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1 Introduction

In classical refinable wavdet theory ([Ch, [Dd], [M]) one begins with afinitely generated shift
invariant (FSI) space S(F )= span{f (x k)|f T F k1 Z°}, where F isafinite set and the closureis
taken in some Banach space X . Typically, S(F ) is sdlected to have approximation order mi N. This
meansthat forany h>0and f1 X

h —_ _ m
E(f.S(F)). =it ]t~ o, £canle],, (11)
where

S(F )" = span{f (W% k)t 1 F kT z7},

and | x| isasemi-norm, messuring the smoothness of the dementsof X .

To dlow the congtruction of wavelets associated with S(F ), one assumes that the shift invariant
gpace istwo-scale refinable, namdy
S(F)1 s(F)™. (12

One then sdects acomplementary set of generators, o cdled wavelets, Y sotha

12 _

S(F) "=s(F)+s(Y). (L3

It is easy to see that (13) can be dilated to any given scdle J1 Z thatis,

2J+1 ZJ+1

S(F)” =s(F)" +s(Y)
Asume 2T S(F)” sothat £ = £72+ £, where £211 S(F)”, £ S(Y) . Then,
playsthe role of alow resolution gpproximationto f., while f,’* isthe difference between the two, the
detal. Typicdly, if 7 isasuffidently smooth functionor J issufficiently large, then 7! » 2 and

" » 0. Under certain conditions (1.3) leads to awavelet decomposition

2—J+2

S(F)” =s(Y) +s(Y) T4s(Y) 4., (L4)
ie,ay 71 S(F)ZJ POSSessEs a decomposition
fFJ - fYJ-1+ fYJ»2+ fYJ—S oen (15)



In gpplications, FS spaces are used asfollows. Let f be somesgnd that one wishesto
goproximate. Using property (1.1), one chooses afine enough scale J 1 7 and computes an
goproximetion

f» 1 S(F)” . (16)

In some gpplications there is no need to further decompose the approximation .’ into the wavelet

aum (1.5). Typicd examples are curve and surface (linear) gpproximationsin CAGD or re-samplingin
Image processing. However, the wave et decomposition (1.4) is effective in gpplications that require a
compact representation of the sgna such as compression, denoising, segmentation, etc.

Let S(F,) beanon-refinable FS space. Namdy, S(F,)E S(F,)"”. There are many examples
of non-refinable FS spaces that perform well in gpproximations of type(1.6). In fact, thereisan
interesting recent congtruction [BTU] of shift invariant spacesthat are “ optima” in some approximation
theoretica sense and are not two-scde refinable. Neverthdess, we would il like to decompose the space
S(F O)ZJ into asum of difference (waveet) Spacesin the sense of (1.4) (see [CSW] for a different
approach). Since our FSI spaceis not refinable we need to replace S(F,) by adifferent space S(F,) to

play the role of alow resolution space and a(wavelet) space S(Yl) to serve as a difference spacein a
decompogtion smilar to (1.3), namdly,
S(F,)"*=s(F,)+s(Y,).

In thiswork we show that such meaningful decompostion techniques exist. They alow us, to

further decompose S(F,)"* = S(F, )+ S(Y ,) and so on and to obtain a non-stationary wavelet
decompogtiongmilarto (1.4), i.e,

2" J+1 2—J+3

rS(Yof e

2—J+2

S(Fo)" =S(Y,)" +S(Y,)

Thus, the (non-stationary) sequence { F
{Y}. Thesequence {F
wavelets. It isinteresting to note that our techniques enable us to recover the stationary choice F | =F
Y, =Y ,whenever S(F,) istwo-scderefindbleand S(F,)"* =S(F,)+S(Y).

Ancther interesting question addressed in this work isthe following. Let S(F ) be an “optimal”
non-refinable FSI space under some approximation theoretical gauge. Obvioudy, if S(F,) hasan
“optimal” approximation property, no constructed S(F,) 1 S(F )" can inherit this exact property. One

then asks how close are the approximation propertiesof S(F,) tothoseof S(F ,)? Another question is
the following. In what way (if any) are wavelets that decompose dilations of “optima” non-refingble FS

gpaces better than known existing wavelets?
In Section 2 we present the basic theory on the Structure of shift invariant spaces which serves as
framework throughout the work. We aso present some new “regularity” results that are required for the

J} isameans to obtain the non-tationary wavelet sequence

} is dso usad to determine the (linear) gpproximation properties of the
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wavdet condructionsin Section 3.1 In section 3 we congtruct non-gationary wavelet decompaositions of
shift invariant spaces which are not required to be two-scae refinable. There are two such congtructions.
The Superfunction waveet congtruction described in Section 3.1 isingpired by the superfunction theory
of [BDR1], [BDRZ], [BDR3]. In Section 3.2we introduce Cascade wavelets. Ther congruction exploits
properties of the Cascade operator (see for example [D4]). In Section 4 we fir st present results on
goproximation from shift invariant spaces. We then proceed to judtify the condructions of Section 3, by

showing that our non-stationary sequence {F |} inherits the approximation properties of the decomposed

non-refinable shift invariant space. Consequently, the non-gtationary wavelet sequence { Y J.} goan“detal
gpaces’ and are therefore suitable for sgna processing gpplications.

2 Shift invariant spaces

Shift invariant spaces are a specid case of invariant subspaces in Banach spaces. Here we use the
framework of [BDR2] and present results that are required for the congtructions in Section 3.
Definition 2.1 Forany kT Z¢ we denote the lineer shift operator S, by S (f):=f (% k).

Definition 2.2 Let V' be aclosed subspaceof L (Rd) ,1£ p£¥ .Wesay that V isashift invariant

(Sl) speceif itisinvariant undertheoperators{SK| k1 Zd} .Wesay that aset F generates V if

V =S(F)=span{f (x k)| f 1 F,ki 2} Wesaythat V isafiniteshift invariant (FSI) space, if there
exigs afinite generating st F |F| =n,suchtha V = S(F ) Insuch acasewe say that V isof length

£n. Wedenote len(V):= min{|F| | V =S(F)} .AnSl space V iscdled aprindipal shift invariant
(PSl) spaceif len(V) =1.

To gpproximate functions with arbitrary precision one uses dilates of shift invariant spaces. For a
given subspace V and h1 R, wedenoteby V" the dilated space

vh={f (¥h) | £TV},

We note that isif S(j ) isaPSl space, thenfor j 2 0, S(j )Zj isaFS spaceof length 29 .
We now restrict our discussonto L, (Rd) . Itiswdl known that Fourier techniques gppear

naturdly in the andyss of S spaces. Thefollowing is Smple characterization of S gpacesin the Fourier
domain.

Lemma2.3[BDR2] Let S(F ) bean FSl subspaceof L, (R®) andlet f1 L,(R?). Thenthefollowing
are equivdent:

1 f1S(F).



2 Thereexist T ¢ - perlodlcfundlons{ } suchthat f = Qt,f .

f1F

We see that we can regard the generators of an FSI space as vectors spanning afinite dimensiond
vector space, with periodic functions playing the role of coefficients in the representations. Thus, we turn

to Fourier based techniques. For each 1 L, (R?) we denote

fo=(f(wr2ok) 0 wiTe
Thebracket operator [ ]: L,(R")" L,(R*)® L,(T°) isdefined by

gf’@8(W)::<flw’éIW>.z(Zd)’ wi T

A

It is easy to see that the Fourier expangon of gf ; 98 is

gf,ég(w)~k%d<f g (% k), L) v, (2.2
Obsarvethat if f, g are compactly supported, then the bracket gf G4 isatrigonometric polynomia and
sowehave an euality in (2.1). For f1 L,(R?) thefuncion [ £, f]7 L, (T ) iscaled theauto-

correlationof f . Auto-corrdaionsplay amgor rolein our andydss. They are usad in the definitions of
dability condants, error kernels and “fing’ error estimation congtants. Our andysis requires the following
smple result on the convergence of auto-correations.

Lemma 2.4 Assumethat r | (% )f such that supp (f ),supp(rj)l' W where W is a bounded domain.
L, (RrY

Thenforany m3 0 we have the convergence

5 Py @ g Fimy
SRS B 22

Proof It is easy to seethat we also have (3 r | ?)d (3"f for ay m3 0. By virtueof (2.1) we havethat

gA(m) fm u, gfﬁ ™, () U are trigonometric polynomials of uniformly bounded degree. Therefore, the

convergence of the Fou |er coefficients

(€778, =097, ", (1) @, (971 10" (b= (617117,

implies the convergence (2.2).



We now proceed to present “regularity” resultsfor shift invariant spacesin L, (]Rd) . The

moativation for working with regular shift invariant gpaces comes from gpplications where it is required to
have a gable representation or gpproximetion of Sgnds. Stability implies thet small changesin the input
function do not change much the representation and smal changes in the representation change the
recongructed function only alittle. We begin with definitions and notions from [BDR2].

Let S(F ) bean S| space The range function associated with S(F ) is

I (w)= span{f]w |1 F} 23
The spectrum of S(F ) is defined by

s S(F)::{WT 'H‘d| dimJS(w)>0}, (24
or equivdently
s S(F) ::{WT T¢| & .fY(w)* O, for somef 1 F}_

It can be shown ([BDR?2]) that the range and spectrum of an Sl space are invariants of the space. In

particular they do not depend on the generating set. If dimJg (W) © const ae wesay that S isregular.

Observe thet regularity implies afull spectrum. In the other direction, afull spectrum implies regularity

only inthe PSI case. We say that F isabasis for S if foreach f1 S(F) there are periodic functions t,

where f = t,f andt, areuniquely determined. Obsarvethat if T “\s S(F ) isof positive measure
ar

then S(F ) doesnot have abasis The set F iscaled astable gener ating set or astable basis (for its

span) if there exist constants 0< A£ B< ¥ such that for every c:{cfyk}fTF il IZ(F ’ Zd)
2
Al 2] & ad (k) £B[d ). (25)
flF KIZ Lz(Rd)

It can be shown that a Sable bassisindeed abasis. Since stable bases are necessary for gpplications, the
next result leads towards the congtruction of regular spaces.

Theorem 2.5 [BDR2] Let S(F ) bean FSI space. Then S(F ) isregular if and only if it contains astable

generating s&t. Furthermore, an FSl spaceisregular if and only if it is the orthogona sum of Ien(S(F ))
regular PSl spaces.

We recal the connection between the definition of gability (2.5) and the notion of the range
function (2.3) for the ample case of PSl spaces (see [RS] Theorem 2.3.6 for the generd case of FS
Spaces).

Theorem 2.6 [Me] A fundtion f T L, (R*) isstableiff thereexist 0< A£ B<¥ suchthat
ALY FUEB ae



Assume that we have congtructed a non regular FSI subspace S(F m) of aregular FSI space
S(F,) sothat
len(S(F ,))=m<n=len(S(F ).

We can certainly define S(Y') asthe orthogona complement of S(F ,,) in S(F ) such that
S(F,.)As(Y)=s(F,).

But the decompogtion will have two undesirable features. Firdt, there is no choice of generators E;,V

ot S(F,) =S(F ), S(Y)=5(Y) ad {F Y} isstable Secondly, the decomposition may be

somewhat redundant, namely, len(S(Y ))> n- m. Wewill show that this can befixed by constructing

S(F¢) suichtha S(F,,) I S(F¢)1 S(F,), len(S(F¢)) =m and S(F¢&) isregular. In doing sowe

ensure that the orthogona complement isaso regular and of length n- m. Hence, such acorrection can
produce a stable and efficient decomposition of S(F ).

Lemma2.7 Let S(F) bearegular FSI spaceand let r T S(F) . Thenthereexistsj T S(F ), such that
S(r)i S(j ) ad S(j ) isaregular PSl subspace of S(F ).

Proof If S(r) isregular, we are done. Otherwise, by Corollary 3.31in [BDR2], we may assume the
decomposition S(F)=é18(fi) sothat each S(f,) isa(regular) PSl subspace and the shiftsof f; arean
orthonorml basisfor S(f; ). Therefore there exists a unique representetion = § t f, with t, periodic
i=1
functions Since § |.f, H(W) =d,, for 1€ j,k £ n wehavethat [ ] -4 k[ adso
i=1

sS(r)=qupp(ti).Definej 1 S(F) by

D B i1 wi T\sS(r),
J _t1¢1+§2tifi1 th(w)_’i‘tl W) else

Then [j","] :|tl¢2+§n_ It and we can condlude the following. The space S(j ) isregular since
i=2
s S(j ) =supp([i*"]) = supp(t Y U( Jsupp(t,)
i=2

=(T“\s S(r ))Usupp(t 1)Ugsupp(t )



=(T*\s S(r))Us S(r)
=T¢.

Frelly, 7 =c,,j" impliesthat S(r) i S(j ).

Lemma2.8Let V,U beFSl spaceswhere V i U . Then len(V) £ len(U).

Proof Thisisadirect consequence of the fact that the shift and orthogond projection into an Sl space
commute. Thisimpliesthatif F ={f } generate U , then {Rf,} generate V.

Theorem 2.9 Let U bearegular FSI. Then for any FSI subspace S(F ) | U of length m there exists a
regular subspace S(Fm¢) of length m suchthat S(F ) I s(Fm¢) [u.

Proof The proof isessentidly a Gram-Schmidt type congruction, where we congtruct the “ correction”

S(F m¢) as an orthogona sum of regular PSl spaces. We use induction on the length |Fm| =m. Thecase
m=1 followshy virtue of Lemma2.7. Assumethedamistruefor k <m. Denote F ., :{f peeorf m_1} ,

where F , ={f,,....f .} . Then by theinduction hypothesis there exists a regular FSI subspace S(F m,l¢)
such that

ad Ien(S(F m_lﬂj) -

by W, ,, isaregular FSI spece. Let S(y ,,):= P, S(f ,,). Observethat S(y ,,) isnot trivid sncethis
woudimply S(F ) 1 s( Fm_1¢) which by Lemma 2.8 contradicts len(S(F ,,)) =m. Using again Lemma

S(F o)1 S(Fm_1¢)i U,

F mﬂ =m- 1. By [BDRZ] the orthogonal complemertin U of S(F m.1¢)  denoted

2.7, we can find aregular PSl space S(f m¢) such that

Sy o)1 S(f m¢)|’ W, ,.
Snce by Theorem 2.5 the orthogond sum of two regular FSI spaces is regular, we have that S(F m¢) ,

F ¢=F @t Yisaregular FS subspace of U . To condlude, observe that S(Fm¢) also possesses the

required properties of minimal length, Ien(S(qu:)): Fmizm andthat S(F ) I S(Fm¢).

Next we discuss the specid structure of the orthogond projection into Sl spaces.



Lemma2.10 [BDRZ] Let F beabasisfor an FS space S(F ) andlet f 1 Lz(Rd).Thentheorthogond
projection PS(F)f isgiven by

s det G, ()
=7 _fTaF detG(lf) ’

~

(2.6)

A~

where G(ﬁ):(é Yy 8)MF and GfA(f) is obtained from G(If) by replacing the f -th row with
(gf’yA B)yTF.

Inthe PSl case the formulafor the orthogond projection (2.6) leads to the definition of the natura dud.
Foray f 1 L,(R),thenatural dual f is defined by its Fourier transform

f=—r, 27

wherewe interpret 0/0=0.
Equation (2.6) impliesthat inthe PSI case Py, T = gf ,f%fA . Transforming thiss back to the “time

domain” we obtain the well known quiasi-interpolation representation for the orthogona projection,
namely,

Py f= & (F.F (< K)Y (< k). 28)

ki z

AnFSl space V iscdled local if there exig afinite sat of compactly supported functions, F
such that V = S(F ). In applications compactly supported generators are frequently used to minimize the
time and pace complexities of the agorithms. An example is Daubechies [Da] congruction of
compactly supported orthonorma wavelets. Observe that aloca FS isdways regular ([BDR2]). We
require the following result on the specid case of orthogona projections of locd S spacesinto locd S
Spaces.
Theorem 211 Let V,U beloca FS spaces. Then the orthogond projection of V into U isalocd FS
subspace. In particular it isaregular FSI space.
Proof Let U=S(F),V=S(Y) besothat F,Y arecompactly supported generating sets for U,V
respectively. Using the commutativity of the orthogona projection into an S space and the shift operator,
wehavethat RV =R S(Y )=S(R Y ). Thus it sufficesto provethat foreechy 1 Y , thereexists a
compactly supported functiony & U , suchthat S(y @ = S(Ryy ). By virtue of (2.6) we have

o OetG-(Y')

V= Gaelf) “



Sncetheset F iscomposad of compactly supported functions it follows from (2.1) that the eements of
theGramian G(If) are trigonometric polynomias Thus, detG(If) isdso atrigonometric polynomid so
thet detG(F )2 0 ae on T*. Lety & S(Ry ) bedefined by its Fourier transform, y := det G(F ) Ry .
Then the congtructed generator y ¢ has the required compact support property. Indeed, from (2.9) we have
the representation y ¢= § det G- (y")f whereeach detG; (y) isatrigonometric polynomil. This meens
f1F

that y ¢ isafinite sum of compactly supported functions hence it is compactly supported. To conclude we
obsarve that since detG(If) 10 ae, wehavethat Ry =(detG(F)) "y ¢,thus S(y 4 =S(Ry ).

The fallowing theorem is the main result of this section. It provides meaningful decompositions of

FS spaces with good gpproximation properties to an orthogona sum of two FS subspace. Naturdly,
there are many way's to represent FSI spaces as a sum of two FSI subspaces. But our congtruction issuch

that the first subgpace inherits the good gpproximeation properties of the decomposed pace, so that the
second subspace is a difference (wavelet) space. The key to the congtruction isthe use of an auxiliary

reference space. The underlying principa which judtifies this gpproach is* superfunction theory” [BDR1]
and isdaborated upon in Section 4.

Theorem 2.12 Let U, bea(locd) regular FSI spaceof length |, 2 2. Let V bea(locd) FSl space of
length 1£ 1, <, . Then U, can be decomposed U, =U, AW, such that:

1 U, isa(locd) reguar FSl spaceof length |, =1, .

2 W isa(locd) regular FSI space of length 1, =1, - .

3 WAV.

Pr oof

1 LetU, =R, V.Notetha U, isan FSl subspace of U, with len(U,) £ min(l, 1, ) =1, . Without loss
of generdity, U, isregular, otherwise, by virtue of Theorem 2.9, we can replace it by aregular
subspace of U, containing U, and of the same length, which we will continueto cal U, . Observe

thet in the “local” case, Theorem 2.11 impliesthat U, islocd.
2 Snce Ul is (locd) regular, by (Theorem 3.38) Theorem 3.13 in [BDR?2] its orthogond complement in

U, denoted by W, is (locadl) regular and of length g, 3 1y, - I - Let W, :S( Y IWi) where
S(Y 1,---y ;) is(locd) regular for 1£1 £ |, - By Theorem 25 it is aiways possible to find a
generating set with thet property. Define W, := S(yl,...,y 'm) where I, =1, - I, . Thendealy
WAV,

10



3 We conclude the congtruction by setting U, to be the orthogond complement of W, in U,,. By
(Theorem 3.38) Theorem 3.13in [BDR2], U, isa (locd) regular subspace of U, of length
by, =y, - by =1y

Example 2.13

1 Lefy beatyknown par of univariate semi-orthogond scaing function and wavele, eg., B-
lines and B-wavelets [Ch]. Define U, = S(f ) and V = S(f ). Then, since S(f )1 S(f )™, the
above congruction recovers the (refinable) decompostion

S(f)A s(y ) =s(f ). (2.10)

2 Let S(r,) beaunivariate regular PSI space thet is not refineble. Assumethat 1, provides L,
approximation order M. Sdlect Uy =S(r, )%, V = S(r ;). Then the above construction finds a
decompogtion

s(r.)As(y,)=s(r,)", sly.)"S(r),

which in some sense mimics the refinable decompaosition (2.10). Furthermore, we show in Section
4.2that r, inheritsthe goproximation order m from 1, whilethewavelety ; has m vanishing
moments.

3 Non-stationary wavelets

Our firg results are smple modifications of the classicd “symbol gpproach” to wavelet
construction for the non-refinable setting. Assume r T S(j )" wherej T L, (R?) isstable Definethe

symbol
P(w):=2°84 pe™, where r = & pJ (2% k). (31

A K z¢
To judtify the pointwise vdidity of (3.1) and resolve technicd difficulties concerning convergence, we
require that these symbols be teken from the Wiener dgebra Namdly, f1 L, ('JI‘ d) isin theWiener
Algebra (f TW )if its Fourier coefficientsarein 1, ().

The following partitioning of the lattice Z® , known to be useful in the analysis of refineble
functions, isdso useful in aur norHrefinable setting

z¢=|J(e+22°), E,:={03". 32

d &

We begin with a“gability” lemma (see [Ch] Theorem 5.16 for the univariate case).

1



Lenma3.1Let r T S(j )"* haveasymbol PT W such that

a|P W+pe)| >0, "wiT?
e Eq

adassumethatj T L, (Rd) isstable Then 1 isastable generator for S(r ).

Proof The proof for the univariate casecan befound in [Ch] Theorem 5.16. To obtain the proof for the
multivariate case one uses the lattice (3 2).

We observe that the following result, which iswel known for therefinablecase r =j , isdill
vdid for the more generd case.
Theorem32Letj 1 L,(R) beabassfor S(j ) andlet ry T S(j )**. Assume P,Q1 W where P,Q
aethesymbolsof ry respectively. A necessary and sufficient condition for{r ,y} to be abassfor
s(i )% is
Deg (W):=P(w)Q(w+p)- P(w+p)Q(w)? 0, "wi T . (33
Furthermore, if ] issteble then r andy are stablebasesof S(r) and S(y ), respectively.

Proof The proof bascaly follows the method of [Ch] Theorem 5.16 with the observation thet refinability
(r =] ) isnot required.

Next we discuss the special case of adecomposition S(j )%= S(r )+ S(y ) , with the aoditiona
orthogondlity congtraint S(r )~ S(y ).
Definition 33 Letj 1 L, (R)andr y T S(j )**.Incase S(r)AS(y )=5S(j )"*, wecdl the
decomposition semi-orthogonal and r )y asemi-orthogonal pair.

Note that the term semi-orthogonality comes from thefact that S(r )~ Sy ), but the shiftsof r

respectively y , are not necessarily orthogondl to each other. Assume r hasatwo-scdesymbal PT W
so that

() EBNO awvo

82z &2y

Recall that the natural dua  (see (2.7)) can be used to compute the orthogona projectioninto S(r ) .
For the dud we dso have the following dud two-scde relation




Hence r =G’ (2‘ l><)j:(2'l><) where

o i
G =—F7—=P. 34
[F.71(2)
Denating .
G=G, (35

it is easy to see that we have the dudity relation
P(w)G(w)+P(w+p)G(w+p)° 1. (36)

Equipped with the notion of the dual symbol, we now characterize the univariate semi-orthogond
(wavelet) complement of agiven generator in aspace of type S(j ).

Theorem 34 Let r 1 S(j )""* withatwoscdesymbol PT W, where] and r are stable. Assume
further thet GT W , where G isdefined by (3.5). Then,y T S(j )"'* isastable semi-orthogondl
complement such that S(j )™* =S(r )A S(y ) with atwoscdesymbol Q1 W if and only if

Q(w)=€"G(w+p)K(2w), (37
where KT W doesnotvanishon T .

Proof The proof issmilar to [Ch] Theorem 5.19.

Using the above we can dways complement any generator by a semi-orthogona counterpart. In
paticular, in the case of locd gpaces, this gives us amethod to congruct a (minima) compactly supported
generator, as donein [Chy, by aproper sdlection of the periodic function K . Namely, assume) ,r are
gable and compeactly supported and thet the symbol P of r isatrigonometric polynomid. By (3.4), the

choice K =[r", ] in (3.7) leads to the following two-scale symbol

Q(w)=-e™[i"i](w+p)P(w+p). (38)

Itiseasy to seethat for compactly supported | ,r , the above symbol produces a complementary
compeactly supported wavelet.

We conclude this section with the following observation. Let j  be stable and two-scae refingble
suchthat S )1/2 =S(j )+S[y ) isadecomposition where P, Q arethe corresponding symbolsof | y .
In image coding applications perfect recongtruction subband filters banks derived from the symbols P, Q
are used in discrete settings (see Section 7.3.2 in [M]). In many gpplications, one is not required to

understand wavelet theory but Smply to implement an efficient discrete filtering process. Furthermore,
computationa steps, that seem necessary according to sampling theory, are ordinarily neglected (seethe

13



discussonin [M] pp. 257-258), but Hill good coding results are obtained. How can one explain this
phenomenon? A plausible explanation can be given using the results of this section. Asiswdl known in
the sgnd processng community, the *perfect recongtruction decompostion condition” (3 3) isa property
of the symbols P, Q and does not depend on the generator | . Assumethat condition (33) holds for the
two-scale symbols P, Q and replace the generator | by some other stable generator r , which need not

berefinable. Then, by Theorem 3.2, the fundtions r .,y , T S(r ;)" that haveP, Q astheir two-scale

symbols are abassfor S(r 0)1/2. Thismeansthat (3.3) isauniversa property of the two-scae symbols

P, Q and the subband filters derived from them, regardiess of the underlying functions. Furthermore, we
will seein Section 4.3 that if in addition, the symbols P, Q have certain gpproximation properties, then

the corresponding besis { .y ,} provides a decomposition which is meaningful in the context of wavelet
theory, whenever S(r ) has good gpproximation properties.

3.1 Non-gationary Superfunction waveets

In this section we present the congruction of non-gationary waveletsinspired by the
superfunction techniques of [BDR1]. In our case the projection is done from a stationary reference space,
but the superfunction and wavelet gpaces are non-stationary. The abstract decomposition of Theorem 2.12

dready tells usthat, given areasonable FS space U , we can decomposeit into U :U1AV\{ usng a
reference space V , with len(V ) <len(U ), suchthat W~ V and U,,V are of the same length. The

heurigtics of the superfunction decompositions presented in this section is judified in Section 4.2 where
the approximetion properties of the decomposition subspaces are discussed in detall.

Theorem 35 Let U, 1 L,(R*) bea(locd) regular FSI space. Let V' bea (locdl) FSI space with
len(V) =len(U,) . Then there exists a sequence of subspaces U, , W, j 3 1 such that

1 U, andW, are(locd) regular FSI spaceswith len(U; ) =len(U,), len(W, ) =(2°- 1)len(U,).
2 UAw =U"%.
3 WAV,

Proof Sincedilaionby 277, j 3 1, preserves the property of (localness) regularity, U;’? isa (locd)
regular FSI of length 2°len(U,) . By Theorem 2.12, U¢"? can be decomposadinto U =U, AW, where
len(U,) =len(V) =len(U,), W " V and such that U,,W| are (local) regular. We now continue and

decompose U2 in the same manner. By repested decomposition we obtain an half -multiresol ution with
the required properties.

Corollary 36 Let U, 1 L, (R") bea(loca) regular FSI space. Let V bea (locd) FSI space with
len(V) =len(U,). Thenfor any sclle J 1 Z we have the following formal wavelet decomposition

14



. J-1 i
Us =AW, (39
]:.

where W, := S(Y j)" V , aenon-dationary (loca) regular wavelet spaces.

Clearly, the fact that we congtruct only haf-multiresolutionsis not ared redtriction. By dilating
the construction to any given (fine) scale, it can be used to approximate any functionin L, (R*) atany
required level of accuracy. Also, since we have ensured that each wavelet space W, isregular, by
[BDRZ] Corallary 3.31, one may sdlect for each j 2 1 an orthonorma wavelet basisfor W, . From the
orthogondity W, * W, for j* k, any sdlection of orthonormd bases Y ; for W, (with the appropriate

normalization) provides an orthonormal besisfor UZ ", JT Z.
Next we discuss actud congructions thet redlize the decomposition of Theorem 3.5. There aretwo
drategies we can employ. Fird, we can follow the method of Theorem 212 by condructing the

superfunction spaces U, using projection and then complementing them by the wavelet spaces W, . The
second approach isto congtruct the wave et space firg usng methods mostly applied for wavelet
constructions over (multivariate) non-uniform grids (see [LM], [LMQ)). Letj ,f T L, (R) suchthat
supp(j )1 €0.m g, supp(f )T €. m gwith m ,m T N.Wewishto find compactly supported

vz _

generatorsr y sothat S(j ) =S(r JA Sy ) and S(y )~ S(f ). We begin with the construction of the

1/2

wavelety . Assume supp(y )T [0y], yT N.Sincey T S(j )
uknowns {q,}.”" where

, We need to compute 2y - m +1

P
y = a aj (2xk).

k=0

The assumption that supp(f ) I €0, m p impliesthefalloning y +m - 1 consiraints

& .fF (> j))=0, j=1-m,..,y-1,

In order to have a norHrivid solution, the number of congraints must be grictly smdler than the number
of unknowns. Thus,
y+m-1 +1£2y-m +1.

%/_/
number of orthgonality constraints number of unknowns

The smallest posshlevaue y = m + m - 1 leadsto the following definition fory - (up to amutiplicative
constant)
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ge<f1-m y 0> <f1_m ] 2””’”'2> 9
g <f2-m d 0> <f2'm’j 2“”“'2> :
y (X)Zdetg : : :’
g<fm+m-2’j 0> <fmf+m-2’j 2m+"1'2>:
g jo(x) j2m+n’]—2(x) B

wherewe have denoted f :=f (x k) j . =] (2% k). Weseethat q, =(- )" “d, wheretheminor d, is
defined by the Gram matrix

frsm 2O
o SRy (3.10)
ke Sk v L oamem 2 g

ab,
d, :=detGramg
é] 0

Thus, we obtain the following result.

Theorem 3.7 Let f j T L, (R) where, with supp(j )1 €0, m §, supp(f )1 g0.m g, 2Em .m 1T N,
Assume that the sequence { d } " ”" ~* defined by (3.10) is not identically zero. Then for
n]+c2>n}-2 )
y = & qj (2%k),q =(-1)" "d, wehavetha S(y )" S(f ) and [supp(y )| £ m +m - 1.
k=0

Example 3.8
1 Letj =f =N,,where N, istheunivariate B-spline of order m. Then (see[LM]) the B-splines
fuifill the conditions of Theorem 3.7. Since [supp (N, )| = m, we recover the resuilt of Chui that the

support of the B-wavdet (minimaly supported semi-orthogona wavdet) is of Sze 2m- 1.
2 Letj =f =OM, where OM,:=N, + N#42 . This generator, congructed in [BTU], hes “optima”

approximation properties, but is not two-scale refinable (see Example 4.6). Then, y ,1 S(OM )™
10

definedby y , =8 g,0M, (2% k) with { q} given (up to amultiplicative constant) by the table
k=0

below, is steble and fuilfills the orthogondlity condition S(y ,) * S(OM,) .

K Qy

0,10 -0.000347466
19 0.011939448
28 -0.099178639
37 0.374225526
46 -0.786638869
5 1.000000000
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Even before the andysis of gpproximation properties is presented, it iseasy to seethat y , hasdl the
required properties of awavelet:

The coefficients { g} oscillatein sign.

The coefficients { g} as*high pass’ filters have four vanishing moments

Thefunctiony ; hasfour vanishing moments.

In fect, with the right normaizations, the fifth (non vanishing) moment of { g} ory , isdoser to zero
than the corresponding one of the cubic B-spline wavd et with the same support sze.

Sill, according to our theory, thewavelet y , congructed in Example 3.8 is only the first wavelet in a
series of non-gationary wave ets that must be congtructed if one wishes to decompose spaces of the type

S(OM4)ZJ . The next waveets in the sequencey , Y ;... dill havefour vanishing moments and aswe

shdl see, thair fifth moment remains closer to zero than the fifth moment of the cubic wavdet. In such

examples, the price pad for removing the refingbility property is that the support of the constructed
waveets might grow.
Oncethewaveety iscondructed, one may congtruct a complementary “superfunction” as

follows Assume|supp(y )| £m +m - 1 suchthat S(y )~ S(f ). Now we assume the condiitions of
Theorem 3.7 again, thistime dlowing y  to play the role of the reference generator. This leads to the

construction of agenerator 1 T S(] )1/2 with S(r )A S(y ) =S(j )1/2 and

supp(r)|£m +m, -1£m +(m +m - 1)- 1=2m +m - 2.

Observethat S(y ) S(f ) implies Py )ms(f )i S(r).Sinceby Theorem 2.11 P, )Ms(f ) isaloca
PSI space, Corollary 2.6 in [BDRZ] impliesthat S(r ) = Py S(f).

3.2 Non-dationary Cascade wavelets

It iswdl known that the cascade operator can be used to obtain a refinable function corresponding
to asubdivison scheme, or equivaently, asolution of atwo-scae functiond equation. Given amask

P={pg .  weddfinethe cascade operator C by

Cf:=Q p.f(2xk).

K z¢

Starting with aninitial function r T L, (R*) oneiterates 1 ,, =Cr .
For our congtruction we require the genera results of [R2] on the cascade operator. We have an
initid generator r ,, possbly not refinable, but with good gpproximation properties. We would like to

decompose the space S(r O)ZJ , corresponding to a certain scde J , into a sum of meaningful wavelet
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subspaces. By carefully choosing an gppropriate cascade operator and gpplyingitto r,, weobtana
sequence of generators 1| =C 'r , such that:

1 Thesequence{rj} convergesin some (or dl) p -metricsto arefinable function f which isa“fixed
point” of the operator C .

2 Thespaces{S(rj)} sdisfy anesting property, i.e., S(rj)i S(r ,-.1)

1/2

Such a cascade sequence can be usad to congtruct a“wavelet type’ decomposition of the space
S(r,)° " inthefollowing way. First we construct for each level j ° 1 acomplement FSI space S(Y,) of

length 2° - 1 so that S(r j)A S(Y J.)= S(r J._1)1/2. Once such a non-gtationary sequence of spacesis
found we can (formally) decompose

T>ow

s(ro)” =As(v, ).

1

Theorthogondity S(Y )~ S(Y ) for j * k smplifiesthe consiruction of astable basisfor S(r,)” .
Indeed, we will congtruct wavelet generators Y | that are astable basis for S(Y J.) with stability constants
A, B, which are uniformly bounded from below and bove, i.e, 0<A£ A £ B £ B. Then, fromthe
orthogondlity S(Y j) A S(Y ), we canimmediately derive that their union is astable basis fa S(rO)ZJ :

with gability congtants bounded from below and above, respectivey, by A,B.
Thefollowing isasmple form of Theorem 328in [R2].

Theorem 39 [RZ Let f T W."(R?) be atwo-scale refinable and stable generator for S(f ). Denote by
C:=C (f ) the corresponding cascade operator. Let g be abounded stable compactly supportedfunction
forwhich - §=0(| x[") neer the origin. If the shifts of g provide approximetion orckr 3 m, thenthe
cascade agorithm converges at the rate

"(C ig -f ||Lp(]Rd) £ AJZ- i) )

We see that by acareful sdlection of the underlying refingble function f  we not only ensure convergence
of the cascade process, but we can aso estimate the convergencerate. For example, atypica gpplication

of Theorem 3.9 in our setting for the univariate caseis asfollows. Let 1, = (1 + D) N,, beastable
generator where N, isthe B-splineof order m and D is some homogeneous differential operator of
degree n £ m- 2. Sdlect the cascade operator C (Nm) . Then, near the origin we have

‘(NAm F\O)(W)‘ £C|w|. Asweshall see, 1, provides the same approximation order as N, and therefore
the conditions of Theorem 3.9 are stified.

18



In contrast to the convergence accd eration sought in [R2] using asmart choice of initid seed, in our
settings there are cases where dow convergenceis preferable. Aswe shdl seein Section 4.3 thisisthe

case Wwhenever theinitid function 1, has better properties then the limit function f . In such acasethe

first few levels of the cascade process have properties that are “closg”’ to the properties of theinitia
function. Thisis useful in gpplications, sncein practice only thefirgt levels of the cascade are used.

Definition 3.10 Let r , beaninitia function for the cascade process C  defined by arefindble f . Let
r; =C’r, and assume Ijl®rg||r (- f ||L2(]Rd) ® 0.Weddl any ssquence { Y |} suchthat {r ,,.Y .} isa

besisfor S(r | )1/2 a Cascade Wavelet ssquence.

For the rest of the section we assume that the masks of the cascade operators are finitely
upported, hence aso the corresponding refinable function. We now show that the cascade process

interpolatesthe stability of the endpoints  o,f .
Theorem 3.11 Let r T L, (R") beasteble compectly supported initial function and let C - be a cascade
operator associated with asteble f T L, (R®). If lim|r , - f

j® ¥

(5 =0 where 1 ; =C'r , then there exist
uniform stability congtants 0< A£ B< ¥ such that AL, r g£B fordl j2 0.
Proof For j2 0, let A, B, bemin/max vauesof g |, 1", gj. Since the Cascade mesk isfinitely

177

supported, by Lemma 24 we have the convergence A ® A, B, ® B where A B arethemin/max
values of gA,fAH.Thus, we need only provethat eech A >0.
Tothisend, let P(w)=2¢§ p,e™ bethetrigonometric polynomia correspondiing to the finite

K z¢

mask of the cascade operator C . Since f  isstable, we have

& [P(w+pe)[ >0, "wiT?, (3.11)

where we have used the lattice decomposition (3.2). Indeed, otherwise P(w;, +pe) =0, " el E,, for
some w, T T °. Then, by the refinability of f

A A

& 1 U(2w)= & [P(wo+pe) & . Yw,+pe)=0.
d E,

Sincef iscompactly supported, gA,ng is atrigonometric polynomia and by Theorem 26, this
contradicts the stebility of f . We can now apply Lemma 3.1 inductively to obtain thet esch A >0.

Animmediate consequence of the bounds obtained in Lemma 3.1 and Theorem 3.11 isthe fallowing.
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Corollary 312 Asumetha d =1 andlet r, and f beasin Theorem3.11. Assume further that

ﬂ S andlet {y j} be a univariate Cascade wavel et sequence such that

S(r ,+1)AS( 1+1) S(r )1/2 fordl j3 0. If thetwo-scae symbols of the wavelets satisfy

1 QIW with ||Qj||C(T)£B¢<¥,
and

2 |Qi (W)|2 +|Q; (W’fID)|2 3 AC>0,"WI T,

thenforany J1 Z thedilated non-stetionarywa/eletset{z(J'j)’zy (277 % k)}, ., isasiable basisfor
21,

S(ro)* .
Next we use the generd tools presented at the beginning of this section to congtruct, for a
univariate cascade sequence { r j};, a sequence of semi-orthogond Wavelets{y ,—}T:l for which the

conditions of Cordllary 3.13 hold.
Assume r , and f areasin Theorem 3.11. Fallowing (3.4) and (3.5) we definefor j3 1

G —M— a1
e H2)
Snce grAj,rAj H>O isatrigonometric polynomid for j 3 0, by Wiener’slemma[K], we have that
~ . 1/2
G| W foreach j2 1.By Theorem34, any wavelety ; such that S(r J.+1)AS( Jﬂ) S(rj) has a
symba Q; of the form
Q (w)=€"G (w+p)K; (2w), 313

where K].T W never vanishes. Recall that in thisloca setting we can use (38) tod1oose{ KJ.} S0 that
{Qj} are trigonometric polynomials and thus construct {y j}with compeact support. For each j 3 1 we
sdecty’, =Q, (¥2)r,_,(¥2) where

Q(w):=€" g .7, H(w) P (w).

Thisisequivelent tothe sdlection K, =&, r“jH'l in (313). Wedready know that y ; isasemi-
orthogond complementto 1| sothat S(r ;)A S(y, )= S(rj_l)llz.Also, observe that since the auto-
correlation gfj_l,fj_lﬂ and P aretrigonometric polynomias sois Q;. Thus, the{y J.} ’s have compact



support. Furthermore, we can uniformly bound their support due to the convergence r ; ® f - and the fact
that we are usng afinitely supported cascade mask. It remains to show that the conditions specified in

Corallary 3.13 on the wavelet symbols are met. To thisend, by Theorem 3.11 thereexist 0< A£ B< ¥
suchthat foreach j3 0 wehave

ALE.f JEB. (314)
Hence

"Ql (W)||¥ £

§ 2, [P £ BJP, =B<¥. 315

Also, (3.14) together with (311) imply

|Qi (W)|2 +|QJ (w+p )|2 = (éfi-l’ rAi-lEI(W))2|P(W)|2 +(éfi-1’ F i f(w+p ))2|P(W+p )|2

) : : (316)
s &2([p(w) +[P(w+p ) A>o0.

By virtue of Corollary 3.13 we can condlude thet { -1z, j (2“ % k)}
S(ro)

4 Approximation properties

iz isagable bagsfor

21,
79

Werecdl that in dlassicd refinable setting, it is a standard practice to congruct wavelets from a
given multiresolution analysis of “scding” function(s). Any reasonable wave et construction ensures theat
the (linear) gpproximation properties of waveets are derived directly from the approximeation properties
of the“scding” function(s). Let us briefly review this point. Throughout this chapter we use the Sandard

notation for the error of approximation
E(f.V), =inf|f-g],,

gV

whereV I X isaclosed subspace of a Banach space X .
Firgt recall that a closed subspace V | L, (Rd) issaid to provide L, approximation order m if

for any function f intheSoboIevqoaceme(R“)
h m
E(f.V") £C(V, f)h". (4.2)

Mogt results on gpproximation from shift invariant gpaces use the Sobolev semi-norm of the
gpproximated function for the congant in (4.1), namely, a Jackson-type estimate,

E(f V") EChT[T],. (4.2)
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If V= S(F ) isan FSl spacewewrite Cr for G, . In waveet theory it isacommon practice to ensure that
the so cdlled “scding” functions provide gpproximation order. Also recdl that agenerator j  of aPSl

Space S(j ) satisfies the Strang-Fix (SF) conditions of order m if

i"(0)* 0 and D*" (2 k) =0 foral ki Z*\0 and [a| <m. (4.3

Itiswdl known that, under certain mild redtrictions, if |  satisfies the SF conditions of order m
then the polynomids of degree m- 1 can be represented using a superposition of the integer shiftsof j
and S(j ) provides approximation order m .

On the other hand, wavelets should have the complimentary feature of m vanishing moments. Thet
isy isa“wavee” if for dl polynomidsof degree m- 1, pi P,

3w =0.

The connection between gpproximation order of the “scaing” functions and the wavelelsis smple.
Assumej 1, YT L,(R?), where Y ={y } and S(j ) = S(r )A S(Y). It can beshown that if j ,r
provide gpproximation order m thendl y T Y have m vanishing moments. In such a case the

space S('Y') will beorthogond to al polynomias of degree m- 1.

In this section we show that the nested sequence of non-gationary (“scaing” function) spaces we
have congtructed using the Superfunction or Cascade methods, beginning with some given non-refinable
shift invariant space, inherits the approximeation properties of the initia space. Also, the nested spaces
share uniform gpproximation properties. Specificaly, we provide smultaneous edtimetes using uniform
congtants for the gpproximation of functions from these spaces. Consequently, our non-gtationary wavelet
gpaces will have the desired vanishing moments property. Thisis what makes them suitable for sgnd
processing goplications.

We now state a Strang-Fix type result that will become ussful in Section 4.3 It is quite badic, but
handles the case of gpproximation from a sequence of PS spaces. Firgt we need the following definitions.

Let B, (IR®) denote the space of bounded meesurable functions thet decay fester than an inverse
of apolynomid of degree m+d | i.e,

Em(Rd):z{f | |f(x)|£C(1+|x|)'(m+d+e) , for some e >O} :

Definition 4.1 Let f 1 Em(Rd) .Wesay that f satisfies the Poisson summation condition of order m

if the Poisson Summation Formulahaldsfor al (3" f (%, - 3, [n| <m, x,T R, Recdl that the Poisson
summation formulafor g1 L, (R?) is

a g(x- k)= é g(2pk)e™™.
A

ki z¢



The above requirement holds for exampleif f iscompactly supported, continuous and of
bounded variation.

Theorem 4.2 Let {r j}j3l be a sequence of measurable univariate functionsand m3 1. Assume the
following conditionshold for eech j 3 1.

1 (uniformly bounded support) supp(r ) T [- L,L].

2 (uniform bound) ||r J.||¥ £M.

3 (Poisson Summgtion) The Poisson summétion condition of order m holdsfor r ;.
4 (Strang-Fix) F,(0)=1, r"(2pk)=0,1=0,..,m-1,k? 0.

Then, there exist congtants C, ,C, which dgpend on L, M, m (but do not depend on p ) such that:

()Forany f1 W (R)

E(f,S(rj)h)p£élhm|f|wgn(R), js 1. (4.4)
(i) Forany f1 L, (R)

E(f,S(rj)h)DECzwm(f,h)p, P21 45)
Proof The proof essentidly follows the gpproach of [DL] Chapter 13 Section 7, with the observation that

the congtants can be estimated using vaues of the derivatives of the Fourier transform & the origin.
Conditions 1 and 2 ensure that this can be achieved. Namdly, there are condants C,,..., C,, ; suchthat

r7(0)|£C, 1EnEm-1, j*1

4.1 L, approximation from shift invariant spaces

For the case of p =2, two tools dlow the andysis to be both eegant and powerful, the Hilbert
pace geometry and the Planchardl-Parsevd equdity. The latter dlows usto carry out the andysisin the
frequency domain. An excellert survey of L, gpproximation from shift invariant spacesis[JP).

Henceforth we denote H ™ (Rd ) =W," (Rd ) :

Definition 43 [BDRL] Forf T L,(R"), defirethe error kemdl L, T L, ([-p,p]d) by

, (4.6)



where 0/0 isinterpreted as 0.

Applying Fourier methods one can use the error kernd (4.6) toobtain L, estimates. Thefallowing
theorem characterizes the gpproximation order of an Sl gpace, by the existence of a superfunction. The
superfunction is required to have an error kernd (4.6) with fast decay to zero about the origin.

Theorem 4.4 [BDR3] Let V bean Sl gpace. Then V' provides approximation order m3 1 such that

E(f. V"), ECh™[f],n.

if and only if thereexists f TV forwhich | x| ™ L, T L, (B), for someneighborhood B of the origin.

Asproved in [BU1] the kernd (4.6) can aso be used to produce very accurate error estimates.

Theorem 4.5 [BU1] Assumethat f 1 B, (R) isstablewith f (0) =1 and provides L, approximation
order m. Then for any function T H™ (R)

(4.7

E(1,8(1)") =G h"[f|,u, +O(0™), & =iI & [ (20k)

- ykto

One of the resultsin [U] isthat the leading congtants of type C; in (4.7) are much smadller for the
B-Spline generators than for the Daubechies orthonorma scaling functions [Da]. Since the wavelets
inherit in some sense this congtant from the scaling functions, it might explain the empirica evidencein
image coding that spline wave ets outperform the Daubechies wave ets with the same number of
vanishing moments

Example4.6 OM ,,, O-Moms (Optima Maximum Order ard Minima Support)

The generator OM ,, ([BTU], [TBU]) minimize for a.given support Sze (and approximetion order) m, the
condant C; in (47). For esch order m3 1, OM ,, can be defined as the outcome of applying a differential
operator | + D, tothe B-gline N,,, where D, is homogeneous of degree £ m- 1. It is easy to see that
for any differentia operator of thetype | + D , theresuiting (I + D) N,, ispiecewise polynomid with

degee m- 1 and support Sze m. Also, since the SF conditionsremain vaid, OM ., provides
goproximation order m. The O-Moms functions are continuous for the even orders. For example,

1 1 1 4
OM, =N, +—N®, OM.=N. +—N®+_——_N¥,
A B 6 % 33 ° 7920 °

The (normdized) gainsin sampling dengity brought by usng O-Mans ingteed of the b-Splines are
114 /6
&eC, 0 &C, O
——+ »1.463, ——+ »1951.
gCOMA Q g

Mg &
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We augment the L, - superfunction theory with amore careful trestment of congtants. We
combine thefiner error estimates of [BU1] related to optimal congtants with the superfunction theory of
[BDR1]. We show that the superfunction provides asymptoticaly exactly the same approximetion asthe
“full” gpace, with the same (sharp) leading constant. First we require the following

Lemma4.7 [BDRI] Let V bean Sl space. Thenforany f, gl L,(R?)

E(f.V),£E(f.S(Rg)), EE(f.V),+2E(f,S(0))

5

Theorem 4.8 Let V' be an FS gpace which provides goproximation order m2 1, such that for any
function f1 H' (Rd), r3m,

E(f V"), £Chm|f],. +O(N'). (4.8)

Then there existsasuperfunction f TV suchthatforany 1 H'(R?), r* m onehas
E(1,8()") ech™|f],.+0(r).
Proof Let f1 H"(R’). Weuseadilated verson of (4.8)
E(f(h3,V) =hE(fV") £h¥*(Ch|f].+C(V, 1 f)I).

Sdectf =R,g",where g° isthe multivariate Snc-function

4 dn 5
9=0 - g :C[-pp]"'
izt PX '
It iswell known (see for example [JP]) that
«\h
E(f,S ) Eh"(f] ... 4.9
(o)) £n]f], 49

By virtue of Lemma 4.7, (4.8) and (4.9) we obtain

E(f.S(1)"), =h*2E(f (h).S(r))
£h"2 gE(f(hY.v)+2E(f (h),S(g))d
£C,h"|f|, +C(V, 1, f)h" +20"|f|,,
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£C,h|f,. +O(N).

Next we present asmilar result for locd shift invariant spaces. We require thefollowing
“superfunction” result for the locad case.

Theorem 4.9 [BDR2] Let V bealocd FSl space. Let g be any compeactly supported function (not
necessarily in V). Then there exists a compactly supported function f TV, such that for every

1L, (RY)

E(f.S(f)), £E(f,V),+2E(f,S(0)) (4.10)

"
Theorem 4.10 If in addition to the assumptions of Theorem4.8 we further assume that V' islocd, then
for each r >m there exists a compectly supported function f, T VV such that for every f 1 H’(]R{d) one
hes

E(1.8(f,)") £Gh"| .. +O().

Proof Themethod of proof isvery Smilar to Theorem 4.8, only thistime we goply Theorem 4.9 with the
section g = N, , where N, isthe tensor-product B-spline of order r

4.2 Approximation properties of the non-gationary Superfunction wavelets

We now go back to the superfunction decompostions of Section 3.1 and verify thet the non
dationary hdf-multiresolution inherits the goproximeation properties of the initid gpace and the reference
space. First, we need the following result.

Theorem 4.11 Let r,f T L,(R*) have approximation order m and assume S(r,)"* =S(r,)A S(Y)
where S(Y )~ S(f ). Then r, has approximation order m. Furthermore;

1 If for dl functions f 1 H”‘(Rd) and h >0 thefollowing two estimates hold
h m h m
E(1.5(r,)") £C,h [ g E(f.s(f)"), ech [l @10
then for all functions £ 1 H™(R?) and h>0,
E(f’S(rl)h)ZECrlhm|f|Hm(Rd)’ Crl£Cr02_m+2Q )

2 Iffor dll functions £ H" (R?), r >m and h>0 thefallowing two estiméates hold

E(f ,s(ro)“)z EC " Fyupeo) +o(n), E(f ,S(f )“)2 EC "], +o(h), (41
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then for dl functions f1 H' (Rd) ad h>0,

h - m r - - - m -
E(F.S(r))' ) £CH" |y +O(M), € £C,2m+2C;.
Pr oof
1 Let fT H™(R?)and h>0.Since r,,f haveapproximation order m , we can obtain acilated
verson of (4.11) for both generators

E(f(n3.8(r,)") 0, (072)"| |y E(F(nA,S(7 ), E077C, 178

H'"(]Rd) :

Since S(Y) ~ S(f ), it followsthat Ps(ro)ms(f )i S(r,). Sincethe orthogond projection ontoan S
gpace and the shift commute we get

P S(F)= S(Ps(ro)“zf ) '

We now gpply Lemmad4.7 to derive

E(f ,S(rl)h)2 =he2E(f (hY,S(r,))
£hd’2E(f (h).5(P,, f ))
£n2 € (hY,5(r,)"?)+2E( f (03, S(f )2

£(C,2m+2C ) hm|f],..

2. Let 1 H'(R"). Thenthe same argumentsyield

E(f.S(r)")

£n2€8(1 (h3,5(r,)") +2E(f (h3, (1))

£(C;2m+2G )| f|,. +(C(ro. f)2 " +2C(f, ))h".

2

We are now reedy to judtify the superfunction congtruction of Theorem 3.5
Corollary 412 Let f,r T L,(R*) have approximetion order m andlet{r }

() S(r;)A Sy ;)= 9r 1-1)1/2’

@) s(Y,)~ s(f).

o besothet fordl j3 1:

1.1f f,r, satisfy (4.11), then we have the uniform estimate for any f 1 H"‘(R“)
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m+1

E(r.s(r,)) £ 22m_ max(C,,,C )| |, 570, (413)

2.1f f,r, stisfy (4.12), then we have the uniform estimateforany f1 H' (Rd), r>m,

h 2m+1 ) i
E(f s(r)) )2 £——max(C, .G )i

2m

) e FO(N). 1200 @1
Proof The proof is by induction. We only prove (4.13), the proof for (4.14) being Smilar. The esimate
(4.13) iscartanly truefor theinitid function r ,. Assumethat r ; ; has goproximation power m. By
Theorem 4.11 we see that the generator T, condtructed using the projection method of Theorem 35,
inherits the approximation power m withaconstant C, £ 2‘”‘er_1 +2C . The relation leads to the
uniform bound
i-1 .
C, £2"C, +¢8 2™C
€n=0 (%)
i-1 '
E% " +§. 21-nm gmax(Cro,C; )
8 n=0 (4]
2m+1

£
2"-1

max(CrO ,C )

Example4.13 Sdect f, r , in Cordllary 412tobe OM, := N, + N#/42 (see Examnple 4.6). Then for any
fTH(R), r>4

h 2 .
E(.5(r,)'), £ 5 Con, |

H“(R)+O(hr)’ j%0.
Thereforefordl j3 0,

1
&C, 01/4 L, &

——-  »1.463p § - 31.21.
g OM4 g er ﬂ

Assume {y j} ., aeay non-stetionary (compectly supported) wavdets, complementing the half-

multiresolution generated by { r J.} 20 where OM , generates both the initid space and the reference space.

Then, these wavelets have a sharp congtant smaller then the B-wavelets of [Ch] with again of about 20%.
Thisresult is not very surprising. We have shown (Example 38) that we can choose the first wavelety |

such that [supp(y , )| = 7, which is exactly the support size of the cubic B-wavelet. But as explained in
Section 3.1, for any such non-dationary wavelet sequence, the support of the wavelets in generd grows.



4.3 Approximation properties of the non-stationary Cascade wavelets
Thefirg results of this section verify that the application of a cascade operator with good
properties to a given function with good approximeation properties yidds a function that inherits these
properties. These results are connected to the known so called “zero conditions on the mask symbol”
(see Section 3.2in [JP]). The main difference with previous work isthat we use “ zero conditions’ on
the cascade mask when applied to non-refinable functions.

Lemma4.14 Assume r 1 Em(R“) sdtisfies the SF conditions of order m and let PT P, bea
trigonometric polynomid defined by
4o+

P(w)=R(W) O¢——= =24 pe™, (4.15)
r=1e (7] [KEN

withm 3 m, r =1,...,d and R(0)* 0. Then r, defined by

= Q plo(2%k), (4.16)
|kl£N

isin E,, (R?) and satisfies the SF conditions of order m.
Proof The Fourier equivadent of (4.16), isthe two-scdereation

~ WO~ WO
=P;i—_= . 4.1
rl(w) 82'r°82' (4.17)

Since P1 P, thesumin (416) isfinitesothet r,T E, (R*) and 1, ;T C"(R?). Since 1, satisfies
SF, it folowsthat 1, (0) =R(0)r,(0)* 0. Itisquite easy to show thet r, stisfiesthe other SF

conditions (4.3). Thisis done using the two-scalerdation (4.17) and the multivariate form of Leibniz
rule.

It isknown [R1] that any univariate generator f that provides goproximetion order m isa
convolution of aB-spline of order m and atempered digribution. Thus, the smalest support possible for
agiven goproximation order m is m. Next we see that the B-pline cascade operator can help preserve
this optimal fegture.

Corollary 4.15 Assumethat 1,1 L, (R) sttisfiesthe SF and Poisson summation conditions of order m
and has (minimal) support sze m. Then there exists r, T S(r ;)" that provides gpproximation order m
and has (minimd) support 9ze M.

Proof Observetha by Theorem4.2 1, provides goproximation order m. We may assume that

supp(r,) T [0, m] (we can dways shift the construction below to this interval and then back). Sdlect B,
the (minimaly supported) two-scale symbal of the B-Spline of order m, defined by



A+re™s 18 1)
Ry, (W) =g———= =5é pe™ , p =2 lgk+- (4.189)
e %} k=0 4]

Clearly, for R, condition (4.15) holds. Thusby Lemma4.14, r ; defined by

isin L, (IR), has compact support and satisfies the SF and Poisson summation conditions of order m.
Usng Theorem 4.2 thisimpliesthat r ; provides goproximaion order m. Also, since p, =0 for dl
kt0,...,m, r, hasthereguired (minima) support property.

Thus, we see that a good cascade operator is actudly an dgorithm to extract a superfunction r

from the FSl space S( o )1/2 . We need to verify that the cascade process preserves gpproximation
properties in auniform sense. The next result overcomes thistechnica point.

Corollary 4.16 Let 1, be aunivariate function with compact support that satisfies the S- and Poisson
summation conditions of order m. Let P be afinite mask of type(4.15) associated with a cascade

operator C and arefinablefunction f T L, (R) andlet r; :=C 'r , beso that,

1 supp(r].)l' [-L,L] fordl O£ j<¥,
2 |r |, eMfordiog j<¥.

Then the fallowing hold,
1. There exigs acongtant C, suchthat forany 1T W' (R), 1£ p£ ¥

£(m)

E(f,S(rj)h) ECh"
p

Lp(R)

2. There exists aconstant C, suchthat for any forany f1 L, (R), 1£ p£¥

E(f,S(rj)h) £Cw, (f.h)

p

Proof Itiseasy to seethat under our assumptions, conditions 1-3 of Theorem 4.2 hold. Also by Lemma
4.14 it follows that the SF conditions of order m hold for dl functionsin the sequence and so condition 4
of Theorem 4.2 isdso fulfilled. We now goply Theorem 4.2 to obtain the required estimeates.

Remark It isinteresting to observe that for the last result we did not require that the cascade sequence
converges to arefinable function, just that it remained bounded in some box.



For afiner anadlyds of the inheritance of gpproximation properties through the cascade process we
wish to inspect the sharp constants (4.7). Assume r 1 S(j )" wherej ,r are univariate functions such

thet ) satisfiesthe SF conditions of order m. Assumefurther that © = P(23j"(2* ) where P isof
type (4.15) and that we have the normalization j~ (0) = P(0) =1. For each 0% ni Z,

.. L..{m) .
= (m) _&5avo, a8voo —om g Qp(k) A (m-K)
F™ (2pn) g 82;.5] €25 . agka (pn)j (pn).

There are two cases;
1. 1f n°0(mod2), then

2. If onthecther hand n° 1(mod2), then

F™(2pn)=2"P" (p)i"(pn).

By (4.7,
2 1 R 2
C ) =—=4IF"(2pn
( f) (m!)anO (2p )
1 éO ~(m ~(m 2u
" Sea [ (k) + &P (2 (x+D)
m.) €10 k
. 2 . (4.19)
_ €2 |5 m:~(m) 9 |5-mp(m) A
= 2a |2 2pk) +q [2™P 2k +1)) 1,
-1 & e Vil (ol i1 )Y
) (G ) PO E) 1))y
Ifwemayteke r =) ,thenj T S(j )"* andthus) isrefinable. In such acase, we obtain from (4.19) a
formulafor the constant C;
m 2 A A
( _)ZZ\P( '(p) "7 1() w20
! (m) (2-1) '

Formula (4.20) for the refinable case is exactly equation (26) in [BU3].

Lemma4.17 Let m3 0 and assumethat r | (F) )f wheref ,r T L, (Rd) are such that
L (RY

supp (f ),supp(r J. )I' W where W is some bounded domain. Then we have
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- _1 o~ m) 2o 1 o je(m) 2.
c. =malr (20k) ® LA (k)| =C; . (4.20)
Proof By Lemma2.4, forany wi T ¢,
& | (w2 @ & /O (w2 (422
ki zd Kz

In particular we have (422) for w=0. Itiseasy to seethat ™ (0) ® ™ (0). Hence (4.21) follows

Lenma4.18 Let r d)f where f isstable, supp(f ),supp(r j)i W and W is some bounded domain

L(Rr

in R®. Then there exists J >0 suchthat for j 3 J, ‘ ® 0, wherewe recall that far any

Lo b HC(Rd)

flL, (Rd), L, istheeror kernd (46).

Proof From the continuity of the Fourier transform, is easy to see that Hfj - fAHC(Rd) ® 0. By Lemma24

® 0.Sncef isdableand compactly supported, its auto-correation

cfr)

wedsohave |gr .7 §- §.1

does not have any zerosin T ¢ . Thus, there exists J >0 forwhich g, 1 g, j * J, areuniformly
bounded from below. This implies the uniform convergence of the error kermnelsfor j 3 J.

An important gpplication of the discusson o far is the following result.
Theorem 419 Let {r } ~bedefined by

awo . aewd .
Fa(w) =Ry, 855r 825 j® 0,

A

where
1. R, istheB-slinetwo-scdesymbol (4.18),

2. 1,1 L, (R), satisfies SF and Poisson summation conditions of order m,
3. I, has(minimd) support 5ze m,
4, ‘( ry - Nm)(w)‘= O([w]) neer the origin.

Forany 1£ p £ ¥ , thesequence r ; convergesto the B-spline N, inevery p nom.
Each r; has(minima) support Sze m.
3. Thereexissacongant C suchthatforany f1 W' (R), 1£ p£¥,
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E(f,S(rj)h) £C~:hm|f|\/\/m(u«)’ j* 0.
p P
4. Thesharp congtants C; - convergeto C,. - Alsothereexist acongant C* such thet for any
function fT H'(R)
h -|m r .
E(f,S(rJ))2£Ch [F e +O(H), 52 0. (423

Pr oof
1. We use the cascade result Theorem 3.9.
. Seethe proof of Cordllary 4.15.

2

3. Foreach j3 1 we use Cordlary 4.15. We then gpply Theorem 4.2.

4. The convergence C, J ® G fdlowsfrom Lenma4.17. The estimate (4.23) isobtained usng Lemma
4.18 and some techniques from [BU3].

Example4.20 Let 1, =OM,, f =N, andlet {r ;} bethe sequence constructed in Theorem 4.19. Then
one can compute using (4.19),
1 1

g —+ »1.07.

®C; ¢
——+ »1.463p c i
n g

oM, @

This meansthat the first generator r, constructed by the cascade processis not as good astheinitia
optimd r , .= OM ,, but dill better than the B-spline. The corresponding minimaly supported semi-
orthonormal wavelets {y |} can be corstructed using the methods of Section 3.2so that for any 32 0,

{Z(J'j)lzy j (23'j % k)}

dilations of the P space S( r J) has a representation in the form of a non-sationary wavelet sum.

In gpplications such as sgnd processng, one usudly gpproximates a function and then
decomposes the gpproximeation to a sum of a coarse goproximation and a few wavelet subspaces. Thus, at
leadt in theory, the non-gtationary wavelets derived from a B-gpline cascade multiresolution initidized by

OM , , outperform spline-wavelets [Ch], [Da] on these first decompostion levels. Obsene that this
increase in gpproximation performance is achieved for exactly the same computationd effort. Thisis due

to the fact that the generators {r ,} have (minimal) support size 4 and thus the non-stationary Cascade
wavelets {y ;} have support size 7, which i exactly the support size of the cubic B-wavelet ([CH)).

- isagtable basis for S(ro)er . Therefore any approximetion obtained from
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