
Convergence Time to Nash Equilibria

Eyal Even-Dar ?, Alex Kesselman, and Yishay Mansour ??

School of Computer Science, Tel-Aviv University,
{evend, alx, mansour}@cs.tau.ac.il.

Abstract. We study the number of steps required to reach a pure Nash
Equilibrium in a load balancing scenario where each job behaves self-
ishly and attempts to migrate to a machine which will minimize its cost.
We consider a variety of load balancing models, including identical, re-
stricted, related and unrelated machines. Our results have a crucial de-
pendence on the weights assigned to jobs. We consider arbitrary weights,
integer weights, K distinct weights and identical (unit) weights. We look
both at an arbitrary schedule (where the only restriction is that a job mi-
grates to a machine which lowers its cost) and specific efficient schedulers
(such as allowing the largest weight job to move first).

1 Introduction

As the users population accessing Internet services grows in size and dispersion,
it is necessary to improve performance and scalability by deploying multiple,
distributed server sites. Distributing services has the benefit reducing access la-
tency, and improving service scalability by distributing the load among several
sites. One important issue in such a scenario is how the user chooses the ap-
propriate server. Similar problem occurs in the context of routing where the
user has to select one of a few parallel links. For instance, many enterprise net-
works are connected to multiple Internet service providers (ISPs) for redundant
connectivity, and backbones often have multiple parallel trunks.

Users are likely to behave “selfishly” in such cases, that is each user makes
decisions so as to optimize its own performance, without coordination with the
other users. Basically, each user would like to either maximize the resources
allocated to it or, alternatively, minimize its cost. Load balancing and other
resource allocation problems are prime candidates for such a “selfish” behavior.

A natural framework to analyze this class of problems is that of non-cooperative
games, and an appropriate solution concept is that of Nash Equilibrium [22]. A
strategy for the users is at a Nash Equilibrium if no user can gain by unilater-
ally deviating from its own policy. In this paper we focus on the load balancing
problem. An interesting class of non-cooperative games, which is related to load
balancing, is congestion games [24] and its equivalent model exact potential
games [21].
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Traditionally in Computer Science research has been focused on finding a
global optimum. With the emerging interest in computational issues in game
theory, the coordination ratio [17] has received considerable attention [2, 7, 8,
13, 17, 25]. The coordination ratio is the ratio between the worst possible Nash
equilibrium (the one with maximum social cost) and the social optimum (an
optimal solution with the minimal social cost). One motivation is to show that
the gap between a Nash Equilibrium and the optimal solution is in some cases not
significant, thus good performance can be achieved even without a centralized
control.

In this work we are concerned with the time it takes for the system to con-
verge to a Nash equilibrium, rather than the quality of the resulting allocation.
The question of convergence to a Nash equilibrium has received significant at-
tention in the Game Theory literature (see [12]). Our approach is different from
most of that line of research in a few crucial aspects. First, we are interested
in quantitative bounds, rather than showing a convergence in the limit. Second,
we consider games with many players (jobs) and actions (machines) and study
their asymptotic behavior. Third, We limit ourselves in this work to a subclass
of games that arise from load balancing, for which there always exists a pure
Nash equilibrium, and thus we can allow ourselves to study only deterministic
policies.

Our Model. This paper deals with load balancing (see, [3]). Jobs (players)
are allowed to select a machine to minimize their own cost. The cost that a job
observes from the use of a machine is determined by the load on that machine.
We consider weighted load functions, where each job has a corresponding weight
and the load on a machine is sum of the weights of the jobs running on it. Until
a Nash Equilibrium is reached, at least one job wishes to change its machine. In
our model, similarly to the Elementary Stepwise System (see [23]), at every time
step only one job is allowed to move, and a centralized controller decides which
job would move in the current time step. By strategy we mean the algorithm
used by the centralized controller for selecting which of the competing jobs would
move. Due to the selfish nature of jobs, we assume that when a job migrates its
observed load is strictly reduced, which we refer to as an improvement policy.
We also consider the well known case of best reply policy, where each job moves
to a machine in which its observed load is minimal.

Our Results. We assume that there are n jobs and m machines. We assume
that K is the number of different weights, W is the total weight of all the jobs
and wmax is the maximum weight assigned to a job.

For the general case of unrelated machines we show that the system always
converges to a Nash equilibrium. This is done by introducing an order between
the different configurations and showing that when a job migrates we move to
a “lower” configuration in the order. Bounding the number of configurations
by min{[O( n

Km + 1)]Km,mn} derives a general bound. Using a potential base
argument we derive a bound of O(4W ) for integer weights, where W is the
worse case sum of the weights of the jobs. For the specific strategy that first
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selects jobs from the most loaded machine we can show an improved bound of
O(mW + 4W/m+wmax).

In the simple case of identical machines and unrestricted assignments we
show that if one moves the minimum weight job, the convergence may take an
exponential number of steps. Specifically, the number of steps is at least,

( n
K )K

2(K!)
= Ω(

( n

K2

)K

)

for K = m−1. In contrast, we show that if one moves the maximum weight job,
and the jobs follow the best reply policy, a Nash Equilibrium is reached in at
most n steps. This shows the importance of selecting of the “right” scheduling
strategy. We also show that selecting the minimal weight job is “almost” the
worst case for identical machines, by demonstrating that any strategy converges
in ( n

K + 1)K time steps. We also show that any strategy converges in O(W + n)
steps for integer weights. For the Random and FIFO strategies we show that
they converge in O(n2) steps.

For restricted assignment and related machines we bound by O((W 2S2
max)/ε

the convergence time to ε-Nash, where no job can benefit more than ε from
unilaterally migrating to another machine. Using the strategy that schedules
first jobs from the most loaded machine we can derive an improved convergence
bound. Note that in our setting there always exists an εmin such that for any
ε < εmin we have that any ε-Nash equilibrium is a Nash equilibrium. For example,
in the case of identical machine with integer weights εmin = 1.

For K integer weights, we are able to derive an interesting connection be-
tween W and K, for the case of identical and related machines. We show that
for any set V of K integer weights there is an equivalent set V ′ of K integer
weights such that the maximum weight in V ′ is at most O(K(cSmaxn)4K) for
some positive constant c. The equivalence guarantees that the relative cost of
different machines is maintained in all configurations. (In addition, we never
need to compute V ′, but rather it is only used in the convergence proofs.) The
equivalence implies that W = O(Kn(cSmaxn)4K). Thus, all bounds that depend
on W can depend on O(Kn(cSmaxn)4K).

Related Work. Milchtaich [20] describes a class of non-cooperative games,
which is related to load balancing. (In order to make the relations between the
models clearer we use the load balancing terminology to describe his work.)
The jobs (players) share a common set of machines (strategies). The cost of a
job when selecting a particular machine depends only on the total number of
jobs mapped to the machine (implicitly, all the weights are identical). However,
each job has a different cost function for each machine, this is in contrast to
the load balancing model where the cost of all the jobs that map to the same
machine is identical. It is shown that these games always possess at least one
pure (deterministic) Nash Equilibrium and there exists a best reply improvement
strategy that converges in polynomial time. However, for the weighted version
of these games there are cases where a pure Nash Equilibrium does not exist.
In contrast, we show that any improvement policy converges to a pure Nash
Equilibrium in the load balancing setting.
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Our model is related to the makespan minimization problem since job moves
can be viewed as a sequence of local improvements. The analysis of the approx-
imation ratio of the local optima obtained by iterative improvement appears in
[5, 6, 26]. The approximation ratio of a jump (one job moves at a time) iterative
improvement has been studied in [10]. In [6] it has been shown that for two iden-
tical machines this heuristic requires at most n2 iterations, which immediately
translates to an n2 upper bound for two identical machines with general weight
setting in our model. In [26] they observe that the improvement strategy that
moves the maximum weight job converges in n steps.

Some interesting related learning models are stochastic fictitious play [12],
graphical games [19], and large population games [14]. Uniqueness of Nash Equi-
libria in communication networks with selfish users has been investigated in [23].
An analysis of the convergence to a Nash Equilibrium in the limit appears in [1,
4].
Paper organization: The rest of the paper is organized as follows. In Section 2
we present our model. The analysis of unrelated, related and identical machines
appears in Section 3, Section 4 and Section 5, respectively. We conclude with
Section 6. Due to space limitations some proofs are omitted and can found in
[9].

2 Model Description

In our load balancing scenario there are m parallel machines and n independent
jobs. Each job selects exactly one machine.

Machines Model. We consider identical, related and unrelated machines.
We denote by Si the speed of Mi. Let Smin and Smax denote the minimal and
maximal speed, respectively. WLOG, we assume that Smin = 1. For identical
and unrelated machines we have Si = 1 for 1 ≤ i ≤ m.

Jobs Model. We consider both restricted and unrestricted assignments of
jobs to machines. In the unrestricted assignment case each job can select any
machine while in the restricted assignment case each job J can only select a
machine from a pre-defined subset of machines denoted by R(J).

For a job J , we denote by wi(J) the weight of J on machine Mi (where i ∈
R(J)) and by M(J, t) the index of the machine on which J runs at time t. When
considering identical machines, each job J has a weight w(J) = wi(J). We denote
by W the maximal total weight of the jobs, that is W =

∑n
i=1 maxj∈R(Ji){wj(Ji)},

and by wmax = maxi maxj∈R(Ji){wj(Ji)} the maximum weight of a job.
We consider the following weight settings: General weight setting – the weights

may be arbitrary real numbers. Discrete weight setting – there are K different
integer weights w1 ≤ . . . ≤ wK = wmax. Integer weight setting – the weights are
integers.

Load Model. We denote by Bi(t) the set of jobs on machine Mi at time t.
The load of a machine Mi at time t is the sum of the weights of the jobs that chose
Mi, that is Li(t) =

∑
J∈Bi(t)

w(J), and its normalized load is Ti(t) = Li(t)/Si.
We also define Lmax(t) = maxi{Li(t)} and Tmax(t) = maxi{Ti(t)}. The cost of



Convergence Time to Nash Equilibria 5

job J at time t is the normalized load on the machine M(J, t), i.e., TM(J,t)(t).
We define the marginal load with respect to a job to be the load in the system
when this job is removed.

System Model. The system state consists of the current assignment of the
jobs to the machines. The system starts in an arbitrary state and each job
has a full knowledge of the system state. A job wishes to migrate to another
machine, if and only if, after the migration its cost is strictly reduced. Before
migrating between machines, a job needs to receive a grant from the centralized
controller. The controller has no influence on the selection of the target machine
by a migrating job, it just gives the job a permission to migrate. The above is
known in the literature as an Elementary Stepwise System (ESWS) (see [4, 23]).
Essentially, the controller serves as a critical section control. The execution is
modeled as a sequence of steps and in each step one job changes its machine.
Notice that if all jobs are allowed to move simultaneously, the system might
oscillate and never ever reach a Nash Equilibrium.

Let A(t) be the set of jobs that may decrease the experienced load at time
t by migrating to another machine. When a migrating job selects a machine
which minimizes its cost (after the migration), we call to this best-reply policy.
Otherwise, we call to this improvement policy.

The system is said to reach a pure (or deterministic) Nash Equilibrium if
no job can benefit from unilaterally migrating to another machine. The system
is said to reach an ε-Nash Equilibrium if no job can benefit more than ε from
unilaterally migrating to another machine. We study the number of time steps it
takes to reach a Nash Equilibrium (or ε-Nash equilibrium) for different strategies
of ESWS job scheduling.
Scheduling Strategies: We define a few natural strategies for the centralized
controller. The input at time t is always a set of jobs A(t) and the output is a
job J ∈ A(t) which would migrate at time t. (For simplicity we assume each job
has a unique weight, extension for unrelated machines is possible.) The specific
strategies that we consider are:

Random: Selects J ∈ A(t) with probability 1/|A(t)|.
Max Weight Job: Selects J ∈ A(t) such that w(J) = maxJ′∈A(T ){w(J ′)}.
Min Weight Job: Selects J ∈ A(t) such that w(J) = minJ′∈A(T ){w(J ′)}.
FIFO: Let E(J) be the smallest time t′ such that J ∈ A(t′′) for every t′′ ∈ [t′, t].

FIFO selects J ∈ A(t) such that E(J) = minJ′∈A(T ){E(J ′)}.
Max Load Machine: Selects J ∈ A(t) such that TM(J,t) is maximal.

3 Unrelated Machines

In this section we consider the unrelated machines case with the restricted as-
signment. To show the convergence we define a sorted lexicographic order of the
vectors describing the machine loads as follows. Consider the sorted vector of
the machine loads. One vector is called “larger” than another if its first (after
the common beginning of the two vectors) load component is larger than the
corresponding load component of the second vector. Formally, given two load
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vectors `1 and `2, let s1 = sort(`1) and s2 = sort(`2) where sort() returns a
vector in the sorted order. We define `1 � `2 if s1 � s2 using a lexicographic
ordering, i.e., s1[i] = s2[i] for i < k and s1[k] > s2[k].

We demonstrate that the sorted lexicographic order of the load vector always
decreases when a job migrates. To observe this one should note that only two
machine are influenced by the migration of the job J at time t, Mi = M(J, t),
where job J was before the migration and Mj = M(J, t + 1), the machine J
migrated to. Furthermore Li(t) > Lj(t + 1), otherwise job J would not have
migrated. Also note that Li(t) > Li(t + 1) since job J has left Mi. Let L =
max{Li(t + 1), Lj(t + 1)}. Since L < Li(t) one can show that the new machine
loads vector is smaller in the sorted lexicographic order than the old machine
loads vector. This is summarized in the following claim.

Claim 1. The sorted lexicographic order of the machine loads vector decreases
when a job migrates.

The above argument shows that any improvement policy converges to a Nash
equilibrium, and gives us an upper bound on the convergence time equal to the
number different sorted machine loads vectors (which is trivially bounded by the
number of different system configurations).

General Weights. In the general case, the number of different system con-
figurations is at most mn, which derives the following corollary.

Corollary 1. For any ESWS strategy with an improvement policy, the system
of multiple unrelated machines with restricted assignment reaches a Nash Equi-
librium in at most mn steps.

Discrete Weights. For the discrete weight setting, the number of different
weights is K. Let ni be the number of jobs with weight wi. The number of
different configurations of jobs with weight wi is bounded by

(
m+ni

m

)
. Multiplying

the number of configurations for the different weights bounds the number of
different system configurations. Since, by definition,

∑K
i=1 ni = n, we can derive

the following.

Corollary 2. For any ESWS strategy with an improvement policy, the system of
multiple unrelated machines with restricted assignment under the discrete weight
setting reaches a Nash Equilibrium in at most

K∏
i=1

(
m + ni

m

)
≤ (c

n

Km
+ c)Km,

steps for some constant c > 0.

Integer Weights. To bound the convergence time for the integer weight
setting, we introduce a potential function and demonstrate that it decreases
when a job migrates. We define the potential of the system at time t, as P (t) =∑m

i=1 4Li(t). After job J migrates from Mi to Mj then we have that Li(t)− 1 ≥
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Lj(t + 1), since J migrated. Also, since we have integer weights, Li(t + 1) ≤
Li(t)− 1. Therefore, the reduction in the potential is at least,

P (t)− P (t + 1) = 4Li(t) + 4Lj(t) − [4Li(t+1) + 4Lj(t+1)] ≥ 4Li(t)/2 ≥ 2. (1)

Since in the initial configuration we have that P (0) ≤ 4W we derive the following
theorem.

Theorem 1. For any ESWS strategy with an improvement policy, the system of
multiple machines under the integer weight setting reaches a Nash Equilibrium
in 4W /2 steps.

Next we show that this bound can be reduced to O(mW + m4W/m+wmax)
when using the Max Load Machine strategy.

Theorem 2. For Max Load Machine strategy with an improvement policy, the
system of multiple machines under the integer weight setting reaches a Nash
Equilibrium in at most 4mW + m4W/m+wmax/2 steps.

Proof. We divide the schedule into two phases with respect to the maximum load
among the machines. The first phase continues until Lmax(t) ≤ W/m + wmax,
and then the second phase starts. At the start of the second phase, at time
T , the potential is at most m4Lmax(T ) ≤ m4W/m+wmax . By (1), at every step
the potential drops by at least two, therefore the length of the second phase
is bounded by m4W/m+wmax/2. Thus, it remains to bound the length of the
first phase, namely T . At any time t < T we have Lmax(t) > W/m + wmax,
which implies that Lmin(t) ≤ W/m. Therefore every job in the maximum loaded
machine can benefit by migrating to the least loaded machine. The Max Load
Machine strategy will choose one of those jobs. By (1), the decrease in the
potential is at least 4Lmax(t)/2 ≥ P (t)/2m. Therefore, after T steps we have
P (T ) ≤ P (0)(1 − 1/2m)T . Since P (0) ≤ 4W and P (T ) ≥ 1, it follows that
T ≤ 4mW , which establishes the theorem. ut

Two Weights. It is worth to note that for the special case of two different
weights there exists an efficient ESWS strategy the converges in linear time.

4 Related Machines

In this section we consider the related machines. We first consider restricted
assignments and assume that all jobs follow an improvement policy. We define
the potential of the system as follows:

P (t) =
m∑

i=1

(Li(t))2

Si
+

n∑
j=1

w2
j

SM(j,t)
=

m∑
i=1

Si(Ti(t))2 +
n∑

j=1

w2
j

SM(j,t)

The following lemma shows that the potential drops after each improvement
step.
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Lemma 1. When a job of size w migrates from machine i to machine j at time
t then P (t + 1)− P (t) = 2w(Tj(t + 1)− Ti(t)) < 0.

We now like to bound the drop in the potential in each step. Clearly, if
we are interested in ε-Nash equilibrium, then the drop is at least 2wε > ε.
Considering a Nash equilibrium, for integer weights and speeds the the drop is
at least (Smax)−2. Since the initial potential is bounded by W 2, we can derive
the following Theorem.

Theorem 3. For any ESWS strategy with an improvement policy, the system
of multiple related machines with restricted assignment reaches an ε-Nash Equi-
librium in at most O(W 2

ε ) steps, and reaches a Nash Equilibrium, assuming both
integer weights and speeds, in at most O(W 2S2

max) steps.

For unrestricted assignment, by forcing to move the job from the most loaded
machine we can improve the bound as follows.

Theorem 4. Max Load Machine strategy with best reply policy reaches an ε-
Nash Equilibrium in at most

O(W

√
mSmax +

nw2
max

ε
)

steps.

Discrete Weights. We show that for any K integer weight there is an
equivalent model in which wmax is bounded by O(K(Smaxn)4K), and therefore
W = O(Kn(Smaxn)4K). This allows us to translate the results using W to the
discrete weight model by replacing W by O(Kn(Smaxn)4K). (We do not need
to calculate the equivalent weights, since they are only used for the convergence
time analysis.) We first define what we mean by an equivalent set of weights.

Definition 1. Two discrete set of weights w1, . . . , wK and α1, . . . , αK are equiv-
alent if for any two assignments, n1, . . . , nK and `1, . . . , `K we have

∑K
i=1 niwi >∑K

i=1 `iwi if and only if
∑K

i=1 niαi >
∑K

i=1 `iαi, and
∑K

i=1 niwi =
∑K

i=1 `iwi

if and only if
∑K

i=1 niαi =
∑K

i=1 `iαi. (We require that both
∑K

i=1 ni ≤ n and∑K
i=1 `i ≤ n.)

Intuitively, the above definition says that as long as we use only comparisons,
we can replace w1, . . . , wK by α1, . . . , αK . Most important for us is that we
can use in the potential the α’s rather than the w’s. From the definition of
an equivalent set of weights we can derive the following. Any strategy based
on comparisons of job weights and machine loads and an improvement policy
based on comparisons of machine loads (e.g. best reply) would produce the same
sequence of job migrations starting from any initial configuration.

The following theorem, which is proven using standard linear integer pro-
gramming techniques, bounds the size of the equivalent weights.
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Theorem 5. For any discrete set of weights w1, . . . , wK there exist an equiva-
lent set of weights α1, . . . , αK such that αK ≤ K(cSmaxn)4K for some constant
c > 0.

Unit Weight Jobs. We show that for unit weight jobs, there exists a strat-
egy that converges in mn steps. The unit weight jobs is a special case of [20]
with a symmetric cost function, where was derived an upper bound of O(mn2)
on the convergence time of a specific strategy. We follow the proof of [20] and
obtain a better bound in our model.

Theorem 6. There exists an ESWS strategy with an improvement policy such
that the system of multiple related machines with restricted assignment reaches
a Nash Equilibrium in at most mn steps in the case of unit weight jobs.

The next theorem presents a lower bound of Ω(mn) on the convergence time
of some ESWS strategy (different from that of Theorem 6).

Theorem 7. There exists an ESWS strategy with an improvement policy such
that for the system of multiple related machines with unrestricted assignment,
there exists a system configuration that requires at least Ω(mn) steps to reach a
Nash Equilibrium in the case of unit weight jobs.

5 Identical Machines

In this section we will show improved upper bounds that apply to identical ma-
chines with unrestricted assignment. We also show a lower bound for K weights
which is exponential in K. The lower bound is presented for the Min Weight
Job policy. Clearly, this lower bound also implies a lower bound in all the other
models. First we derive some general properties. The next observation states the
minimal load cannot decrease.

Observation 1. At every time step the minimal load among the machines either
remains the same or increases.

Now we show that when a job moves to a new machine, this machine still
remains a minimal marginal load machine for all jobs at that machine which
have greater weight.

Observation 2. If job J has migrated to its best response machine Mi at time
t then Mi is a minimal marginal load machine with regard to any job J ′ ∈ Bi(t)
such that w(J ′) ≥ w(J).

Next we show that once a job has migrated to a new machine, it will not
leave it unless a larger job arrives.

Claim 2. Suppose that job J has migrated to machine M at time t. If J ∈ A(t′)
for t′ > t then another job J ′ such that w(J ′) > w(J) switched to M at time t′′,
and t < t′′ ≤ t′.
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Next we present an upper bound on the convergence time of Max Weight Job
strategy. (A similar claim (without proof) appears in [26].)

Theorem 8. The Max Weight Job strategy with best response policy, for the
system of multiple identical machines with unrestricted assignment reaches a
Nash Equilibrium in at most n steps.

Proof. By Claim 2, once the job has migrated to a new machine, it will not leave
it unless a larger job arrives. But under Max Weight Job strategy only smaller
jobs can arrive in the subsequent time steps, so each job stabilizes after the first
migration, and the theorem follows. ut

Now we present a lower bound for the Min Weight Job strategy.

Theorem 9. For the Min Weight Job strategy with best response policy, for the
system of multiple identical machines with unrestricted assignment, there exists
a system configuration that requires at least ( n

K )K/(2(K!)) steps to reach a Nash
Equilibrium, where K = m− 1.

We also present a lower bound of n2/4 on the convergence time of Min Weight
Job and FIFO strategies for the case of two machines.

Theorem 10. For the Min Weight Job and FIFO strategies with best response
policy, for the system of two identical machines with unrestricted assignment,
there exists a system configuration that requires at least n2/4 steps to reach a
Nash Equilibrium.

Proof. Consider the following scenario. There are n/2 classes of jobs C1, . . . , Cn/2

and each class contains exactly 2 jobs and has weight wi = 3i−1. Notice that a
job in Ci with weight wi = 3i−1 has weight equal to the total weight of all the
jobs in the first i− 1 classes plus 1.

Initially, all jobs are located at the same machine. We divide the schedule into
phases. Let Ci

j we denote all jobs from classes Cj , . . . , Ci. A k-phase is defined as
follows. Initially, all jobs from classes Ck

1 are located at one machine. During the
phase these jobs, except one job from Ck, migrate to the other machine. Thus,
the duration of a k-phase is 2k− 1. It is easy to see that the schedule consists of
the phases n/2, . . . , 1 for Min Weight Job strategy. One can observe that FIFO
can generate the same schedule, if ties are broken using minimal weight. ut

The following theorem shows a tight upped bound of Θ(n2) on the conver-
gence time of FIFO strategy.

Theorem 11. For FIFO strategy with best response policy, the system of multi-
ple identical machines with unrestricted assignment reaches a Nash Equilibrium
in at most n(n + 1)/2 steps.

Similarly to FIFO, we bound the expected convergence tome of Random
strategy by O(n2).
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Theorem 12. For Random strategy with best response policy, the system of mul-
tiple identical machines with unrestricted assignment reaches a Nash Equilibrium
in expected time of at most n(n + 1)/2 steps.

Discrete Weights. For the discrete weight case, we demonstrate an upper
bound of O((n/K+1)K) on the convergence time of any ESWS strategy, showing
that the bound of Theorem 9 for the Min Weight Job is not far from the worst
convergence time.

Theorem 13. For any ESWS strategy with best response policy, the system
of multiple identical machines with unrestricted assignment under the discrete
weight setting reaches a Nash Equilibrium in O((n/K + 1)K) steps.

Integer Weights. For the integer weight case, we show that the convergence
time of any ESWS strategy is proportional to the sum of weights.

Theorem 14. For any ESWS strategy with best response policy, the system of
multiple identical machines with unrestricted assignment under the integer weight
setting reaches a Nash Equilibrium in W + n steps.

Unit Weight Jobs. For the unit weight jobs, we present a lower bound on
the convergence time of a specific strategy.

Theorem 15. There exists an ESWS strategy with the improvement policy for
which the worst case number of steps for the system of multiple identical ma-
chines with unrestricted assignment and unit weight jobs to reach a Nash Equi-
librium is at least Ω(min{mn, n log n log m

log log n}) steps.

6 Concluding Remarks

In this paper we have studied the online load balancing problem that involves
selfish jobs (users). We have focused on the number of steps required to reach a
Nash Equilibrium and established the convergence time for different strategies.
While some strategies provably converge in polynomial time, for the others the
convergence time might require an exponential number steps.

In the real world, the convergence time is of high importance, since even if
the system starts operation at a Nash Equilibrium, the users may join or leave
dynamically. Thus, when designing distributed control algorithms for systems
like the Internet, the convergence time should be taken into account.
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