
Computational Game Theory Spring Semester, 2003/4

Lecture 11:June 8

Lecturer:Yishay Mansour Scribe:Nir Yosef, Itamar Nabriski, Nataly Sharkov

11.1 Introduction

In this lecture we consider Combinatorial Auctions (abbreviated CA), that is, auctions
where instead of competing for a single resource we have multiple resources. The resources
assignments and bids are defined on subsets of resources and each player has a valuation
defined on subsets of the resource set he was assigned. The interesting cases here is when the
valuation of a given set of resources is different form the sum of valuations of each resource
separately (the whole is different from the sum of its parts). That could happen when we
have a set of complementary products that is, each product alone is useless but the group
has a significantly larger value (for example - left and right shoes). On the other hand we
might have a set of substitutional products where the opposite takes place (for example -
tickets for a movie - no use of having two tickets if you are going alone).
In these cases there is an importance for pricing groups of resources rather than single
resources separately, i.e. in the absence of complementarity and substitutability (if every
participant values a set of goods at the sum of the values of its elements), one should or-
ganize the multiple auction as a set of independent simple auctions, but, in the presence of
these two attributes, organizing the multiple auction as a set or even a sequence of simple
auctions will lead to less than optimal results, in such a case we use Combinatorial Auc-
tions.

11.2 Preliminaries

Throughout this lecture, we shall consider single-side combinatorial auctions, that is, auctions
with single seller and multiple buyers.
Any such auction must specify three elements:

• The bidding rules (i.e., what one is allowed to bid for and when).

• The market clearing rules (i.e., when is it decided who bought what and who pays
what)

• The information disclosure rules (i.e., what information about the bid state is disclosed
to whom and when).

1

2 Lecture 11:June 8

We consider only one-stage, sealed-bid CAs : each bidder submits zero or more bids, the
auction clears, and the results are announced.
The third element of the specification is thus straightforward: no information is released
about other bidders’ bids prior to the close of the auction. The first element of the spec-
ification is almost as straightforward: each bidder may submit one or more bids, each of
which mentions a subset of the goods and a price. One has to be precise, however, about the
semantics of the collection of bids submitted by a single bidder, because, as was mentioned,
the bid for a group doesn’t necessarily equal to the sum of bids of its elements.
Only the second element of the above specification, the clearing policy, provides choices for
the designer of the CA. There are two choices to be made here: which goods does every
bidder receive, and how much does every bidder pay? We address these below.

11.2.1 The model

• N = {1..n} set of players.

• S = {1..m} set of resources (products).

• Θ - set of players private information, player i has information θi ∈ Θi which is the
inner state he is currently in.

• D - Mechanisms decision space - each vector specifies resources allocation amongst the
players. D = {< s1..sn > | (∀i 6= j si ∩ sj = ∅) ∧ (

⋃

1≤i≤n si ⊆ S) }.

• V = {V1..Vn} - set of preference functions Vi : D × Θi → R
which is the value which player i attributes to every subset of S given its internal state
θi.

• ~t = {t1..tn} - set of payments defined for each player by the mechanism
t : Θ → Rn, ti(Θ) ∈ R.

Remark 11.1 Monotonicity for every s1, s2 ∈ S such that s1 ⊆ s2 , the value attributed
to s2 will not be smaller to that of s1. i.e. s1 ⊆ s2 ⇒ Vi(s1) ≤ Vi(s2) for any player i.

11.2.2 Goals and assumptions

• Our goal will be guaranteeing Efficiency - find a pareto-optimal allocation, that is,
no further trade among the buyers can improve the situation of some trader without
hurting any of them. This is typically achieved by using an assignment which brings
the sum of benefits to a maximum.

• An alternative goal - maximizing Seller’s revenue (will not be discussed on this lecture)

11.3. MECHANISM DESIGN FOR CA 3

• Assumption - no-externalities : Players’ preferences are over subsets of S and do not
include full specification of preferences about the outcomes of the auction (the resulting
allocation). Thus, a player cannot express externalities, for example, that he would
prefer, if he does not get a specific resource, this resource to be allocated to player X
and not to player Y.

11.3 Mechanism Design for CA

In order to get an efficient allocation where for each player telling the truth is a dominant
strategy we’ll use the VCG mechanism.

11.3.1 VCG mechanism - definition

• Decision rule(resource allocation): d =< s1..sn >∈ D such that
d = ArgMax d∈D

∑

i Vi(si, θi). That is, the chosen allocation maximizes the sum of
the declared valuations of the players.

• Payment scheme: ti(θ) =
∑

j 6=i Vj(sj, θj) − V Max<s′1..s′n>|s′i=∅

∑

j 6=i Vj(sj , θj). That is,
each player receives a monetary amount that equals the sum of the declared valuations
of all other players, and pays the auctioneer the sum of such valuations that would
have been obtained if he had not participated in the auction.

Remark 11.2 Note that A bidder knows his own inner state, but this information is private
and neither the auctioneer nor the other players have access to it, thus both of the above are
functions of the players’ declarations rather than its inner state.

In the previous lecture we’ve seen that this mechanism brings the social benefit (sum of all
benefits calculated according to players’ declarations) to a maximum while keeping truth-
telling as a dominant strategy.

11.3.2 Problems with the implementation of VCG mechanism

The main problem we confront trying to implement VCG mechanism is a computational
problem, as it turns out, finding such a maximum benefit allocation is a NP-hard optimiza-
tion problem (moreover, in our case we need to calculate a maximum benefit allocation n+1
times) that, in the worst case, cannot be even approximated in a feasible way.
An additional problem is describing players’ preferences: the domain of the preference func-
tion is the product of all subsets of S with player’s internal state and as such, for a given
state, its size is exponential in m.
Comment: the size of the domain mentioned above is under the assumption of no-externalities.

4 Lecture 11:June 8

Without that assumption, the domain would have been much larger (|D| × |Θ|)

In the following sections we consider a simplified model of CA called SMB (single minded
bidder) defined as:
For every player i there exists a single set si ⊆ S which he wants and for which he is willing
to pay the (non-negative) price ci.

Vi(s) =

{

ci si ⊆ S
0 otherwise

We have a compact description for the players’ preferences < si, ci >, thus overcoming the
second problem, next we’ll see that even for that simplified model, implementing VCG i.e.
finding maximal allocations, is NP-hard.

11.3.3 Reduction from IS

Claim 11.3 Finding an optimal allocation on CA with SMB model is NP-hard

Proof: We prove the claim by showing a reduction from the graph-theory problem of
maximum independent set to a maximum allocation problem on SMB model: Given an
undirected graph G = (V, E) let us build an instance of CA as follows:

• S = E: every edge is considered as a resource

• N = V : every vertex is considered as a player

• for each player (vertex) i, define si as the set of all edges (resources) coming out of
that vertex and ci = 1 .

For example, see following figure:

11.4. THE GREEDY ALLOCATION 5

Fig.1 Reduction from IS on an undirected graph to finding optimal allocation on CA with
SMB
For example: Player1 desired set of resources (s1) is {2, 5, 1}

>From the definition of D above, it is easy to see that:

• any legal allocation defines an independent set (the set of all players(vertices) with a
non-zero benefit) with the same value

• on the other hand, any independent set ∆ defines a legal allocation (Allocate si for
every player(vertex) i such that i ∈ ∆) with the same value as well.

Thus, finding a maximal social benefit is equivalent to finding a maximum independent set.
From the above reduction and since IS is in NPC, we conclude the same on the problem of
finding an optimal allocation. �

Corollary 11.4 Since we have |E| ≤ |V |2 resources and since no approximation scheme for
IS has an approximation ratio of |V |1−ǫ we get a bound of

√
m on the approximation ratio

for our problem where m is the number of resources.

11.4 The greedy allocation

As we have seen, for all practical purposes, there does not exist a polynomial-time algorithm
for computing an optimal allocation, or even for computing an allocation that is guaranteed to

6 Lecture 11:June 8

be off from optimal by at most a constant, any given constant. One approach to meeting this
difficulty is to replace the exact optimization by an approximated one. Next, we shall propose
a family of algorithms that provide such an approximation. Each of those algorithms runs
in a polynomial time in n, the number of single-minded bidders. Finally, we (unfortunately)
see that the properties guaranteed by the mechanism (such as truthful bidding, to be defined
later), disappear when using these approximated allocations.
(comment - traditional analysis of established CA mechanisms relies strongly on the fact
that the goods are allocated in an optimal manner).
General description of the algorithms:

• First phase: the players are sorted by some criteria. The algorithms of the family are
distinguished by the different criteria they use.

• Second phase: a greedy algorithm generates an allocation. Let L be the list of sorted
players obtained in the first phase. The bid of the first player i1 of L (< si1 , ci1 >); is
granted, that is, the set si1 will be allocated to player i1. Then, the algorithm examines
all other player of L, in order, and grants its bid if it does not conflict with any of the
bids previously granted. If it does, it denies (i.e., does not grant) the bid.

11.4.1 First sort criteria: ci

Claim 11.5 Using a greedy algorithm, G1, with ci as a sort criteria would yield an approx-
imation factor of m

Proof:
⇒ The ratio is at least m, proof by example:
Suppose we have a set N = {1..n} of players (SMB ’s) and a set S = {1..m} of resources
where m = n. and suppose:

• Player 1 asks for all the resources and his value is 1 + ǫ , [s1 = S, c1 = 1 + ǫ]

• ∀2 ≤ i ≤ n player i asks for resource i and his value is 1 , [si = {i}, ci = 1]

In this case it follows that OPT = m but G1 = 1 + ǫ

⇐ The ratio can be at most m because the value of the first player in a greedy alloca-
tion is higher than that of any player in OPT (follows immediately from the feasibility of
OPT) �

The greedy allocation 7

11.4.2 Second sort criteria: ci

|si|

Claim 11.6 Using a greedy algorithm, G2, with ci

|si|
as a sort criteria would yield an approx-

imation factor of m.

Proof:
⇒ The ratio is at least m, proof by example:
Assuming we have a set of two players and a set of resources similar to the above, suppose:

• Player 1 asks for resource 1 and his value is 1 [s1 = 1, c1 = 1]

• Player 2 asks for all the resources and his value is m − ǫ [s2 = S, c2 = m − ǫ]

In this case it follows that OPT = m − ǫ but Greedy = 1

⇐ The ratio can be at most m:
>From the greediness property of G2, for any subset si(requested by player i) that was allo-
cated by OPT and not allocated by Greedy there exists at least one other subset which was
previously allocated by G2 and because of which si was not allocated.
Let us consider the following function defined on the subsets allocated by OPT :

∀i∈OPT J(i) =

{

j : (j ∈ G2) ∧ (si ∪ sj 6= ∅) i /∈ G2

i otherwise

Explanation: for any subset si (requested by player i) that was allocated by OPT and not
allocated by G2, we take sJ(i) as a subset because of which si was not allocated. And, for
any subset si which was allocated both by OPT and G2 we take J(i) to be equal to i

Now, from the above definition of J and from the feasibility and greediness of G2, we can
conclude (∀i∈OPT):

1. si ∩ sJ(i) 6= ∅

2. ci

|si|
≤ cJ(i)

|sJ(i)|

>From which follows: ci ≤ |si|
|sJ(i)|

cJ(i) ≤ |si|cJ(i)

And finally:

OPT =
∑

i∈OPT ci ≤
∑

i∈OPT |si|cJ(i) ≤ m
∑

i∈OPT cJ(i) ≤
∑

j∈G2
cj = m · G2

- The third inequality is due to the fact that OPT is feasible i.e.,
(s1, s2 ∈ OPT) → (s1 ∩ s2 = ∅) �

8 Lecture 11:June 8

Remark on notation: for a player i and an algorithm ALG we say that i ∈ ALG if the
request of player i was granted by ALG

11.4.3 Third sort criteria: ci√
|si|

Claim 11.7 Using a greedy algorithm, G3, with ri = ci√
|si|

as a sort criteria would yield an

approximation factor of
√

m

Proof:
Consider the following two inequalities:

G3 =
∑

j∈G3
cj ≥

√

∑

j∈G3
c2
j =

√

∑

j∈G3
r2
j |sj|

- Because ∀1<j<n , cj > 0

OPT =
∑

i∈OPT rj

√

|sj| ≤
√

∑

i∈OPT r2
i

√
∑

i∈OPT |si| ≤
√

m
√

∑

i∈OPT r2
i .

- The last inequality follows from: (∀i1, i2 ∈ OPTi1 6= i2) → (si1 ∪ si2 = ∅)

Thus it is enough to compare
√

∑

j∈G3
r2
j |sj| and

√
∑

i∈OPT r2
i

Let us consider the function J(i) as in the last proof. In the same manner we can con-
clude ∀i ∈ OPT :

1. si ∩ sJ(i) 6= ∅
2. ri ≤ rJ(i)

>From the feasibility of OPT it follows that for every subset sj allocated by G3, there
exists at most |sj| subsets which are allocated by OPT and rejected by G3 because of sj .
Summing for all i ∈ OPT , we get:

√
∑

i∈OPT r2
i ≤

√

∑

i∈OPT r2
J(i) ≤

√

∑

j∈G3
r2
j |sj|

And finally, we get:

OPT ≤ √
m

√
∑

i∈OPT r2
i ≤

√

∑

j∈G3
r2
j |sj| ≤

√
mG3 �

11.5. TRUTHFUL MECHANISM WITH GREEDY ALLOCATION IN SMB 9

11.5 Truthful Mechanism with Greedy Allocation in

SMB

11.5.1 Greedy Allocation Scheme and VCG do not make a Truth-
ful Mechanism in SMB

The following example illustrates a case where using G2 and V CG doesn’t yield a truthful
mechanism (and simiraly for any Gi):

Player < si, vi > vi

|si|
ti

R ({a}, 10) 10 8 − 19 = −11
G ({a, b}, 19) 9.5 0
B ({b}, 8) 8 10 − 10 = 0

Since the ti’s represent the value gained by the other players in the auction minus the value
gained by the other players had i not participated in the auction, R ends up with a lose of
11. Had R not been truthful and bid below 9.5 (G2’s

vi

|si|
), he would be better off gaining 0.

Thus in this case being truthful is not a dominant strategy for R and thus this mechanism
is not truthful.
We now explore the conditions necessary for a truthful greedy allocation mechanism in SMB.

11.5.2 Sufficient Conditions for a Thruthful Mechanism in SMB

Let {g1, ..., gn} denote the set of allocations the mechanism grants to each player. For brevity
all bids and valuations are not labeled by the player index and all pretain to player i
Definition Exactness: Either gi = s or gi = ∅ .

In other words player i is allocated all the goods he bid for or none at all. There are no
partial allocations.

Definition Monotonicity: s ⊆ gi, s
′ ⊆ s, v

′ ≥ v ⇒ s
′ ⊆ g

′

i.

This means that if player i’s bid was granted for bidding < s, v > then his bid would also
be granted for bidding < s

′

, v
′

> where s
′ ⊆ s and v

′ ≥ v. Thus if a bid for a set of goods is
granted then a bid (with at least the same amount of money) for a subset of the goods will
be granted as well.

10 Lecture 11:June 8

Lemma 11.8 In a mechanism that satisfies Exactness and Monotonicity, given a bidder i,
a set si of goods and declarations for all other bidders in the game, there exists a critical
value vc such that:

vi < vc ⇒ gi = ∅
vi > vc ⇒ gi = si

Note that we do not know if i’s bid is granted when vi = vc and that vc can be infinite and
thus for every v, gi = ∅.

Proof: Assume by contradiction our mechanism supports Exactness and Monotonicity,
but a vc as described above does not exist then either:

1. For a bid vi by player i, gi 6= s and gi 6= ∅. But this contradicts Exactness. Contradic-
tion.

2. For two different possible bids of player i, v1, v2: v1 < v2 and gi1 = s, gi2 = ∅. But
this contradicts Monotonicity. Contradiction.

�

Definition Critical: s ⊆ gi ⇒ ti = vc

This has two meanings:

1. The payment for a bid granted to player i does not depend on his bid but on the bids
of the other players.

2. The payment equals exactly to the (critical) value below which the bid will not be
granted.

Definition Participation: s 6⊆ gi ⇒ ti = 0

This implies that if you are not granted the goods you bid for, you will not incur any
payments.

Lemma 11.9 In a mechanism that satisfies Exactness and Participation, a bidder whose
bid is denied has a profit of zero.

Proof:
By Exactness, the bidder gets nothing and thus his income is zero. By participation his

payment (expenditure) is zero. Thus profit = income − expenditure = 0 − 0 = 0.
�

Truthful Mechanism with Greedy Allocation in SMB 11

Lemma 11.10 In a mechanism that satisfies Exactness, Monotonicity, Participation and
Critical a truthful bidder’s profit is nonnegative.

Proof:
If player i’s bid is denied, we conclude be lemma 11.9 that i’s profit is zero. Assume i’s

bid is granted and his type is < s, v >. Being truthful, i declaration is di =< s, v >. Thus
i is allocated s and his income is v. By lemma 11.8 , since i’s bid is granted, v ≥ vc. By
Critical, i’s payment is vc, thus his profit is v − vc ≥ 0.

�

Lemma 11.11 In a mechanism that satisfies Exactness, Monotonicity, Participation and
Critical, a bidder i of type < s, v > is never better off declaring < s, v′ > for some v′ 6= v
than being truthful.

Proof:
For player i, compare the case i bids truthfully < s, v > and the case he bids < v′, s >.

Let gi be the goods he recieves for < s, v > and g′
i be the goods he recieves for < s, v′ >.

There are three cases:

1. If i’s bid is denied for < s, v′ > (thus g′ 6= s), then by lemma 11.9, his profit is zero
and by lemma 11.10 his profit for < s, v > is nonnegative and the claim holds.

2. Assume i’s bid is granted both for < s, v′ > and < s, v > thus g′
i = s, gi = s. If both

bids are granted then in both cases the player gets goods that he values to be worth v.
In both cases the player pays the same payment vc (by Critical).Thus profit is identical
in both cases and the player is not better off lying.

3. Assume i’s bid is granted for < s, v′ > but denied for < s, v > thus g′
i = s, gi = ∅. It

must be that v ≥ vc ≥ v′. By lemma 11.9, being truthful gives i zero profit. Lying
gives him profit v − vc ≤ 0.

�

Lemma 11.12 In a mechanism that satisfies Exactness, Monotonicity and Critical, a bidder
i declaring < s, v > whose bid is granted (gi = s), pays a price ti where ti ≥ t′i and t′i being
the price payed for declaring < s′, v > where s′ ⊆ s.

Proof:
Since < s, v > was granted, by Monotonicity, so would < s′, v >. By Critical, the price

t′i payed for < s′, v > satisfies: for any x < t′i the bid < s′, x > would be denied. By Critical,
for any x > ti the bid would be granted. Thus, it must that t′i ≤ ti.

�

Using the above lemmas we will prove the following central Theorem:

12 Lecture 11:June 8

Theorem 11.13 If a mechanism satisfies Exactness, Monotonicity, Participation and Crit-
ical, then it is a truthful mechanism.

Proof:
Suppose player i’s type is < s, v >, we prove he is not better off declaring < s′, v′ >:

By lemma 11.10 the only case we must consider is when declaring < s′, v′ > yields positive
profit to i and by lemma 11.9 this means that this bid was granted. Assume, therfore that
g′

i = s′.

1. Assume s 6⊂ s′. By SMB defintion, player i’s income is zero (he got the bundle he
doesn’t want...). Since, by Critical, his payment is non-negative, his profit cannot be
positive.

2. Assume s ⊂ s′. Being an SMB , i’s income from s′ is the same as from s. By
lemma 11.12 it is evident that instead of declaring < s′, v′ >, i would not be worse off
declaring < s′, v >. By lemma 11.11 it is evident that < s′, v > is not better off than
being truthful, or in other words declaring < s, v >.

�

11.5.3 A Truthful Mechanism with Greedy Allocation

We shall now describe a payment scheme that used with greedy algorithms of type Gi creates
a truthful mechanism for SMB.
The mechanism proposed is for G2, i.e. sorting bids by vi

|si|
. This can easily be adapted to

G1,G3 or any sort of G3 with a different norm with no added complexity.
The payment computation is done in parallel with the execution of Gi. Each payment calcu-
lation takes O(n) and thus computing all the payments is O(n2). Since Gi takes O(n log n)
the total running time is O(n2).

Definitions

• AverageCosti = vi

|si|

• NextBidder(i) : N −→ N , returns the first bidder following i (in the the sorted
descending list of bids, that is AverageCosti ≥ AverageCostNextBidder(i)) whose bid
was denied, but would be granted had we removed i from the game. Defined Formally:

NextBidder(i) = min{i|i < i, s(i)∩s(i) 6= ∅, ∀l, l < i, l 6= i, l granted ⇒ s(l)∩s(i) = ∅}

• Greedy Payment Scheme (GPS). Let L be the sorted list created by Gi:

Truthful Mechanism with Greedy Allocation in SMB 13

1. If gi = si, i pays AverageCostNextBidder(i)×|si| (if there is no next bidder payment
is 0), else:

2. i pays 0.

Proposed Mechanism

Theorem 11.14 Gi together with GPS comprise a truthful mechanism for the SMB.

Proof:
We shall prove that Gi together with GPS satisfies Exactness, Motonicity , Participation

and Critical and use Theorem 11.13 to conclude it is a truthful mechanism:

1. Exactness:
By definiton of Gi.

2. Motonicity:
For any Gi and a player i with bids of < s, v >, < s′, v′ >, if gi = s, s′ ⊆ s and v′ ≥ v
then bidding < s′, v′ > would put i in an equal or better place in L and thus g′

i = s′

as well.

3. Participation:
By definiton of GPS.

4. Critical:
For G2 with GPS, but similarly for any type of Gi with a similar GPS, if player i
bids < s, v > and gi = s then i pays AverageCostNextBidder(i) × |s|. If i where to bid
< s, v′ > such that v′ < AverageCostNextBidder(i) ×|s| than he would lose the bid since
v′

|s|
< AverageCostNextBidder(i) and thus be rated below NextBidder(i) in L. Thus the

payment of i is equal to the critical value of i.

�

11.5.4 Examples

1. Let us return to the example we used in 11.5.1, but this time for For Gi with GPS:

Player < si, vi > vi

|si|
ti

R ({a}, 10) 10 9.5
G ({a, b}, 19) 9.5 0
B ({b}, 8) 8 0

14 Lecture 11:June 8

We see the algorithm granted R his bid with a payment of 9.5 which is G’s average
value, G’s bid is denied since some of his goods where allocated to R. B’s bid is granted
as well with no payment since there is no next player after him in L.

2. Another example of this algorithm at work:

Player < si, vi > vi

|si|
ti

R ({a}, 20) 20 0
G ({b}, 15) 15 0
B ({a, b}, 10) 10 0

R and G’s bids are granted, B’s bid is denied. Had R not participated G’s bid would
still be granted a and B’s bid would still be denied, thus his payment is 0. Had G
not participated, B’s bid would still be denied, thus his payment is 0. In this case the
allocation is also the efficient one.

11.6 Single-Unit Combinatorial Auctions

In a Single-Unit Combinatorial Auction bidders are interested in buying as many copies
of the a single good as offered by the seller. In this case the term auction maybe a bit
misleading, since the sellers acts more like a shopkeeper that chooses a price tag for the
product he is selling without knowing the potential buyers’ valuations.

11.6.1 Definitions

1. All buyer valuations of the good are within a given range, thus:

∀i, vi ∈ [1, w].

2. The highest valuation among buyers is denoted by

v∗ = max(vi)

Single-Unit Combinatorial Auctions 15

11.6.2 Single Copy Auction

In this type of auction only one copy of the good is sold. We construct an algorithm ALG
to determine the price tag we will give the product as follows (we are interested, of course,
in selling the product for the maximal bidder valuation):

We pick a price tag of 2i (0 ≤ i ≤ log w) with probability of 1
log w

. We define l such that:

2l−i ≤ v∗ ≤ 2l

Effectively we cut the potential tag range into about log w segments, each segment being
twice as wide as the segment preceding it. We randomly choose one of the segments with
equal probability and fix the price to be in this segment. OPT , knowing all valuations, will,
of course, select a price tag of v∗. Our ALG has 1

log w
chance of picking a price tag in the

segment containing v∗, a price tag in this segment can be at the worst case equal to v∗/2.
Thus the expected revenue generated by ALG is bounded from below by 2 log w. Thus we
get a competitive ratio of:

v∗

ALG
≤ 2 log w.

11.6.3 Several Copies Auction

Assume several copies of the single product are for sale and they number log w. OPT will
always sell all the products for a total revenue of v∗ log w (selling all the products to the
buyer with the highest valuation).
Our algorithm, ALG, begins by selling the good with a price of 1 and after every sale we
make, we double the price.
We consider the final price tag 2l, that is the price tag where no willing buyers are left for
the product or we run out of stock, and observe two cases:

1. If 2l ≤ v∗, (actually it is exactly 2l = v∗, since this is the only possible way the seller can
clear his stock), then the best price we got is no worse than v∗, yielding a competitive
ratio of about log w.

2. If v∗ < 2l, then exists player j that bought at 2l−1, and so 2l−1 ≤ vj ≤ v∗. Thus, the
last item sold guarantees the following:

v(ALG) ≥ vj ≥
1

2
v∗

and since
v(OPT) ≤ v∗ log w.

In this case we get a competitive ratio of:

v(OPT)

v(ALG)
≤ 2 log w.

16 Lecture 11:June 8

11.7 Multi-Unit Combinatorial Auctions

In this part we study multi-unit combinatorial auctions. In a Multi-Unit Combinatorial
Auction there are n types of goods, for each good i there are ki copies for sale. We isolate
our treatment to auctions where the number of copies of each good are relatively small.

11.7.1 Definitions

• Let U be the set of all possible bundles, thus every member of U is a bundle that may
be requested by one of the bidders. Formally:

U = {0, ..., k1} × ... × {0, ..., kn}

• For each bidder j, there exists a valuation function:

vj : U −→ ℜ+

• There exists a lower bound α and and upper bound β. Each bidder desires 0 or at
least αki and at most βki units of good i .

• We simplify the problem by assuming 1 unit exists for each product but players can
request fractional amounts of it (bids for each product are in the range [0, ..1]]).

• Demand Oracle . A demand oracle for valuation v accepts as input a vector of item
prices p(1), p(2)...p(n) and outputs the demand for the items at these prices, i.e. it

outputs the vector λ = (λ(1), λ(2), ..., λ(n)) that maximizes the surplus v(λ) − 〈~λ, p〉 =
v(λ(1), λ(2), ..., λ(n)) −

∑

i λ
(i)P (i)

• Allocation. An allocation is a collection of m non-negative vectors λ1, λ2..., λm, where
λ

(i)
j specifies the amount of good i that bidder j has received. An allocation is feasible

if for all i,
∑

j λ
(i)
j ≤ 1.

• Value of an allocation. The value of an allocation A is V (A) =
∑

j vj(λj). An allocation
is optimal if it achieves the maximal value of any feasible allocation.

• Direct Relevation mechanism. A direct relevation mechanism recieves as input a vector
of declared valuations v1, .., vm and produces as output an allocation λ1, .., λm and a
vector of payments P1, .., Pm, where bidder j recieves λj and pays Pj.

• Incentive Compatibility. A direct relevation mechanism is inncentive compatible if for
every bidder j, every valuation vj , all declarations of the other bidders v−j, and all
possible ”false declaratrions” v′

j we have that bidder j’s utility with bidding v′
j is no

Multi-Unit Combinatorial Auctions 17

more than his utility truthfully bidding vj . I.e. Let λj and Pj be the mechanism’s
output with input (vj , v−j) and λ′

j and P ′
j be the mechanism’s output with input

(v′
j , v−j) then vj(λ) − Pj ≥ vj(λ

′) − P ′
j

11.7.2 The Online Algorithm

We present an Online Algorithm for the problem of Multi-Unit Auction with Bounded De-
mand. The idea of the algorithm is as follows :
At any point in time good i has a price of P (i). The bidders arrive one after the other, and
when bidder j is considered he chooses which bundle he prefers according to the current
prices. The prices P (i) are initialized to some parameter P0 and are increased whenever a
quantity of that good is allocated. The increase in price is exponential with a rate r per unit
allocation.

Formally, the online Algorithm with Parameters P0 and r is as follows,

• for each good i, l
(i)
1 = 0

• for each bidder j = 1 to m

– for each good i, P
(i)
j = P0r

l
(i)
j

– Query j’s demand oracle on the current prices and allocate:
Demand(P

(1)
j , ..., P

(n)
j) −→ (x

(1)
j , ..., x

(n)
j)

– determine bidder j’s payment as:
P total

j =
∑

i x
(i)
j P

(i)
j

– update
l
(i)
j+1 = l

(i)
j + x

(i)
j

11.7.3 Analysis of Online Algorithm

The correctness of the algorithm involves three elements: incentive compatibility (as defined
in previous lectures), validity and approximation ratio.

Lemma 11.15 For any outer choice of parameters P0 and r, the online algorithm is incen-
tive compatible.

The lemma follows from the theorem below:

Theorem 11.16 A direct relevation mechanism is incentive compatible if and only if for
every bidder j and every vector of bids of the other players v−j it:

1. fixes a price pj(λ) for every possible allocation λ to bidder j, and whenever bidder j is
allocated λ his payment is pj(λ). (Note that pj(λ) does not depend on vj.)

18 Lecture 11:June 8

2. allocates to j, λ that maximizes the value of vj(λ)−pj(λ) over all λ that can be allocated
to j (for any choice of vj).

Proof:

1. We show the two conditions are sufficient. Fix v−j and vj. Now consider an alternative
”lie” v′

j for bidder j. Let λ and p be the mechanism’s output for j with input (vj , v−j)
and λ′ and p′ be the mechanism’s output for for j with input (v′

j, v−j). If λ = λ′

then the first condition ensures that p = p′ = pj(λ), and thus both allocation and
the payments with declaration v′

j are equivalent to those obtained with a truthful
bid. If λ 6= λ′, then p = pj(λ), p′ = pj(λ

′), and the second codition ensures that
vj(λ)−pj(λ) ≥ vj(λ

′)−pj(λ
′), and thus the utility with declaration v′

j is less than that
obtained with a truthful bid.

2. We show the two conditions are necessary.

• Assume to the contrary that the first condition does not hold, i.e. that for some
v−j , and the valuations vj and v′

j , the mechanism yields the same allocation λ to
player j, but charges different payments p > p′, respectively, from him. Now it
is clear that for the case where bidders’ valuations are v−j and vj, for bidder j
to declare v′

j instead of vj will imorove his utility (since the allocation remains
the same, while the payment decreases), contrary to the definition of incentive
compatibility.

• Now assume the first condition holds, but assume to the contrary that the second
condtion doen’t, i.e. that for some v−j and valuation vj , the mechanism allocates
λ to j with the property that vj(λ)− pj(λ) < vj(λ

′)− pj(λ
′), for some λ′ that can

be allocated to j, e.g. if he bids v′
j . But this exactly says that for the case where

bidders’ valuations are v−j and vj , the for bidder j to declare v′
j instead of vj will

improve his utility (since he is now allocated λ′ and charged pj(λ
′)), contrary to

the definition of incentive compatibility.

�

Next we prove the validity of the algorithm. i.e. that it never allocates more than the
available quantity of each good. This is true as long as the values of P0 and r satisfy a

certain condition. Let l
(i)
j =

j−1
∑

t=1

x
(i)
t the total allocation of good i to players in [1..j − 1]. Let

l
(i)
∗ = l

(i)
m+1 the total allocation to all players, l

(i)
∗ ≤ 1. Let vmax = max

j,λ
vj(λ) be the highest

valuation in the auction.

Lemma 11.17 Let P0, r be such that the condition P0r
γ ≥ vmax

α
holds, then l

(i)
∗ ≤ γ + β In

particular for γ = 1 − β the algorithm is valid.

Multi-Unit Combinatorial Auctions 19

Proof: Assume to the contrary that l
(i)
j+1 > γ+β, and let j be the first player that caused

this to happen for some good i, i.e. l
(i)
j+1 > γ + β since no player is allocated more than β

units of each good, we have that (l
(i)
j > γ). It follows that (P

(i)
j > P0r

γ ≥ vmax

β
). Since player

j is allocated at least α units of good i, his payment is at least αP
(i)
j > vmax ≥ vj(xj). Thus

player j’s payment is more than his valuation for the bundle allocated, in contradiction to
the definition of the demand oracle and the possibility of choosing the empty bundle and
paying nothing. �

Our final step is to prove a bound on the approximation ratio. For an allocation algorithm
A, let V(A) denote the total sum of bidders’ valuations for the allocation produced, i.e.
V (A) =

∑

j vj(xj), where (x1, ..., xm) is the allocation produced by A.
We now prove that:

V (ALG)(1 +
rβ − 1

β
) ≥ V (OPT)− nP0.

To get this conjecture we prove some additional lemmas.

Lemma 11.18 For any j and
−→
λj , vj(

−→xj) ≥ vj−〈λj,
−→
P∗〉, where P∗ is the vector of the goods’

prices at the end of allocation, P∗ = P
(1)
∗ ...P

(n)
∗ , and where P

(i)
∗ = P (0)rl

(i)
∗

Proof: When bidder j is allocated than the inequality

vj(
−→xj) − 〈−→xj ,

−→
Pj〉 ≥ vj(

−→
λj) − 〈−→λj ,

−→
Pj〉

takes place. It derives from definition of demand oracle.

Since
−→
P∗ ≥

−→
Pj for any j, then

vj(
−→xj) − 〈−→xj ,

−→
Pj〉 ≥ vj(

−→
λj) − 〈−→λj ,

−→
P∗〉.

The last inequality holds true since
−→
P∗ ≥

−→
P . Since 〈−→xj ,

−→
Pj〉 ≥ 0 the lemma holds. �

Corollary 11.19

V (ALG) ≥ V (OPT)−
∑

i

P i
∗

Since each bidder pays no more than the value of the bundle he gets, the total revenue
is a lower bound for the total valuation. When the j is allocated we have

vj(
−→xj)) ≥ 〈−→xj ,

−→
Pj〉 =

∑

i

x
(i)
j P(0)r

l
(i)
j

20 Lecture 11:June 8

Summing for all bidders we have

V (ALG) =
∑

j

vj(xj) ≥
∑

j

∑

i

x
(i)
j P0r

l
(i)
j =

∑

i

∑

j

x
(i)
j P0r

l
(i)
j

Let R(i) =
∑

j

x
(i)
j P0r

l
(i)
j be the total revenue obtained for good i. Let ∆jR

(i) = x
(i)
j P0r

l
(i)
j ,

then R(i) =
∑

j

∆jR
(i). We denote h = x

(i)
j , t = l

(i)
j , so ∆jR

(i) =
∑

∆jR
(i) = hP0r

t.

Let ∆R(i) be the change when the price grows continuously. We compare this value to

∆R(i)

P0

=

t+h
∫

t

rxdx =
rx

ln r
|t+h
t =

rt+h − rt

ln r
=

rt

ln r
(rh − 1).

Since the demand of any good is bounded by β we can bound the ratio between ∆R(i) and
∆R(i), (in other words, bounding the ratio between the continuous and discrete evaluations).

max
h≤β

∆R(i)

∆R(i)
= max

h≤β

rt

ln r
(rh − 1)

hrt
= max

h≤β

rh − 1

h ln r
=

1

ln r

rβ − 1

β

And so

R(i) ≥ β

rβ − 1
(P i

∗ − P0),

where P∗ = rt+h and P0 = rt.
Summing this result over all goods, we achieve the following bound:

Lemma 11.20

V (ALG) ≥
∑

j

R(i) ≥ β

rβ − 1
(
∑

P (i)
∗ − nP0)

V (ALG) =
rβ − 1

β
+ nP0 ≥

∑

i

P (i)
∗

V (ALG) ≥ V (OPT) −
∑

P (i)
∗

We obtain compatible, valid and approximation algorithm as long as following two conditions
on the parameters P0 and r hold:

1. nP0 ≤ V (OPT)
2

2. r1−β ≥ vmax

αP0
.

11.8. REFERENCES 21

And so

V (ALG)
rβ − 1

β
≥ 1

2
V (OPT).

Under these conditions no item is over allocated and the approximation ratio is C = 2(1 +
rβ−1

β
)

In order to obtain a complete online algorithm we need to choose parameters to our ALG.
In our algorithm we choose them before any players arrive. This is possible, only if there
exists an a priory known bounds vmin and vmax such that:

vmin ≤ max
j

vj(β, ..., β) ≤ vmax

We will assume this condition holds.

Using the algorithm with P0 = vmin

2n
and r = vmax

αP0
we achieve 2

ρ
2αn

β
1−β −1

β
- approximation to

the optimal allocation, where ρ = vmax

vmin
.

11.8 References

1. Mansour Y. ”Topics in Computational Game Theory” Course, Notes from lecture 11
presented at 11/6/2004, Tel Aviv University, Israel.

2. Lehmann D, O’Callaghan LI, Shoham Y. Truth Revelation in Approximately Efficient
Combinatorial Auctions. Journal of the ACM, October 19, 2002.

3. Bartal Y, Gonen R, Nisan N. Incentive Compatible Multi Unit Combinatorial Auctions.
ACM Press, 2003.

