
Computational Game Theory Spring Semester, 2003/04

Lecture 5: March 30

Lecturer: Yishay Mansour Scribe: Nataly Sharkov,Itamar Nabriski

5.1 Introduction

In this lecture we explore issues concerning the computability of Nash Equilibrium
in any general game. First we prove any game has at least one Nash Equilibrium
using Brouwer’s Fixed Point Theorem (The proof is presented at section 5.6 ). Then
we discuss how to compute a Nash Equilibrium of a game and a Nash Equilibrium
approximation called ε-Nash. We conclude by proving that the computation of most
information concerning Nash Equilibrium is NP -hard.

5.2 Proof of existence of Stochastic Nash Equilib-

rium in any game

5.2.1 Proof Outline

We prove that any game has a Nash Equilibrium, though not necessarily a determin-
istic one. Using Brouwer’s Fixed Point Theorem, we prove that in any game if we
map every game state to another state, such that at least one player is better off,
then there is some state which is mapped into itself (a fixed point). In other words,
this game state cannot be improved by any player by changing his strategy, and thus
is, by definition, a Nash Equilibrium.

5.2.2 Notations

• There are n players: N = {1, ..., n}

• Each player can choose from a set of m pure strategies, thus the possible Strate-
gies for each Player i are: Ai = {ai1, ..aim}

• ui - utility function of player i

• pi - distribution over Ai

• ℘ =
∏

pi - product of players’ distributions

• (q, ℘−i) - taking ℘ with pi replaced by q

• ui(℘) = E~u∼℘[ui(~a)] - expected utility of player i
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• ∆i - all possible distributions for player i (infinite set - since each distribution
contains m values in the range [0, 1])

• Λ =
∏

∆i - product of all players’ possible distributions

5.2.3 Definitions

• Nash Equilibrium - ℘∗ is a Nash Equilibrium if:

℘∗ ∈ Λ

∀i ∈ N : qi ∈ ∆i

ui(qi, ℘
∗

−i) ≤ ui(℘
∗)

• Revenue of player i from deterministic action ai,j:

Revenuei,j(℘) = ui(ai,j, ℘−i)

• Profit of player i from deterministic action ai,j:

Profiti,j(℘) = (Revenuei,j(℘) − ui(℘))

• Gain of player i from deterministic action ai,j:

Gaini,j = max(Profiti,j(℘), 0)

Gaini,j is non zero only if player i has positive profit from playing strategy ai,j

instead of his strategy in ℘. Thus in Nash Equilibrium (℘ = ℘∗) all Gaini,j’s
are zero.

• We define a mapping:

y : Λ → Λ

yi,j(℘) =
pi,j + Gaini,j

1 +
∑m

k=1
Gaini,k

– yi,∗ is a distribution over Ai (where ∗ means for any j)

– yi,j is continuous (since Revenuei,j is continuous → Profiti,j is continuous
→ Gaini,j is continuous → yi,j is continuos)

– Notice that the denominator of the expression on the right is there in order
to normalize the expression to be a value in ℘.
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5.2.4 Proof

By Brouwer’s Theorem (see section 5.6) for a continuous function f : S → S such
that S is a convex and compact set, there exists s ∈ S such that s = f(s). s is called
a fixed point of f . Thus in our case, for y, there exists ℘∗:

yi,j(℘
∗) = pi,j =

pi,j + Gaini,j

1 +
∑m

k=1
Gaini,k

We argue that this point is a Nash Equilibrium.

• If
∑m

k=1
Gaini,k = 0 then we are done since all Gaini,k are zero and thus there

is no room for improvement which is by definition a Nash Equilibrium.

• Otherwise
∑m

k=1
Gaini,k > 0:

pi,j(1 +
m
∑

k=1

Gaini,k) = pi,j + Gaini,j =⇒

pi,j

m
∑

k=1

Gaini,k = Gaini,j

This implies one of two cases:

1.

pi,j = 0 ⇐⇒ Gaini,j = 0

Then we are in a Nash Equilibrium and the fixed point is 0.
2.

pi,j > 0 ⇐⇒ Gaini,j > 0

This implies that for every strategy that has a positive probability ai,k,
playing it purely will net a higher utility. pi,j is a distribution, thus, if we
take pi,j over all strategies we will net a higher utility. But this implies
that we can improve pi,j by selecting pi,j, which is a contradiction

5.3 Computing of Nash equilibria

5.3.1 General sum games

We begin from the example of the general sum game. Let A,B be payoff matrices of
player 1 and 2 accordingly.

A =

(

1 5 7 3
2 3 4 3

)

B =

(

2 3 1 5
4 1 6 0

)



4 Lecture 5: March 30

Figure 5.1: The viewpoint of player 2.

Player 1 has only two strategies: (x, 1-x).
Player 2 has vector of strategies. Let number all strategies of player 2. j ∈ [1, 4] - the
index of player 2’s strategies. The utility of playing strategy j is b1jx + b2j(1 − x).

p ∈ [0, 1] is the probability that player 1 plays bottom strategy. (1-p) that he plays
top strategy. We can receive Nash equilibrium in points those player 2 is indifferent
between strategies 3 and 4. Let see all cases.

• The side (3,3). For this side the player 1 is indifferent, since for all values p
lengthwise the side that is equilibrium.

• Extreme points. Let see the case of extreme points p=0, p=1. In these points
Equilibrium can be received if the action p is better than x - reverse action.

• Pass points. Check the pass points from one to other side. There are two such
points. The first one is (3,3)-(1,2) pass point. In this point player 2 prefer other
strategy. The second one is (1,2)-(7,4). There is Nash equilibrium in this point.
Let compute it.

1 · p + 7 · (1 − p) = 2p + 4(1 − p)

(7 − 4)(1 − p) = (2 − 1)p

3 =
7 − 4

2 − 1
=

p

1 − p

p =
3

4

1 − p =
1

4

In the same way we can compute the case when player 1 is indifferent between top
and bottom strategies. For player 2 those are strategies number three and fourth.
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5.3.2 An algorithm that uses the support vectors

Consider a general two-players game
A- payoff matrix of player 1.
B- payoff matrix of player 2.
As stipulated by Nash’s theorem a Nash Equilibrium (p,q) is exists.
Suppose we know the support sets. p has support Sp = {i : pi 6= 0} and q has
support Sq = {j : qj 6= 0}. How can we compute the Nash equilibrium? Let’s
determine requirements for the best response of these players.
For player 1:

∀i ∈ Sp, ∀l ∈ A

eiAqT ≥ elAqT .

Where ei is unit vector for i=1.
If i, l ∈ Sp then eiAqT = elAqT .
For player 2:

∀j ∈ Sq, ∀l ∈ B

pBeT
j ≥ pBeT

l

Σqj = 1 Σpi = 1
j ∈ Sq qj > 0 pi > 0 i ∈ Sp

j 6∈ Sq qj = 0 pi = 0 i 6∈ Sp

To find NE we only need to solve the following system of constraints:

j ∈ Sq pBeT
j = v eiAqT = u i ∈ Sp

k 6∈ Sq qk = 0 pk = 0 k 6∈ Sp

Σqj = 1 Σpi = 1

There are 2(N+1) equations and 2(N+1) variables.
Unique solution requires non-degenerate system of constraints. Otherwise there is an
infinite number of Nash equilibria.
Algorithm: For all possible subsets of supports:

• Check if the corresponding linear programming has feasible solution (using e.g.
simplex);

• If so, STOP : the feasible solution is Nash equilibrium.

Question: How many possible subsets supports are there to try?
Answer: At most 2n · 2n = 4n. The algorithm finds all the Nash equilibria. So,
unfortunately, the algorithm requires worst-case exponential time.

The following is an example of the game with an exponential number of Nash equi-
libria.

u2(i, j) = u1(i, j) =

{

1 if i=j
0 otherwise
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For each support, a uniform distribution for both players is Nash Equilibrium.

5.4 Approximate Nash Equilibrium

5.4.1 Algorithms for approximating equilibria

Definition ℘∗ is ε-Nash if for every player p* and every (mixed) strategy aj ∈ Ai,

ui(aj, p
∗

−
i) ≤ ui(aj, p

∗

−
i) + ε

If ε = 0 then this is a general Nash equilibrium.

Theorem 5.1 For any two-player game G, there exists an ε-Nash, whose support’s
size is 12

ε2
logn.

Proof: The proof is based on the probabilistic method. For the present we assume
that all utilities are between 0 to 1. By Chernoff bound, for every i.i.d.x1, x2, ...xn s.t.
E[xi] = p. We have

Pr[|x − p| ≥ ε] ≤ e−2ε2l,

where

x =
1

n

∑

xi.

Let (p,q) be a Nash equilibrium. By sampling each distribution l times we get the
distribution (p̂,q̂). Q.E.D.

We now prove that (p̂,q̂) is an ε-Nash.

Lemma 5.2

| p̂Aq̂T − pAqT |≤ ε

| p̂Bq̂T − pBqT |≤ ε

Proof: We prove the inequality for A, a similar proof holds for B. Using the
Chernoff bound again we get:

Pr[∃i | eiAq̂T − eiAqT |≥ ε]

≤ NPr[| eiAq̂T − eiAqT |≥ ε]

≤ Ne−2ε2l

Where N is the number of actions.
We define the random variable:

Qi
j = {(liA)j = aijw.p · qj}
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E[Qi
j] = eiAqT

1

l

∑

Qi = eiAq̂T

The bound of the error probability is Ne−2ε2l. Perform this action for (B, p)(B, q)(A, p)(A, q).
Hence, with probability 4Ne−2ε2l this takes place for q̂ and p̂. Show that we receive
the ε-Nash equilibrium.

| pAqT − p̂Aq̂T |≤

| pAqT − pAq̂T | + | pAq̂T − p̂Aq̂T |≤ 2ε

Since (p,q) is Nash equilibrium, eiAqT ≤ pAqT . From the approximation we get
eiAq̂T ≤ pAqT + ε ≤ p̂Aq̂ +3ε, with success probability of 2Ne−2ε2l. We choose ε′ = ε

3

for l ≥ 9

2

1

ε′2 ln 2N . The success probability is positive. This would mean that there
are exist q̂ and q̂ satisfy all conditions. Hence, (q̂, q̂) is ε-Nash equilibrium. Ω( 1

ε2
ln N)

Q.E.D.

Algorithm: For all groups whose size is at most 1

ε2
ln N

• compute ε-Nash equlibrium for all pairs of groups.

5.5 Hardness results for Nash Equilibrium

In this section we prove that many problems related to Nash Equilibrium are NP -hard
to compute.

5.5.1 Proof Outline

We construct a 2 Player game G. Our decidability problem is the following: Is there
an expected Nash equilibrium in G, where both players have an expected utility of
1. We use a reduction from the well known NP -hard problem SAT to this decid-
ability problem. Afterwards we elaborate on this result to illustrate that many Nash
Equilibrium problems about 2 player games are NP -hard to compute.

5.5.2 Definitions

• Let θ be a boolean CNF (Conjunctive Normal Form) formula.

• Let V be the set of variables vi ∈ θ. |V | = n.

• Let L be the set of all possible literals li composed from the variables in V .
Thus for every xi ∈ V there exists xi, x̄i ∈ L and |L| = 2n.

• Let C be the set of clauses whose conjunction is θ.

• Let getV ar(·) be a function that returns for any literal l ∈ L the variable
appearing in the literal, i.e. getV ar(xi) = getV ar(x̄i) = xi.
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• Let f be an arbitrary symbol.

• Let G(θ) be a 2-Player game. In this game each player selects one of the
following: a variable, a literal, a clause from θ or the symbol f . This constitutes
his sole action in the game. Game G’s outcomes are defined in table 5.1

Thus Σ1 = Σ2 = V ∪ L ∪ C ∪ {f}

`2 ∈ L v2 ∈ V c2 ∈ C f

`1 ∈ L (1, 1) `1 6= ¯̀
2 (−2,−n + 2) v(`1) = v2 (−2, +2) `1 6∈ c2 (−2, 1)

(−2,−2) `1 = ¯̀
2 (−2, +2) v(`1) 6= v2 (−2,−n + 2) `1 ∈ c2 (−2, 1)

v1 ∈ V (+2,−2) v(`2) 6= v1 (−2,−2) (−2,−2) (−2, 1)
(−n + 2,−2) v(`2) = v1

c1 ∈ C (+2,−2) `2 6∈ c1 (−2,−2) (−2,−2) (−2, 1)
(−n + 2,−2) `2 ∈ c1

f (1,−2) (1,−2) (1,−2) (0, 0)

Table 5.1: Definiton of Game G(θ)

5.5.3 Reduction Proof

Lemma 5.3 If θ is satisfiable then there exists a (1,1) Nash equilibrium in G

Proof: If θ is satisfiable then there are l1, l2, ..., ln ∈ L (where getV ar(li) = xi)
that when assigned the value True (by setting the value of the underlying variable
to the satisfying assignment) satisfy θ. If the other player plays all of these li with
probability 1

n
then playing the same strategy as well with the same probability yields

a utility of 1. We argue this is a Nash Equilibrium.
We show that neither players can net a higher utility by changing his strategy and
thus, by definition, it is a Nash Equilibrium:

• Playing the negation of one of the li’s gives an expected utility of:

1

n
(−2) +

n − 1

n
(1) < 1

• Playing a vi ∈ V yields a utility of:

1

n
(2 − n) +

n − 1

n
(2) = 1

The reason is that there is a probability of 1

n
that the other player chose an li

such that getV ar(li) = xi.

• playing a clause c ∈ C gives a utility of:

1

n
(2 − n) +

n − 1

n
(2) = 1

This happens since each li is a member of one or more of the clauses.



Hardness results for Nash Equilibrium 9

• Finally, by choosing f the utility is also 1.

Q.E.D.
This is the only Nash Equilibrium in the game that has an expected utility of 1

to both players. Actually the game has only one more Nash Equilibrium where both
players put probability 1 on f and get (0, 0).

Proof:

1. It is easy to verify there are no equilibriums where one player plays purely f

and the other does not.

2. Assume both play a mixed strategy where the probability of playing f is 0.
The maximal joint utility (u1 +u2) in the game is 2. If any player has expected
utility less than 1 than he is better off switching to playing f with probability
1. Thus (1,1) is also the maximal joint utility in any equilibrium. If either
player plays V and C with a positive probability it follows that the joint utility
is below 2. By the linearity of expectation it follows that at least one player
has utility below 1. This player is better off playing purely f and thus V or C

are never played in a Nash Equilibrium.

3. Thus we can assume both players put positive probabilities on strategies in
L ∪ {f}. If one player puts positive probability on f then the other player is
strictly better off playing purely f since, like playing L, it yields 1 when the
other player plays L and it performs better than L when the other player plays
f . It follows that the only equilibrium where f is ever played is the one when
both players play purely f .

4. Now we can assume both player only put positive probabilities on elements of
L. Suppose that for some l ∈ L, the probability that player 1 plays either l or l̄

is less than 1

n
then the expected utility of the player 2, playing v ∈ V such that

v = getV ar(l), is:

u2 >
1

n
(2 − n) +

n − 1

n
(2) = 1

Hence, this cannot be a Nash Equilibrium. Thus we can assume that for any
l ∈ L the probability that a given player plays l or l̄ is precisely 1

n
.

5. If there is an element of L such that player 1 plays with a positive probability
and player 2 plays with a positive probability its negation, then both players
have expected utilities of less than 1 and thus are better off playing purely
f . Thus, in a Nash Equilibrium, if player 1 plays l with some probability,
player 2 must play l with probability 1

n
and thus player 1 must also play l with

probability 1

n
. Thus we can assume that for any variable exactly one of its

literals is played by both players with a probability of 1

n
. It follows that in any

Nash Equilibrium (besides the one where both players play purely f), literals
that are played indeed correspond to an assignment to the variables.

Q.E.D.
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Lemma 5.4 If θ is not satisfiable then a Nash Equilibrium with expected utilities of
(1,1) doesn’t exist in G

Proof: As we verified above, when θ is satisifiable, the only Nash Equilibrium
where the utility is 1 for both players is when both players choose li with probability
1

n
. But when θ is not satisfiable, this is not a Nash Equilibrium anymore:

• Let c ∈ C be a clause that is not satisfied by the assignment, that is, none of
its literals are ever played. Thus playing c nets a utility of 2 and each player is
better off switching to this strategy.

Q.E.D.

5.5.4 Conclusions and Corollaries

Thus it is NP -hard to determine whether a certain equilibrium exists in a game.
Also, since (1, 1) is the equilibrium that maximizes the ”social welfare” (combined
utility of both players) it can be viewed as the optimal Nash Equilibrium of the game.
Thus finding the optimal Nash Equilibrium of the game is also NP -hard. Using the
same game G, depending on how we state the decidability problem, we can deduce
that many other Nash Equilibrium related problems are NP -hard. For example the
number of different Nash Equilibrium in the game, is there an Nash Equilibrium
where all players are guaranteed at least k and so on. Thus information regarding
the Nash Equilibrium of games is generally hard to compute.

5.6 Brouwer’s fixed point theorem

Theorem 5.5 (Brouwer) Let f : S → S be a continuous function from a non-empty,
compact, convex set S ∈ <n into itself, then there is x· ∈ S such that x· = f(x∗) (i.e.
x· is a fixed point of function f ).

5.6.1 Proof Outline

For <1 the proof is a simple one is proved directly. For the two dimensional case we
prove the theorem on triangles, aided by Sperner’s lemma (which we will prove as
well). Since we can ”cut out” a triangle out of any convex, compact set, the theorem
holds for any such set in <2. Generalization of the theorem for a triangle in <n

follows, but will not be shown here.

5.6.2 In One Dimension

Let f : [0, 1] −→ [0, 1] be a continuous function. Then, there exists a fixed point, i.e.
there is a x∗ in [0, 1] such that f(x∗) = x∗. There are 2 possibilities:

1. If f(0) = 0 or f(1) = 1 then we are done.
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2. If f(0) 6= 0 and f(1) 6= 1. Then define:

F (x) = f(x) − x

In this case:
F (0) = f(0) − 0 = f(0) > 0

F (1) = f(1) − 1 < 0

Thus F : [0, 1] −→ < where F (0) · F (1) < 0. Since f(·) is continuous, F (·) is
continuous as well. By the Intermidate Value Theorem, there exists x∗ ∈ [0, 1]
such that F (x∗) = 0. By definition of F (·):

F (x∗) = f(x∗) − x∗

And thus:
f(x∗) = x∗

Figure 5.2: A one dimensional fixed point (left) and the function F (·) (right)

5.6.3 In Two Dimensions

Sperner’s Lemma

Lemma 5.6 (Sperner’s Lemma) Given a triangle and a triangulation of it into an
arbitrary number of ”baby triangles”.

1. Mark the vertices of the original triangle by 0,1,2.

2. Mark all other vertices with one of the labels according to the following rule:

• If a vertex lies on the edge of the original triangle, label it by one of the
numbers at the end points of that edge.
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• If a vertex is inside the original triangle label it any way you like.

There exists a baby triangle that has all three of the labels (one vertex is 0, the second
is 1 and the third is 2). In fact there is an odd number of such triangles.

Figure 5.3: Sperner labeled triangle

Proof of Sperner’s lemma in one dimension

Given a line segment whose endpoints are labeled 0 and 1 is divided to subsegments,
each interior point is labeled is 0 or 1.
Definition A segment is called completely labeled if it has a label of 0 at one end

and a label of 1 at the other end

• C = number of completely labeled subsegments.

• Z = number of subsegments labeled with 0 and 0.

• O = number of occurrences of 0 at an endpoint of a subsegment - an odd number
(since for every 0 you label two edges are added and you start off with one such
edge)

• O = 2Z + C

Thus, C must be odd numbered (and thus 6= 0s)
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Figure 5.4: Sperner labeled segment

Proof of Sperner’s lemma in two dimensions

Definition A triangle is called completely labeled if it has a label of 0 at one vertex,
a label of 1 at another vertex and a label of 2 at the third vertex

• C = number of baby triangles that are completely labeled

• Z = number of baby triangles with 0 and 1 but not 2 (with 0,1,0 or with 0,1,1)

• O = number of occurrences of 0,1 at an edge of a baby triangle an odd number

1. All occurrences of 0,1 for an interior baby triangle are paired up (since
each interior edge is shared by two baby triangles ...)- an even number.

2. All occurrences of 0,1 for a side baby triangle occur along the base of
the original triangle, and thus are an odd number by the one dimension
argument.

• O = 2Z + C

Since each triangle in Z has two edges labeled 0,1 it contributes two edges to
O. In sum, 2Z edges are contributed by all triangles in Z. This suggests the
remaining edges in O come from triangles in C. Each triangle in C has one
edge labeled 0,1 and thus contributes one edge to O.

Since O is odd and 2Z is even, C must be odd numbered (and thus 6= 0); which
implies there exists at least one completely labeled baby triangle.

Proof of Brouwer’s theorem

We can find a triangle in any convex, compact two-dimensional shape. Define the
three vertices of the original triangle as A,B and C. Each point p in the triangle will
be represented by its barycentric coordinates:

p = x0A + x1B + x2C; x0 + x1 + x2 = 1

Thus p can be represented as p = (x0, x1, x2).

Label all points of the triangle as follows:
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Figure 5.5: Labeling baby triangles in two dimensions

Figure 5.6: Sample barycentric coordinates of point p

• If p = (x0, x1, x2) and f(p) = (x
′

0
, x

′

1
, x

′

2
) inspect the coordinates of p and f(p)

until you find the first index i ∈ {0, 1, 2} such that x
′

i < xi, label p by the label
i.

• If it happens that for some point p there is no strict inequality like that, it must
be that x

′

0
= x0, x

′

1
= x1, x

′

2
= x2. Thus p is a fixed point and we are done.

• According to this rule, the vertices A,B,C are labeled by 0,1,2.

• Each point of the edge 0,1 is marked by either 0 or 1. Similar statements hold
for the other edges.

• Divide the triangles into smaller and smaller triangles with diameters approach-
ing 0. At each step label the triangles by the rule above. Labeling is as in
Sperner’s Lemma.

• For each subdivision there exists at least one triangle labeled with all three
labels.

• As we divide to smaller and smaller triangles, the vertices of the baby tri-
angles that are completely labeled must eventually converge to some point
q = (y0, y1, y2) (see figure 5.8). Now we use the labeling scheme we devel-
oped earlier and the completely labeled property of q that assures us that, due
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the coordinates of p are (∗, ∗, 0) and they transformed by f into (∗, ∗, ∗); the x2

increases, thus the label of p cannot be 2, thus it must be either 0 or 1;

Figure 5.7: Example of how a labeling of a point p is determined

to continuity, for q and f(q) we must have:

y
′

0
≤ y0; y

′

1
≤ y1; y

′

2
≤ y2

Since the barycentric coordinates of a point add up to 1, these must be equali-
ties:

y
′

0
= y0; y

′

1
= y1; y

′

2
= y2

And thus f(q) = q and q is a fixed point. The proof for n-dimensional spaces
is similar using an n-dimensional triangle.

Figure 5.8: Dividing into smaller and smaller triangles - approaching to point q


