
Computational Game Theory Spring Semester, 2003/4

Lecture 9: Dynamics in Load Balancing
Lecturer: Yishay Mansour Scribe: Anat Axelrod, Eran Werner

9.1 Lecture Overview

In this lecture we consider dynamics of a load balancing system. We study the number
of steps required to reach pure Nash equilibrium in a system of ”selfish” and greedy
players (jobs). We are interested in the convergence time to Nash equilibrium, rather
than the quality of the allocation. We consider a variety of load balancing models
including identical, restricted, related and unrelated machines. We compare different
scheduling strategies such as allowing the largest job to move first (or smallest weight
first) and compare their effect on the convergence time. Note that the discussion can
be easily extended to the domain of routing problems.
The lecture is divided into two major sections. In the first we deal with migration
policies that allow a single user to migrate at a time. In the second part we discuss
the case where users migrate concurrently.
For the former part we consider two settings:

1. An empty system where jobs are added gradually. We will show an upper bound
of O(n) for this case using the Max Weight First policy.

2. A system at an arbitrary initial state. Here we begin by showing that any
scheduler will converge, even in the unrelated and restricted assignment model.
Afterwards, we give special treatment to the case of identical machines where
we show both an upper bound of O(n) using Max Weight First and a lower
bound of Ω(n2), on the other hand, using Min Weight First.

When users are allowed to migrate concurrently from overloaded to underloaded ma-
chines, we present two algorithms for the special setting of two identical machines
and we conclude by showing a general algorithm for multiple identical machines.

9.2 The Model - Formal Definition

In our load balancing scenario there are m parallel machines and n independent jobs.
At each step each job is assigned to exactly one machine.

• Si - The speed of machine Mi. Si ∈ [1, Smax] where the speeds are normalized
s.t. Smin = 1 and the maximum speed is Smax. When considering the identical
or unrelated machines models, Si = 1 for 1 ≤ i ≤ m.

1

2 Lecture 9: Dynamics in Load Balancing

• Wj - The weight of job j. We will mainly deal with the related and identical
machine models. When generalizing to the unrelated machine models we denote
wi,j as the weight of job j when assigned on machine Mi.

• Bi(t) - The set of jobs on machine Mi at time t.

• Li(t) - The load of machine Mi at time t. This is the sum of the weights of the
jobs that chose Mi. Li(t) =

∑
j∈Bi(t)

Wj.

• Ti(t) - The normalized load on machine Mi at time t, obtained by dividing the

load of the machine with its speed. Ti(t) = Li(t)
Si

• U(t) - The set of jobs that may decrease their experienced load at time t by
migrating to another machine. A job wishes to migrate if and only if its cost
(load) will strictly reduce after the migration. Note that the users (jobs) are
considered to be myopic i.e. at each step they wish only to improve their state
regardless of future consequences. We examine arbitrary improvement steps,
and when the job selects a machine which minimizes its cost it is said to have
played the best response policy.

• The Scheduler - Before migrating between machines a job needs to receive
a grant from the centralized scheduler. The scheduler does not influence the
selection of the target machine but merely controls the order in which the jobs
migrate.

• Scheduling Strategies - The input at time t is the set of jobs U(t) and the
output is a job j ∈ U(t) which is allowed to migrate at time t. When only one
job is allowed to migrate at a time it is easy to define some natural selecting
strategies, for example:

– Max Weight First

– Min Weight First

– Arbitrary Job Next

• Pure Nash Equilibrium - A state in which no job can benefit from unilat-
erally migrating to another machine. For every user j on machine Mi it holds
that ∀k Ti ≤ Tk + wk,j.

9.2.1 Dynamics of Migration

We consider two models in which jobs are allowed to migrate in order to improve their
costs. First, we examine a scenario where at each step a single user (job), selected by
the scheduler from the group of ”unsatisfied” jobs, is allowed to move. In the latter
model this group of jobs is allowed to migrate simultaneously.

9.3. SINGLE MIGRATOR 3

9.3 Single Migrator

We will divide our discussion into two settings:
In 9.3.1 we start from an empty system and gradually add one job at a time.
In 9.3.2 we consider starting from an arbitrary state, then applying the scheduling
policy until the system converges to equilibrium.

9.3.1 Starting from Scratch

Let the jobs enter the system in descending sorted order of weights:
w1 ≥ w2 ≥ ... ≥ wn. When entering the system, each job immediately selects its best
response.

Claim 9.1 The system will remain in Nash equilibrium at each step.

Proof. By induction on the number of steps.
Trivially, the system is in Nash for the initial step of an empty system.
Assume that it is also in Nash at step j − 1, immediately before wj is added.
w.l.o.g job j selects machine M1.
Obviously, all jobs on machines other than M1 remain in equilibrium. It is enough
to show that all jobs on M1 are in equilibrium as well. Assume by contradiction
that there exists a job k on M1 which wishes to migrate to machine M2. Then,
T1 > T2 + wk

S2
. Since wj ≤ wk it is also true that T1 > T2 +

wj

S2
, contradicting our

assumption that machine M1 was the best response for (and selected by) job j. 2

Food For Thought 1 How would you show an existence of a pure Nash equilibrium
in the unrelated machines model?

9.3.2 Starting from Something

Now the system is initially in an arbitrary state and we seek to reach equilibrium by
a sequence of steps in which only one job, selected by the scheduler, can move. This
model is called Elementary Stepwise System (ESS).

Unrelated Machines

First we will show that even for the general model of unrelated machines with re-
stricted assignments, convergence to equilibrium is promised. Furthermore, we estab-
lish this result without relying on best response moves but only general improvement
steps. We obtain this result by identifying a potential function and showing that the
potential strictly decreases after each improvement step. Consider the sorted vec-
tor of machine loads. We show that defining a lexicographic order on those sorted
vectors provides us with a potential function. Using lexicographic order, vectors are
compared by their first unequal component. One vector is called lexicographically
larger than the other if its first non equal component is larger than its corresponding
counterpart in the second vector.

4 Lecture 9: Dynamics in Load Balancing

Claim 9.2 The sorted lexicographic order of the machine loads decreases when a job
migrates via improvement.

Proof. Improvement influences only two components of the sorted vector: one
corresponding to the load on the machine that the job has left while the other to the
machine the job has joined. The load on the machine the job joined cannot be higher
than the load it experienced on the machine it had left (otherwise would it have
moved?). Formally, if the job migrated from machine Mi to machine Mj, we have
Li(t) > Lj(t+1). Additionally, Li(t) > Li(t+1) since the job had left. Thus, if Li(t)
was the kth component in the sorted vector of loads then the respective component
in the new vector cannot be larger and the new vector is considered lexicographically
smaller. 2

Since we have shown that improvement always decreases the potential, this gives us
an upper bound on the convergence time which is equal to the number of different
sorted loads vectors (trivially bounded by the number of configurations) - mn.

Corollary 9.3 For any ESS strategy, the system of unrelated machines with re-
stricted assignments reaches Nash equilibrium in at most mn steps.

This result was obtained for any scheduler. We now wish to investigate how specific
scheduling strategies may give better bounds. Unfortunately, we can provide results
only in more specific models.

Identical Machines - Upper Bound

In the identical machines model with unrestricted assignments we use the Max Weight
First (MWF) scheduling strategy to establish an upper bound of O(n) on the con-
vergence time. The scheduler always selects a job J(t) = arg maxj∈U(t){wj}, i.e. the
largest unsatisfied job. We assume that the jobs play their best response.

Claim 9.4 Suppose that a job J has migrated to machine M which is its best response
at time t0. If J wishes to migrate again at a later time t2 > t0 then another job J ′

such that wJ ′ > wJ must have joined machine M at time t1, t0 < t1 ≤ t2.

Proof. Since J wishes to migrate, one of two things must have happened at some
earlier time t1:

1. Job J ′ has moved from machine MJ ′ to a different machine M ′ 6= M .

2. Job J ′ has joined job J at machine M .

1. Obviously, Job J does not wish to deviate to M ′ since it did not wish to do so
prior to the move of J ′, and now the load on M ′ has only increased.
Fortunately, job J has also no desire to move to MJ ′ even though its load
decreased. The reason for this is:
TMJ′ (t1 − 1) > TM ′(t1 − 1) + wJ ′ = TM ′(t1) (J ′ shifted from MJ ′ to M ′).
⇓

9.3. SINGLE MIGRATOR 5

TMJ′ (t1) = TMJ′ (t1 − 1)− wJ ′ > TM ′(t1 − 1).
The resulting load on MJ ′ is higher than the load that was on M ′ at time t1−1.
Since M ′ was not a best response for J at that time MJ ′ certainly isn’t now.

2. In this case we want to show that J will want to leave M only if wJ ′ > wJ .
Assume by contradiction that wJ ′ ≤ wJ . Let M ′ be the machine that J wishes to
move to. Thus, TM(t1) = TM(t1−1)+wJ ′ > TM ′(t1−1)+wJ ≥ TM ′(t1−1)+wJ ′

Hence, TM(t1) ≥ TM ′(t1− 1) + wJ ′ contradicting the assumption that J ′ played
his best response at time t1.

2

Theorem 9.5 The Max Weight Job strategy with best response policy, for a system
of identical machines with unrestricted assignments, reaches Nash equilibrium in at
most n steps.

Proof. By claim 9.4 once a job has migrated to a new machine, it will never leave
it unless a larger job arrives. Since the jobs arrive in descending weight order (MWF)
only smaller jobs may arrive at subsequent steps. Therefore each job stabilizes after
its first migration, and the theorem follows. 2

Identical Machines - Lower Bound

We now present a lower bound using the Min Weight strategy. We demonstrate
a setting with two identical machines and n jobs. Later, we explain the idea for
generalizing the result to m machines.
Consider the following scenario. There are n

2
classes of jobs C1, ..., Cn

2
. Each class Ck

contains exactly two jobs with weights wk = 3k−1. Notice that a job in Ck has weight
equal to the total weight of all of the jobs in the first k− 1 classes plus 1. Initially all
jobs are located at the first machine. The scheduling process is divided into phases.
At each phase k all jobs from classes C1 to Ck except one job from Ck move from one
machine to another. Thus, the duration of phase k is 2k− 1. The scheduling consists
of phases n

2
, ..., 1, since after each phase the two jobs of the heaviest class are set on

two different machines and the scheduling can be regarded as continuing recursively
with one less class. At equilibrium each machine will occupy exactly one job from
each class. The convergence time is given by the recursive formula:

f(r) = f(r − 1) + 2r − 1

for r = n
2

and this is clearly Ω(n2).
For the general lower bound we have m = k + 1 machines and n jobs. We divide
the jobs into k weight classes of size n

k
. The weight of a job in class j is chosen such

that it is larger than the sum of all the job weights of earlier classes: if we denote by
wj the weight of a job ∈ Cj then, wj >

∑j−1
i=1

n
k
wi. Initially all jobs from class i are

assigned to machine i and machine 0 is empty. Applying the Min weight scheduling
consists of phases such that before a job from class k is granted to move all the lighter

6 Lecture 9: Dynamics in Load Balancing

jobs are equally distributed between machines [0, k−1]. However, as soon as the first
heavy job is allowed to move it causes all of the lighter jobs to shift among the other
machines, not containing a heavy weight job, and this process continues recursively,
as the scheduling is from the lightest job first. This example gives a lower bound of

Ω(
(n

k
)k

2(k!)
)

Food For Thought 2 Could you think of a natural scheduling strategy that would
quickly converge to equilibrium in the related (or maybe even unrelated) model ?

9.4 Concurrent Jobs Migration

In this section we examine the setting of n identical users i.e. ∀j wj = 1. For
simplicity we also deal with identical machines i.e. ∀i Si = 1. With contrast to the
previous model, several users can now move concurrently. Consequently, equilibrium
is no longer promised, as the system may oscillate. For example, consider a two ma-
chine setting, where all jobs are initially placed on one of the machines. Since they
all want to migrate at once they will find themselves all in a similar situation but on
the second machine. We overcome this problem by introducing randomization into
the decision if a job should migrate.
The system is at Nash equilibrium at time t if for every pair of machines Mi, Mj it
holds that Li(t) ≤ Lj(t) + 1.

We will divide our discussion into two:
In 9.4.1 we start from the specific case of two identical machines.
In 9.4.2 we extend our discussion and deal with multiple identical machines.

9.4.1 Two Identical Machines

The Balance Algorithm

First we consider the case of only two identical machines M1,M2 with load functions
L1(t), L2(t) respectively. We use two variables over, under ∈ {M1,M2} to identify
at each step which is the more/less loaded machine i.e. its load is above/under the
average load (n

m
or n

2
in this case) in the system. Obviously, Lover(t) ≥ Lunder(t). Let

dt = |L1(t)− L2(t)|.
The BALANCE algorithm moves every job j ∈ Bover(t) to the other machine with
probability dt

2Lover(t)
. The idea is to achieve an equal expected load on both machines

at the end of each step: E[L1(t + 1)|L1(t), L2(t)] = n
2
. So, each job on over moves

with probability dt

2Lover(t)
and we get Lover(t) · dt

2Lover(t)
= dt

2
expected movements, as

desired.
We would like to show that after expected O(log log n) steps the system will reach an
equilibrium. For the proof we use the following lemma.

9.4. CONCURRENT JOBS MIGRATION 7

Lemma 9.4.1 (Chernoff) Let z1, ..., zn be independent random binary variables

and Z =
∑

i zi, where p =
∑n

i=1
E[zi]

n
and p̂ = 1

n

∑n
i=1 zi. Then,

(1) P [p ≤ p̂ +
√

2p ln(1/δ)
n

] ≥ 1− δ p ∈ [0, 1]

(2) P [p ≥ p̂−
√

3p ln(1/δ)
n

] ≥ 1− δ p ∈ [ln(1/δ)
3n

, 1]

(3) P [p ≥ p̂− 2 ln(1/δ)
n

] ≥ 1− δ p ∈ [0, ln(1/δ)
3n

]

Theorem 9.6 The BALANCE algorithm terminates within expected O(ln ln n) steps.

Proof. Let k be an upper bound on the number of steps of the BALANCE
algorithm until it reaches Nash equilibrium. We divide our proof into two stages:

1. dt > 3 ln(1
δ′)

2. dt ≤ 3 ln(1
δ′)

where δ′ = δ
2k

and δ indicates the probability of the algorithm failing to end within k
time steps.
First we show that the first stage terminates with probability 1− δ

2
within O(ln ln n)

steps. By lemma 9.4.1 (2) for every step t ≤ k, dt+1 ≤
√

3dt ln(1
δ′) with probability

1− δ′
2
: represent each job on over as a binary random variable with P (1) = dt

2Lover(t)
.

Thus, p =
∑n

i=1
E[zi]

n
= dt

2Lover
and p̂ = 1

n

∑n
i=1 zi is the ratio of jobs that were actually

moved in this step.
Since d1 ≤ n we get

dt+1 ≤
√

3dt ln(1
δ′)

=
√

dt ·
√

3 ln(1
δ′)

≤
√√

3dt−1 ln(1
δ′) ·

√
3 ln(1

δ′)

=
√√

dt−1 ·
√√

3 ln(1
δ′) ·

√
3 ln(1

δ′)

:

≤ n
1

2t+1 · 3 ln(1
δ′)

For t = O(ln ln n), n
1
2t = O(1) and therefore, dt ≤ 3 ln (1

δ′) and the first stage termi-
nates within O(ln ln(n)) steps. This situation remains with high probability until the

kth step.

8 Lecture 9: Dynamics in Load Balancing

In the second stage exactly dt

2
jobs will be displaced in one step with probability

O(1√
log(k)

), so the expected number of steps will be O(
√

log k).

Summing the two stages we have k = O(ln ln n +
√

log k) = O(ln ln n). 2

Unfortunately, the BALANCE algorithm does not assure that players will indeed act
according to their best response at each step. For example, consider the setting in
figure 9.1 at time t. What is the point of view of a single user on over (M1)? Each
user on M1 will migrate to M2 with probability dt

2Lover(t)
= 200

800
= 1

4
. Hence, for a single

user on M1:

• The expected load on M1 without him is (400− 1)− 1
4
(400− 1) = 300− 3

4
.

• The expected load on M2 is 200 + 1
4
(400− 1) = 300− 1

4
.

and the user prefers to remain on M1. This provides an incentive for users to ”cheat”
and deviate from the joint strategy.
We now try to establish an algorithm which prevents such behavior.

400 200

M1 M2

1/4

Figure 9.1:

The NashTwo Algorithm

Consider any stage before reaching Nash equilibrium where L1 = k+d and L2 = k−d
i.e. dt = 2d. We examine w.l.o.g a single user on L1. We want to define the probabil-
ity of migration p such that a single user will see an expected identical load on both
machines (when excluding himself):
(L1 − 1)(1− p) = L2 + (L1 − 1)p
m
p = (L1−L2)−1

2(L1−1)
= dt−1

2(L1−1)

The NashTwo algorithm moves jobs from over to under with probability p.

Lemma 9.4.2 At every stage Algorithm NashTwo is a Nash migration policy.

9.4. CONCURRENT JOBS MIGRATION 9

Proof. Again we compare the loads on the two machines when excluding one
user on the overloaded machine.
L1 = (k + d− 1)(1− 2d−1

2(k+d)−2
) = n− 1

2

L2 = k − d + (k + d− 1)(1− 2d−1
2(k+d)−2

) = n− 1
2

Therefore, each user on the overloaded machine cannot gain by deviating from the
joint strategy. Users on the underloaded machine, like before, can obviously only lose
by rerouting to the overloaded machine. 2

It can be shown (in a different scribe...) that NashTwo converges at a similar rate as
that of BALANCE.

9.4.2 Multiple Identical Machines

In the final subsection we extend the results to multiple identical machines. We seek a
goal of dividing the load equally among the machines, i.e. to achieve a load of L = n

m

which we assume to be an integer value. For each machine Mi, define di(t) = Li(t)−L,
the difference between the current and the average load on machine Mi. Next, for
each time t partition the machines into two disjoint sets,

• Under(t) = {Mi|di(t) < 0}
• Over(t) = {Mi|di(t) ≥ 0}

We define dt =
∑

i∈Over(t) di(t).
Using these definitions the MultipleBALANCE algorithm proceeds as follows. Each
user j on machine Mi ∈ Over(t) determines whether it should move with probability
di(t)
Li(t)

, and if so, selects its target underloaded machine Mk ∈ Under(t) with probability
|dk(t)|

dt
.

Lemma 9.4.3 (without proof) Let Z1, ..., Zn be an i.i.d random binary variables with
P (Zi = 1) = p and Z =

∑
i Zi. Then, P (Z = dpne) ≥ 1

e
1√

2πdpne . If pn = q is an

integer then, P (Z = q) ≥ 1√
2πq

.

Theorem 9.7 The MultipleBALANCE algorithm convergence within expected
O(log log n + log2 m) steps.

Proof. Let k be an upper bound on the number of steps of the MultipleBALANCE
algorithm until it reaches Nash equilibrium. We divide our proof into two stages:
1. While there exists a machine Mi such that di(t) > 3 ln(1

δ′)
2. ∀i, di(t) ≤ 3 ln(1

δ′)
where δ′ = δ

3mk
and δ as before.

Similarly to the proof of the convergence time of the BALANCE algorithm, we get

that for any machine Mi and time t, di(t + 1) ≤
√

3dk(t) ln(1
δ′). As before, using the

fact that di(1) ≤ n and the mentioned computations will provide us the bound of
O(ln ln n) on the expected number of steps in the first stage.

10 Lecture 9: Dynamics in Load Balancing

During all of the second phase ∀i it holds that di(t) ≤ 3 ln(1
δ′). Denote the number of

unbalanced machines at time t as Unbalanced(t). Note that Unbalanced(t) can only
decrease over time since once a machine is balanced it won’t be changed.
We examine substages of the second phase. First we deal with the system when
Unbalanced(t) ≥ β log1.5(1

δ′) with β > 0 a constant which will be specified from the
proof. By lemma 9.4.3, since di(t) ≤ 3 ln(1

δ′), each unbalanced machine terminates
in one step with probability q = Θ(1√

ln(1
δ′)

). According to the standard properties

of a binomial distribution, the expected number of machines in Under(t) is at most
1
2
Unbalanced(t− 1). Since machines become balanced with probability q < 0.01, the

expected number of machines in Over(t) is E[|Over(t)|] ≥ 0.49Unbalanced(t−1). Let
Oi(t) be a variable indicating whether machine Mi ∈ Over(t), thus we can write that
|Over(t)| =

∑m
i=1 Oi(t). The variables Oi(t) are negatively associated and therefore

we can apply the Chernoff bound on the number of overloaded machines as follows.

|Over(t)| ≥ 0.49Unbalanced(t− 1)−
√

3Unbalanced(t− 1) ln 1
δ′

≥ 0.48Unbalanced(t− 1)

for Unbalanced(t− 1) ≥ γ(log(1
δ′)), for some constant γ > 0 (with probability

1− δ′). The expected number of machines that become balanced at time t is at least
q|Over(t−1)|. Note that each overloaded machine (∈ Over(t−1)) becomes balanced
with probability q independently and therefore we can apply the Chernoff bound on
the number of new balanced machines as follows.

Unb(t)− Unb(t− 1) ≥ 0.48Unb(t− 1)−
√

3qUnb(t− 1) log 1
δ′

≥ 0.47qUnb(t− 1)

for Unbalanced(t− 1) ≥ β(log1.5(1/δ′)), for sufficiently large constant β (with prob-
ability 1− δ′). Consequently, after O(logm

q
) = O(log m

√
log(1/δ′)) the first substage

terminates. Now, when Unbalanced(t) < β log1.5(1/δ′), the number of unbalanced
machines is only O(log1.5(1/δ′)). Recall the second stage in the proof of the conver-
gence time of the BALANCE algorithm. In a similar manner, it implies that after
O(log1.5(1/δ′) ·

√
log(1/δ′)) = O(log2(1/δ′)) the remaining machines will be balanced.

To conclude, we sum up our results to get,

k = O(log log n + log m
√

log(1/δ′) + log2(1/δ′))
= O(log log n + log m

√
log(mk/δ) + log2(mk/δ))

= O(log log n + log2(m/δ))

2

Note 9.8 The component log2 can be improved to log1.5. Also, we can get a bound
on the expected time of O(log log n + log1.5 m) (without dependency on δ).

9.5 The End

Nothing lasts forever.

