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1 Introduction 
  

In classical refinable wavelet theory ([Ch], [Da], [M]) one begins with a finitely generated shift 

invariant (FSI) space ( ) ( ){ }: , dS span k kφ φΦ = ⋅− ∈ Φ ∈Z , where Φ  is a finite set and the closure is 

taken in some Banach space X . Typically, ( )S Φ  is selected to have approximation order m ∈¥ . This 
means that for any 0h >  and f X∈  

( )( )
( )

, : inf
h

h m
X XX g S

E f S f g Ch f
∈ Φ

Φ = − ≤ ,                                       (1.1) 

where  

( ) ( ){ }1: ,h dS span h k kφ φ−Φ = ⋅ − ∈Φ ∈Z , 

 
and   

X
⋅  is a semi-norm, measuring the smoothness of the elements of X . 

 To allow the construction of wavelets associated with ( )S Φ , one assumes that the shift invariant 
space is two-scale refinable, namely 

( ) ( )1/2S SΦ ⊂ Φ .                                                                 (1.2) 
 
One then selects a complementary set of generators, so called wavelets, Ψ  so that 
 

( ) ( ) ( )1 /2
S S SΦ = Φ + Ψ .                                                        (1.3) 

 
It is easy to see that (1.3) can be dilated to any given scale J ∈¢  that is, 
 

( ) ( ) ( )
1 12 2 2J J J

S S S
− − + − +

Φ = Φ + Ψ . 
 

Assume ( )2 J
Jf S

−

Φ ∈ Φ  so that 1 1J J Jf f f− −
Φ Φ Ψ= + , where ( )

121
J

Jf S
− +

−
Φ ∈ Φ , ( )

121
J

Jf S
− +

−
Ψ ∈ Ψ . Then, 1Jf −

Φ  

plays the role of a low resolution approximation to JfΦ , while 1Jf −
Ψ  is the difference between the two, the 

detail. Typically, if JfΦ  is a sufficiently smooth function or J  is sufficiently large, then 1J Jf f−
Φ Φ≈  and 

1 0Jf −
Ψ ≈ . Under certain conditions (1.3) leads to a wavelet decomposition 

 

( ) ( ) ( ) ( )
  1   2   32 2 2 2J J J J

S S S S
− − + − + − +

Φ = Ψ + Ψ + Ψ +L ,                                (1.4) 

i.e., any ( )2 J
Jf S

−

Φ ∈ Φ  possesses a decomposition 
 

1 2 3J J J Jf f f f− − −
Φ Ψ Ψ Ψ= + + +L .                                                (1.5) 
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In applications, FSI spaces are used as follows. Let f  be some signal that one wishes to 
approximate. Using property (1.1), one chooses a fine enough scale J ∈¢  and computes an 
approximation  

( )2 J
Jf f S

−

Φ≈ ∈ Φ .                                                               (1.6) 
 
In some applications there is no need to further decompose the approximation JfΦ  into the wavelet 

sum (1.5). Typical examples are curve and surface (linear) approximations in CAGD or re-sampling in 
image processing. However, the wavelet decomposition (1.4) is effective in applications that require a 
compact representation of the signal such as compression, denoising, segmentation, etc. 

Let ( )0S Φ  be a non-refinable FSI space. Namely, ( ) ( )1 / 2
0 0S SΦ ⊄ Φ . There are many examples 

of non-refinable FSI spaces that perform well in approximations of type (1.6). In fact, there is an 
interesting recent construction [BTU] of shift invariant spaces that are “optimal” in some approximation 
theoretical sense and are not two-scale refinable. Nevertheless, we would still like to decompose the space 

( )2
0

J

S
−

Φ  into a sum of difference (wavelet) spaces in the sense of (1.4) (see [CSW] for a different 

approach). Since our FSI space is not refinable we need to replace ( )0S Φ  by a different space ( )1S Φ  to 

play the role of a low resolution space and a (wavelet) space ( )1S Ψ  to serve as a difference space in a 
decomposition similar to (1.3), namely,  

( ) ( ) ( )1/2
0 1 1S S SΦ = Φ + Ψ . 

 
In this work we show that such meaningful decomposition techniques exist. They allow us, to 

further decompose ( ) ( ) ( )1 / 2
1 2 2S S SΦ = Φ + Ψ  and so on and to obtain a non-stationary wavelet 

decomposition similar to (1.4), i.e., 
 

( ) ( ) ( ) ( )
1 2 32 2 2 2

0 1 2 3

J J J J

S S S S
− − + − + − +

Φ = Ψ + Ψ + Ψ +L  
 
Thus, the (non-stationary) sequence { }jΦ  is a means to obtain the non-stationary wavelet sequence 

{ }jΨ . The sequence { }jΦ  is also used to determine the (linear) approximation properties of the 

wavelets. It is interesting to note that our techniques enable us to recover the stationary choice 0jΦ = Φ , 

jΨ = Ψ , whenever ( )0S Φ  is two-scale refinable and ( ) ( ) ( )1/2
0 0S S SΦ = Φ + Ψ .  

Another interesting question addressed in this work is the following. Let ( )0S Φ  be an “optimal” 

non-refinable FSI space under some approximation theoretical gauge. Obviously, if ( )0S Φ  has an 

“optimal” approximation property, no constructed ( ) ( )1 / 2
1 0S SΦ ⊂ Φ  can inherit this exact property. One 

then asks how close are the approximation properties of ( )1S Φ  to those of ( )0S Φ ? Another question is 
the following. In what way (if any) are wavelets that decompose dilations of “optimal” non-refinable FSI 
spaces better than known existing wavelets? 

In Section 2 we present the basic theory on the structure of shift invariant spaces which serves as 
framework throughout the work. We also present some new “regularity” results that are required for the 
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wavelet constructions in Section 3.1. In section 3 we construct non-stationary wavelet decompositions of 
shift invariant spaces which are not required to be two-scale refinable. There are two such constructions. 
The Superfunction wavelet construction described in Section 3.1 is inspired by the superfunction theory 
of [BDR1], [BDR2], [BDR3]. In Section 3.2 we introduce Cascade wavelets. Their construction exploits 
properties of the Cascade operator (see for example [Da]). In Section 4 we first present results on 
approximation from shift invariant spaces. We then proceed to justify the constructions of Section 3, by 
showing that our non-stationary sequence { }jΦ  inherits the approximation properties of the decomposed 

non-refinable shift invariant space. Consequently, the non-stationary wavelet sequence { }jΨ  span “detail 
spaces” and are therefore suitable for signal processing applications.
 

2 Shift invariant spaces 
 
Shift invariant spaces are a special case of invariant subspaces in Banach spaces. Here we use the 

framework of [BDR2] and present results that are required for the constructions in Section 3. 

Definition 2.1  For any dk ∈ Z  we denote the linear shift operator kS  by ( ) ( ):kS f f k= ⋅ − . 

Definition 2.2 Let V  be a closed subspace of ( )d
pL ¡ , 1 p≤ ≤ ∞ . We say that V  is a shift invariant 

(SI) space if it is invariant under the operators { } d
kS k ∈Z . We say that a set Φ  generates V  if 

( ) ( ){ }:  , k dV S span kφ φ= Φ = ⋅ − ∈ Φ ∈Z . We say that V  is a finite shift invariant (FSI) space, if there 

exists a finite generating set Φ , nΦ = , such that ( )V S= Φ . In such a case we say that V  is of length 

n≤ . We denote ( ) ( ){ }: min    len V V S= Φ = Φ . An SI space V  is called a principal shift invariant 

(PSI) space if ( ) 1len V = .  

To approximate functions with arbitrary precision one uses dilates of shift invariant spaces. For a 
given subspace V  and h +∈ ¡  we denote by hV  the dilated space 
 

( ){ }: /   |  hV h Vφ φ= ⋅ ∈ . 
 

We note that is if ( )S ϕ  is a PSI space, then for 0j ≥ , ( )2 j

S ϕ
−

 is a FSI space of length 2dj .  

We now restrict our discussion to ( )2
dL ¡ . It is well known that Fourier techniques appear 

naturally in the analysis of SI spaces. The following is simple characterization of SI spaces in the Fourier 
domain. 

Lemma 2.3 [BDR2] Let ( )S Φ  be an FSI subspace of ( )2
dL ¡  and let ( )2

df L∈ ¡ . Then the following 

are equivalent: 

1. ( )f S∈ Φ . 
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2. There exist d −T periodic functions { }φτ  such that ˆ ˆf φ
φ

τ φ
∈Φ

= ∑ . 

 
We see that we can regard the generators of an FSI space as vectors spanning a finite dimensional 

vector space, with periodic functions playing the role of coefficients in the representations. Thus, we turn 
to Fourier based techniques.  For each ( )2

df L∈ ¡  we denote  

( )( )ˆ ˆ: 2
dw k

f f w kπ
∈

= +
Z

, dw∈T . 

 
The bracket operator [ ] ( ) ( ) ( )2 2 1: d d dL L L× →¡ ¡ T  is defined by 

 

( ) ( )2

ˆ ˆˆ ˆ, : ,
dw w l

f g w f g  =  Z , dw∈T . 

 

It is easy to see that the Fourier expansion of ˆ ˆ,f g 
   is 

  

( ) ( ) ( )2

ˆ ˆ, , d
d

ikw

L
k

f g w f g k e
∈

  ⋅ +  ∑ ¡∼
Z

,                                       (2.1) 

 

Observe that if ,f g  are compactly supported, then the bracket ˆ ˆ,f g 
   is a trigonometric polynomial and 

so we have an equality in (2.1). For ( )2
df L∈ ¡  the function [ ] ( )1, df f L∈ T  is called the auto-

correlation of f . Auto-correlations play a major role in our analysis. They are used in the definitions of 
stability constants, error kernels and “fine” error estimation constants. Our analysis requires the following 
simple result on the convergence of auto-correlations.  

Lemma 2.4 Assume that 
( )2

d
j

L
ρ φ→

¡
 such that ( ) ( ), jsupp suppφ ρ ⊆ Ω  where Ω  is a bounded domain. 

Then for any 0m ≥  we have the convergence 

( ) ( )

( )
( ) ( )ˆ ˆˆ ˆ, ,

d

m m m m
j j

C
ρ ρ φ φ   →   T

.                                          (2.2) 

Proof It is easy to see that we also have ( )
( )

( )
2

d

m m
j

L
ρ φ⋅ → ⋅

¡
 for any 0m ≥ . By virtue of (2.1) we have that 

( ) ( )ˆ ˆ,m mφ φ 
  , ( ) ( )ˆ ˆ,m m

j jρ ρ 
   are trigonometric polynomials of uniformly bounded degree. Therefore, the 

convergence of the Fourier coefficients 
 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )ˆ ˆˆ ˆ, , , ,
m m m mm m m m

j j j j jk k
k k k kρ ρ ρ ρ φ φ φ φ

→∞
   = ⋅ ⋅+ ⋅ + → ⋅ ⋅ + ⋅ + =    , 

 
implies the convergence (2.2). 

♦ 
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We now proceed to present “regularity” results for shift invariant spaces in ( )2
dL ¡ . The 

motivation for working with regular shift invariant spaces comes from applications where it is required to 
have a stable representation or approximation of signals. Stability implies that small changes in the input 
function do not change much the representation and small changes in the representation change the 
reconstructed function only a little. We begin with definitions and notions from [BDR2]. 

Let ( )S Φ  be an SI space. The range  function associated with ( )S Φ  is 
 

( ) { }ˆ:   S wJ w span φ φ= ∈Φ                                                           (2.3) 

The spectrum of ( )S Φ  is defined by 

( ) ( ){ }:   dim 0d
SS w J wσ Φ = ∈ >T ,                                                      (2.4) 

or equivalently 

( ) ( ){ }ˆ ˆ:   , 0, for some dS w wσ φ φ φ Φ = ∈ ≠ ∈Φ T . 

 
It can be shown ([BDR2]) that the range and spectrum of an SI space are invariants of the space. In 
particular they do not depend on the generating set. If ( )dim SJ w const≡  a.e. we say that S  is regular. 
Observe that regularity implies a full spectrum. In the other direction, a full spectrum implies regularity 
only in the PSI case. We say that Φ  is a basis for S  if for each ( )f S∈ Φ  there are periodic functions φτ  

where ˆ ˆf φ
φ

τ φ
∈Φ

= ∑  and φτ  are uniquely determined. Observe that if ( )\d Sσ ΦT  is of positive measure 

then ( )S Φ  does not have a basis. The set Φ  is called a stable generating set or a stable basis (for its 

span) if there exist constants 0 A B< ≤ < ∞  such that for every { } ( ), 2, d

d
k k

c c lφ φ∈Φ ∈
= ∈ Φ ×Z Z  

( ) ( )
( )

( )2 2

2

2
2 2

,
,

d d
d

d

kl l
k L

A c c k B cφ
φ

φ
Φ× Φ×

∈Φ ∈

≤ ⋅− ≤∑
¡

Z ZZ
.                                   (2.5) 

 
It can be shown that a stable basis is indeed a basis. Since stable bases are necessary for applications, the 
next result leads towards the construction of regular spaces. 

Theorem 2.5 [BDR2] Let ( )S Φ  be an FSI space. Then ( )S Φ  is regular if and only if it contains a stable 

generating set. Furthermore, an FSI space is regular if and only if it is the orthogonal sum of ( )( )len S Φ  
regular PSI spaces. 

We recall the connection between the definition of stability (2.5) and the notion of the range 
function (2.3) for the simple case of PSI spaces (see [RS] Theorem 2.3.6 for the general case of FSI 
spaces). 

Theorem 2.6 [Me] A function ( )2
dLφ ∈ ¡  is stable iff there exist 0 A B< ≤ < ∞  such that 

ˆ ˆ,A Bφ φ ≤ ≤  , a.e. 
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Assume that we have constructed a non regular FSI subspace ( )mS Φ  of a regular FSI space 

( )nS Φ  so that 

( )( ) ( )( )m nlen S m n len SΦ = < = Φ . 
 
We can certainly define ( )S Ψ  as the orthogonal complement of ( )mS Φ  in ( )nS Φ  such that 
 

( ) ( ) ( )m nS S SΦ ⊕ Ψ = Φ . 
 

But the decomposition will have two undesirable features. First, there is no choice of generators ± °,mΦ Ψ  

so that ±( ) ( )m mS SΦ = Φ , °( ) ( )S SΨ = Ψ  and ± °{ },mΦ Ψ  is stable. Secondly, the decomposition may be 

somewhat redundant, namely, ( )( )len S n mΨ > − . We will show that this can be fixed by constructing 

( )mS ′Φ  such that ( ) ( ) ( )m m nS S S′Φ ⊆ Φ ⊂ Φ , ( )( )mlen S m′Φ =  and ( )mS ′Φ  is regular. In doing so we 
ensure that the orthogonal complement is also regular and of length n m− . Hence, such a correction can 
produce a stable and efficient decomposition of ( )nS Φ . 

Lemma 2.7 Let ( )S Φ  be a regular FSI space and let ( )Sρ ∈ Φ . Then there exists ( )Sϕ ∈ Φ , such that 

( ) ( )S Sρ ϕ⊆  and ( )S ϕ  is a regular PSI subspace of ( )S Φ . 

Proof  If ( )S ρ  is regular, we are done. Otherwise, by Corollary 3.31 in [BDR2], we may assume the 

decomposition ( ) ( )
1

n

ii
S S φ

=
Φ = ⊕  so that each ( )iS φ  is a (regular) PSI subspace and the shifts of iφ  are an 

orthonormal basis for ( )iS φ . Therefore there exists a unique representation 
1

ˆˆ
n

i i
i

ρ τ φ
=

= ∑  with iτ  periodic 

functions. Since ( ) ,
ˆ ˆ,j k j kwφ φ δ  =   for 1 ,j k n≤ ≤  we have that [ ] 2

1

ˆ ˆ,
n

i
i

ρ ρ τ
=

= ∑  and so 

( ) ( )
1

supp
n

i
i

Sσ ρ τ
=

= ∪ . Define ( )Sϕ ∈ Φ  by 

1 1
2

ˆ ˆˆ
n

i i
i

ϕ τ φ τ φ
=

′= + ∑ , ( ) ( )
( )1

1

1 \ ,
.

dw S
w

w else
σ ρ

τ
τ

 ∈′ = 


T
 

 

Then [ ] 2 2
1

2

ˆ ˆ,
n

i
i

ϕ ϕ τ τ
=

′= + ∑  and we can conclude the following. The space ( )S ϕ  is regular since 

( ) [ ]( ) ( ) ( )

( )( ) ( ) ( )

1
2

1
2

ˆ ˆsupp , supp supp

                                   \ supp supp

n

i
i

n
d

i
i

S

S

σ ϕ ϕ ϕ τ τ

σ ρ τ τ

=

=

′= =

=

∪

∪ ∪

∪
∪T
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                                  ( )( ) ( )                                   \

                                   .

d

d

S Sσ ρ σ ρ=

=

∪T
T

 

 
Finally, ( )ˆ ˆ

Sσ ρρ χ ϕ=  implies that ( ) ( )S Sρ ϕ⊆ . 

♦ 

Lemma 2.8 Let ,V U  be FSI spaces where V U⊆ . Then ( ) ( )len V len U≤ . 

Proof  This is a direct consequence of the fact that the shift and orthogonal projection into an SI space 
commute. This implies that if { }iφΦ =  generate U , then { }V iP φ  generate V . 

♦ 

Theorem 2.9 Let U  be a regular FSI. Then for any FSI subspace ( )mS UΦ ⊆  of length m  there exists a 

regular subspace ( )mS ′Φ  of length m  such that ( ) ( )m mS S U′Φ ⊆ Φ ⊆ . 

Proof  The proof is essentially a Gram-Schmidt type construction, where we construct the “correction” 

( )mS ′Φ  as an orthogonal sum of regular PSI spaces. We use induction on the length m mΦ = . The case 

1m =  follows by virtue of Lemma 2.7. Assume the claim is true for k m< . Denote { }1 1 1, ,m mφ φ− −Φ = … , 

where { }1, ,m mφ φΦ = … . Then by the induction hypothesis there exists a regular FSI subspace ( )1mS −
′Φ  

such that  

( ) ( )1 1m mS S U− −
′Φ ⊆ Φ ⊂ , 

and ( )( )1 1 1m mlen S m− −
′ ′Φ = Φ = − . By [BDR2] the orthogonal complement in U  of ( )1mS −

′Φ , denoted 

by 1mW − , is a regular FSI space. Let ( ) ( )
1

:
mm W mS P Sψ φ

−
= . Observe that ( )mS ψ  is not trivial since this 

would imply ( ) ( )1m mS S −
′Φ ⊆ Φ  which by Lemma 2.8 contradicts ( )( )mlen S mΦ = . Using again Lemma 

2.7, we can find a regular PSI space ( )mS φ ′  such that 

 

( ) ( ) 1m m mS S Wψ φ −
′⊆ ⊆ . 

Since by Theorem 2.5 the orthogonal sum of two regular FSI spaces is regular, we have that ( )mS ′Φ , 

1m m mφ−
′ ′ ′Φ = Φ ∪  is a regular FSI subspace of U . To conclude, observe that ( )mS ′Φ  also possesses the  

required properties of minimal length, ( )( )m mlen S m′ ′Φ = Φ =  and that ( ) ( )m mS S ′Φ ⊆ Φ . 

♦ 
Next we discuss the special structure of the orthogonal projection into SI spaces. 
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Lemma 2.10 [BDR2] Let Φ  be a basis for an FSI space ( )S Φ  and let ( )2
df L∈ ¡ . Then the orthogonal 

projection ( )SP fΦ  is given by 

( )
· ( )

( )
ˆ

ˆdet
ˆ

ˆdetS

G f
P f

G
φ

φ

φΦ
∈Φ

=
Φ

∑   ,                                                     (2.6) 

 

where ( ) ( )
,

ˆˆ ˆ: ,G
φ ψ

φ ψ
∈Φ

 Φ =    and ( )ˆ
ˆG f

φ  is obtained from ( )ˆG Φ  by replacing the φ -th row with 

( )ˆ ˆ,f
ψ

ψ
∈Φ

 
  . 

 
In the PSI case the formula for the orthogonal projection (2.6) leads to the definition of the natural dual. 

For any ( )2
dLφ ∈ ¡ , the natural dual φ%  is defined by its Fourier transform 

  
ˆˆ :

ˆ ˆ,

φφ
φ φ

=
  

% ,                                                                     (2.7) 

where we interpret 0 / 0 0= . 

Equation (2.6) implies that in the PSI case ( )
· ˆˆ ˆ,SP f fφ φ φ =   

% . Transforming this back to the “time 

domain” we obtain the well known quasi-interpolation representation for the orthogonal projection, 
namely, 

  ( ) ( ) ( ),
d

S
k

P f f k kφ φ φ
∈

= ⋅ − ⋅ −∑ %
Z

.                                                 (2.8) 

 
An FSI space V  is called local if there exist a finite set of compactly supported functions, Φ , 

such that ( )V S= Φ . In applications compactly supported generators are frequently used to minimize the 
time and space complexities of the algorithms. An example is Daubechies’ [Da] construction of 
compactly supported orthonormal wavelets. Observe that a local FSI is always regular ([BDR2]). We 
require the following result on the special case of orthogonal projections of local SI spaces into local SI 
spaces. 

Theorem 2.11 Let ,V U  be local FSI spaces. Then the orthogonal projection of V  into U  is a local FSI 
subspace. In particular it is a regular FSI space. 

Proof  Let ( )U S= Φ , ( )V S= Ψ  be so that ,Φ Ψ  are compactly supported generating sets for ,U V  
respectively. Using the commutativity of the orthogonal projection into an SI space and the shift operator, 
we have that ( ) ( )U U UP V P S S P= Ψ = Ψ . Thus, it suffices to prove that for each ψ ∈Ψ , there exists a 

compactly supported function Uψ ′ ∈ , such that ( ) ( )US S Pψ ψ′ = . By virtue of (2.6) we have 
 

· ( )
( )

ˆ ˆdet ˆ
ˆdet

U

G
P

G
φ

φ

ψ
ψ φ

∈Φ

=
Φ

∑ .                                                        (2.9) 
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Since the set Φ  is composed of compactly supported functions, it follows from (2.1) that the elements of 

the Gramian ( )ˆG Φ  are trigonometric polynomials. Thus, ( )ˆdet G Φ  is also a trigonometric polynomial so 

that ( )ˆdet 0G Φ ≠  a.e. on dT . Let ( )US Pψ ψ′ ∈  be defined by its Fourier transform, µ ( ) ·ˆ: det UG Pψ ψ′ = Φ .  

Then the constructed generator ψ ′  has the required compact support property. Indeed, from (2.9) we have 

the representation µ ( )ˆ
ˆˆdet G

φ
φ

ψ ψ φ
∈Φ

′ = ∑  where each ( )ˆ ˆdetG
φ

ψ  is a trigonometric polynomial. This means 

that ψ ′  is a finite sum of compactly supported functions hence it is compactly supported. To conclude we 

observe that since ( )ˆdet 0G Φ ≠  a.e., we have that · ( )( ) µ1
detUP Gψ ψ

−
′= Φ , thus ( ) ( )US S Pψ ψ′ = .  

♦ 

 The following theorem is the main result of this section. It provides meaningful decompositions of 
FSI spaces with good approximation properties to an orthogonal sum of two FSI subspace. Naturally, 
there are many ways to represent FSI spaces as a sum of two FSI subspaces. But our construction is such 
that the first subspace inherits the good approximation properties of the decomposed space, so that the 
second subspace is a difference (wavelet) space. The key to the construction is the use of an auxiliary 
reference space. The underlying principal which justifies this approach is “superfunction theory” [BDR1] 
and is elaborated upon in Section 4. 

Theorem 2.12 Let 0U  be a (local) regular FSI space of length 
0

2Ul ≥ . Let V  be a (local) FSI space of 

length 
0

1 V Ul l≤ < . Then 0U  can be decomposed 0 1 1U U W= ⊕  such that: 

1. 1U  is a (local) regular FSI space of length 
1U Vl l= .  

2. 1W  is a (local) regular FSI space of length 
1 0W U Vl l l= − . 

3. 1W V⊥ . 

Proof  

1. Let 
01 UU P V=% . Note that 1U%  is an FSI subspace of 0U  with ( ) ( )01 min ,U V Vlen U l l l≤ =% . Without loss 

of generality, 1U%  is regular, otherwise, by virtue of Theorem 2.9, we can replace it by a regular 

subspace of 0U , containing 1U%  and of the same length, which we will continue to call 1U% . Observe 

that in the “local” case, Theorem 2.11 implies that 1U%  is local. 
2. Since 1U%  is (local) regular, by (Theorem 3.38) Theorem 3.13 in [BDR2] its orthogonal complement in 

0U  denoted by 1W%  is (local) regular and of length 
01 U VWl l l≥ −% . Let ( )

1
1 1, ,

Wl
W S ψ ψ=

%
% …  where 

( )1, , iS ψ ψ…  is (local) regular for 
1

1
W

i l ⊥≤ ≤ % . By Theorem 2.5 it is always possible to find a 

generating set with that property. Define ( )
1

1 1: , ,
Wl

W S ψ ψ= …  where 
1 0W U Vl l l= − . Then clearly 

1W V⊥ . 



   

 11 

3. We conclude the construction by setting 1U  to be the orthogonal complement of 1W  in 0U . By 
(Theorem 3.38) Theorem 3.13 in [BDR2], 1U  is a (local) regular subspace of 0U  of length 

1 0 1U U W Vl l l l= − = . 
♦ 

Example 2.13 

1. Let ,φ ψ  be any known pair of univariate semi-orthogonal scaling function and wavelet, e.g., B-

splines and B-wavelets [Ch]. Define ( )1/2
0U S φ=  and ( )V S φ= . Then, since ( ) ( )1/2S Sφ φ⊂ , the 

above construction recovers the (refinable) decomposition 
 

( ) ( ) ( )1 / 2S S Sφ ψ φ⊕ = .                                                        (2.10) 
 
2. Let ( )0S ρ  be a univariate regular PSI space that is not refinable. Assume that 0ρ  provides 2L  

approximation order m . Select ( )1 / 2
0 0U S ρ= , ( )0V S ρ= . Then the above construction finds a 

decomposition 

( ) ( ) ( )1/2
1 1 0S S Sρ ψ ρ⊕ = , ( ) ( )1 0S Sψ ρ⊥ , 

 
which in some sense mimics the refinable decomposition (2.10). Furthermore, we show in Section 
4.2 that 1ρ  inherits the approximation order m  from 0ρ  while the wavelet 1ψ  has m  vanishing 
moments.  

3 Non-stationary wavelets 
 
Our first results are simple modifications of the classical “symbol approach” to wavelet 

construction for the non-refinable setting. Assume ( )1 /2
Sρ ϕ∈  where ( )2

dLϕ ∈ ¡  is stable. Define the 

symbol  
( ) : 2

d

d ikw
k

k

P w p e− −

∈

= ∑
Z

, where ( )2
d

k
k

p kρ ϕ
∈

= ⋅ −∑
Z

.                             (3.1) 

 
To justify the pointwise validity of (3.1) and resolve technical difficulties concerning convergence, we 
require that these symbols be taken from the Wiener algebra. Namely, ( )2

df L∈ T  is in the Wiener 

Algebra ( f ∈W ) if its Fourier coefficients are in ( )1
dl Z . 

The following partitioning of the lattice dZ , known to be useful in the analysis of refinable 
functions, is also useful in our non-refinable setting 
 

( )2
d

d d

e E

e
∈

= +∪Z Z , { }: 0,1 d
dE = .                                                    (3.2) 

 
We begin with a “stability” lemma (see [Ch] Theorem 5.16 for the univariate case). 
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Lemma 3.1 Let ( )1 / 2Sρ ϕ∈  have a symbol P ∈W  such that 

( ) 2
0

de E

P w eπ
∈

+ >∑ ,  dw∀ ∈T , 

 
and assume that ( )2

dLϕ ∈ ¡  is stable. Then ρ  is a stable generator for ( )S ρ .  

Proof  The proof for the univariate case can be found in [Ch] Theorem 5.16. To obtain the proof for the 
multivariate case one uses the lattice (3.2). 

♦ 
 We observe that the following result, which is well known for the refinable case ρ ϕ= , is still 
valid for the more general case.  

Theorem 3.2 Let ( )2Lϕ ∈ ¡  be a basis for ( )S ϕ  and let ( )1/2, Sρ ψ ϕ∈ . Assume ,P Q∈W  where ,P Q  

are the symbols of ,ρ ψ  respectively. A necessary and sufficient condition for { },ρ ψ  to be a basis for 

( )1 / 2S ϕ  is  

     ( ) ( ) ( ) ( ) ( ), : 0P Q w P w Q w P w Q wπ π∆ = + − + ≠ , w∀ ∈T .               (3.3)  
 
Furthermore, if ϕ  is stable, then ρ  and ψ  are stable bases of ( )S ρ  and ( )S ψ , respectively. 
 
Proof  The proof basically follows the method of [Ch] Theorem 5.16 with the observation that refinability 
( ρ ϕ= ) is not required. 

♦ 

Next we discuss the special case of a decomposition ( ) ( ) ( )1 / 2S S Sϕ ρ ψ= + , with the additional 

orthogonality constraint ( ) ( )S Sρ ψ⊥ . 

Definition 3.3 Let ( )2Lϕ ∈ ¡ and ( )1/2, Sρ ψ ϕ∈ . In case ( ) ( ) ( )1 / 2S S Sρ ψ ϕ⊕ = , we call the 
decomposition semi-orthogonal and ,ρ ψ  a semi-orthogonal pair.  
 

Note that the term semi-orthogonality comes from the fact that ( ) ( )S Sρ ψ⊥ , but the shifts of ρ , 
respectively ψ , are not necessarily orthogonal to each other. Assume ρ  has a two-scale symbol P∈ W  
so that 

( )ˆ ˆ
2 2
w w

w Pρ ϕ   =    
   

. 

 
Recall that the natural dual ρ%  (see (2.7)) can be used to compute the orthogonal projection into ( )S ρ . 
For the dual we also have the following dual two-scale relation 
 

[ ] [ ] ( ) ( ) [ ]( )
[ ] ( ) ( )

1
1 1 1 1

ˆ ˆ, 2ˆ 1ˆ ˆˆ2 2 2 2
ˆ ˆ ˆ ˆ ˆ ˆ, , ,

P P
ϕ ϕρ

ρ ϕ ϕ
ρ ρ ρ ρ ρ ρ

−
− − − −

⋅
= = ⋅ ⋅ = ⋅ ⋅% % . 
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Hence ( ) ( )1 1ˆ ˆ2 2Gρ ϕ∗ − −= ⋅ ⋅% %  where 

[ ]
[ ]( )

ˆ ˆ,
:

ˆ ˆ, 2
G P

ϕ ϕ
ρ ρ

∗ =
⋅

.                                                                 (3.4) 

Denoting 
   :G G∗= ,                                                                         (3.5) 

  
it is easy to see that we have the duality relation 

 

( ) ( ) ( ) ( ) 1P w G w P w G wπ π+ + + ≡ .                                              (3.6) 
 

Equipped with the notion of the dual symbol, we now characterize the univariate semi-orthogonal 

(wavelet) complement of a given generator in a space of type ( )1 / 2S ϕ . 

Theorem 3.4 Let ( )1 / 2Sρ ϕ∈  with a two-scale symbol P ∈W , where ϕ  and ρ  are stable. Assume 

further that G ∈W , where G  is defined by (3.5). Then, ( )1 / 2Sψ ϕ∈  is a stable semi-orthogonal 

complement such that ( ) ( ) ( )1/2S S Sϕ ρ ψ= ⊕  with a two-scale symbol Q ∈W  if and only if 

 
( ) ( ) ( )2iwQ w e G w K wπ= + ,                                                   (3.7) 

where K ∈W  does not vanish on T . 
 
Proof  The proof is similar to [Ch]  Theorem 5.19. 

♦ 
Using the above we can always complement any generator by a semi-orthogonal counterpart. In 

particular, in the case of local spaces, this gives us a method to construct a (minimal) compactly supported 
generator, as done in [Ch], by a proper selection of the periodic function K . Namely, assume ,ϕ ρ  are 
stable and compactly supported and that the symbol P  of ρ  is a trigonometric polynomial. By (3.4), the 

choice [ ]ˆ ˆ,K ρ ρ=  in (3.7) leads to the following two-scale symbol  
 

( ) [ ]( ) ( )ˆ ˆ,iwQ w e w P wϕ ϕ π π−= − + + .                                     (3.8) 
 
It is easy to see that for compactly supported ,ϕ ρ , the above symbol produces a complementary 
compactly supported wavelet. 

We conclude this section with the following observation. Let ϕ  be stable and two-scale refinable 

such that ( ) ( ) ( )1/2
S S Sϕ ϕ ψ= +  is a decomposition where ,P Q  are the corresponding symbols of ,ϕ ψ . 

In image coding applications perfect reconstruction subband filters banks derived from the symbols ,P Q  
are used in discrete settings (see Section 7.3.2 in [M]). In many applications, one is not required to 
understand wavelet theory but simply to implement an efficient discrete filtering process. Furthermore, 
computational steps, that seem necessary according to sampling theory, are ordinarily neglected (see the 
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discussion in [M] pp. 257-258), but still good coding results are obtained. How can one explain this 
phenomenon? A plausible explanation can be given using the results of this section. As is well known in 
the signal processing community, the “perfect reconstruction decomposition condition” (3.3) is a property 
of the symbols ,P Q  and does not depend on the generator ϕ . Assume that condition (3.3) holds for the 
two-scale symbols ,P Q  and replace the generator ϕ  by some other stable generator 0ρ  which need not 

be refinable. Then, by Theorem 3.2, the functions ( )1/2
1 1 0, Sρ ψ ρ∈  that have ,P Q  as their two-scale 

symbols are a basis for ( )1 / 2
0S ρ . This means that (3.3) is a universal property of the two-scale symbols 

,P Q  and the subband filters derived from them, regardless of the underlying functions. Furthermore, we 
will see in Section 4.3 that if in addition, the symbols ,P Q  have certain approximation properties, then 

the corresponding basis { }1 1,ρ ψ  provides a decomposition which is meaningful in the context of wavelet 

theory, whenever ( )0S ρ  has good approximation properties. 
 
3.1 Non-stationary Superfunction wavelets 
 

In this section we present the construction of non-stationary wavelets inspired by the 
superfunction techniques of [BDR1]. In our case the projection is done from a stationary reference space, 
but the superfunction and wavelet spaces are non-stationary. The abstract decomposition of Theorem 2.12 
already tells us that, given a reasonable FSI space U , we can decompose it into 1 1U U W= ⊕  using a 

reference space V , with ( ) ( )len V len U< , such that 1W V⊥  and 1 ,U V  are of the same length. The 
heuristics of the superfunction decompositions presented in this section is justified in Section 4.2 where 
the approximation properties of the decomposition subspaces are discussed in detail.  

Theorem 3.5 Let ( )0 2
dU L⊂ ¡  be a (local) regular FSI space. Let V  be a (local) FSI space with 

( ) ( )0len V len U= . Then there exists a sequence of subspaces jU , jW , 1j ≥  such that 

1. jU  and jW  are (local) regular FSI spaces with ( ) ( )0jlen U len U= , ( ) ( ) ( )02 1d
jlen W len U= − . 

2. 1/2
1j j jU W U −⊕ = . 

3. jW V⊥ . 
 
Proof Since dilation by 2 j− , 1j ≥ , preserves the property of (localness) regularity, 1 / 2

0U  is a (local) 

regular FSI of length ( )02dlen U . By Theorem 2.12, 1 /2
0U  can be decomposed into 1/2

0 1 1U U W= ⊕  where 

( ) ( ) ( )1 0len U len V len U= = , 1W V⊥  and such that 1 1,U W  are (local) regular. We now continue and 

decompose 1 / 2
1U  in the same manner. By repeated decomposition we obtain an half-multiresolution with 

the required properties. 
 ♦ 

Corollary 3.6 Let ( )0 2
dU L⊂ ¡  be a (local) regular FSI space. Let V  be a (local) FSI space with 

( ) ( )0len V len U= . Then for any scale J ∈Z  we have the following formal wavelet decomposition 
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1
2 2
0

J jJ

J jj
U W

− −−

−=−∞
= ⊕ ,                                                                (3.9) 

 
where ( ):j jW S V= Ψ ⊥ ,  are non-stationary (local) regular wavelet spaces. 

 
Clearly, the fact that we construct only half-multiresolutions is not a real restriction. By dilating 

the construction to any given (fine) scale, it can be used to approximate any function in ( )2
dL ¡  at any 

required level of accuracy.  Also, since we have ensured that each wavelet space jW  is regular, by 

[BDR2] Corollary 3.31, one may select for each 1j ≥  an orthonormal wavelet basis for jW . From the 

orthogonality j kW W⊥  for j k≠ , any selection of orthonormal bases jΨ  for jW  (with the appropriate 

normalization) provides an orthonormal basis for 2
0

J

U
−

, J ∈¢ . 
Next we discuss actual constructions that realize the decomposition of Theorem 3.5. There are two 

strategies we can employ. First, we can follow the method of Theorem 2.12 by constructing the 
superfunction spaces jU  using projection and then complementing them by the wavelet spaces jW . The 
second approach is to construct the wavelet space first using methods mostly applied for wavelet 
constructions over (multivariate) non-uniform grids (see [LM], [LMQ]). Let ( )2, Lϕ φ ∈ ¡  such that 

( )supp 0, mϕϕ  ⊆   , ( )supp 0, mφφ  ⊆    with ,m mϕ φ ∈¥ . We wish to find compactly supported 

generators ,ρ ψ  so that ( ) ( ) ( )1/2
S S Sϕ ρ ψ= ⊕  and ( ) ( )S Sψ φ⊥ . We begin with the construction of the 

wavelet ψ . Assume ( ) [ ]supp 0, yψ ⊆ , y ∈¥ . Since ( )1 / 2Sψ ϕ∈ , we need to compute 2 1y mϕ− +  

unknowns { }2

0

y m
k k

q ϕ−

=
 where 

( )
2

0

2
y m

k
k

q k
ϕ

ψ ϕ
−

=

= ⋅−∑ . 

 
The assumption that ( )supp 0, mφφ  ⊆    implies the following 1y mφ+ −  constraints 

 

( ), 0jψ φ ⋅ − = , 1 , , 1j m yφ= − −… . 
 
In order to have a non-trivial solution, the number of constraints must be strictly smaller than the number 
of unknowns. Thus, 

number of orthgonality constraints number of unknowns

1  1 2 1y m y mφ ϕ+ − + ≤ − +14243 14243 . 

 
The smallest possible value 1y m mϕ φ= + −  leads to the following definition for ψ  (up to a multiplicative 
constant) 
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( )

( ) ( )

1 0 1 2 2

2 0 2 2 2

2 0 2 2 2

0 2 2

, ,

, ,

det

, ,

m m m m

m m m m

m m m m m m

m m

x

x x

φ φ φ ϕ

φ φ φ ϕ

φ ϕ φ ϕ φ ϕ

φ ϕ

φ ϕ φ ϕ

φ ϕ φ ϕ

ψ

φ ϕ φ ϕ

ϕ ϕ

− − + −

− − + −

+ − + − + −

+ −

 
 
 
 
 =
 
 
 
 
 

L
L

M M
L
L

, 

 

where we have denoted ( ):k kφ φ= ⋅ − , ( ): 2k kϕ ϕ= ⋅ − . We see that ( )1 m k
k kq dϕ −= −  where the minor kd  is 

defined by the Gram matrix 

1 2

0 1 1 2 2

: det
m m m

k
k k m m

d Gram φ φ ϕ

φ ϕ

φ φ

ϕ ϕ ϕ ϕ
− + −

− + + −

 
=   

 

L
L L .                            (3.10) 

 
Thus, we obtain the following result. 
Theorem 3.7 Let ( )2, Lφ ϕ ∈ ¡  where, with ( )supp 0, mϕϕ  ⊆   , ( )supp 0, mφφ  ⊆   , 2 ,m mϕ φ≤ ∈ N . 

Assume that the sequence { } 2 2

0

m m
k k

d ϕ φ+ −

=  defined by (3.10) is not identically zero. Then for 

( )
2 2

0

: 2
m m

k
k

q k
ϕ φ

ψ ϕ
+ −

=

= ⋅ −∑ , ( )1 m k
k kq dϕ −= −  we have that ( ) ( )S Sψ φ⊥  and ( )supp 1m mϕ φψ ≤ + − .  

 

Example 3.8  

1. Let mNϕ φ= = , where mN  is the univariate B-spline of order m . Then (see [LM]) the B-splines 

fulfill the conditions of Theorem 3.7. Since ( )supp mN m= , we recover the result of Chui that the 

support of the B-wavelet (minimally supported semi-orthogonal wavelet) is of size 2 1m − . 
2. Let 4OMϕ φ= =  where 4 4 4: /42OM N N ′′= + . This generator, constructed in [BTU], has “optimal” 

approximation properties, but is not two-scale refinable (see Example 4.6). Then, ( )1 / 2
1 4S OMψ ∈  

defined by ( )
10

1 4
0

2k
k

q OM kψ
=

= ⋅−∑  with { }kq  given (up to a multiplicative constant) by the table 

below, is stable and fulfills the orthogonality condition ( ) ( )1 4S S OMψ ⊥ . 
 

k  kq  
0,10 -0.000347466 
1,9  0.011939448 
2,8 -0.099178639 
3,7  0.374225526 
4,6 -0.786638869 
5  1.000000000 
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Even before the analysis of approximation properties is presented, it is easy to see that 1ψ  has all the 
required properties of a wavelet: 
• The coefficients { }kq  oscillate in sign. 

• The coefficients { }kq  as “high pass” filters have four vanishing moments. 

• The function 1ψ  has four vanishing moments. 
 

In fact, with the right normalizations, the fifth (non vanishing) moment of { }kq  or 1ψ  is closer to zero 
than the corresponding one of the cubic B-spline wavelet with the same support size. 

♦ 
Still, according to our theory, the wavelet 1ψ  constructed in Example 3.8 is only the first wavelet in a 

series of non-stationary wavelets that must be constructed if one wishes to decompose spaces of the type 

( )2
4

J

S OM
−

. The next wavelets in the sequence 2 3, ,ψ ψ …  still have four vanishing moments and as we 
shall see, their fifth moment remains closer to zero than the fifth moment of the cubic wavelet. In such 
examples, the price paid for removing the refinability property is that the support of the constructed 
wavelets might grow. 

Once the wavelet ψ  is constructed, one may construct a complementary “superfunction” as 

follows. Assume ( )supp 1m mϕ φψ ≤ + −  such that ( ) ( )S Sψ φ⊥ . Now we assume the conditions of 

Theorem 3.7 again, this time allowing ψ  to play the role of the reference generator. This leads to the 

construction of a generator ( )1 / 2Sρ ϕ∈  with ( ) ( ) ( )1 / 2S S Sρ ψ ϕ⊕ =  and 
 

( ) ( )supp 1 1 1 2 2m m m m m m mϕ ψ ϕ ϕ φ ϕ φρ ≤ + − ≤ + + − − = + − . 
 
Observe that ( ) ( )S Sψ φ⊥  implies ( ) ( ) ( )1 / 2S

P S S
ϕ

φ ρ⊆ . Since by Theorem 2.11 ( ) ( )1 / 2S
P S

ϕ
φ  is a local 

PSI space, Corollary 2.6 in [BDR2] implies that ( ) ( ) ( )1 / 2S
S P S

ϕ
ρ φ= .  

 
3.2 Non-stationary Cascade wavelets 

 
It is well known that the cascade operator can be used to obtain a refinable function corresponding 

to a subdivision scheme, or equivalently, a solution of a two-scale functional equation. Given a mask 

{ } dk k Z
P p

∈
= , we define the cascade operator C  by 

 
( ): 2

d
k

k

f p f k
∈

= ⋅ −∑C
Z

. 

 
Starting with an initial function ( )0

d
pLρ ∈ ¡  one iterates 1j jρ ρ+ = C .  

For our construction we require the general results of [R2] on the cascade operator. We have an 
initial generator 0ρ , possibly not refinable, but with good approximation properties. We would like to 

decompose the space ( )2
0

J

S ρ
−

, corresponding to a certain scale J , into a sum of meaningful wavelet 
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subspaces. By carefully choosing an appropriate cascade operator and applying it to 0ρ , we obtain a 

sequence of generators 0
j

jρ ρ=C  such that: 
 
1. The sequence { }jρ  converges in some (or all) p -metrics to a refinable function φ  which is a “fixed 

point” of the operator C . 

2. The spaces ( ){ }jS ρ  satisfy a nesting property, i.e., ( ) ( )1 / 2

1j jS Sρ ρ −⊂ . 

 
Such a cascade sequence can be used to construct a “wavelet type” decomposition of the space 

( )2
0

J

S ρ
−

 in the following way. First we construct for each level 1j ≥  a complement FSI space ( )jS Ψ  of 

length 2 1d −  so that ( ) ( ) ( )1/2

1j j jS S Sρ ρ −⊕ Ψ = . Once such a non-stationary sequence of spaces is 
found we can (formally) decompose 

( ) ( )22

0 1

J jJ

jj
S Sρ

− +− ∞

=
= ⊕ Ψ . 

 

The orthogonality ( ) ( )j kS SΨ ⊥ Ψ  for j k≠  simplifies the construction of a stable basis for ( )2
0

J

S ρ
−

. 

Indeed, we will construct wavelet generators jΨ  that are a stable basis for ( )jS Ψ  with stability constants 

,j jA B  which are uniformly bounded from below and above, i.e., 0 j jA A B B< ≤ ≤ ≤ . Then, from the 

orthogonality ( ) ( )j kS SΨ ⊥ Ψ , we can immediately derive that their union is a stable basis for ( )2
0

J

S ρ
−

, 

with stability constants bounded from below and above, respectively, by ,A B .  
The following is a simple form of Theorem 3.2.8 in [R2]. 

Theorem 3.9 [R2] Let ( )m d
pWφ ∈ ¡  be a two-scale refinable and stable generator for ( )S φ . Denote by 

( ): φ=C C  the corresponding cascade operator. Let g  be a bounded stable compactly supported function 

for which ( )ˆ ˆ   ng Oφ − = ⋅  near the origin. If the shifts of g  provide approximation order m≥ , then the 

cascade algorithm converges at the rate 

( )
{ }min ,2

d
p

m n jj
gL

g Aφ −− ≤
¡

C . 

We see that by a careful selection of the underlying refinable function φ  we not only ensure convergence 
of the cascade process, but we can also estimate the convergence rate.  For example, a typical application 
of Theorem 3.9 in our setting for the univariate case is as follows. Let ( )0 mI D Nρ = +  be a stable 

generator where mN  is the B-spline of order m  and D  is some homogeneous differential operator of 

degree 2n m≤ − . Select the cascade operator ( )mNC . Then, near the origin we have 

¶ ¶( ) ( )0mN w C wρ− ≤ . As we shall see, 0ρ  provides the same approximation order as mN  and therefore 

the conditions of Theorem 3.9 are satisfied. 
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In contrast to the convergence acceleration sought in [R2] using a smart choice of initial seed, in our 
settings there are cases where slow convergence is preferable. As we shall see in Section 4.3, this is the 
case whenever the initial function 0ρ  has better properties then the limit function φ . In such a case the 
first few levels of the cascade process have properties that are “close” to the properties of the initial 
function. This is useful in applications, since in practice only the first levels of the cascade are used. 

Definition 3.10 Let 0ρ  be an initial function for the cascade process C  defined by a refinable φ . Let 

0
j

jρ ρ=C  and assume ( )2

lim 0
dj Lj

ρ φ
→ ∞

− →
¡ . We call any sequence { }jΨ  such that { }1 1,j jρ + +Ψ  is a 

basis for ( )1 / 2

jS ρ  a Cascade Wavelet sequence. 

 
For the rest of the section we assume that the masks of the cascade operators are finitely 

supported, hence also the corresponding refinable function. We now show that the cascade process 
interpolates the stability of the endpoints 0 ,ρ φ . 

Theorem 3.11 Let ( )0 2
dLρ ∈ ¡  be a stable compactly supported initial function and let C  be a cascade 

operator associated with a stable ( )2
dLφ ∈ ¡ .  If ( )2

lim 0
dj Lj

ρ φ
→ ∞

− =
¡  where 0: j

jρ ρ= C , then there exist 

uniform stability constants 0 A B< ≤ < ∞% %  such that ˆ ˆ,j jA Bρ ρ ≤ ≤ 
% %  for all 0j ≥ . 

Proof  For 0j ≥ , let ,j jA B  be min/max values of ˆ ˆ,j jρ ρ   . Since the Cascade mask is finitely 

supported, by Lemma 2.4 we have the convergence jA A→ , jB B→  where ,A B  are the min/max 

values of ˆ ˆ,φ φ 
  . Thus, we need only prove that each 0jA > .  

To this end, let ( ) 2
d

d iwk
k

k

P w p e− −

∈

= ∑
Z

 be the trigonometric polynomial corresponding to the finite 

mask of the cascade operator C . Since φ  is stable, we have 
 

( ) 2
0

de E

P w eπ
∈

+ >∑ , dw∀ ∈T ,                                        (3.11) 

 
where we have used the lattice decomposition (3.2). Indeed, otherwise ( )0 0P w eπ+ = , de E∀ ∈ , for 

some 0
dw ∈T . Then, by the refinability of φ  

 

( ) ( ) ( )2

0 0 0
ˆ ˆ ˆ ˆ, 2 , 0.

de E

w P w e w eφ φ π φ φ π
∈

   = + + =   ∑  

 

Since φ  is compactly supported, ˆ ˆ,φ φ 
   is a trigonometric polynomial and by Theorem 2.6, this 

contradicts the stability of φ . We can now apply Lemma 3.1 inductively to obtain that each 0jA > .  
♦ 

An immediate consequence of the bounds obtained in Lemma 3.1 and Theorem 3.11 is the following. 
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Corollary 3.12 Assume that 1d =  and let 0ρ  and φ  be as in Theorem 3.11. Assume further that 

( ) { }2 0
j

j

S φ
−∞

=−∞

=∩  and let { }jψ  be a univariate Cascade wavelet sequence such that 

( ) ( ) ( )1 / 2

1 1j j jS S Sρ ψ ρ+ +⊕ =  for all 0j ≥ . If the two-scale symbols of the wavelets satisfy 

 
1. jQ ∈W  with 

( )j C
Q B′≤ < ∞T , 

and 
 

2. ( ) ( )2 2
0j jQ w Q w Aπ ′+ + ≥ > , w∀ ∈T , 

 

then for any J ∈Z  the dilated non-stationary wavelet set ( ) ( ){ }/ 2

1,
2 2J j J j

j j k
kψ− −

≥ ∈
⋅− Z  is a stable basis for 

( )2
0

J

S ρ
−

. 
Next we use the general tools presented at the beginning of this section to construct, for a 

univariate cascade sequence { }
1j j

ρ
∞

=
, a sequence of semi-orthogonal wavelets { }

1j j
ψ

∞

=
 for which the 

conditions of Corollary 3.13 hold. 
Assume 0ρ  and φ  are as in Theorem 3.11. Following (3.4) and (3.5) we define for 1j ≥  
 

( )
1 1ˆ ˆ,

.
ˆ ˆ , 2

j j
j

j j

G P
ρ ρ

ρ ρ
− −  =

  ⋅ 
                                                           (3.12) 

Since ˆ ˆ, 0j jρ ρ  >   is a trigonometric polynomial for 0j ≥ , by Wiener’s lemma [K], we have that 

jG ∈W  for each 1j ≥ . By Theorem 3.4, any wavelet jψ  such that ( ) ( ) ( )1 / 2

1 1j j jS S Sρ ψ ρ+ +⊕ =  has a 

symbol jQ  of the form 

( ) ( ) ( )2iw
j j jQ w e G w K wπ= + ,                                               (3.13) 

 
where jK ∈ W  never vanishes. Recall that in this local setting we can use (3.8) to choose { }jK  so that 

{ }jQ  are trigonometric polynomials and thus construct { }jψ with compact support. For each 1j ≥  we 

select ( ) ( )1ˆ ˆ/ 2 / 2j j jQψ ρ −= ⋅ ⋅  where 

( ) ( ) ( )1 1ˆ ˆ: , .iw
j j jQ w e w P wρ ρ− − =    

 

This is equivalent to the selection 
1

ˆ ˆ,j j jK ρ ρ
−

 =    in (3.13). We already know that jψ  is a semi-

orthogonal  complement to jρ   so that ( ) ( ) ( )1 / 2

1j j jS S Sρ ψ ρ −⊕ = . Also, observe that since the auto-

correlation 1 1ˆ ˆ,j jρ ρ− −    and P  are trigonometric polynomials, so is jQ . Thus, the { }jψ ’s have compact 
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support. Furthermore, we can uniformly bound their support due to the convergence jρ φ→  and the fact 
that we are using a finitely supported cascade mask. It remains to show that the conditions specified in 
Corollary 3.13 on the wavelet symbols are met. To this end, by Theorem 3.11 there exist 0 A B< ≤ < ∞% %  
such that for each 0j ≥  we have 

ˆ ˆ,j jA Bρ ρ ≤ ≤ 
% % .                                                             (3.14) 

Hence 

( ) 1 1ˆ ˆ, :j j jQ w P B P Bρ ρ− − ∞ ∞∞ ∞
 ≤ ≤ = < ∞ 

% .                           (3.15) 

 
Also, (3.14) together with (3.11) imply 
 

( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( )

2 22 2 2 2

1 1 1 1

2 22

ˆ ˆ ˆ ˆ, ,

                                    0.

j j j j j jQ w Q w w P w w P w

A P w P w A

π ρ ρ ρ ρ π π

π

− − − −   + + = + + +   

≥ + + ≥ >%          (3.16) 

 

By virtue of Corollary 3.13 we can conclude that ( ) ( ){ }/ 2

1,
2 2J j J j

j j k
kψ− −

≥ ∈
⋅− Z  is a stable basis for 

( )2
0

J

S ρ
−

. 

4 Approximation properties 
 

We recall that in classical refinable setting, it is a standard practice to construct wavelets from a 
given multiresolution analysis of “scaling” function(s). Any reasonable wavelet construction ensures that 
the (linear) approximation properties of wavelets are derived directly from the approximation properties 
of the “scaling” function(s). Let us briefly review this point. Throughout this chapter we use the standard 
notation for the error of approximation 

( ), : inf
X Xg V

E f V f g
∈

= − , 

 
where V X⊆  is a closed subspace of a Banach space X . 

First recall that a closed subspace ( )d
pV L⊂ ¡  is said to provide pL  approximation order m  if 

for any function f  in the Sobolev space ( )m d
pW ¡  

 

( ) ( ), ,h m

p
E f V C V f h≤ .                                   (4.1) 

 
Most results on approximation from shift invariant spaces use the Sobolev semi-norm of the 

approximated function for the constant in (4.1), namely, a Jackson-type estimate, 
 

( ), m
p

h m
V Wp

E f V C h f≤ .                                   (4.2) 
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If ( )V S= Φ  is an FSI space we write CΦ  for VC . In wavelet theory it is a common practice to ensure that 
the so called “scaling” functions provide approximation order. Also recall that a generator ϕ  of a PSI 

space ( )S ϕ  satisfies the Strang-Fix (SF) conditions of order m  if  
 

 ( )ˆ 0 0ϕ ≠  and ( )ˆ 2 0D kαϕ π =  for all \ 0dk ∈ Z  and mα < .                   (4.3) 
 

It is well known that, under certain mild restrictions, if ϕ  satisfies the SF conditions of order m  
then the polynomials of degree 1m −  can be represented using a superposition of the integer shifts of ϕ , 

and ( )S ϕ  provides approximation order m . 
On the other hand, wavelets should have the complimentary feature of m  vanishing moments. That 

is, ψ  is a “wavelet” if for all polynomials of degree 1m − , mp ∈ Π   
 

0
d

pψ =∫¡
. 

 
The connection between approximation order of the “scaling” functions and the wavelets is simple. 
Assume ( )2, , dLϕ ρ Ψ ∈ ¡ , where { }ψΨ =  and ( ) ( ) ( )S S Sϕ ρ= ⊕ Ψ . It can be shown that if ,ϕ ρ  

provide approximation order m  then all ψ ∈Ψ  have m  vanishing moments. In such a case the 

space ( )S Ψ  will be orthogonal to all polynomials of degree 1m − .  
In this section we show that the nested sequence of non-stationary (“scaling” function) spaces we 

have constructed using the Superfunction or Cascade methods, beginning with some given non-refinable 
shift invariant space, inherits the approximation properties of the initial space. Also, the nested spaces 
share uniform approximation properties. Specifically, we provide simultaneous estimates using uniform 
constants for the approximation of functions from these spaces. Consequently, our non-stationary wavelet 
spaces will have the desired vanishing moments property. This is what makes them suitable for signal 
processing applications. 

We now state a Strang-Fix type result that will become useful in Section 4.3. It is quite basic, but 
handles the case of approximation from a sequence of PSI spaces. First we need the following definitions. 

Let ( )d
m ¡E  denote the space of bounded measurable functions that decay faster than an inverse 

of a polynomial of degree m d+ , i.e., 
 

( ) ( ) ( ) ( ){ } 
:     1 , for some 0

m dd
m f f x C x

ε
ε

− + +
= ≤ + >¡E . 

 

Definition 4.1 Let ( )d
mf ∈ ¡E . We say that f satisfies the Poisson summation condition of order m  

if the Poisson Summation Formula holds for all ( ) ( )0
n f x⋅ −⋅ , n m< , 0

dx ∈ ¡ . Recall that the Poisson 

summation formula for ( )1
dg L∈ ¡  is 

( ) ( ) 2ˆ 2
d d

ikx

k k

g x k g k e ππ
∈ ∈

− =∑ ∑
Z Z

. 
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The above requirement holds for example if f  is compactly supported, continuous and of 
bounded variation.  

Theorem 4.2 Let { }
1j j

ρ
≥

 be a sequence of measurable univariate functions and 1m ≥ . Assume the 

following conditions hold for each 1j ≥ . 

1. (uniformly bounded support) ( ) [ ],jsupp L Lρ ⊆ − . 

2. (uniform bound)                             j Mρ
∞

≤ . 

3. (Poisson Summation)            The Poisson summation condition of order m  holds for jρ . 

4.  (Strang-Fix)               ( )ˆ 0 1jρ = , ( ) ( )ˆ 2 0l
j kρ π = , 0, , 1l m= −… , 0k ≠ . 

 
Then, there exist constants 1C% , 2C%  which depend on , ,L M m  (but do not depend on p ) such that: 
 

(i) For any ( )m
pf W∈ ¡  

( )( ) ( )1, m
p

h m
j W

p
E f S C h fρ ≤ ¡

% , 1j ≥ .                                    (4.4) 

(ii) For any ( )pf L∈ ¡  

( )( ) ( )2, ,
h

j m p
p

E f S C f hρ ω≤ % ,        1j ≥ .                                    (4.5) 

 
Proof  The proof essentially follows the approach of [DL] Chapter 13 Section 7, with the observation that 
the constants can be estimated using values of the derivatives of the Fourier transform at the origin. 
Conditions 1 and 2 ensure that this can be achieved. Namely, there are constants 1 1, , mC C −…  such that 
 

( ) ( )ˆ 0n
j nCρ ≤ , 1 1n m≤ ≤ − , 1j ≥ . 

♦ 
 
4.1 2L  approximation from shift invariant spaces 

 
For the case of 2p = , two tools allow the analysis to be both elegant and powerful, the Hilbert 

space geometry and the Plancharel-Parseval equality. The latter allows us to carry out the analysis in the 
frequency domain. An excellent survey of 2L  approximation from shift invariant spaces is [JP]. 

Henceforth we denote ( ) ( )2:m d m dH W=¡ ¡ .  

Definition 4.3 [BDR1] For ( )2
dLφ ∈ ¡ , define the error kernel [ ]( ),

d
Lφ π π∞Λ ∈ −  by 

1
2 2ˆ

: 1
ˆ ˆ,

φ

φ

φ φ

 
 Λ = −     

,                                                                     (4.6) 
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where 0/0 is interpreted as 0.  
 

Applying Fourier methods one can use the error kernel (4.6) to obtain 2L  estimates. The following 
theorem characterizes the approximation order of an SI space, by the existence of a superfunction. The 
superfunction is required to have an error kernel (4.6) with fast decay to zero about the origin. 

Theorem 4.4 [BDR3] Let V  be an SI space. Then V  provides approximation order 1m ≥  such that  

 

( )
2

, m
h m

V H
E f V C h f≤ . 

 

if and only if there exists Vφ ∈  for which ( )  m L Bφ
−

∞⋅ Λ ∈ , for some neighborhood B of the origin. 
 

As proved in [BU1] the kernel (4.6) can also be used to produce very accurate error estimates.  

Theorem 4.5 [BU1] Assume that ( )mφ ∈ ¡E  is stable with ( )ˆ 0 1φ =  and provides 2L  approximation 

order m . Then for any function ( )1mf H +∈ ¡  

( )( ) ( ) ( )1

2
, m

h m m
H

E f S C h f O hφφ − += +¡ , ( ) ( )
2

0

1 ˆ 2
!

m

k

C k
mφ φ π−

≠

= ∑ .                   (4.7) 

 

One of the results in [U] is that the leading constants of type Cφ
−  in (4.7) are much smaller for the 

B-Spline generators than for the Daubechies orthonormal scaling functions [Da]. Since the wavelets 
inherit in some sense this constant from the scaling functions, it might explain the empirical evidence in 
image coding that spline wavelets outperform the Daubechies wavelets with the same number of 
vanishing moments.  

Example 4.6 mOM , O-Moms (Optimal Maximum Order and Minimal Support)  

The generator mOM  ([BTU], [TBU]) minimize for a given support size (and approximation order) m , the 

constant Cφ
−  in (4.7). For each order 1m ≥ , mOM  can be defined as the outcome of applying a differential 

operator mI D+  to the B-spline mN , where mD  is homogeneous of degree 1m≤ − . It is easy to see that 

for any differential operator of the type I D+ , the resulting ( ) mI D N+  is piecewise polynomial with 

degree 1m −  and support size m . Also, since the SF conditions remain valid, mOM  provides 
approximation order m . The O-Moms functions are continuous for the even orders. For example, 

( )2
4 4 4

1
42

OM N N= + ,  ( ) ( )2 4
6 6 6 6

1 1
33 7920

OM N N N= + + . 

The (normalized) gains in sampling density brought by using O-Moms instead of the b-Splines are 

4

4

1/4

1.463N

OM

C

C

−

−

 
≈  

 
, 6

6

1 / 6

1.951N

OM

C

C

−

−

 
≈  

 
. 
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♦ 
We augment the 2L − superfunction theory with a more careful treatment of constants. We 

combine the finer error estimates of [BU1] related to optimal constants with the superfunction theory of 
[BDR1]. We show that the superfunction provides asymptotically exactly the same approximation as the 
“full” space, with the same (sharp) leading constant. First we require the following 

Lemma 4.7 [BDR1] Let V  be an SI space.  Then for any ( )2, df g L∈ ¡  

 
( ) ( )( ) ( ) ( )( )2 22 2

, , , 2 ,VE f V E f S P g E f V E f S g≤ ≤ + . 
 

Theorem 4.8 Let V  be an FSI space which provides approximation order 1m ≥ , such that for any 
function ( )r df H∈ ¡ , r m≥ , 

   ( ) ( )
2

, m
h m r

V H
E f V C h f O h−≤ + .                                                   (4.8) 

 
Then there exists a superfunction Vφ ∈  such that for any ( )r df H∈ ¡ , r m≥  one has 
 

( )( ) ( )
2

, m

h m r
V H

E f S C h f O hφ −≤ + . 

 
Proof  Let ( )r df H∈ ¡ .  We use a dilated version of (4.8) 

 
( )( ) ( ) ( )( )/ 2 / 2

2 2
, , , ,m

d h d m r
V H

E f h V h E f V h C h f C V r f h− − −⋅ = ≤ + . 

 
Select VP gφ ∗= , where g ∗  is the multivariate sinc-function 
 

1

sin
:

d
i

i i

x
g

x
π

π
∗

=

=∏ ,   ¶
[ ], dg

π π
χ∗

−
= . 

 
It is well known (see for example [JP]) that  

   ( )( )
2

, r

h r
H

E f S g h f∗ ≤ .                                                   (4.9) 

 
By virtue of Lemma 4.7, (4.8) and (4.9) we obtain 
 

( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

( )

/2

2

/ 2

, ,

                       , 2 ,

                       , , 2r r

h d

d

m r r
V H H

E f S h E f h S

h E f h V E f h S g

C h f C V r f h h f

φ φ

∗

−

= ⋅

 ≤ ⋅ + ⋅ 
≤ + +
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                                         ( )                    .r
m r

V H
C h f O h−≤ +  

♦ 
Next we present a similar result for local shift invariant spaces. We require the following 

“superfunction” result for the local case. 

Theorem 4.9 [BDR2] Let V  be a local FSI space. Let g  be any compactly supported function (not 
necessarily in V ). Then there exists a compactly supported function Vφ ∈ , such that for every 

( )2
df L∈ ¡  

( )( ) ( ) ( )( )22 2
, , 2 ,E f S E f V E f S gφ ≤ + .                                               (4.10) 

Theorem 4.10 If in addition to the assumptions of Theorem 4.8 we further assume that V  is local, then 
for each r m>  there exists a compactly supported function r Vφ ∈  such that for every ( )r df H∈ ¡  one 

has 

( )( ) ( )
2

, m

h m r
r V H

E f S C h f O hφ −≤ + . 

 
Proof  The method of proof is very similar to Theorem 4.8, only this time we apply Theorem 4.9 with the 
selection rg N= , where rN  is the tensor-product B-spline of order r  

♦ 
4.2 Approximation properties of the non-stationary Superfunction wavelets 
 

We now go back to the superfunction decompositions of Section 3.1 and verify that the non-
stationary half-multiresolution inherits the approximation properties of the initial space and the reference 
space. First, we need the following result.  

Theorem 4.11 Let ( )0 2, dLρ φ ∈ ¡  have approximation order m  and assume ( ) ( ) ( )1 / 2
0 1S S Sρ ρ= ⊕ Ψ  

where ( ) ( )S S φΨ ⊥ . Then 1ρ  has approximation order m . Furthermore: 

1. If for all functions ( )m df H∈ ¡  and 0h >  the following two estimates hold 

( )( ) ( )00
2

, m d

h m
H

E f S C h fρρ ≤ ¡ , ( )( ) ( )2
, m d

h m
H

E f S C h fφφ ≤ ¡ ,            (4.11) 

then for all functions ( )m df H∈ ¡  and 0h > , 

( )( ) ( )11
2

, m d

h m
H

E f S C h fρρ ≤ ¡ , 
1 0

2 2mC C Cρ ρ φ
−≤ + . 

2. If for all functions ( )r df H∈ ¡ , r m>  and 0h >  the following two estimates hold 

( )( ) ( ) ( )
00

2
, m d

h m r
H

E f S C h f O hρρ −≤ +¡ , ( )( ) ( ) ( )
2

, m d

h m r
H

E f S C h f O hφφ −≤ +¡ ,      (4.12) 
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then for all functions ( )r df H∈ ¡  and 0h > , 

( )( ) ( ) ( )
11

2
, m d

h m r
H

E f S C h f O hρρ −≤ +¡ , 
1 0

2 2mC C Cρ ρ φ
− − − −≤ + . 

Proof  
1.  Let ( )m df H∈ ¡  and 0h > . Since 0 ,ρ φ  have approximation order m , we can obtain a dilated 
version of (4.11) for both generators 
 

( ) ( )( ) ( ) ( )0

1/2 / 2
0

2
, / 2 m d

md
H

E f h S h C h fρρ −⋅ ≤ ¡ , ( ) ( )( ) ( )
/ 2

2
, m d

d m
H

E f h S h C h fφφ −⋅ ≤ ¡ . 

 
Since ( ) ( )S S φΨ ⊥ , it follows that ( ) ( ) ( )1 / 2

0
1S

P S S
ρ

φ ρ⊆ . Since the orthogonal projection onto an SI 

space and the shift commute we get 

( )
( )

( )( )1 / 2 1 / 2
0 0S S

P S S P
ρ ρ

φ φ= . 

We now apply Lemma 4.7 to derive 
 

( )( ) ( ) ( )( )

( ) ( )( )( )1 / 2
0

/2
1 1

2

/ 2

, ,

                        ,

h d

d

S

E f S h E f h S

h E f h S P
ρ

ρ ρ

φ

= ⋅

≤ ⋅
 

                                                                          
( ) ( )( ) ( ) ( )( )

( )
0

1 / 2/ 2
0, 2 ,

2 2 .m

d

m m
H

h E f h S E f h S

C C h fρ φ

ρ φ

−

 ≤ ⋅ + ⋅
 

≤ +
 

 
2. Let ( )r df H∈ ¡ . Then the same arguments yield 
 

( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( )

0

1/2/ 2
1 0

2

0

, , 2 ,

                        2 2 , 2 2 , .m

h d

m m r r
H

E f S h E f h S E f h S

C C h f C f C f hρ φ

ρ ρ φ

ρ φ− − − −

 ≤ ⋅ + ⋅
 

≤ + + +
 

♦ 

We are now ready to justify the superfunction construction of Theorem 3.5. 

Corollary 4.12 Let ( )0 2, dLφ ρ ∈ ¡  have approximation order m  and let { }
1j j

ρ
≥

 be so that for all 1j ≥ : 

(i) ( ) ( ) ( )1/2

1j j jS S Sρ ρ −⊕ Ψ = , 

(ii) ( ) ( )jS S φΨ ⊥ . 
 

1. If 0,φ ρ  satisfy (4.11), then we have the uniform estimate for any ( )m df H∈ ¡  
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( )( ) ( ) ( )0

1

2

2
, max ,

2 1
m d

m
h m

j m H
E f S C C h fρ φρ

+

≤
− ¡ , 0j ≥ .                        (4.13) 

 

2. If 0,φ ρ  satisfy (4.12), then we have the uniform estimate for any ( )r df H∈ ¡ , r m> , 

 

( )( ) ( ) ( ) ( )
0

1

2

2, max ,
2 1

m d

mh m r
j m H

E f S C C h f O hρ φρ
+

− −≤ +
− ¡ , 0j ≥ .              (4.14) 

 
Proof  The proof is by induction. We only prove (4.13), the proof for (4.14) being similar. The estimate 
(4.13) is certainly true for the initial function 0ρ . Assume that 1jρ −  has approximation power m . By 

Theorem 4.11 we see that the generator jρ , constructed using the projection method of Theorem 3.5, 

inherits the approximation power m  with a constant 
1

2 2
j j

mC C Cρ ρ φ−

−≤ + . The relation leads to the 
uniform bound 

( )

( )

0

0

0

1
1

0

1
1

0

1

2 2

     2 2 max ,

2
    max , .

2 1

j

j
jm nm

n

j
jm nm

n

m

m

C C C

C C

C C

ρ ρ φ

ρ φ

ρ φ

−
− −

=

−
− −

=

+

 
≤ +  

 
 

≤ + 
 

≤
−

∑

∑  

♦ 

Example 4.13 Select 0,φ ρ  in Corollary 4.12 to be 4 4 4: /42OM N N′′= +  (see Example 4.6). Then for any 

( )rf H∈ ¡ , 4r >   

( )( ) ( ) ( )4
4

5
4

4
2

2
,

2 1
h r

j OM H
E f S C h f O hρ −≤ +

− ¡ , 0j ≥ . 

Therefore for all 0j ≥ , 

4 4

4

1
1 / 4 4

1.463 1.21
j

N N

OM

C C

C Cρ

− −

− −

  
 ≈ ⇒ ≥       

. 

 

Assume { }
1j j

ψ
≥

 are any non-stationary (compactly supported) wavelets, complementing the half-

multiresolution generated by { }
0j j

ρ
≥

 where 4OM  generates both the initial space and the reference space. 

Then, these wavelets have a sharp constant smaller then the B-wavelets of [Ch] with a gain of about 20%. 
This result is not very surprising. We have shown (Example 3.8) that we can choose the first wavelet 1ψ  

such that ( )1supp 7ψ = , which is exactly the support size of the cubic B-wavelet. But as explained in 
Section 3.1, for any such non-stationary wavelet sequence, the support of the wavelets in general grows.  

♦
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4.3 Approximation properties of the non-stationary Cascade wavelets 
The first results of this section verify that the application of a cascade operator with good 

properties to a given function with good approximation properties yields a function that inherits these 
properties. These results are connected to the known so called “zero conditions on the mask symbol” 
(see Section 3.2 in [JP]). The main difference with previous work is that we use “zero conditions” on 
the cascade mask when applied to non-refinable functions.  

Lemma 4.14 Assume ( )0
d

mρ ∈ ¡E  satisfies the SF conditions of order m  and let NP∈ Π  be a 

trigonometric polynomial defined by 

( ) ( )
1

1
2

2

r
r

miwd
d ikw

k
k Nr

e
P w R w p e

−
− −

≤=

 +
= = 

 
∑∏ ,                          (4.15) 

 
with rm m≥ , 1, ,r d= …  and ( )0 0R ≠ . Then 1ρ  defined by 
 

( )1 0 2k
k N

p kρ ρ
≤

= ⋅ −∑ ,                                                     (4.16) 

is in ( )d
m ¡E  and satisfies the SF conditions of order m . 

 
Proof  The Fourier equivalent of (4.16), is the two-scale relation  
 

( )1 0ˆ ˆ
2 2
w w

w Pρ ρ   =    
   

.                                                   (4.17) 

 
Since NP∈Π , the sum in (4.16) is finite so that ( )1

d
mEρ ∈ ¡  and ( )0 1ˆ ˆ, m dCρ ρ ∈ ¡ . Since 0ρ  satisfies 

SF, it follows that ( ) ( ) ( )1 0ˆ ˆ0 0 0 0Rρ ρ= ≠ . It is quite easy to show that 1ρ  satisfies the other SF 
conditions (4.3). This is done using the two-scale relation (4.17) and the multivariate form of Leibniz’ 
rule. 

♦ 
It is known [R1] that any univariate generator φ  that provides approximation order m  is a 

convolution of a B-spline of order m  and a tempered distribution. Thus, the smallest support possible for 
a given approximation order m  is m . Next we see that the B-spline cascade operator can help preserve 
this optimal feature.  
Corollary 4.15 Assume that ( )0 Lρ ∞∈ ¡  satisfies the SF and Poisson summation conditions of order m  

and has (minimal) support size m . Then there exists ( )1/2
1 0Sρ ρ∈  that provides approximation order m  

and has (minimal) support size m . 
Proof  Observe that by Theorem 4.2 0ρ  provides approximation order m . We may assume that 

( ) [ ]0 0,supp mρ ⊆  (we can always shift the construction below to this interval and then back). Select 
mNP , 

the (minimally supported) two-scale symbol of the B-Spline of order m , defined by 
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( )
0

1 1
2 2m

miw m
ikw

N k
k

e
P w p e

−
−

=

 +
= = 

 
∑ , 12 m

k

m
p

k
− +  

=  
 

.                      (4.18) 

Clearly, for 
mNP  condition (4.15) holds. Thus by Lemma 4.14, 1ρ  defined by 

 

( )1 0ˆ ˆ
2 2mN
w ww Pρ ρ   =    

   
, 

 
is in ( )L∞ ¡ , has compact support and satisfies the SF and Poisson summation conditions of order m . 

Using Theorem 4.2 this implies that 1ρ  provides approximation order m . Also, since 0kp =  for all 
0, ,k m≠ … , 1ρ  has the required (minimal) support property. 

♦ 
Thus, we see that a good cascade operator is actually an algorithm to extract a superfunction 1ρ  

from the FSI space ( )1 / 2
0S ρ . We need to verify that the cascade process preserves approximation 

properties in a uniform sense. The next result overcomes this technical point. 

Corollary 4.16 Let 0ρ  be a univariate function with compact support that satisfies the SF and Poisson 
summation conditions of order m . Let P  be a finite mask of type (4.15) associated with a cascade 
operator C  and a refinable function ( )Lφ ∞∈ ¡  and let 0: j

jρ ρ=C  be so that, 

1. ( ) [ ],jsupp L Lρ ⊆ −  for all 0 j≤ < ∞ , 

2.  j Mρ
∞

≤ for all 0 j≤ < ∞ . 
 
Then the following hold, 

1. There exists a constant 1C%  such that for any ( )m
pf W∈ ¡ , 1 p≤ ≤ ∞  

 

( )( ) ( )
( )1,

p

h mm
j

Lp
E f S C h fρ ≤

¡
% . 

 
2. There exists a constant 2C%  such that for any for any ( )pf L∈ ¡ , 1 p≤ ≤ ∞  
 

( )( ) ( )2, ,
h

j m p
p

E f S C f hρ ω≤ % . 

 
Proof  It is easy to see that under our assumptions, conditions 1-3 of Theorem 4.2 hold. Also by Lemma 
4.14 it follows that the SF conditions of order m  hold for all functions in the sequence and so condition 4 
of Theorem 4.2 is also fulfilled. We now apply Theorem 4.2 to obtain the required estimates. 

♦ 
Remark It is interesting to observe that for the last result we did not require that the cascade sequence 
converges to a refinable function, just that it remained bounded in some box. 
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For a finer analysis of the inheritance of approximation properties through the cascade process we 

wish to inspect the sharp constants (4.7). Assume ( )1 / 2Sρ ϕ∈  where ,ϕ ρ  are univariate functions such 

that ϕ  satisfies the SF conditions of order m . Assume further that ( ) ( )1 1ˆ ˆ2 2Pρ ϕ− −= ⋅ ⋅  where P  is of 

type (4.15) and that we have the normalization ( ) ( )ˆ 0 0 1Pϕ = = . For each 0 n≠ ∈Z , 
 

( ) ( )
( )

( ) ( ) ( ) ( )
0

2

ˆ ˆ2 2
2 2

m m
m k m km

k
w n

mw wn P P n n
k

π

ρ π ϕ π ϕ π−−

=
=

     = =            
∑ . 

There are two cases: 
1. If ( )0 mod2n ≡ , then 

( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ2 2 0 2m m mm mn P n nρ π ϕ π ϕ π− −= = , 
 
2. If on the other hand ( )1 mod2n ≡ , then 
 

( ) ( ) ( ) ( ) ( )ˆ ˆ2 2m mmn P nρ π π ϕ π−= . 
By (4.7), 

( )
( )

( ) ( )

( )
( ) ( ) ( ) ( )( )

( )
( ) ( ) ( ) ( ) ( )( )

( )
( ) ( ) ( ) ( ) [ ]( )

22

2
0

2 2

2
0

2 2

2
0

222

2 2

1 ˆ 2
!

1 ˆ ˆ         2 2 2 2 1
!

1 ˆ ˆ         2 2 2 2 1
!

1 ˆ ˆ         ! , .
! 2

m

n

m m

k k

m mm m

k k

m

m

C n
m

k k
m

k P k
m

m C P
m

ρ

ϕ

ρ π

ρ π ρ π

ϕ π π ϕ π

π ϕ ϕ π

−

≠

≠

− −

≠

−

=

 = + +  

 = + +  

 = +  

∑

∑ ∑

∑ ∑
                        (4.19) 

 

If we may take ρ ϕ= , then ( )1 / 2Sϕ ϕ∈  and thus ϕ  is refinable. In such a case, we obtain from (4.19) a 

formula for the constant Cϕ
−  

( )
( ) ( ) [ ]( )
( ) ( )

2

2

2 2

ˆ ˆ,

! 2 1

m

m

P
C

m
ϕ

π ϕ ϕ π
− =

−
.                                                            (4.20) 

Formula (4.20) for the refinable case is exactly equation (26) in [BU3]. 
 
Lemma 4.17 Let 0m ≥  and assume that 

( )2
d

j
L

ρ φ→
¡

 where ( )2, d
j Lφ ρ ∈ ¡  are such that 

( ) ( ), jsupp suppφ ρ ⊆ Ω  where Ω  is some bounded domain. Then we have  
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  ( ) ( ) ( ) ( )
2 2

0 0

1 1 ˆˆ 2 2
! !j

m m
j

k k

C k k C
m mρ φρ π φ π− −

≠ ≠

= → =∑ ∑ .                              (4.21) 

 
Proof  By Lemma 2.4, for any dw∈T , 

( ) ( ) ( ) ( )
2 2ˆˆ 2 2

d d

m m
j

k k

w k w kρ π φ π
∈ ∈

+ → +∑ ∑
Z Z

.                                   (4.22) 

 

In particular we have (4.22) for 0w = . It is easy to see that ( ) ( ) ( ) ( )ˆˆ 0 0m m
jρ φ→ . Hence (4.21) follows.

 ♦ 

Lemma 4.18 Let 
( )2

d
j

L
ρ φ→

¡
 where φ  is stable, ( ) ( )supp ,supp jφ ρ ⊆ Ω  and Ω  is some bounded domain 

in d¡ . Then there exists 0J >  such that for j J≥ , 
( )

0
dj Cρ φΛ − Λ →

¡
, where we recall that for any 

( )2
df L∈ ¡ , fΛ  is the error kernel (4.6). 

 

Proof  From the continuity of the Fourier transform, is easy to see that 
( )

ˆˆ 0
dj C

ρ φ− →
¡

.  By Lemma 2.4 

we also have 
( )

ˆ ˆˆ ˆ, , 0
dj j

C
ρ ρ φ φ   − →    T

. Since φ  is stable and compactly supported, its auto-correlation 

does not have any zeros in dT . Thus, there exists 0J >  for which ˆ ˆ,j jρ ρ   , j J≥ , are uniformly 

bounded from below. This implies the uniform convergence of the error kernels for j J≥ . 
♦ 

An important application of the discussion so far is the following result. 

Theorem 4.19 Let { }
0j j

ρ
≥

 be defined by 

( )1ˆ ˆ
2 2mj N j
w ww Pρ ρ+

   =    
   

, 0j ≥ , 

where 
1. 

mNP  is the B-spline two-scale symbol (4.18), 

2. ( )0 Lρ ∞∈ ¡ , satisfies SF and Poisson summation conditions of order m , 

3. 0ρ  has (minimal) support size m , 

4. ( ) ( ) ( )0
ˆˆ mN w O wρ − =  near the origin. 

Then 
1. For any 1 p≤ ≤ ∞ , the sequence jρ  converges to the B-spline mN  in every p  norm. 

2. Each jρ  has (minimal) support size m . 

3. There exists a constant C%  such that for any ( )m
pf W∈ ¡ , 1 p≤ ≤ ∞ , 
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( )( ) ( ), m
p

h m
j W

p
E f S Ch fρ ≤ ¡

% , 0j ≥ . 

4. The sharp constants 
j

Cρ
−  converge to 

mNC − . Also there exist a constant C −  such that for any 

function ( )rf H∈ ¡  

( )( ) ( ) ( )
2

, m

h m r
j H

E f S C h f O hρ −≤ +¡ , 0j ≥ .                             (4.23) 

Proof 
1. We use the cascade result Theorem 3.9. 
2. See the proof of Corollary 4.15. 
3. For each 1j ≥  we use Corollary 4.15. We then apply Theorem 4.2. 
4. The convergence 

j
C Cρ φ

− −→  follows from Lemma 4.17.  The estimate (4.23) is obtained using Lemma 
4.18 and some techniques from [BU3]. 

♦ 

Example 4.20 Let 0 4OMρ = , 4Nφ =  and let { }jρ  be the sequence constructed in Theorem 4.19. Then 
one can compute using (4.19), 

4 4

4 1

1 1
4 4

1.463 1.07N N

OM

C C

C Cρ

− −

− −

   
≈ ⇒ ≈      

   
. 

 
This means that the first generator 1ρ  constructed by the cascade process is not as good as the initial 
optimal 0 4: OMρ = , but still better than the B-spline. The corresponding minimally supported semi-

orthonormal wavelets { }jψ  can be constructed using the methods of Section 3.2 so that for any 0J ≥ , 

( ) ( ){ }/ 2

1,
2 2J j J j

j j k
kψ− −

≥ ∈
⋅− Z  is a stable basis for ( )2

0

J

S ρ
−

. Therefore any approximation obtained from 

dilations of the PSI space ( )JS ρ  has a representation in the form of a non-stationary wavelet sum. 
  In applications such as signal processing, one usually approximates a function and then 
decomposes the approximation to a sum of a coarse approximation and a few wavelet subspaces. Thus, at 
least in theory, the non-stationary wavelets derived from a B-spline cascade multiresolution initialized by 

4OM , outperform spline-wavelets [Ch], [Da] on these first decomposition levels. Observe that this 
increase in approximation performance is achieved for exactly the same computational effort. This is due 
to the fact that the generators { }jρ  have (minimal) support size 4 and thus the non-stationary Cascade 

wavelets { }jψ  have support size 7, which is exactly the support size of the cubic B-wavelet ([Ch]). 

♦ 
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