p. Denote it by ρ. Let Mipp, arq

be the ith entry of the column Mpp, arq. One obtains,
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¸
akPA2

λkρ �
¸

akPA2

λk
¸
aiPA1

1

MipA
1
1, akq

�
¸
aiPA1

1

¸
akPA2

λkMipA
1
1, akq �

¸
aiPA1

1

¸
akPA2

MipA
1
1, akqλ

1
k

�
¸

akPA2

λ1k
¸
aiPA1

1

MipA
1
1, akq �

¸
akPA2

λ1kρ.

Thus,
°
akPA2

λ1k �
°
akPA2

λk.

Lemma 1. There exists a pair of distributions pp�, q�q P ∆pA1q �∆2 such that

(1) U1pp
�, q�q � 0,

(2) U1pa1, q
�q � 0 ñ a1 P supppp�q,

(3) @q1 P ∆2, Mpp�, A2qq
1 �Mpp�, A2qq

� ñ U2pp
�, q1q ¤ U2pp

�, q�q,

(4) @q1 P ∆pA2q and λ P R|A2|, if supppq1q, supppλq � supppq�q, then

Mpp�, A2qq
1 �Mpp�, A2qλñ U2pp

�, q1q � U2pp
�, λq.

(5) For every q1 P ∆pA2q and λ P R|A2|, if supppλq � Q� and Mpp�, A2qq
1 � Mpp�, A2qλ, then

U2pp
�, q1q ¤ U2pp

�, λq.

Proof. Denote,

B :�

#
pp, qq P ∆pA1q �∆2; U1pp, qq � 0 and

Mpp,A2qq �Mpp,A2qq
1 ñ U2pp, q

1q ¤ U2pp, qq

+
.

The set B is not empty. To see this, consider q1 P ∆2, and let p be a distribution over the set of all

(pure) best replies of Player 1. Thus, U1pp, q
1q � 0. The set of distributions q P ∆2 satisfying the

equality Mpp,A2qq
1 � Mpp,A2qq is compact. Thus, U2pp, .q attains a maximum over this set, say at

q.

The information matrix Mpp,A2q describes the distribution over the different signals of Player

1. Since payoffs are observable, two Player 2’s mixed actions, q and q1, that satisfy Mpp,A2qq �

Mpp,A2qq
1 induce identical distributions over signals, and thus must induce identical distributions of

Player 1’s payoffs, against any action in the support of p. Formally, Mpp,A2qq
1 � Mpp,A2qq implies

U1pa, q
1q � U1pa, qq for every a P suppppq and in particular, 0 � U1pp, q

1q � U1pp, qq. We therefore

obtain that pp, qq P B and therefore B is not empty. Note that any pp�, q�q P B satisfies (1) and (3).

Let pp�, q�q P B be such that supppp�q is maximal: there does not exist pp, qq P B such that

supppp�q � suppppq. We claim that pp�, q�q satisfies (2). Assume, by contradiction, that there exists
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a1 P A1 such that U1pa1, q
�q � 0, a1 R supppp�q. Consider9 p � p1 � ε1qp� � ε1pa1q and q such

that: q P ∆2 maximizes U2pp, .q among all q P ∆2 that satisfy Mpp,A2qq
� � Mpp,A2qq. Since

Mpp,A2qq
� � Mpp,A2qq, for every a P suppppq, 0 � U1pa, q

�q � U1pa, qq. Hence, pp, qq satisfies (1)

and (3) while supppp�q � suppppq, a contradiction to supppp�q being a maximal set.

To see that pp�, q�q satisfies (4) as well, let q1 P ∆pA2q and λ P R|A2| be such that supppq1q, supppλq �

supppq�q and Mpp�, A2qq
1 �Mpp�, A2qλ. Assume, by contradiction, that U2pp

�, q1q � U2pp
�, λq. From

Lemma 5,
°
k λk � 1. If U2pp

�, q1q ¡ U2pp
�, λq, consider q � q��ε1pq1�λq, and if U2pp

�, q1q   U2pp
�, λq,

consider q � q� � ε1pλ � q1q. Due to supppq1q, supppλq � supppq�q, for ε1 ¡ 0 small enough q

is in ∆pA2q. We obtain, MpA1, A2qq � MpA1, A2qq
�. Furthermore, due to the definition of q,

U2pp
�, qq ¡ U2pp

�, q�q, contradicting (3). We therefore conclude that (4) is also satisfied.

Recall, Q� is a subset of A2 such that V pp�, Q�q � V pp�, q�q, and the columns of Mpp�, Q�q

are independent. As for (5), suppose that q1 P ∆pA2q, λ P R|A2|, supppλq � Q�, and Mpp�, A2qq
1 �

Mpp�, A2qλ. Assume, in a way of contradiction, that U2pp
�, q1q ¡ U2pp

�, λq. From Lemma 5,°
akPA2

q1pakq � 1 �
°
akPQ� λk.

Since supppλq � Q�, for ε1 ¡ 0 small enough, q � q� � ε1pq1 � λq is a distribution as well. Also,

Mpp�, A2qq � Mpp�, A2qq
� implies @a2 P supppp�q, U1pa2, qq � U1pa2, q

�q � 0. Moreover, by (2),

Player 1’s actions out of supppp�q are not best reply to q� and so the payoff for Player 1 when playing

them against q� is negative, and for ε1 small enough it is still negative when played against q. Thus,

q is a minmaxing strategy.

We obtained that q is a minmaxing strategy such that U2pp
�, qq � U2pp

�, q�q � ε1pU2pp
�, q1q �

U2pp
�, λqq ¡ U2pp

�, q�q and Mpp�, A2qq �Mpp�, A2qq
�, in contradiction to (3).

A set Q � A2zsupppq�q is called complete if (i) The columns of Mpp�, Q� Y Qq are independent,

and (ii) V pp�, Q� Y Qq � V pp�, A2q. In words, a subset Q of columns that is disjoint of supppq�q

is complete, if together with Q� the corresponding columns of Mpp�, Q� Y Qq are independent and

algebraically span the entire space V pp�, A2q.

Before we get to the proof of Lemma 2 we prove two lemmas: Lemma 6 that provides a helpful

property of the information matrix, and Lemma 7 which refers to the private case where t � 0.

Lemma 6. There exists a complete set Q such that for any a2 P A2, if Mpp�, a2q � Mpp�, A2qλ and

supppλq � Q� YQ, then U2pp
�, a2q ¤ U2pp

�, λq.

The proof of Lemma 6 relies on the following claim, which uses two notations. For any vector

x P Rn by x ¥ 0 we mean that xi ¥ 0, i � 1, ..., n, and similarly x ¡ 0 means xi ¡ 0, i � 1, ..., n.

For q P ∆pA2q, and a complete set Q, let λqQ�YQ P R|A2| be the unique vector that satisfies

Mpp�, A2qλ
q
Q�YQ � Mpp�, A2qq and supppλqQ�YQq � Q� Y Q. With a slight abuse of notation let

λa2Q�YQ P R|A2| be such that Mpp�, A2qλ
a2
Q�YQ �Mpp�, a2q.

Claim 1. There exists a distribution q over A2, such that

(1) There is a non empty list of complete sets Q1, ..., Qk such that λqQ�YQj
¡ 0, j � 1, ..., k.

(2) For any complete set Q1, λqQ�YQ1 ¥ 0 implies Q1 P tQ1, ..., Qku and thus, λqQ�YQ1 ¥ 0 implies

λqQ�YQ1 ¡ 0.

9We use pa1q to denote the distribution that assigns a1 probability 1.
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Proof. For any complete set Q1 denote by conepQ�YQ1q the open cone generated by the columns

of Mpp�, Q� YQ1q. That is, conepQ� YQ1q � tMpp�, A2qβ;β ¡ 0, supppβq � Q� YQu. Let Q1, ..., Qk
be a longest list (that is, k is maximal) of complete sets such that Xkj�1conepQ� Y Qjq � H. This

intersection is an open set (in V pp�, Q� YQ1q) as an intersection of finitely many open sets.

Fix q P ∆pA2q such that Mpp�, A2qq P X
k
j�1conepQ�YQjq. Thus, (1) is satisfied. In order to show

(2), assume that Q1 is complete and λqQ�YQ1 ¥ 0. It means that Mpp�, qq is at the same time in the

closure of conepQ� YQ1q and in Xkj�1conepQ� YQjq. Since conepQ� YQ1q is also open we obtain that

the intersection of conepQ� Y Q1q and Xkj�1conepQ� Y Qjq is not empty. If Q R tQ1, ..., Qku it would

contradict the assumption about the maximality of k. We conclude that there is no complete Q1 other

than Q1, ..., Qk such that λqQ�YQ1 ¥ 0. This completes the proof.

Proof of Lemma 6. Consider the distribution q and Q1, ..., Qk guaranteed by Claim 1. Let j

be such that U2pp
�, λqQ�YQj

q is the maximal across all Q1, ..., Qk. That is,

U2pp
�, λqQ�YQj

q ¥ U2pp
�, λqQ�YQ`

q, ` � 1, ..., k. (9)

Set Q � Qj . We claim that Q satisfies that for any a2 P A2, if Mpp�, a2q �Mpp�, A2qλ, supppλq �

Q�YQ, then U2pp
�, a2q ¤ U2pp

�, λq. Note that since Q is complete, λ � λqQ�YQ. Assume, by negation,

that there exists a2 P A2, such that U2pp
�, a2q ¡ U2pp

�, λa2Q�YQq. It implies that a2 R Q
� YQ, because

otherwise λa2Q�YQ � 1a2 implying U2pp
�, a2q � U2pp

�, λa2Q�YQq.

Denote, zpcq � cr1a2 � λa2Q�YQs, for every c ¥ 0. Note that Mpp�, A2qzpcq � 0 for any c ¥ 0.

Consider, λqQ�YQ � zpcq. Recall that λqQ�YQ is strictly positive. Thus, when c is small enough, all the

coordinates of λqQ�YQ remain positive in λqQ�YQ� zpcq. We increase c gradually, until c � c0, which is

the first time one of the coordinates, say of a12, becomes zero. At this point, since (as a2 R Q
� Y Q),

λqQ�YQpa2q � λa2Q�YQpa2q � 0, the coefficient of a2 is positive (i.e., c0), while that of a12 is zero.

Formally, λqQ�YQpa
1
2q � c0r1a2pa

1
2q � λ

a2
Q�YQpa

1
2qs � 0. Since a12 P Q, by the choice of q, λqQ�YQpa

1
2q ¡ 0.

Moreover, since 1a2pa
1
2q � 0 and c0 ¡ 0, we obtain,

λa2Q�YQpa
1
2q ¡ 0. (10)

Set Q1 � Q Y ta2uzta
1
2u. We show first that Q1 is complete. For this purpose we show that

Mpp�, A2q1a12 is in the span of V pQ�YQ1q and that a12 R Q
�. Recall that, Mpp�, A2q1a2 �Mpp�, A2qλ

a2
Q�YQ.

Thus,

Mpp�, A2q

�
�1a2 �

¸
ã2PpQ�YQ1qzta2u

1ã2λ
a2
Q�YQpã2q

�
 � Mpp�, A2q

�
�1a2 �

¸
ã2PpQ�YQqzta12u

1ã2λ
a2
Q�YQpã2q

�


� λa2Q�YQpa
1
2qMpp�, A2q1a12 .

Therefore,

Mpp�, A2q

�
1a2 �

°
ã2PpQ�YQ1qzta2u

1ã2λ
a2
Q�YQpã2q

λa2Q�YQpa
1
2q

�
�Mpp�, A2q1a12 . (11)
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This implies that Mpp�, A2q1a12 is a linear combination of the column in Mpp�, Q� YQ1q and thus in

V pQ� YQ1q, as desired. Eq. (11) can be written as,

λ
a12
Q�YQ1 �

1a2 �
°
ã2PpQ�YQ1qzta2u

1ã2λ
a2
Q�YQpã2q

λa2Q�YQpa
1
2q

. (12)

From the assumption regarding a2:

U2pp
�, a2q ¡ U2pp

�, λa2Q�YQq � λa2Q�YQpa
1
2qU2pp

�, a12q �
¸

ã2PpQ�YQ1qzta2u

λa2Q�YQpã2qU2pp
�, ã2q,

which implies,

U2pp
�, a2q �

¸
ã2PpQ�YQ1qzta2u

λa2Q�YQpã2qU2pp
�, ã2q ¡ λa2Q�YQpa

1
2qU2pp

�, a12q.

Due to Ineqs. (10) and (12) it implies,

U2pp
�, λ

a12
Q�YQ1q ¡ U2pp

�, a12q. (13)

This inequality has two consequences. First, by Lemma 1(4), a12 R Q
�. This, in turn, implies that

Q1 is complete. Second, the facts that Q1 is complete and that all the coefficients of λqQ�YQ1 are

non-negative imply by Claim 1 that Q1 P tQ1, ..., Qku. In order to finish the proof we show that

U2pp
�, λqQ�YQ1q ¡ U2pp

�, λqQ�YQj
q which contradicts Eq. (9).

Note that λqQ�YQ1 � λqQ�YQ � λqQ�YQpa
1
2qpλ

a12
Q�YQ � 1a12q. Therefore,

U2pp
�, λqQ�YQ1q � U2pp

�, λqQ�YQq � λqQ�YQpa
1
2q
�
U2pp

�, λ
a12
Q�YQq � U2pp

�, a12q
	
¡ U2pp

�, λqQ�YQq,

where the inequality is due to Eq. (13). Since Q1 P tQ1, ..., Qku, this inequality indeed contradicts Eq.

(9), and the proof is complete.

Lemma 7. For any e P p0, 1q and D ¡ 0, there exists δ1 P p0, 1q such that for any δ ¡ δ1 there exists

a solution,
 
Xt
s

(
P RS and K P R, to the following system of inequalities,

$'''''''''&
'''''''''%

U2pp
�, a12qp1� δq � e

S°
s�1

p�papsqqMspp
�, a12qXs � K @a12 P Q

�,

U2pp
�, a12qp1� δq � e

S°
s�1

p�papsqqMspp
�, a12qXs ¤ K @a12 R Q

�,

maxs tXsu �mins tXsu ¤ D.

Proof. Let Q be any set of pure actions guaranteed by Lemma 6. The set of columns of Mpp�, Q�Y

Qq is a set of independent columns. Therefore, the following system has a solution.

p1� δqU2pp
�, a12q � e

Ş

s�1

Mspp
�, a12qYs � K, @a12 P Q

� YQ.
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The solution does not have to be unique. In order to obtain a unique solution, we may add linear

equalities, so that the matrix Mpp�, Q Y Q�q together with the additional rows is invertible, and let

Ys be the solution. For any apsq P supppp�q let Xs �
Ys

p�papsqq .

We established that the first two lines of the system (equality in the first and inequality in the

second) hold for all actions in Q�YQ. We now show that it holds for any action in A2. Let a2 be any

action in A2. From Lemma 6 the set Q is complete, and so V pp�, Q� YQq � V pp�, A2q. Hence, there

exists λ P R|A2|, supppλq � QYQ�, such that Mpp�, a2q �Mpp�, A2qλ.

p1� δqU2pp
�, a2q � e

Ş

s�1

Mspp
�, a2qYs � p1� δqU2pp

�, a2q � e
Ş

s�1

rMspp
�, A2qλsYs ¤

p1� δqU2pp
�, λq � e

Ş

s�1

rMspp
�, A2qλsYs �

¸
a12PQ

�YQ

λpa12q

�
p1� δqU2pp

�, a12q � e
Ş

s�1

Mspp
�, a12qYs

�
¸

a12PQ
�YQ

λpa12qK � K.

The inequality is due to Lemma 6, and the last equality is due to Lemma 5.

As for the last inequality of the lemma, for any δ1 there exists a bound D1 such that

max
δ1¤δ 1

�
max
s
Xspδq �min

s
Xspδq

�
¤ D1.

Multiplying by D
D1 , we obtain,

D

D1
U2pp

�, a12qp1� δq � e
D

D1

Ş

s�1

Mspp
�, a12qeYs �

D

D1
K, @a12 P Q

� YQ.

For X 1
s �

D
D1

Ys
p�papsqq , and K 1 � D

D1K the solution satisfies:

max
δ1¤δ 1

�
max
s
X 1
spδq �min

s
X 1
spδq

�
¤
D

D1
D1 � D.

Thus, the last inequality is satisfied as well.

Lemma 2. For any e P p0, 1q, D ¡ 0 and an integer N , there exists δ2 P p0, 1q such that for any

δ ¡ δ2 there are numbers Kt P R, t � 0, ..., N � 1, and a solution to the following system of linear

inequalities (with Xt
s being the unknowns),

$''''&
''''%

U2pp
�, a2qp1� δqδt � e

S°
s�1

p�papsqqMspp
�, a2qX

t
s � Kt a2 P Q

�, t � 0, ..., N � 1

U2pp
�, a2qp1� δqδt � e

S°
s�1

p�papsqqMspp
�, a2qX

t
s ¤ Kt a2 R Q

�, t � 0, ..., N � 1

N�1̧

t�0

min
s

 
Xt
s

(
� 0
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and
N�1̧

t�0

max
s

 
Xt
s

(
¤ D.

Proof. All first expressions in the equalities above are a multiplication of the former equalities by

δt, and so multiplying X and K by the value of δt and subtracting from each resulting Kt and Xt
s the

value of
°N�1
t�0 mins

 
Xt
s

(
� 0 give a solution.

The inequality follows from the identity p1� δq
°N�1
t�1 δt � 1� δN and from the last inequality in

Lemma 7.

Lemma 3. For every pu1, u2q P EF and ε ¡ 0, there exist D1, D2 ¡ 0 and δ3 P p0, 1q, such

that for any pv11, v
1
2q P EF X Bppu1, u2q, εq, 1 ¡ δ ¡ δ3 and any payoff pv1, v2q in the convex hull

of tpv11, v
1
2q, pv

1
1 �D1, v

1
2q, pv

1
1, v

1
2 �D2q, pv

1
1 �D1, v

1
2 �D2qu there exists a strategy profile σ � pσ1, σ2q

such that:

(i) the payoff of the strategy profile pσ1, σ2q is pv1, v2q;

(ii) any profitable deviation from σi is detected with probability 1;

(iii) for every t P N and history hptq that has a positive probability under σ, Uipσ1, σ2, δ, hptqq P

Bppv1, v2q, εq.

Proof. For every pu1, u2q P FF , for ε small enough, the set pv11, v
1
2q P EF X Bppu1, u2q, εq X EF

consists of payoffs that are each a convex combination of at most two strictly Pareto efficient payoffs

out of at most three such payoffs. Denote the three payoffs by w1, w2 and w3, where wk � pwk1 , w
k
2q.

For ε small enough there exists D1, D2 ¡ 0 such that for any pv11, v
1
2q P EF X Bppu1, u2q, εq, the set

conv tpv11, v
1
2q , pv

1
1 � D1, v

1
2q, pv

1
1, v

1
2 � D2q, pv

1
1 �D1, v

1
2 �D2qu is included in conv

 
pwk1 , w

k
2q , pw

k
1 �

D1, w
k
2q, pw

k
1 , w

k
2 � D2q, pw

k
1 �D1, w

k
2 �D2q|k � 1, 2, 3

(
. Any profitable deviation from the actions

yielding a strictly Pareto efficient payoff is detected due to reducing the opponent’s payoff. When

using the cost of the messages, all extreme points of the above set are payoffs of action profiles such

that any profitable deviation is detectable.

Sorin (1986) shows that for any ε ¡ 0, there exists δ3 P p0, 1q, such that for all δ ¡ δ3, there exists

a strategy profile which consists of a sequence of the pure action profiles, such that its discounted

sum is pu1, u2q. Moreover, Lemma 2 of Fudenberg and Maskin (1991) shows that for every payoff in

the convex hull the sequence can be designed such that the continuation payoff is always within an

ε distance from the target payoff for players patient enough. For a given ε, the same bound on the

discount factor applies for the entire convex hull.

Lemma 4. For every pu1, u2q P EF X IR there exists δ4 P p0, 1q such that @δ ¡ δ4, parameters ε and

N can be found so as to satisfy Ineq. (7) for D1, D2 derived from Lemma 3 and while enabling the

linear system of Lemma 2.

Proof. For ε small enough, both numerator and denominator of the right hand-side of Ineq. (7)

are positive. Therefore, for δ close enough to 1 the inequality holds. Let δ3 and ε3 to be large enough

and small enough, respectively, so that both Ineq. (7) holds and D1 and D2 exist as in Lemma 3.
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Employ Lemma 2 with the Di found above and with e � δN3 . According to this lemma, δ2 large

enough enables one to satisfy the system. Observe that increasing e simply means multiplying all the

vector of solutions X by a constant. Thus, when δ2 ¡ δ3 one also has a solution for e � δN2 .

For δ4 � max tδ2, δ3u all the conditions hold simultaneously.

9 Appendix B- Incidence Matrices

9.0.1 Defining a converging system of beliefs

A best response might be difficult to find for an arbitrary assignment of perturbation probabilities

(probabilities for the different possible “trembles” of the opponent). However, when the perturbations

converge to a mass-point distribution on one vertex, a best reply is easy to find. This is because

all that is mot known to a player are the opponent’s actions (our model is one of perfect recall and

no chance moves). Thus, having a mass-point belief over the opponent’s actions means a mass-point

belief on the vertex reached within a player’s information set.

We design the perturbations to have yet another property. Following a deviation, once a player

places probability 1 on whether or no a certain player should be punished, this belief does not change

during the near future. In other words, the perturbations assigned to the initial deviations are more

significant that those assigned to subsequent deviations.

In order to design beliefs where the initial update is the most significant one, we use powers of ε

in a way similar to deconstructing a number by the digits: if the most significant digit of one number

is larger than the other number’s most significant digit, then the first number is larger, regardless of

the remaining digits. An example of such beliefs can be the following. At each period, there is at least

one action of Player i that is consistent with the equilibrium path, and at most |Ai| � 1 that are not.

At the deviation period, assign probabilities ε, ε2, ... to all possible deviations. The highest power of

ε is at most |Ai| � 1. In the first period after the deviation10 we assign probabilities of ε
1

|Ai| , ε
2

|Ai| , ...,

where the maximal power is ε
|Ai|�1

|Ai| . In the k-th period after the deviation we assign probabilities of

ε
1

|Ai|
k , ε

2

|Ai|
k , .... It is as if number of “digits” here is |Ai|. That way, the belief regarding whether

or not a punishment takes place and the identity of the player punished does not change during the

punishment phase or in the periods afterwards, regardless of the observations. Note that in some

cases the beliefs of the players may disagree, due to simultaneous deviations, and the disagreement

may not be resolved. Yet, each one of the players has a crisp belief regarding the phase to be played

and knowing the instructions is playing a best-reply to it.

9.0.2 Deriving the punished player’s identity from the converging system of beliefs

The requirements from the beliefs in sequential equilibrium are the following:

(a) The beliefs given the private history of a player are derived as the limit of a converging system

of full-support beliefs.

(b) Given the beliefs, each player is playing his best reply to the opponent’s believed-to-be strategy.

10Note that these perturbations are relevant only following a deviation.
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We establish the beliefs following a deviation, at the end of the period where a deviation took place.

For the purpose of properly tracking down the players’ system of beliefs (and their correspondingly

best replies), we use an incidence matrix. This incidence matrix includes all possible pairs of action

and signals of Player 1 (denote the set of these pairs Γ1) as rows, and all possible pairs of action and

signals of Player 2 (denoted Γ2) as columns. Then 1’s and 0’s are placed in the cells according to

whether the relevant combination of pairs of action-signal is possible or not.

For the sake of clarity we demonstrate the idea through Example 1. The incidence matrix of this

example is given by:

(L,3) (L,-1) (C,4) (C,0) (R,-2)

(T,3) 1 0 0 0 0

(T,0) 0 0 1 0 1

(M,-2) 0 1 0 0 1

(M,4) 0 0 0 1 0

(B,5) 0 1 0 0 0

(B,-2) 0 0 0 1 0

(B,-3) 0 0 0 0 1

Table 10: The incidence matrix of Example 1.

In Example 1, the combination (T,3) and (L,3) can occur, when Player 1 plays T and Player 2 L,

Player 1 does observe 3 and Player 2 observes 3 as well. Hence, there is ’1’ in the respective entry. At

the same time, the combination of (T,3) and (L,-1) cannot occur, so a ’0’ is placed in the corresponding

entry.

Given a pair γ P Γi, we design a belief over the opponent’s information, which places a mass-point

probability on an item of Γj , j � i. From this belief, a belief regarding the identity of the player to be

punished is derived, namely, a belief placing unit-mass probability on an item from the set {Player 1,

Player 2, none} (denoted, respectively t1, 2, noneu). Denote by Ei, i � 1, 2 the function which assigns

to any γ P Γi an item from Γj , j � i. Also denote by ϕi the function assigning to any γ P Γi an item

from the set t1, 2, noneu . Formally:

E1 : Γ1 Ñ Γ2,

E2 : Γ2 Ñ Γ1,

ϕ1 : Γ1 Ñ tnone, 1, 2u,

ϕ2 : Γ2 Ñ tnone, 1, 2u.

Translating requirements (a) and (b) above to these notations, we obtain:

(a) E1 and E2 are consistent with observations and with a converging sequence of off-equilibrium

path perturbations.

(b) ϕipEjpγqq � ϕjpγq, @γ P Γi, i � 1, 2, j � i.
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The equilibrium instructs to play mixed strategy only during the punishment phase. Deviation

during the punishment phase are not followed by further punishments11. Therefore, when we are

establishing beliefs regarding whether or not a punishment should take place and regarding who the

punished player should be, we are discussing deviations from pure strategy profiles.

In order to detail the functions Ei and ϕi, i � 1, 2, we divide the pairs of action and signal into

the following four categories: the equilibrium action paired with the signal that should be observed if

the opponent conforms (eq action eq signal); the equilibrium action paired with a signal that cannot

be observed when the opponent conforms (eq action noneq signal); a deviating action paired with the

signal that should be observed if the opponent conforms (noneq action eq signal); and a deviating

action paired with a signal that cannot be observed when the opponent conforms. We denote these

sets of pairs by Γiee, Γien, Γine and Γinn, respectively. All the combinations of the above pairs are

detailed in Table 11. Some entries hold zeros, due to the impossibility of the respective combination

(for example, if a player conforms, the opponent cannot observe a message indicating a deviation).

The remaining entries are labeled A to H, and they will be discussed below.

eq action eq sig-

nal Γ2
ee

eq action noneq

signal Γ2
en

noneq action eq

signal Γ2
ne

noneq action no-

neq signal Γ2
nn

eq action eq sig-

nal Γ1
ee

1 0 A 0

eq action noneq

signal Γ1
en

0 0 B 0

noneq action eq

signal Γ1
ne

C D E F

noneq action no-

neq signal Γ1
nn

0 0 G H

Table 11: Combinations of actions and signals.

Consider the third column of the matrix. This column represents a situation where Player 2

deviated and observes a signal that is the expected one when Player 1 conforms. Given the Bayesian

manner of the updates of the beliefs, it means that Player 2 places a probability of 1 on the event

that Player 1 conformed. Knowing her deviating action, she knows for certain whether a conforming

opponent observes this deviation (a situation represented in the cell labelled B) or does not observe it

(cell A). Thus, whenever Player 2 is in an information pair belonging to the third column, she must

either place probability 1 on A or probability 1 on B (and zero on all the remaining events). If it is A

that has the unit probability, then Player 2 believes with probability 1 that nobody will be punished,

and if it is B then the belief is that she is to be punished. Officially, for any γ P Γ2
ne, either E2pγq P Γ1

ee

and ϕipγq � none or E2pγq P Γ1
en and ϕipγq � 2. From Player 1’s perspective, when the information

pair belongs to Γ1
ee with probability 1 he believes that no deviation occurred and when it belongs to

11The punished player has no profitable deviations from the minmax, and the punishing player simply has

his continuation payoff updated.
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Γ1
en, he knows that Player 2’s signal is in Γ2

ne and she should be punished. Officially, for any γ P Γ1
ee,

E1pγq P Γ2
ee and ϕ1pγq � none, and for any γ P Γ1

en, E1pγq P Γ2
ne and ϕ1pγq � 2. This implies that for

cells A and B the beliefs satisfy the requirements. The same logic leads to the beliefs in cells C and

D satisfying requirements (a) and (b).

Next, consider the combination in E. As the analysis above implies, when the realization is in

E, Player 1 assigns probability 1 either to C (with none of the players being punished) or D (with

Player 1 being punished). Similarly, Player 2 assigns probability 1 either to A (none punished) or B

(Player 2 punished). For all these beliefs, we established above that the requirements hold. Appendix

B demonstrates how the situation demonstrated by Example 2 above belongs to combination E.

When the combinations in G are considered, we note that Player 2, again, assigns probability 1 to

either A or B. The considerations of Player 1 are derived from the limit of the perturbations. He knows

that a deviation of Payer 2 occurred, but he might not know whether it was a deviation to an action

which leads Player 1 to Γ2
ne or one that leads to Γ2

nn. However, when the limit of the perturbations is

a mass-point probability on Γ2
ne or probability 1 on Γ2

nn. If it is Γ2
ne, then Player 1 believes that Player

2 played a deviation that did not enable her to detect his own deviation. Moreover, Player 1 having

this mass-point probability either on an event when Player 2 believes she was observed (B), and then

she believes she should be punished) or on an event when she believes that she was not observed (A)

thus she believes none of the players should be punished. In other words, if Player 1’s believes are

that Player 2’s information is in γ2
ne, then he has a well-defined best replies. The same analysis leads

to the respective results for the combinations represented by entry F.

Finally, we analyze the combination represented by H. When the information of Player 1 is in Γ1
nn,

the limit of the perturbations either leads him to believe that Player 2 is in Γ2
ne or in Γ2

nn. The case

Γ2
nn. The case of Γ2

ne was treated above. If Player 1 believes that Player 2’s information is in Γ2
nn, then

his belief regarding the action she played, and his knowledge about the limit of the perturbations tells

his whether she believes she is in F (and then he can further deduce her beliefs) or in H. If she believes

indeed that his information is in Γ1
nn then a symmetric argument holds. Appendix B demonstrates

how the situation demonstrated be Example 3 above belongs to combination H.

Shortly, either (a) the chain of he-believes-that-she-believes-that... ends at some point where he

believes to be in G or she in H (and then the best reply is well defined), or (b) he believes they are at

H; she believes they are at H; he believes that she believes she is at H; she believes that he believes

she is at H and so on. This is exactly the definition of common knowledge of being at H.

More formally, either there exists a finite expression such that E1pE2pE1p....q P G, or E2pE1pE2p...q P

F , or that for any such finite sequence the result of the sequential application of Ei when i alternates

between 1 and 2 is in H. In that common knowledge case, we defined Player 1 to be the punished one.

This concludes the definition.

9.0.3 Example 2

We analyze the beliefs of the players and their corresponding best replies, following the scenario where

the players are instructed to play (L,T), yet both deviate and the action profile actually played is

(B,C).

For this scenario, the sets of action-signal are as follows:

Γ1
ee � tpT, 3qu; Γ1

en � tpT, 0qu; Γ1
ne � tpM,�2q, pB, 5qu; Γ1

ne � tpM, 4q, pB,�2q, pB,�3qu;
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Γ2
ee � tpL, 3qu; Γ2

en � tpL,�1qu; Γ2
ne � tpC, 4q, pR,�2qu; Γ2

ne � tpC, 0qu.

(L,3) (L,-1) (C,4) (R,-2) (C,0)

(T,3) 1 0 0 0 0

(T,0) 0 0 1 1 0

(M,-2) 0 1 0 1 0

(B,5) 0 1 0 0 0

(M,4) 0 0 0 0 1

(B,-2) 0 0 1 0 0

(B,-3) 0 0 0 1 1

Table 12: The incidence marix for Example 2

The bold ’1’ is the realized combination after the simultaneous deviation. Player 1’s information is

pB,�2q which is in Γ1
nn, meaning he observes a signal indicating that Player 2 deviated. The bold ’1’ is

the only one in that row, so Player 1 knows that player 2’s information is pC, 4q (if there were several ’1’s

in that row, meaning if several deviations of Player 2 could be associated with Player 1’s information,

then the limit of the perturbations is used to decide which one Player 1 believes that occurred). To

conclude, E1ppB,�2qq � pC, 4q. Player 2’s information is pC, 4q, and placing zero probability on

deviations of Player 1, she deduces that Player 1’s information is pT, 0q. Formally, E2ppC, 4qq � pT, 0q.

If Player 1 plays T and observes 0, then he knows that a deviation took place, and, since in this case

all deviations from L are observable when Player 1 plays T, he believes that Player 2 knows she should

be punished. That is, ϕ1pT, 0q � 2. To conclude, ϕ1pB,�2q � ϕ2pE1pB,�2qq � ϕ2pC, 4q � 2 and

ϕ2pC, 4q � ϕ1pE2pC, 4qqq � ϕ1pT, 0q � 2. Both players believe that Player 2 should be punished.

9.0.4 Example 3

We analyze the beliefs of the players and their corresponding best replies, following the scenario where

the players are instructed to play (L,T), yet both deviate and the action profile actually played is

(B1,C).

For this scenario, the sets of action-signal are as follows:

Γ1
ee � tpT, 3qu; Γ1

en � tpT, 0qu; Γ1
ne � tpM,�2q, pB1, 5q, pB2, 5qu;

Γ1
ne � tpM, 4q, pB1,�2q, pB1,�3q, pB2,�3qu;

Γ2
ee � tpL, 3qu; Γ2

en � tpL,�1qu; Γ2
ne � tpC, 4q, pR,�2qu; Γ2

ne � tpC, 0q, pC, 3qu.

The bold ’1’ is the realized combination after the simultaneous deviation. Player 1’s information is

pB1,�2q. The bold ’1’ is the only one in that row, so E1pB1,�2q � pC, 3q.

Player 2’s information is pC, 3q, but there are two ’1’s in the column of pC, 3q, that is, there are two

deviations of Player 1 corresponding to pC, 3q. This is when the limit of the perturbations is needed.

There are two possibilities regarding where the mass function is placed. We detail the two options

below.

Option 1: the mass-point belief is on pB2, 5q
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(L,3) (L,-1) (C,4) (R,-2) (C,0) (C,3)

(T,3) 1 0 0 0 0 0

(T,0) 0 0 1 1 0 0

(M,-2) 0 1 0 1 0 0

(B1,5) 0 1 0 0 0 0

(B2,5) 0 1 0 0 0 1

(M,4) 0 0 0 0 1 0

(B1,-2) 0 0 0 0 0 1

(B1,-3) 0 0 0 1 0 0

(B2,-3) 0 0 0 1 0 0

Table 13: The incidence marix for Example 2

When Player 1’s information is pB2, 5q, he believes that no deviation of Player 1 took place, E1ppB2, 5qq �

pL,�1q. All the 1’s in the column of pL,�1q are in rows belonging to information pairs in Γ1
ne, and in all

of them, Player 1 believes that Player 2’s belief is pL,�1q. Thus, these deviations of Player 1 are obser-

ved, he believes that they are observed, and should be the punished player. Formally: ϕ2pL,�1q � 1.

Thus ϕ1pB1,�2q � ϕ2pE1pB1,�2qq � ϕ2ppL,�1qq � 1. Also, ϕ2pC, 3q � ϕ1pB2, 5q � 1. The require-

ments are fulfilled.

Option 2: the mass-point belief is on pB1,�2q

When Player 1’s information is pB1,�2q, he knows Player 1’s information is pC, 3q. If when the

information of Player 2 is pC, 3q she places the mass-point belief on pB1,�2q, then E1ppB1,�2qq �

pC, 3q and E2ppC, 3qq � pB1,�2q. In this case, there is common knowledge that the players are

in H, that is, both place probability 1 on both deviating; both belief with probability 1 that the

opponent believe that bpth deviate etc. We defined that in this case Player 1 is to be punished. Thus

ϕ1pB1,�2q � 1 and ϕ2pC, 3q � 1. The requirements are fulfilled.
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