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4.1 2-Player Zero Sum Games

In this lecture we will discuss 2-player zero sum games. Such games are completely compet-
itive, where whatever one player wins, the other must lose. Examples of such games include
chess, checkers, backgammon, etc. We will show that in such games:

• An equilibrium always exists;

• All equilibrium points yield the same payoff for all players;

• The set of equilibrium points is actually the cartesian product of independent sets of
equilibrium strategies per player.

We will also show applications of this theory.

Definition Let G be the game defined by 〈N, (Ai) , (ui)〉 where N is the number of players,
Ai is the set of possible pure strategies for player i, and ui is the payoff function for player
i. Let A be the cartesian product A =

∏n
i=1 Ai. Then G is a zero sum game if and only if:

∀~a ∈ A,

n∑
i=1

ui (~a) = 0 (4.1)

In other words, a zero sum game is a game in which, for any outcome (any combination
of pure strategies, one per player), the sum of payoffs for all players is zero.

We naturally extend the definition of ui to any probability distribution ~p over A by
ui (~p) = E~a∼ ~p (ui (~a)). The following is immediate due to the linearity of the expectation
and the zero sum constraint:

Corollary 4.1 Let G be a zero sum game, and ∆ the set of probability distributions over A.
Then

∀~p ∈ ∆,

n∑
i=1

ui (~p) = 0 (4.2)
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Specifically, this will also hold for any probability distribution that is the product of
N independent distributions, one per player, which applies to our normal mixed strategies
game.

A 2-player zero sum game is a zero sum game with N = 2. In this case, 4.1 may be
written as

∀a1 ∈ A1, a2 ∈ A2, u1 (a1, a2) = −u2 (a1, a2) (4.3)

Such a game is completely competitive. There is no motivation for cooperation between
the players.

A two person zero sum game may also be described by a single function π : A1×A2 → R
describing the payoff value for player I, or the loss value for player II. The goal of player I is
to maximize π, while the goal of player II is to minimize π. We say that π (i, j) is the value
of the game for strategies i and j or simply the payoff for i and j.

Given a certain ordering of the pure strategies of both players, we can also represent a
finite 2-player zero sum game using a real matrix Am×n (the payoff matrix), where m is the
number of pure strategies for player I and n is the number of pure strategies for player II.
The element aij in the ith row and jth column of A is the payoff (for player I) assuming
player I chooses his ith strategy and player II chooses his jth strategy.

4.2 Nash Equilibria

The Nash equilibria of a 2-player zero sum game have several interesting properties. First,
they all exhibit the same value. Second, they are interchangeable, meaning that given 2 Nash
equilibrium points, it is possible to replace a strategy for one of the players in the first point
by the strategy of the same player in the second point and obtain another Nash equilibrium.
Formally:

Theorem 4.2 Let G be a 2-player zero sum game defined by 〈(A1, A2) , π〉. Let (τ1, τ2) and
(σ1, σ2) be two Nash equilibria for G. Then

1. Both (σ1, τ2) and (τ1, σ2) are Nash equilibria of G.

2. π (τ1, τ2) = π (τ1, σ2) = π (σ1, τ2) = π (σ1, σ2)

Proof: (σ1, σ2) is a Nash equilibrium. Therefore, for the first player (who plays to
maximize π), we have

π (σ1, σ2) ≥ π (τ1, σ2)

However, (τ1, τ2) is a Nash equilibrium as well. Therefore, for the second player (who plays
to minimize π) we have

π (τ1, σ2) ≥ π (τ1, τ2)
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Combining these two inequalities we get

π (σ1, σ2) ≥ π (τ1, σ2) ≥ π (τ1, τ2)

Similarly,

π (σ1, σ2) ≤ π (σ1, τ2) ≤ π (τ1, τ2)

From the last two inequalities we obtain

π (σ1, σ2) = π (τ1, τ2) = π (σ1, τ2) = π (τ1, σ2)

Which proves part 2 of the theorem. To prove part 1 we observe that because (σ1, σ2) is a
Nash equilibrium for player I,

∀α′1 ∈ A1, π (α′1, σ2) ≤ π (σ1, σ2) = π (τ1, σ2)

Where the right-hand equation is due to part 2 of the theorem which has already been
proven. Similarly, because (τ1, τ2) is a Nash equilibrium for player II,

∀α′2 ∈ A2, π (τ1, α
′
2) ≥ π (τ1, τ2) = π (τ1, σ2)

Which means that (τ1, σ2) is a Nash equilibrium as well. The proof is similar for (σ1, τ2).
¤

Theorem 4.2 holds with the same proof for both the deterministic and the nondetermin-
istic case.

We define the equilibrium strategies of a player as the set of all strategies played by the
player in any equilibrium point. For player I, this is given by

{σ1 ∈ A1 | ∃σ2 ∈ A2, (σ1, σ2) is an eq. pt. }

Corollary 4.3 The set of Nash equilibrium points of a 2-player zero sum game is the carte-
sian product of the equilibrium strategies of each player.

When a 2-player zero sum game is represented as a matrix A, a deterministic Nash
equilibrium for the game is a saddle point of A, or a pair of strategies i, j so that

aij = max
k

akj

aij = min
l

ail

Such an equilibrium does not necessarily exist.
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4.3 Payoff Bounds

For a deterministic game, player I can guarantee a payoff lower bound by choosing a pure
strategy for which the minimal payoff is maximized. This assumes player II is able to know
player I’s choice and will play the worst possible strategy for player I (note that in a 2-player
zero sum game this is also player II’s best response to player I’s chosen strategy).

We denote this ”gain-floor” by V ′
I :

V ′
I = max

i
min

j
aij

Similarly, player II can guarantee a loss upper bound by choosing the pure strategy for which
the maximal payoff is minimal. We denote this ”loss-ceiling” by V ′

II :

V ′
II = min

j
max

i
aij

Lemma 4.4 For any function F : X × Y → R, for which all the relevant minima and
maxima exist:

1. maxx∈X miny∈Y F (x, y) ≤ miny∈Y maxx∈X F (x, y)

2. Equality holds iff:

∃x0 ∈ X, y0 ∈ Y , F (x0, y0) = min
y∈Y

F (x0, y) = max
x∈X

F (x, y0)

Proof: The proof of this lemma is trivial and is not shown here. ¤
Applying Lemma 4.4 to our case proves the intuitive fact that player I’s gain-floor cannot

be greater than player II’s loss-ceiling,

V ′
I ≤ V ′

II

and that equality holds iff we have a saddle point and thus an equilibrium.

4.4 Mixed Strategies

For a finite 2-player zero sum game denoted as a matrix Am×n, we denote a mixed strategy
for a player I (II) by a stochastic vector of length m (n), where the ith element in the vector is
the probability for the ith pure strategy of this player (using the same order used to generate
the payoff matrix).

Vectors in this text are always row vectors. We will typically use x for player I mixed
strategies, and y for player II mixed strategies. We shall denote by ∆d the set of stochastic
vectors in Rd.



Mixed Strategies 5

For a 2-player zero sum game given by matrix Am×n, and given mixed strategies x for
player I and y for player II, the expected payoff is given by

A (x, y) =
m∑

i=1

n∑
j=1

xiaijyj = xAyT (4.4)

Once again, if player I chose strategy x, the minimum gain (which is also player II’s best
response loss) is

vII (x) = min
y∈∆n

xAyT (4.5)

Assuming player II knows what player I has played before selecting a strategy. The minimum
exists because ∆n is compact and xAyT is continuous in y. It is easily shown that this
minimum must be reachable in at least one pure strategy of player II.

Lemma 4.5

∀x ∈ ∆m, vII (x) = min
y∈∆n

xAyT = min
1≤j≤n

xAeT
j

Proof: The proof is trivial given the fact that xAyT is a stochastic combination of
xAeT

j , so xAyT can never be less than all of xAeT
j , and on the other hand, ej is also in ∆n,

so vII (x) ≤ xAeT
j .

¤
Therefore we can write 4.5 as

vII (x) = min
1≤j≤n

xAeT
j = min

1≤j≤n

m∑
i=1

xiaij (4.6)

Which means that player I can guarantee the following lower bound on his payoff (gain-
floor)

VI = max
x∈∆m

min
y∈∆n

xAyT = max
x∈∆m

min
1≤j≤n

xAeT
j = max

x∈∆m

min
1≤j≤n

m∑
i=1

xiaij (4.7)

Such a mixed strategy x that maximizes vII (x) is a maximin strategy for player I. Once
again, this maximum exists due to compactness and continuity.

We define vI (y) in a similar fashion as player I’s most harmful response (to player II)
to strategy y of player II (this is also player I’s best response to y). Then, player II can
guarantee the following upper bound on his loss (loss-ceiling)

VII = min
y∈∆n

max
x∈∆m

xAyT = min
y∈∆n

max
1≤i≤m

eiAyT = min
y∈∆n

max
1≤i≤m

n∑
j=1

yjaij (4.8)

Such a mixed strategy y that maximizes vI (y) is a minimax strategy for player II.
VI and VII are called the values of the game for players I and II, respectively.
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4.5 The Minimax Theorem

Applying Lemma 4.4 to the maximin and minimax values of the game we obtain

VI ≤ VII (4.9)

In fact, we will show the following fundamental property of 2-player zero sum games

Theorem 4.6 (The Minimax Theorem)

VI = VII

We start by proving two lemmas.

Lemma 4.7 (Supporting Hyperplane Theorem) Let B ⊆ Rd be a closed convex set and
~x 6∈ B then ~α = (α1, α2, . . . , αd) and αd+1 exist such that

~α · ~x =
d∑

i=1

αixi = αd+1 (4.10)

∀y ∈ B, ~α · ~y =
d∑

i=1

αiyi > αd+1 (4.11)

In other words, given a convex closed set B and a point outside the set ~x, the lemma
claims that we can pass a hyperplane through ~x such that B lies entirely on one side of the
hyperplane. This lemma and it’s proof are schematically shown in figure 4.1.

Proof: Let ~z ∈ B be the point in B nearest to ~x. Such a point exists because B is closed,
and the distance function is both continuous and bounded from below by 0. We define

~α = ~z − ~x

αd+1 = ~α · ~x

4.10 holds immediately. We shall prove 4.11. Note that ~α 6= 0 because ~z ∈ B and ~x 6∈ B.
Thus,

~α · ~z − αd+1 = ~α · ~z − ~α · ~x = ~α · (~z − ~x) = ~α · ~α = |~α|2 > 0

Therefore,
~α · ~z > αd+1

Now, assume that there exists ~y ∈ B such that

~α · ~y ≤ αd+1
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Figure 4.1: Supporting Hyperplane

As B is convex, for any 0 ≤ λ ≤ 1,

~wλ = λ~y + (1− λ) ~z ∈ B

The square of the distance between ~x and ~wλ is given by

D2 (~x, ~wλ) = |~x− λ~y − (1− λ) ~z|2 =
d∑

i=1

(xi − λyi − (1− λ) zi)
2

Deriving by λ we obtain

∂D2

∂λ
= 2 (~x− λ~y − (1− λ) ~z) · (~z − ~y)

= 2 (~z − ~x) · ~y − 2 (~z − ~x) · ~z + 2λ (~z − ~y)2

= 2~α · ~y − 2~α · ~z + 2λ (~z − ~y)2
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Evaluating for λ = 0 we get
∂D2

∂λ
= 2~α · ~y − 2~α · ~z

But according to our assumption the first term ~α · ~y ≤ αd+1 and we have shown that the
second term ~α · ~z > αd+1, and therefore

∂D2

∂λ

∣∣∣∣
λ=0

< 0

Hence, for λ close enough to 0 we must have

D2 (~x, ~wλ) < D2 (~x, ~z)

But ~z was chosen to minimize the distance to ~x, so we have a contradiction. Therefore for
all ~y ∈ B, 4.11 must hold.

¤

Lemma 4.8 (Theorem of the Alternative for Matrices). Let A = (aij) be an m × n real
matrix. Let {~ai}m

i=1 = (ai1, ai2, . . . , ain) be the rows of the matrix. Then one of the following
must hold:

1. The point ~0 in Rn is in the convex hull of the m + n points {~ai}m
i=1

⋃ {~ei}n
i=1 where ~ei

is the ith elementary vector in Rn.

2. There exists a stochastic vector ~x = (x1, . . . , xn) ∈ Rn satisfying
∑n

j=1 xj = 1

∀1 ≤ j ≤ n, xj > 0

∀1 ≤ i ≤ m, ~ai · ~x =
∑n

j=1 aijxj > 0

Proof: Suppose 1 does not hold. Denote the convex hull mentioned in 1 by C. If we
apply Lemma 4.7, there exist ~α ∈ Rn and αn+1 such that

~α ·~0 = αn+1

(which means that αn+1 = 0, of course) and

∀~y ∈ C, ~α · ~y > 0

In particular, this will hold if ~y is any of the vectors ~ai or ~ei. Thus

~ai · ~α > 0 for all 1 ≤ i ≤ m,

αj > 0 for all 1 ≤ j ≤ n.



The Minimax Theorem 9

Since ∀1 ≤ j ≤ n, αj > 0 we have
∑n

j=1 αj > 0, so we can scale by the sum and define

xj = αj

/
n∑

j=1

αj

Therefore

∑n
j=1 xj = 1

∀1 ≤ j ≤ n, xj > 0

∀1 ≤ i ≤ m, ~ai · ~x =
∑n

j=1 aijxj > 0

¤
Proof of the Minimax Theorem: Let Am×n be a payoff matrix for a 2-player zero

sum game. Applying Lemma 4.8 to AT , either 1 or 2 must hold. If 1 holds, then ~0 is in
the convex hull of the columns of A and the elementary vectors in Rm. Thus, there exist
s1, . . . , sn+m such that

n∑
j=1

aijsj + sn+i = 0 ∀1 ≤ i ≤ m

si ≥ 0 ∀1 ≤ i ≤ n + m
n+m∑
i=1

si = 1

Now, it is impossible for all of s1, . . . , sn to be equal to 0, because the first equation would
mean that all si are 0, and then equation 3 cannot hold (in other words, the vector ~0 cannot
be a convex combination of ~ei alone, because they are linearly independent). Therefore at
least one of s1, . . . , sn is positive, and

∑n
k=1 sk > 0. We can therefore define a mixed strategy

y for player II by

∀1 ≤ j ≤ n, yj = sj

/
n∑

k=1

sk

And we have:

yj ≥ 0 ∀1 ≤ j ≤ n
n∑

j=1

yj = 1

n∑
j=1

aijyj = −sn+i

/
n∑

k=1

sk ≤ 0 ∀1 ≤ i ≤ m
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Therefore
vI(y) = max

1≤i≤m
eiAyT ≤ 0

Thus VII ≤ 0.
If 2 holds, then we have a stochastic vector x ∈ Rm, which we will view as a mixed

strategy for player I, that satisfies

∀1 ≤ j ≤ n,

m∑
i=1

aijxi > 0

so vII(x) = min1≤j≤n xAeT
j > 0 and therefore VI > 0. Because one of the two must hold, we

see that it is impossible to have VI ≤ 0 < VII .
Now, for any real M , let us look at the 2-player zero sum game defined by the payoff

matrix B = (bij) where
bij = aij −M

For any x, y,
xByT = xAyT −M

Hence,

VI(B) = VI(A)−M

VII(B) = VII(A)−M

And since it is impossible that VI(B) ≤ 0 < VII(B), it is also impossible that

VI(A) ≤ M < VII(A)

But this is true for any real M , thus it is impossible that

VI < VII

And we have shown that VI ≤ VII , therefore

VI = VII

¤

4.6 Results

We have shown that in a 2-player zero sum game the gain-ceiling for player I is equal to the
loss-floor for player II. We denote this value simply by V and call it the value of the game.
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Part 2 of Lemma 4.4 tells us that VI = VII means that we have a Nash equilibrium point.
It is easy to see that the payoff in this equilibrium is exactly the value of the game. Theorem
4.2 tells us that all Nash equilibria will have this value, and that the set of all Nash equilibria
is actually a cartesian product of the equilibrium strategies of each player.

A strategy x for player I satisfying

∀1 ≤ j ≤ n,

m∑
i=1

xiaij ≥ V (4.12)

is optimal for player I in the sense that this strategy guarantees a payoff of V against every
strategy of player II, and there is no strategy that guarantees a higher payoff against every
strategy of player II. Similarly, a strategy y for player II satisfying

∀1 ≤ i ≤ m,

n∑
j=1

yjaij ≤ V (4.13)

is optimal for player II. It is clear that

xAyT = V

otherwise one of 4.12 or 4.13 will not hold. It is easy to see that (x, y) is a Nash equilibrium.
Also, any Nash equilibrium must satisfy 4.12 and 4.13.

To summarize

Theorem 4.9 Let G be a 2-player zero sum game. Then

1. The gain-floor for player I and loss-ceiling for player II are equal (the value of the
game, V ).

2. There is at least one Nash equilibirium.

3. The set of equilibrium points for the game is the cartesian product of the sets of equi-
librium strategies for each player.

4. The value of the game in all equilibrium points is V

5. The set of equilibrium strategies for each player is equal to the set of optimal strategies
for the player

6. The set of optimal strategies for player I is the solution of the following linear program
in variables x1, . . . , xm, V

∀1 ≤ j ≤ n,
∑m

i=1 xiaij − V ≥ 0

∀1 ≤ i ≤ m xi ≥ 0∑m
i=1 xi = 1

Maximize target function V
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and the dual program gives the optimal strategies for player II.

The problem of finding Nash equilibria for a 2-player zero sum game is therefore in
NP

⋂
co-NP, and is solvable in polynomial time by linear programming.

4.7 Application of Zero Sum Games in Computer Sci-

ence

4.7.1 Deterministic vs. Random Algorithms

In this example Ω = {Ai} is a finite set of deterministic algorithms that can take as input
any element of the finite input set Λ = {xj}. We will denote by ∆S the set of probability
distributions over the set S, for any set S.

Definition Time(A,x) is the time complexity (measured, as usual in complexity, in the
means of number of commands) of running the deterministic algorithm A with the input x.
Also denoted T (A, x).

Definition A Random Algorithm is a probability distribution over the deterministic
algorithms, ~p ∈ ∆Ω. We denote the probability for algorithm Ai by pi.

Definition RTime(~p,x) is time complexity of the random algorithm defined by distribution
~p for fixed input x. It is defined as the expected deterministic time complexity for the fixed
input x:

RTime(~p, x) =
∑

i

pi · T (Ai, x)

Definition AvgTime(A, ~q) is the time complexity of deterministic algorithm A given
distribution ~q over inputs. This is in essence an average-case complexity analysis for A.
It is defined as the expected time complexity for the deterministic algorithm A with input
distributed according to ~q:

AvgT ime(A, ~q) =
∑

j

qj · T (A, xj)

Complexity Analysis

Corollary 4.10 Deterministic worst-case time complexity is mini maxj T (Ai, xj).
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Proof: The complexity of the problem is the minimum complexity over all relevant
algorithms (Ω). We must choose the deterministic algorithm before knowing the input.
Thus, the complexity of deterministic algorithm Ai is analyzed for the worst input, which
yields complexity maxj T (A, xj), and then the complexity of the problem is the complexity
of the best algorithm, which results in complexity mini maxj T (Ai, xj). ¤

Corollary 4.11 Non-deterministic worst-case time complexity is maxj mini T (Ai, xj)

Proof: For non-deterministic algorithms we can guess the best deterministic algorithm
given the input. Thus, for input xj, the complexity is mini T (Ai, xj). We now analyze for
the worst case input, which yields complexity maxj mini T (Ai, xj). ¤

Corollary 4.12 Random worst-case time complexity is

min
~p∈∆Ω

max
j

RTime(~p, xj)

Theorem 4.13 (Yao’s Lemma) For any distribution ~p on the algorithms and ~q on inputs

max
j

Ei∼~p [T (Ai, xj)] ≥ min
i

Ej∼~q [T (Ai, xj)]

Proof: We can view the complexity analysis as a 2-player zero sum game in the following
way. The max. player pure strategies are the possible inputs, Λ. The min. player pure
strategies are the deterministic algorithms Ω. The payoff is the time complexity T (Ai, xj).

Given such a game, we can see that

min
~p∈∆Ω

max
~q∈∆Λ

Ei∼~p,j∼~q [T (Ai, xj)] = max
~q∈∆Λ

min
~p∈∆Ω

Ei∼~p,j∼~q [T (Ai, xj)] (4.14)

As in the previous game analysis, it is easily shown that the internal maximum and
minimum are obtained in deterministic points:

max
~q∈∆Λ

Ei∼~p,j∼~q [T (Ai, xj)] = max
j

Ei∼~p [T (Ai, xj)] (4.15)

min
~p∈∆Ω

Ei∼~p,j∼~q [T (Ai, xj)] = min
i

Ej∼~q [T (Ai, xj)] (4.16)

Using only the ≥ part of 4.14, and substituting using 4.15 and 4.16 we obtain

min
~p∈∆Ω

max
j

Ei∼~p [T (Ai, xj)] ≥ max
~q∈∆Λ

min
i

Ej∼~q [T (Ai, xj)] (4.17)

Hence for any ~p ∈ ∆Ω

max
j

Ei∼~p [T (Ai, xj)] ≥ max
~q∈∆Λ

min
i

Ej∼~q [T (Ai, xj)]
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Thus for any ~p ∈ ∆Ω and ~q ∈ ∆Λ

max
j

Ei∼~p [T (Ai, xj)] ≥ min
i

Ej∼~q [T (Ai, xj)]

¤
Note that Yao’s Lemma is actually a result of the weaker inequality established in Lemma

4.4.

Corollary 4.14 In order to prove a lower bound for the worst-case complexity of any random
algorithm for a given problem, it is sufficient to prove a lower bound for any deterministic
algorithm on some distribution of the input.

Proof: Using

Ei∼~p [T (Ai, xj)] = RTime(~p, xj)

Ej∼~q [T (Ai, xj)] = AvgT ime(Ai, ~q)

we can write Yao’s Lemma as

max
j

RTime(~p, xj) ≥ min
i

AvgT ime(Ai, ~q)

so given a lower bound B on the complexity of any deterministic algorithm on some input
distribution ~q, we obtain

B ≤ min
i

AvgT ime(Ai, ~q) ≤ max
j

RTime(~p, xj)

So B is a lower bound on the worst-case complexity of any random algorithm. ¤

Example - Sorting a List of Numbers

We wish to bound the complexity of a random algorithm for sorting n numbers (comparison
based sort). We can describe any deterministic comparison based sort algorithm as a decision
tree, where each internal node corresponds to a comparison the algorithm performs, with 2
possible outcomes (we assume all elements are different). For a specific input, the exectuion
of the algorithm corresponds to a path from the root to a leaf. It is impossible for 2 different
permutations to result in the same path. The running time for the algorithm over an input
is the length of the path.

Therefore, the decision tree must have at least n! leaves. Thus the depth of the tree is
at least log(n!) = O(nlogn) nodes. The number of leaves whose depth is not greater than l
is ≤ 2l+1.
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Thus, for any deterministic algorithm A, at least one half of the permutations are in
depth greater than l, where l + 1 = log(n!/2) (since then the number of leaves whose depth
is less than l is ≤ 2log(n!/2) = n!/2). l + 1 = log(n!/2) =⇒ l = log(n!)− 2 = O(nlogn).

We shall choose a uniform distribution ~q over the possible inputs (all permutations of n
numbers), and fix a deterministic algorithm A. The running time of A over this distribution
is simply the average of the depths of the leaves for all possible inputs. But at least n!/2
inputs are of depth at least log(n!)− 1, so the average running time will be at least

n!
2
· (log(n!)− 1)

n!
= Ω(nlogn)

And using Yao’s lemma, the complexity of any random algorithm is also Ω(nlogn).

4.7.2 Weak vs. Strong Learning

Given a weak learner for a binary classification problem we will show that strong learning is
possible.

The model: f is the target function, H a function family.

f : X −→ {0, 1}

∀h ∈ H, h : X −→ {0, 1}
X is finite, and as a consequence H is finite (|H| ≤ 2|X|)
The WL (weak learning) assumption: For every distribution D on X there exists

h ∈ H and ε > 0 such that

[PrD[h(x) = f(x)] ≥ 1/2 + ε (4.18)

Question: can f be approximated by functions in H?
We represent the problem as a 2-player zero sum game as follows. The max. player pure

strategies are the inputs X. The min. player pure strategies are the functions H. The payoff
is an error indicator:

M(h, x) =

{
0 if f(x) = h(x) (no error)
1 if f(x) 6= h(x) (error)

}

Note that M(h, x) = |(f(x) − h(x)|. The max. player is trying to select a distribution
over X that will maximize the expected error, while the min. player is trying to select a
distribution over H that will minimize it.

The WL proposition implies that for each D there exists an ε > 0 and h ∈ H such that

1/2− ε ≥ PrD[h(x) 6= f(x)] = PrD[M(h, x) = 1] = Ex∼DD[M(h, x)]
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Thus there exists an ε > 0 so that

min
h

Ex∼D[M(h, x)] ≤ 1/2− ε

Which means that
VX Player ≤ 1/2− ε

Since in a zero sum game, the values of both players are equal, we conclude that

VH Player < 1/2− ε

hence
min

q
max

x
Eh∼q[M(h, x)] ≤ 1/2− ε

therefore there exists a distribution q (the one in which the minimum is obtained) such
that

max
x

Eh∼q[M(h, x)] ≤ 1/2− ε

thus
∀x ∈ X, Eh∼q[M(h, x)] ≤ 1/2− ε

In other words, for this q, and all x ∈ X,

1/2− ε ≥
∑

h∈H

q(h)M(h, x) =
∑

h∈H

q(h) |f(x)− h(x)|

We define an approximation G(x) =
∑

h∈H q(h) · h(x). Now, for all x ∈ X,

|f(x)−G(x)| =
∣∣∣∣∣
∑

h∈H

q(h)[f(x)− h(x)]

∣∣∣∣∣ ≤
∑

h∈H

q(h) |f(x)− h(x)| < 1/2

So G(x) is a strong approximation for f(x) (by rounding G(x) to 0 or 1 we obtain f(x)
for all x ∈ X.

4.7.3 Playing a Zero-Sum Game

Let A be the game matrix. In each time t:

• The rows player chooses a distribution pt.

• The columns player chooses a distribution qt (the player may or may not know pt before
choosing qt).

• The rows player loses ptAqT
t . His goal is to minimize his total loss,

∑
t ptAqT

t

• After playing time t, the rows player is also given the vector AqT
t , so he knows what

his loss would have been in time t for any strategy he would have played.
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KL distance

Definition KL(Kullback-Leibler) distance is defined as follows

KL(P1‖P2) =
∑

x

P1(x)ln

(
P1(x)

P2(x)

)

Characteristics: KL(P1‖P1) = 0, and for every P1 6= P2, KL(P1‖P2) > 0.

An algorithm

We attach a weight for each action, at each time. The weights are updated as follows:

wt+1(i) = wt(i)β
Lt(i)

where β ∈ (0, 1) is a parameter,

Lt(i) =
(
AqT

t

)
i
= eiAqT

t

is the loss caused by strategy i at time t, and

w1(i) = 1

At time t the algorithm chooses a distribution pt such that

pt(i) = wt(i)

/
N∑

j=1

wt(j)

Denoting

zt =
N∑

j=1

wt(j)

Theorem 4.15 For any game matrix A and for any q1, · · · qt the p1, · · · , pt that the algorithm
chooses satisfy:

Loss =
∑

t

ptAqT
t ≤ min

p

[
aβ

∑
t

p
(
AqT

t

)
+ cβKL(p‖p1)

]

where

aβ =
ln(1/β)

1− β

cβ =
1

1− β
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Lemma 4.16 For every iteration t and for every p̃

KL(p̃‖pt+1)−KL(p̃‖pt) ≤ ln

(
1

β

)
p̃AqT

t + ln
(
1− (1− β)ptAqT

t

)

Proof:

KL(p̃‖pt+1)−KL(p̃‖pt) =
∑

i

p̃(i)ln

(
pt(i)

pt+1(i)

)
=

∑
i

p̃(i)ln

(
zt+1

βLt(i)zt

)
=

ln

(
zt+1

zt

)
+

∑
i

p̃(i)ln

(
1

β

)Lt(i)

= ln

(
zt+1

zt

)
+ ln

(
1

β

) ∑
i

p̃(i)Lt(i) =

ln

(
zt+1

zt

)
+ ln

(
1

β

)
p̃AqT

t (4.19)

But

ln
zt+1

zt

= ln

∑
i wt+1(i)∑

i wt(i)
= ln

∑
i

wt(i)∑
j wt(j)

· βLt(i) = ln
∑

i

pt(i)β
Lt(i)

Using βx ≤ 1− (1− β)x for x ∈ [0, 1] we obtain

ln
zt+1

zt

≤ ln

(∑
i

pt(i) (1− (1− β)Lt(i))

)
= ln

(
1− (1− β)

∑N
i=1 pt(i)Lt(i)

)
=

ln
(
1− (1− β)ptAqT

t

)
(4.20)

Combining 4.19 and 4.20

KL(p̃‖pt+1)−KL(p̃‖pt) ≤ ln
(
1− (1− β)ptAqT

t

)
+ ln

(
1

β

)
p̃AqT

t (4.21)

¤
Proof of the Theorem:
Let p̃ be some distribution over the rows. Since ln(1− x) ≤ −x for x < 1 we have,

ln
(
1− (1− β)ptAqT

t

) ≤ −(1− β)ptAqT
t

Hence from Lemma 4.16,

KL(p̃‖pt+1)−KL(p̃‖pt) ≤ −(1− β)ptAqT
t + ln

(
1

β

)
p̃AqT

t (4.22)



Application of Zero Sum Games in Computer Science 19

Summing 4.22 for all t = 1, . . . , T yields a telescope sum, resulting in

KL(p̃‖pT+1)−KL(p̃‖p1) ≤ −(1− β)
T∑

t=1

ptAqT
t + ln

(
1

β

) T∑
t=1

p̃AqT
t

But since KL(p̃‖pT+1) ≥ 0 we obtain

(1− β)
T∑

t=1

ptAqT
t ≤ KL(p̃‖p1) + ln

(
1

β

) T∑
t=1

p̃AqT
t

Thus

Loss =
T∑

t=1

ptAqT
t ≤ cβKL(p̃‖p1) + aβ

T∑
t=1

p̃AqT
t

For any distribution p̃, which proves the theorem.
¤

We can now use the theorem to bound the average loss per step for our algorithm.
Substituting p1 to be uniform distribution (w1(i) = 1) means KL(p̃‖p1) ≤ ln(N), because

KL(p̃‖p1) =
∑

x

p̃(x)ln

(
p̃(x)

1/N

)
=

∑
x

p̃(x)ln(p̃(x) ·N) ≤
∑

x

p̃(x)ln(N) ≤ ln(N)

So now we have
T∑

t=1

ptAqT
t ≤ cβlnN + aβ

T∑
t=1

p̃AqT
t (4.23)

Choosing β = 1

1+
√

2ln(n)
T

∼ 1−Θ
(√

lnN
T

)
we get

1

T
Loss =

1

T

T∑
t=1

ptAqT
t ≤ min

p

1

T

T∑
t=1

pAqT
t + ∆

Where ∆ =
√

2lnN
T

+ lnN
T

. This is achieved by substituting our choice of β in 4.23 and

using the approximation ln(1/β) ≤ (1− β2)/(2β) for β ∈ (0, 1].
The meaning of this is that the difference between average loss per step to that of the

optimal fixed strategy is bounded by a value that be made arbitrarily small for large T .


