
Computational Game Theory Spring Semester, 2003/4

Lecture 8: May 11, 2004
Lecturer: Yishay Mansour Scribe: Eitan Yaffe, Noa Bar-Yosef

8.1 Regret

Our goal is to build a strategy with good performance when dealing with repeated games.
Let us start with a simple model of regret.

8.2 Basic Model

Assuming that the opponent has the same stochastic strategy at each step, how should we
play?
Let’s formalize this:

• N actions

• For each step t, we choose a distribution pt over the N actions

• For each step, we have a loss lt where lt(i) ∈ [0, 1] is the loss from action i

• Our loss is
∑N

i=1 pt(i)lt(i)

Note that we do not rely on the number of opponents or on their actions. Once we assume
that the opponent is constant and does not depend on us, then the opponent’s influence is
only on the cost of each action.
Our goals:

• Bring the loss to a minimum

• Choose the best action (the opponent does not change throughout time)

8.3 A Greedy Algorithm

One way to implement our goal is by using the greedy algorithm:

1

2 Lecture 8: May 11, 2004

• For the t + 1 step, we will calculate for each i:

Lt
i =

t∑

k=1

lk(i) = Lt−1
i + lt(i)

• For the t + 1 step, we will chose the best action that we had up until now:

at+1 = arg min
i

Lt
i

We can see that this is not the optimal algorithm, because although the history gives us
a good hint regarding the probability of each action, this does not necessarily give the best
action, but rather an approximation of the best action.
To simplify, let’s assume that lt(i) ∈ {0, 1} and define pi = Pr[lt(i) = 1] (the probability of
the loss of action i to be 1). The best action is a∗ = arg mini pi. Thus the average loss is p∗

for each step. And so we get that the optimal loss for T steps is p∗T .
The loss of the Greedy algorithm is LT

G =
∑T

k=1 Greedyk. Define R (The regret) to be:
R = LT

G − p∗T . We get that the average of R is:

E[R] =
T∑

k=1

E[Greedyk]− p∗

We analyze this by looking at each step k, separately. When k is large enough, it converges
to p∗.
The average we get for the i-th action is: p̂k

i =
Lk

i

k
.

Thus, using the Chernoff bound, we get:

Pr[|pi − p̂k
i | ≥ ε] ≤ e−2ε2k

If for all the actions Pr[|pi − p̂k
i |] ≤ ε, then:

E[Greedyk]− p∗ ≤ 2ε + Ne−2ε2k

Taking ε =
√

ln Nk
k

, results in: O(
√

ln NT
k

)
Now we just need to sum up all the losses:

T∑

k=1

√
ln NT

k
≈
√

ln NT
∫ T

1

1√
k
dk = O(

√
T ln NT)

Meaning that the extra loss (the regret) is:

E[R] = O(
√

T ln NT)

Note that this bound is not tight.

8.4. EXTERNAL REGRET 3

8.4 External Regret

In the above analysis we assumed that the system does not change throughout time. We
would like to change this assumption, but this means we must change our analysis (e.g. we
cannot use p∗ since it changes over time and isn’t defined). First we shall consider comparing
to the performance of OPT. This turns out to be a not a very informative measure. Then
we shall introduce the External Regret measure. Consider the following example:

8.4.1 ”Bad” example

On each step OPT chooses a random i ∈ N such that: ltj 6=i(j) = 1 and lt(i) = 0. We can see
that the average loss for any online algorithm is at least 1 − 1

N
(on average), while OPT ’s

loss is 0.

8.4.2 Definition

Instead of comparing to OPT we can compare our performance to the performance of the
single best action: Lmin = miniL

T
i . In general, for any Algorithm (or Hypothesis) denoted

H, we define its loss on step t to be Lt
H and its overall loss to be LT

H =
∑T

t=1 Lt
H . The External

Regret is defined as follows:

Rext = LT
H − Lmin

8.4.3 Analyzing the greedy algorithm

The loss of the Greedy algorithm over T steps is LT
G. Reducing Rext means coming as close

as possible to Lmin.

Claim 8.1 LT
G ≤ N(Lmin + 1)

Proof: For simplicity we assume that lt(i) ∈ {0, 1}. At step k, let bk = mini L
k
i and

nk = |{i : Lk
i = bk}|. We define a lexicographic order over the pairs (bk, nk). On each step

that Greedy losses 1, either bk increases by 1 or nk decreases by 1. Note that nk can decrease
only N − 1 times, consecutively. Therefore the loss of Greedy is bounded by bkN . 2

The problem of deterministic algorithms is that we can always create a large loss. The
following (bad) example, is true for every deterministic algorithm.

4 Lecture 8: May 11, 2004

8.4.4 Example

At the k-th step, the opponent’s algorithm chooses action ak. The loss is lk(ak) = 1 for
action k and for the rest of the actions it is 0. The loss of the online deterministic algorithm
is thus T , while there exists an action whose loss is T

N
. (Since the sums of 1’s is T, then the

average is T
N

).

8.4.5 A stochastic strategy

We will examine a strategy that has an (expected) external regret of O(
√

Lmax log N+log N).
What we shall do is build a distribution over the actions, dependant on the Regret.
We define ltH as the loss of the online algorithm in the t-th step: ltH =

∑N
i=1 pt(i)lt(i) and

RT
a =

∑T
t=1[l

t
H − lt(a)]. We also define a ”pseudo-regret” where we multiply our loss by

0 < β < 1:

R̃T
a =

T∑

t=1

[βltH − lt(a)]

It is easy to see that Ra− R̃a is small for β ≈ 1. We now build the exponential weights that
are dependant on R̃a:

w0
a = 1

wt+1
a = wt

aβ
lt(a)−βltH

According to these weights, we can define the probabilities by normalizing:

W t+1 =
∑

a∈N

wt+1
a

pt+1
a =

wt+1
a

W t+1

Claim 8.2 0 ≤ ∑
a∈N wt

a ≤ N

In other words, all the weights are positive and do not ”run off” to very large sizes.
The proof of this claim will appear shortly, but in the meanwhile until then we will assume
its correctness.
Using the claim, we get that for each action a:

wT
a = βLT

a−βLT
H = β−R̃ ≤ N

Comparing βLT
a−βLT

H ≤ N , and taking ln, results in:

(LT
a − βLT

H) ln β ≤ ln N

External Regret 5

Dividing by ln(β):

LT
a − βLT

H ≥ − ln N

ln 1
β

LT
a

β
+

ln N

β ln 1
β

≥ LT
H

Choosing β = 1− γ, ln 1
β
≈ γ,

LT
a +

γ

1− γ
LT

a + 2
ln N

γ
≥ LT

H

Note that γ
1−γ

LT
a + 2 ln N

γ
is basically the Regret. Defining Lmax = maxa LT

a we have:

γLmax =
ln N

γ

γ =

√
ln N

Lmax

<
1

2

⇒ R = O(
√

ln N · Lmax + log N)

In each step, we incur a loss of at most 1, thus Lmax ≤ T .
In each step, the opponent chooses some kind of loss that can be dependant on our distri-
bution. Nevertheless, we are able to approach quite well, as we can see:

LT
H ≤ Lmin + O(

√
T ln N)

where Lmin = mina LT
a .

We shall now proceed to prove our above claim about our weights that states that:

0 ≤ ∑

a∈N

wt
a ≤ N

Proof: Trivially, 0 ≤ ∑
a∈N wt

a.
We are left to see that the weights are in fact bounded:

ltH =
∑

a∈N

P t(a)lt(a) =
∑

a∈N

wt
a

W t
lt(a)

6 Lecture 8: May 11, 2004

W tltH =
∑

a∈N

wt
al

t(a) (8.1)

We can give a linear bound for the function βx (relying on it’s convexity) for any β ∈ [0, 1].
For x ∈ [0, 1] we know that βx ≤ 1− (1− β)x. For x ∈ [−1, 0] we get βx ≤ 1− 1−β

β
|x|.

Now, by the definition of wt+1
a :

∑

a∈N

wt+1
a =

∑

a∈N

wt
a · βlt(a)−βltH

By the above properties of beta we get the bound:

≤ ∑

a∈N

wt
a(1− (1− β)lt(a))(1 + (1− β)ltH)

By opening the parenthesis and discarding (1 − β)lt(a)(1 − β)ltH since it is negative (the
product of positive and negative)

≤ ∑

a∈N

wt
a − (1− β)[

∑

a∈N

wt
a · lt(a)] + (1− β)[

∑

a∈N

wt
a · ltH]

Using equation (8.1):

≤ ∑

a∈N

wt
a ≤ N

2

8.4.6 Example

We have shown a probabilistic algorithm whose bound is relatively tight. An example for
the tightness of its bound follows:
Let the loss of one action be 1

2
− ε and the loss of the rest of the actions be 1

2
. Taking ε = 1√

T
and randomly choosing between these two actions, will not be able to incur a loss of less
than

√
T the overall loss.

Up until now we’ve discussed External Regret whereas:

Rext = LT
H − Lmin

i.e. Our loss is not measured according to our algorithm, but rather in relation to each
separate action taken. We can easily define other measures...

8.5. CORRELATED EQUILIBRIUM 7

8.5 Correlated Equilibrium

• Game with M players

• Ai - N actions of player i

• Si - The loss function of player i:

Si : Ai × (×Aj) → [0, 1]

Definition L et Q be a distribution over the joint actions (×Ai), such that for each player

i and for each action α ∈ Ai:

Ea∼Q[Si(ai, a
−i)|ai = α] ≤ E[Si(b, a−i)|ai = α]

In other words, this means that given an action ai from the distribution Q to player i, then
this is also his best response to play it!
We can formalize this also in a different manner:
Let us define the function F : Ai → Ai, then Q is a Correlated Equilibrium if for each player
i and for each F we have:

Ea∼Q[Si(ai, a
−i)] ≤ Ea∼Q[Si(F (ai), a

−i)]

Furthermore we will now define that Q is Epsilon-Correlated when for each player i and for
each F :

Ea∼Q[Si(ai, a
−i)] ≤ Ea∼Q[Si(F (ai), a

−i)] + ε

This means that F ”exchanges” the actions of i according to the suggestions of Q. We bound
the gain from using F by ε.

We define the Swap Regret to be:

Rswap = max
F
{LH − LH,F} =

T∑

t=1

pt(i)[lt(i)− lt(F (i))]

Claim 8.3 Let us assume a game with M players where each player plays a strategy that
has Rswap ≤ R. Let p be the empirical distribution at time [1, T] (This means that each step
has a vector of actions and for each one of these vectors we will give a probability). Then:

1. The average loss of the player according to p is his loss in the ”game”.

2. p is ε-correlated for ε = R
T
. This is true because every player can gain no more than R

by using F.

8 Lecture 8: May 11, 2004

8.5.1 Internal Regret

We also define Internal Regret : For ai, aj ∈ A, we swap ai → aj. (We swap only between a
pair of actions).

8.5.2 Reduction of External Regret to Swap Regret

p

l

A1

q1

l1

A2

q2

l2

AN

qN

lN

Figure 8.1: Reduction of External Regret to Swap Regret algorithm

Having already discussed Rext, we now present a reduction from Rext to Rsw:
For each action i, there will be an algorithm Ai. Intuitively, the goal of Ai is to avoid regret
by replacing action i with any other action. We construct an algorithm which combines
N algorithms, as shown in figure 8.1. Each algorithm guarantees us of a small Rext. Each
algorithm outputs a vector of what it would like to play, and we need to return to each
separate algorithm its loss. We need to wrap up these algorithms in some sort of interface
which will calculate the distribution and return the loss. Thus we have two important actions
to do:

1. Calculate pt from ~qt
1, ...,

~qt
N

For this we will choose a distribution p such that: p = p ·Q where ~qi is the i-th row of
Q. Specifically:

∀j pt
j =

N∑

i=1

pt
i · qt

i,j

This means that choosing an action j according to p is equivalent to choosing an
algorithm Ai according to p, and then choosing action j according to Ai.

Correlated Equilibrium 9

2. ”Distribute” the loss of ~lt to ~lt1, ...,
~ltN .

Upon receiving ~lt, we return pt
i · ~lt to Ai. The loss that Ai ”sees” is:

(pt
i · ~lt)~qt

i = pt
i(

~qt
i · ~lt)

Thus, for each Ai and for each action j we have a bound on the regret:

T∑

t=1

pt
i(

~qt
i · ~lt) ≤

T∑

t=1

pt
i · lt(j) + Ri

(Ri may be dependant on T , N , or a loss as before, but it is not dependant on the
game itself.)
When we sum up the losses, we get that for any point in time:

N∑

i=1

pt
i(

~qt
i · ~lt) = pt ·Q · lt = pt · lt = ltH

Therefore we get in total:

N∑

i=1

[
T∑

t=1

pt
i(

~qt
i · ~lt)] =

T∑

t=1

ltH = LT
H ≤

N∑

i=1

T∑

t=1

pt
i · lt(F (i)) +

N∑

i=1

Ri

However,
∑N

i=1

∑T
t=1 pt

i · lt(F (i)) = LT
H,F and so this results in:

LT
H ≤ LT

H,F +
N∑

i=1

Ri

Recall that we previously proved that: R = O(
√

T log N + log N) so by summing over
all Ri we have that:

Rsw = O(N
√

T log N + N log N)

Thus,

R = O(
√

Lmaxi
log N + log N)

And finally,

LH ≤ LT
H,F + O(

√
Lmaxi

log N + log N)

Since in our case,
∑

Lmaxi
≤ T , the worst case is when Lmaxi

= T
N

.

10 Lecture 8: May 11, 2004

Prior knowledge of Lmax

We need to know Lmaxi
in order to define Ai. We will change our previous algorithm

for External Regret so that it won’t need to have Lmax beforehand.
We start with Lmax = 1, and each time we reach the bound, we multiply Lmax by 2
and start over again.
We now have that the regret is:

log Lmax∑

j=1

O(
√

2j log N + log N) = O(
√

Lmax log N + log T log N)

It is easy to see that our new bound is a bit worse than the previous, but here we do
not need to rely on knowing Lmax.
Using the new algorithms, we get that the worst case is (still): Lmaxi

= T
N

and thus:

LH ≤ LH,F + O(TN log N + N log N log T)

