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5.1 Lecture Overview

This lecture discusses:

• Deriving lower bounds.

• Information theoretic tools (KL-divergence).

The basic idea in finding lower bounds is to construct two similar probability dis-
tributions, P and Q, that the learner has to distinguish between. The best decision
over P is different from the best decision over Q, and we do not have the information
whether the underlying probability is P or Q.

5.2 Distance between Distributions

Claim 5.1 For every function f(x1, . . . , xn) ∈ [0,M ], the following upper bound
holds:

|Exi∼Q[f ]− Exi∼P [f ]| ≤M‖P −Q‖1 .

Proof.

|EQ[f ]− EP [f ]| = |
∑
x

Q(x)f(x)−
∑
x

P (x)f(x)| = |
∑
x

(Q(x)− P (x)) f(x)|

≤
∑
x

|Q(x)− P (x)||f(x)| ≤ ‖Q− P‖1‖f(x)‖∞ = ‖Q− P‖1M .

�
We begin by examining balanced vs. unbalanced coins, where the coins stand for
statistical assumptions. Assume we have two coins, a balanced coin r with distribution
r0 = 1

2
and r1 = 1

2
, and an unbalanced coin p with distribution p1 = 1

2
+ ε and

p0 = 1
2
− ε. This scenario is equivalent to the inspection of a given assumption, trying

to figure out whether it is random or better than random.
We will now investigate the behavior of m coin flips over P and R.

Lemma 5.2.1 For m random variables independently sampled, it holds that

‖Pm −Rm‖1 ≤
m∑
i=1

‖Pi −Ri‖1 .
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Proof. By definition,

‖Pm −Rm‖1 =
∑
x1

. . .
∑
xm

|P (x)−R(x)| . (5.1)

Isolate x1 by first defining,

α(x) =
m∏
i=2

Pi(x) , β(x) =
m∏
i=2

Ri(x) .

Then, Eq.( 5.1) can be rewritten as∑
x1

∑
x2,...,xm

|α(x)P1(x1)− β(x)R1(x1)| =

∑
x1

∑
x2,...,xm

|α(x)P1(x1) + α(x)R1(x)− α(x)R1(x)− β(x)R1(x1)|

≤
∑
x1

|P (x1)−R(x1)|
∑

x2,...,xm

α(x) +
∑

x2,...,xm

|α(x)− β(x)|
∑
x1

R(x1)

≤ ‖P1 −R1‖+
m∑
i=2

‖Pi −Ri‖1 .

For the last inequality, note that
∑

x2,...,xm
α(x) and

∑
x1
R(x1) equal 1, from distri-

butions properties, and that the second term results from induction on the number
of variables. �

Corollary 5.2 For m i.i.d random variables,

‖Pm −Rm‖1 ≤ m‖R− P‖ = 2εm

where 2ε is the maximal gap between R and P .
Let f be a function that returns either 1 or 0. If f succeeds with probability 1− δ

then |EP [F ]−ER[F ]| ≥ 1− δ. Since |EP [F ]−ER[F ]| ≤ ‖Pm −Rm‖1 ≤ 2εm, we get
m ≥ 1−δ

2ε
. This bound is not ”correct”, since we know that the rate is !

ε2
.

5.3 KL-Divergence

The Kullback-Leibler (KL) divergence is a measure of the difference between two
probability distributions P and Q. We define KL as,

KL(P‖Q) =
∑
x∈Ω

P (x)log
P (x)

Q(x)
.

If P (x) = 0 then P (x)logP (x) = 0, and if Q(x) = 0 then the KL-divergence is
unbounded. The KL-divergence is a specific example of a Bregman divergence:

BR(y‖x) = R(y)−R(x)−∇R(x)(y − x)
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for R(x) = −H(P ) =
∑

x P (x)lnP (x), as

BR(P‖Q) = −H(P ) +H(Q)−∇H(Q)(Q− P ) =

−
∑

P (x)lnP (x) +
∑
x

Q(x)lnQ(x)−
∑
x

(lnQ(x) + 1)(Q(x)− P (x))

=
∑
x

P (x)ln
Q(x)

P (x)
= KL(P‖Q) .

5.3.1 KL-Divergence Properties

• KL(Q‖P ) ≥ 0, P = Q ⇐⇒ KL = 0 .

Proof. Let A be the set {x|P (x) > 0}, then

KL(P‖Q) =
∑
x∈A

P (x)log
Q(x)

P (x)
≤ log

∑
x∈A

Q(x)

P (x)
P (x) = log

∑
x∈Ω

Q(x) = 0 ,

where the inequality is due to Jensen’s inequality. Since log is strictly concave,
Jensen’s inequality holds in equality only if Q(x)/P (x) = 1 for all x values, in
which case P (x) = Q(x). �

• Theorem 5.3 (Chain Rule for KL-divergence)

KL(P (x, y)‖Q(x, y)) = KL(P (x)‖Q(x)) +KL(P (y|x)‖Q(y|x)) ,

where KL(P (y|x)‖Q(y|x)) = Ex[KL(P (y|x)‖Q(y|x))].

Proof.

KL(P‖Q) =
∑
x

∑
y

P (x, y)log
P (x, y)

Q(x, y)
=
∑
x

∑
y

P (x, y)log
P (x)P (y|x)

Q(x)Q(y|x)

=
∑
x

∑
y

P (x, y)log
P (x)

Q(x)
+
∑
x

∑
y

P (x, y)log
P (y|x)

Q(y|x)
=

KL(P‖Q) + Ex∼P [KL(P (y|x)‖Q(y|x)] = KL(P‖Q) +KL(P (y|x)‖Q(y|x)) .

�

Corollary 5.4 If x and y are independent variables,

KL(P (x, y)‖Q(x, y)) = KL(P (x)‖Q(x)) +KL(P (y)‖Q(y)) .

A few remarks:

• In general, KL(P‖Q) 6= KL(Q‖P ) .

• KL-divergence might be unbounded.
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5.3.2 The Relation between KL and L1

We will now show that the KL-divergence upper-bounds the L1 norm between dis-
tributions.

Theorem 5.5 KL(P‖Q) ≥ 1
2ln2
‖P −Q‖2

1 .

Proof. First, we prove the theorem for binary variables p and q, where p ≥ q.

g(p, q) = p log
p

q
+ (1− p)log1− p

1− q
− 4

2ln2
(p− q)2 .

The two left terms constituent KL(p‖q), and the 4(p − q)2 in the rightmost term
equals ‖P −Q‖2 = (2(p− q))2.

The derivative of g is

∂

∂q
g(p, q) = − p

q ln 2
+

1− p
(1− q)ln2

− 4

2ln2
2(q − p) =

q − p
q(1− q)ln2

− 4

ln2
(q − p) ≤ 0 .

Since q(1 − q) ≤ 1
4

and q − p < 0 by assumption, the derivative is non-positive. For
p = q, we get g(p, q) = 0 and ∂

∂q
g(p, q) = 0, hence g(p, q) > 0 for q < p.

The general case is proved by considering the set A = {x : P (x) > Q(x)} and the
binary variables P̂ (A) and Q̂(A). By the data processing theorem,

KL(P‖Q) ≥ KL(P̂‖Q̂), which implies the theorem (details omitted). �

5.4 Coin Tossing

We consider two coins. An unbiased coin r = 1
2

and a biased coin p = 1+ε
2

. Our goal
is to lower bound the number of samples required to distinguish between the biased
and unbiased cases.

KL(p‖r) =
1 + ε

2
log(1 + ε) +

1− ε
2

log(1− ε) =
1

2
log(1 + ε)(1− ε) +

ε

2
log

1 + ε

1− ε
,

where (1 + ε)(1− ε) = 1− ε2 (the log is negative) and 1+ε
1−ε = 1 + 2ε

1−ε , and we get

KL(p‖r) ≤ ε

2ln2

2ε

(1− ε)
≤ 2

ln2
ε2 .

For m coin tosses, we get

KL(Pm‖Rm) ≤ 2

ln2
ε2m .

Claim 5.6 To distinguish between uniform distribution (1
2
, 1

2
) and the biased distri-

bution (1
2

+ ε, 1
2
− ε), at least m = Ω( 1

ε2
) examples are required.
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Proof.

|EP [f ]− ER[f ]| ≤ ‖P −R‖1 ≤
√

2ln2 KL(P‖R) ≤
√

2ln2
2

ln2
ε2m = 2ε

√
m

�
What happens when the probabilities are around 0? assume that p = 2ε and r = ε,
then

KL(P‖R) = 2εln2 + (1− 2ε)log
1− 2ε

1− ε
≤ 2ε .

We receive a linear dependency in ε instead of square dependency as before.

5.5 Bounds for Multiarmed Bendit Algorithms

Theorem 5.7 For a deterministic MAB (Multiarmed Bendit) with N actions and T
steps, there exists a distribution such that for every algorithm A it holds that

E[Gmax]− E[GA] ≥ 1

20
min{

√
NT, T} ,

that is Ω(
√
NT ).

Proof. BuildN distributions, one per action, as follows: one distribution, denoted
I, is ε-biased, PR[rI = 1] = 1

2
+ ε, and all other distributions are uniform, PR[r = 1] =

1
2
. We choose I uniformly over all actions. �

Notation:

• P∗ - the defined distribution.

• Pi - the distribution for I = i

• Punif - the distribution when all actions have probability 1
2
.

• ki - the number of times algorithm A chose action i.

A deterministic algorithm A: Given a history r1, . . . , rt−1 , the algorithm chooses
action it and receives revenue rit . Since A is deterministic, it is sufficient to define
the history by the series of revenues and calculate the actions taken by A at time t
by simulation using the history. The transition from a deterministic algorithm to a
stochastic algorithm is achieved using Yao’s lemma (we will not discuss this).

The following lemma shows the difficulty in distinguishing between Pi and Punif
as a function of ki.

Lemma 5.5.1 For any function f : {0, 1}T → [0,M ] defined on a sequence of rev-
enues,

Ei[f ] ≤ Eunif [f ] +
M

2

√
−Eunif [ki]ln(1− 4ε2) ≈ Eunif [f ] +

Mε

2

√
Eunif [ki] .
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Proof. Denote by r the sequence of revenues, then

Ei[f(r)]− Eunif [f(r)] =
∑
r

f(r)(Pi(r)− Punif (r)) ≤M‖Pi − Punif‖1

≤M
√

2ln2 KL(Punif‖Pi)

The rightmost inequality results from Pinsker’s inequality. Denote rt−1
1 = r1 . . . rt−1,

we will now bound KL(Punif‖Pi) using the chain rule:

KL(Punif‖Pi) =
T∑
t=1

KL(Punif (rt|rt−1
1 )‖Pi(rt|rt−1

1 ))

=
T∑
t=1

Punif [it 6= i]KL(1/2 ‖ 1/2) + Pr[it = i]KL(1/2 ‖ 1/2 + ε)

=
T∑
t=1

Punif [it = i](−1

2
log(1− 4ε2) .

The probability of a wrong action, it 6= i, is ignored as KL(1/2 ‖ 1/2) = 0. When
choosing the right action, it = i, we get KL(1/2 ‖ 1/2 + ε) = −1

2
log(1− 4ε2). Taking

this expression outside the summation leaves
∑T

t=1 Pr[it = i], which is essentially
Ei[ki]. Substituting KL(Punif‖Pi) in the bound with this expression,

M
√

2ln2 KL(Punif‖Pi) = M

√
−1

2
2ln2

ln(1− 4ε2)

ln2
= M

√
−ln(1− 4ε2) .

�

Theorem 5.8 For every strategy A it holds that

E∗[Gmax −GA] ≥ ε(T − T

N
− T

2

√
− T
N
ln(1− 4ε2)) = Θ(εT − Tε2

√
T

N
)

and for ε =
√

N
T

we get Θ(
√
TN).

Proof.

Ei[rt] = (
1

2
+ ε)Pr[it = i] +

1

2
Pr[it 6= i] =

1

2
+ εPr[it = i] .

Ei[GA] =
T∑
t=1

Ei[rt] =
T

2
+ εEi[ki] .

When applying this lemma for f = ki,

Ei[ki] ≤ Eunif [ki]−
T

2

√
−Eunif [ki] ln(1− 4ε2) ,



Lecture 5: Lower Bounds using Information Theory Tools 7

and when summing over all actions,

N∑
i=1

Ei[ki] ≤
N∑
i=1

Eunif [ki]−
N∑
i=1

T

2

√
−Eunif [ki] ln(1− 4ε2) .

Using
∑N

i=1 Eunif [ki] = T , and 1
N

∑N
i=1

√
ai ≤

√
1
N

∑N
i=1 ai, we have

N∑
i=1

Ei[ki] ≤ T +
T

2

√
−TN ln(1− 4ε2) .

Finally,

E∗[GA] =
1

N

N∑
i=1

Ei[GA] ≤ T

2
+
ε

N

N∑
i=1

Ei[ki] ≤
T

2
+
ε

N

(
T +

T

2

√
−TN ln(1− 4ε2)

)
,

which is the expectation of our algorithm. The expectation of the best algorithm, that
constantly chooses i, is E∗[Gmax] = T

2
+ εT . The difference between the expectation

of the best algorithm and our algorithm can is bounded from below,

E∗[Gmax]− E∗[GA] ≥ T

2
+ εT −

(
T

2
+

ε

N

(
T +

T

2

√
−TNln(1− 4ε2)

))

= ε

(
T − T

N
− T

2

√
− T
N
ln(1− 4ε2)

)
.

We constructed a series of N distributions from which we randomly chose the best
action. Our algorithm vote for the best distribution (indicted by the number of times
the action was chosen). We then bounded the gap between the uniform distribution
and the distribution Pi as a function of ki, which is roughly T

N
when averaging over

all actions. Lemma 5.5.1 is the main part of the proof. �
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