
Active Sampling for Multiple Output
Identification

Shai Fine1? and Yishay Mansour2??

1 IBM Research Laboratory in Haifa, Israel.
2 School of Computer Science, Tel Aviv University, Tel Aviv, Israel.

Abstract. We study functions with multiple output values, and use
active sampling to identify an example for each of the possible output
values. Our results for this setting include: (1) Efficient active sampling
algorithms for simple geometric concepts, such as intervals on a line
and axis parallel boxes. (2) A characterization for the case of binary
output value in a transductive setting. (3) An analysis of active sampling
with uniform distribution in the plane. (4) An efficient algorithm for the
Boolean hypercube when each output value is a monomial.

1 Introduction

Active sampling is much about “hitting” low probability events. In active learn-
ing the active sampling is used to guide the learning process to learn a high
accuracy hypothesis while using a limited number or examples [16, 9, 8, 10, 6,
3, 1, 2]. While in many applications the goal of an accurate hypothesis is the
most natural one, there are other applications which require only examples of
those low probability events. Example of such application areas include hard-
ware and software verification, fault tolerance, network security, data mining
etc. The usage of such examples in each of the applications can be very differ-
ent: in fault tolerance one would like to simulate the performance of the system
in extreme conditions (e.g., very high load), in network security one would like
to have examples of potential intruders, while in data mining one would like
to find new interesting relationships, which are not explained by the existing
ones. Our original motivation, though, stem from dynamic hardware verifica-
tion and from software testing. In both domains, the main industrial vehicles
are simulation-based methods which aimed at exciting (and impacting) the oc-
currence of events and scenarios of desired functional behaviors that need to
be verified [19, 4]. Coverage [12] is an information collection mechanism that is

? Email: shai@il.ibm.com
?? Email: mansour@post.tau.ac.il. This work was supported in part by the IST Pro-

gramme of the European Community, under the PASCAL Network of Excellence,
IST-2002-506778, by a grant no. 1079/04 from the Israel Science Foundation, by
a grant from BSF and an IBM faculty award. This publication only reflects the
authors’ views.

often used to monitor the progress of the verification process, and point to areas
in the design that have not been properly tested.

The analysis of coverage reports, and their translation to a set of directives
that guides the implementation of the test plan, result in major manual bot-
tlenecks in the otherwise highly automated verification process. A verification
methodology called coverage directed test generation (CDG) aims to resolve this
problem, either by utilizing a mechanism that can directly translate a verifica-
tion task into a simulation test (CDG by Construction, cf. [17]), or by extracting
useful information from the observed events, and use it to bias future simulation
runs (CDG by Feedback, cf. [7] and ref. therein). However, too often, neither
an accurate translation mechanism nor well structured coverage model can be
provided, and we end up with the following naive, yet difficult, scenario: The
verification team is given a list of events that should be covered, and the goal is
to provide multiple sets of directives (inputs) that will tune the test generator
to produce patterns that hit all items in the list. In these situations the common
practice is “trial & error”.

We abstracted the above motivation in the following learning model. There
is an unknown target function f which maps every input in X to one of m
output values. (For example, in the verification setting the output values would
be desired scenarios for the coverage generator.) The output identification task
is to find m inputs, one for each output value.

The output identification algorithm is given some information about the tar-
get function. First, like much of the computational learning literature, it knows
that the target function f is in a given function class F . Second, it is given the
number of output values, i.e., m (hence it knows when to terminate).

We assume that there is an unknown distribution D over the inputs. The
algorithm has an access to an induced distribution example oracle which allows
it to sample from sub-regions of the domain. (Namely, the algorithm specifies a
subset Y ⊂ X , and the oracle returns an example from Y , distributed according
to the induced distribution of D over Y .) The goal of the output identification
algorithm is to minimize the number of oracle samples it requires until a rep-
resentative for each output value is found. The performance is measured as a
function of the number of output values m and ε, a lower bound on the probabil-
ity of each output value. (We remark that only for simplicity we assume that m
and ε are known to the output identification algorithm, both of the requirements
can be easily relaxed and similar results hold.)

We show efficient algorithms for many classes of functions. We start by show-
ing efficient output identification algorithms for a few simple geometric classes.
For the function class of m intervals on a line we show an expected active sam-
ple bound of O(m log 1/ε). For m axis parallel boxes in Rd we give an expected
active sample bound of O(md log 1/ε). We also derive lower bounds that exhibit
classes with a constant VC dimension, such as a linear separator in the plane,
which require Ω(1/ε) active samples.

Our main result is a characterization for the case of binary outputs, i.e., m =
2. We define a separation dimension and show that if the separation dimension

is d then the function class can be output identified in O(d2 log2 s) queries in a
transductive setting (where the output identification algorithm is given a set of
s unlabeled examples in advance). In addition, we show that for any function
class with separation dimension d, there is an unlabeled sample for which no
algorithm can output identify it in less than Ω(min{d, s}) queries.

The separation dimension is similar in flavor to the VC dimension[18]. It
requires d points such that the function class induced on them has all the d
singleton functions (rather than all 2d possible functions in the VC dimension).
We show that when a class has separation dimension d, then some input in
the unlabeled sample can be queried and guarantee that either we terminate
(finding a representative for each output value) or we reduce the space of con-
sistent functions considerably. Using this property we derive an efficient output
identification algorithm.

We also study the case of specific distributions, namely the uniform distrib-
ution in the plane. Using classical results from computational geometry we can
show that many classes are efficiently learnable under the uniform distribution.
Specifically, we show that the class of linear separators in the plane can be out-
put identified with expected O(m2 log2 1/ε) active samples with respect to the
uniform distribution over the unit square.

We conclude with a concept class defined over the Boolean hypercube {0, 1}n.
We show that the class where each output value is represented by a monomial
can be output identify in mn active samples.

Our model has obvious connections to active learning [16, 9, 8, 10, 6, 3, 1, 2].
In some sense the output identification task is much simpler than the usual
learning task, since we do not need to find an accurate hypothesis, only to
target one example for each output value. Still it seems that the techniques we
present here and the active learning techniques share much in common. In both
cases the goal is to reduce uncertainty, however since the tasks are different
(learning vs. identification), so does the choice which of the samples to query –
while an active learner will choose to query for the label of the sample which
maximizes disagreement between the consistent hypotheses in the version space
(cf. QBC [16, 8]), an output identifier will select to query for the label of the
sample which maximize the probability of an unseen output value (ideally have
the probability be almost one). Another major difference is that active learning
is interested mainly in binary classification while the main motivation for output
identification are cases with a large number of possible output values.

There are simple cases in which active learning fails to achieve a significant
sample improvement, for example linear separator in the plane [1]. In such cases
one should expect the output identification task to suffer from similar drawbacks
(and indeed some of our lower bounds are much in that spirit).

A somewhat related question was discuss in [11] where efficient deterministic
constructions for combinatorial hitting sets are given. A hitting set for a domain
{1, . . . , m}d guarantees to “hit” any combinatorial rectangle of volume at least ε,
i.e., any combinatorial rectangle that includes at least εmd points would intersect
the hitting set in at least one point. The main contribution of [11] is to construct

such a hitting set deterministically (i.e., without any randomization) and have
its size and computation time be polynomial in m, d and 1/ε.

2 The Model

A function f is m-valued if f maps inputs from a domain X to an m valued
range {1, . . . , m}. An m-valued function class F is a set of m valued functions.

The output identification task for an m valued function class F is as follows.
There is an unknown m valued target function f ∈ F and the goal of the output
identification algorithm is to identify an input for each the m output values, i.e.,
find examples, x1, . . . , xm ∈ X such that f(xi) = i.

The output identification algorithm has access to examples of the target
function as follows. There is some unknown distribution D over the domain X .
Given a subset of the domain Y ⊂ X let DY be the distribution D induces over
Y . An induced distribution example oracle receives as an input a subset Y ⊂ X
and returns a pair < x, f(x) >, where x is distributed according to DY and f is
the target function. (We assume that Y has a non-empty intersection with the
support of D, otherwise the oracle would generate an error.)

At each time step t, the output identification algorithm specifies a subset
Yt ⊂ X to the induced distribution example oracle and received an example
< xt, f(xt) >. The process terminates when the algorithm has an example for
each of the m output values. (I.e., x1, . . . , xm ∈ X such that f(xi) = i.)

In order to measure the complexity of an output identification algorithm
we assume that each output value has a probability of at least ε under (the
unknown) distribution D.

The active sample complexity of an output identification algorithm with re-
spect to a distribution D and function f ∈ F is the number of examples it
requests, i.e., the number of times it accesses the induced distribution example
oracle. The active sample complexity of an output identification algorithm for
a function class F is the worse case over all f ∈ F and distributions D of its
active sample complexity. The active sample complexity of a function class F is
the least active sample complexity of any output identification algorithm for F .

3 Simple Geometric Concepts

In this section we consider simple geometric concepts where the domain is
X = Rd. We start with the line (d = 1) and consider the case where each of the
m output values is represented by an interval. For this case we give an expected
O(m log 1/ε) active sample complexity output identification algorithm. We then
extend our result to the case of axis parallel boxes and give an output identifi-
cation algorithm whose expected active sample complexity is O(dm log 1/ε). We
end with a few simple lower bounds, showing examples of concept classes with
a finite VC dimensions which require Ω(1/ε) active sample complexity.

3.1 Generic Consistency Algorithm

We assume that the points mapped to a specific output value belong to some
function class A. (For intervals A ∈ A would be a single interval and for axis
parallel boxes it would be a single axis parallel box.)

The generic consistency algorithm works as follows. Initially we have C0 = ∅.
At phase t ≥ 1 we sample the induced distribution example oracle with the
subset X −Ct−1 and receive an example < xt, kt >. For each output value k let
Sk

t be the set of examples sampled with output value k until time t. Let Ck
t be

the minimal concept in A which is consistent with the examples in Sk
t (in our

applications such a concept always exists). Let Ct be the union of all the Ck
t and

proceed to phase t + 1.
The generic consistency algorithm starts at phase t = 1 and terminate at the

first phase where for every output value k we have Sk
t 6= ∅ (note that in such a

case we have for each of the m output values at least one example).
To be more specific about the minimal consistent concept we define it for the

case of intervals and axis parallel boxes. In the case that A is an interval then
Ck

t is an interval [λk
−, λk

+] such that λk
− = min{x ∈ Sk

t } and λk
+ = max{x ∈ Sk

t }.
In the case that A is an axis parallel box then Ck

t is ([c1
−, c1

+], . . . , [cd
−, cd

+]) where
ci
− = min{xi : x ∈ Sk

t , x = x1, · · ·xd} and ci
+ = max{xi : x ∈ Sk

t , x = x1, · · ·xd}.
The correctness of the generic consistency algorithm is obvious from its ter-

mination condition, the main interest in the analysis would be on the expected
number of examples until termination, i.e., the expected active sample complex-
ity.

3.2 Intervals on a line

In this function class the domain is X = [0, 1], the examples corresponding to an
output value k are in an interval Ak (which can be either open or closed interval),
and the intervals are a partition of the domain X = [0, 1], i.e. ∪m

k=1A
k = [0, 1]

and Ai ∩Aj = ∅ for i 6= j.
For the analysis of the generic consistency algorithm we introduce some ad-

ditional notation. At time t, we have a set KNt of output values which we have
already sampled and UKNt which are output values we have not been sampled.
For each output k ∈ KNt let Bk

− and Bk
+ be the points in Ak below and above

Ck (respectively). I.e., if Ck
t = [λk

−, λk
+] and Ak = [ρ−, ρ+] then Bk

− = [ρ−, λ−)
and Bk

+ = (λ+, ρ+].
Given a distribution D over [0, 1] let D(I) be the probability of the interval

I. At time t let βt =
∑

k∈UKNt
D(Ak) and let γt =

∑
k∈KNt

D(Bk
−) + D(Bk

+).
Let αt = βt + γt, i.e., αt = D(X − Ct). Let Ht include all the history of the
execution of the algorithm until and including time t.

Our analysis uses a potential function Φt = αt + βt = γt + 2βt, and shows
that Φt decreases by a certain factor each time step. Specifically we show that,

E[Φt − Φt+1|Ht] =
βt

αt

∑

k∈UKNt

D(Ak)
βt

D(Ak) +
γt

αt

∑

k∈KNt,b∈{+,−}

D(Bk
b)

γt
· D(Bk

b)
2

The first part follows from the fact that with probability βt

αt
we sample an

example with output value in UKNt. Given that we sample such a point, the
probability that the interval is Ak is D(Ak)

βt
. Given that we sample from Ak we

reduce βt by 2D(Ak) and increase γt by D(Ak), so the net reduction in the
potential is D(Ak).

The second part follows from the fact that with probability γt

αt
we sample

an example with output value in KNt. Given that we sample such a point, the
probability that it is in the interval Bk

b is D(Bk
b)

γt
, where b ∈ {−, +}. Given that

we sample from Bk
b the expected reduction is D(Bk

b)/2. Therefore,

E[Φt − Φt+1|Ht] =
1
αt

[
∑

k∈UKNt

D(Ak)2 +
∑

k∈KNt,b∈{+,−}

1
2
D(Bk

b)2]

Note that

αt = βt + γt =
∑

k∈UKNt

D(Ak) +
∑

k∈KNt,b∈{+,−}
D(Bk

b).

Using the general inequality
∑n

i=1 X2
i ≥ (1/n)(

∑n
i=1 Xi)2, and since there are

at most 2m elements in the summation (each output value appears only in one
of the two summations), we have that

∑

k∈UKN

D(Ak)2 +
∑

k∈KN,b∈{+,−}

1
2
D(Bk

b)2 ≥ 1
4m

α2
t

Since by definition βt ≤ αt, this implies that

E[Φt − Φt+1|Ht] ≥ 1
4m

αt ≥ 1
8m

[αt + βt] =
1

8m
Φt

By averaging over Ht we have that

E[Φt+1] ≤ (1− 1
8m

)E[Φt] ≤ (1− 1
8m

)tΦ1

Initially we have γ1 = 0 and β1 = 1, therefore the initial potential is Φ1 =
γ1+2β1 = 2. After t = O(m log(1/ε)) samples, the expected value of the potential
is less than ε/2. This implies that with probability at least 1/2 its value is less
than ε. Once the value of the potential is less than ε we are guarantee to hit each
output value (since each output value has probability at least ε). This establishes
the following theorem.

Theorem 1. The class of m intervals can be output identified in expected active
sample complexity of O(m log 1/ε).

3.3 Axis parallel boxes

We extend the results from intervals to axis parallel boxes, where X = [0, 1]d,
each output value k is represented by an axis parallel box Ak, and the collection
of Ak are a partition of X . Again, we use the generic consistent algorithm.

The analysis is similar in spirit to that of the intervals on a line and it appears
in the appendix, where we establish the following theorem:

Theorem 2. The class of m axis parallel boxes can be output identified in ex-
pected active sample complexity of O(dm log 1/ε).

3.4 Lower bounds

In this section we derive two simple lower bounds.
Example 1: Let X = [0, 1] and U be the uniform distribution on X . Consider
the following function class Fη

seg that includes functions fz(x) = 1 if x ∈ [z, z+η]
and otherwise fz(x) = 0 (where z ∈ [0, 1−η]). Note that Fη

seg has a VC dimension
equals to 2, and in addition, the points with output value 0 are not a convex set.
We show the following lower bound.

Claim. Any output identification algorithm for Fη
seg with the uniform distribu-

tion U requires an expected active sample complexity of Ω(1/ε), when ε = η.

Example 2: Consider a linear separator in the plane (there are only two output
values). Let X = [−1, 1]2 and let Fls include all linear separators. Namely, for
each fα,β ∈ F we have fα,β(x) = 1 if αx1 + β < x2 and otherwise fα,β(x) = 0
(where α, β ∈ R).

Following Dasgupta [1], we consider a distribution Uo whose support is the
unit circle, e.g., (x1)2 + (x2)2 = 1 and it is uniform over it. Similar to the lower
bound for active learning [1], we show the following lower bound for output
identification.

Claim. Any output identification algorithm for Fls with distribution Uo requires
an expected active sample complexity of at least Ω(1/ε).

4 Transductive setting: Binary output values

In the transductive setting the algorithm is given in advance a set of unlabeled
examples S = {x1, . . . xs}. The goal of the output identification algorithm is
to find a subset S′ ⊂ S of size at most m, such that each output value that
appears in S has an example in S′. I.e., let Sk = {x ∈ S : f(x) = k}, we
require that if Sk 6= ∅ then Sk ∩ S′ 6= ∅. The active sample complexity in
the transductive setting is the number of queries the algorithm makes (i.e., the
number of unlabeled examples from S for which it asks a label).

We give a characterization for the case of binary output values, i.e., m = 2.
We first define the notion of a separation dimension of a function class F . Then
we show that if a function class F has separation dimension d then there is

an algorithm that queries only O(d2 log2 s) examples. In addition we show that
if a function class has separation dimension d then the expected number of
examples queried is Ω(min{d, s}). This implies that the for the binary case we
have a complete characterization when can a function class be output identified
with a poly-logarithmic number of queries.

4.1 Separation dimension: definition

We start by defining the notion of separation dimension. Let the separation
dimension of a function class F be the following. A function class F is said to
b-separate the set {x1, . . . xd} ⊂ X if there are functions f1, . . . fd ∈ F such that
fi(xi) = b and fi(xj) = 1− b, for j 6= i, where b ∈ {0, 1}.

The b-separation dimension of F is the size of the largest set that F b-
separates (or infinity, if it can b-separate sets of arbitrary size). The separa-
tion dimension of F is the maximum of the 0-separation dimension and the
1-separation dimension.

Separation dimension - examples: Let us start with a few examples of
the separation dimension. Consider the function class Fpre over [0, 1] such that
fz(x) = 1 if z ≤ x and fz(x) = 0 otherwise (where z ∈ [0, 1]). The separation
dimension of Fpre is 1 since for any two points x1 < x2 no function fz can have
fz(x1) = 1 and fz(x2) = 0.

A simple extension of Fpre is the function class Fpre+suf where fz,b(x) = b
if z ≤ x and fz(x) = 1 − b otherwise (where z ∈ [0, 1] and b ∈ {0, 1}). The
separation dimension of Fpre+suf is 2. (Given, for example, x1 = 1/3 and x2 =
2/3, the functions f1/2,1 and f1/2,0 achieve a b-separation of {x1, x2} for both
b = 1 and b = 0. However, for any three points x1 < x2 < x3 no function fz,b can
have fz,b(x2) = b and fz,b(x1) = fz,b(x3) = 1− b, neither for b = 1 nor b = 0.)

Recall the function class Fη
seg that includes functions fz(x) = 1 if x ∈ [z, z+η]

and otherwise fz(x) = 0 (where z ∈ [0, 1 − η]). The function class Fη
seg has

separation dimension of Θ(1/η).
An example of a function class with an infinite separation dimension is Find,

where for every z ∈ X we have an indicator function fz ∈ Find (i.e., fz(x) = 1 for
x = z and otherwise fz(x) = 0), and X is infinite. Since for any set of s distinct
points x1, . . . , xs ∈ X the indicator functions fx1 , . . . , fxs are a 1-separation, this
implies that Find has an infinite separation dimension.

Separation dimension - Number of consistent functions: Given a set of
points S = {x1, . . . xs} let FS be the function class F restricted to the set S.
We would like to bound the number of consistent functions FS as a function of
s = |S| and separation dimension of the function class F .

It is obvious that if a function class F has a separation dimension of d then
it has a VC dimension [18] of at most d. Therefore, using Sauer Lemma [15],
we can bound |FS |. We can also show a function class for which this bound is
almost tight also for separation dimension.

Lemma 1. Let F be a function class with separation dimension d, then |FS | ≤∑d
i=0

(|S|
i

)
. In addition, there is a function class F of separation dimension d

such that |FS | ≥ (|S|/d)d.

4.2 Separation dimension: Lower bound

In this section we give a lower bound based on the separation dimension.

Theorem 3. Let F be a function class with separation dimension d, then its ex-
pected active sample complexity is Ω(min{d, s}). In addition, if F has an infinite
separation dimension then its expected active sample complexity is Ω(s).

Proof. Assume that F has 1-separation dimension of d (the other case is identi-
cal). Then there are k = min{d, s} inputs x1, . . . xk ∈ X such that for any i there
is an fi ∈ F that fi(xi) = 1 and fi(xj) = 0, for j 6= i. (When k < s, we extend
the the set of k points to s points by duplicating point x1 for s− k times.)

Assume that we select the target function f to be fi with probability 1/k.
Then any output identification algorithm would have to make at least Ω(k)
queries before hitting the input which is labeled 1.

If F has an infinite separation dimension, then for every s, there are s inputs
x1, . . . xs ∈ X and functions f1, . . . fs ∈ F such that fi(xi) = 1 and fi(xj) = 0,
for j 6= i. Again, this implies that the expected number of queries is Ω(s). ut

4.3 Separation dimension: Upper Bound

In this section we derive an upper bound on the sample complexity based of the
separation dimension. Assume that the first point we sampled has label 0, and
therefore the output identification task reduces to finding an input with label 1.
(For this reason we will also concentrate on the 1-separation dimension.)

We start with a few notations. Let sup(f, S) = {xi ∈ S : f(xi) = 1},
i.e., the set of points in S on which f is 1. Given a set of functions F , let
deg(xi,FS) = {f ∈ FS : f(xi) = 1}, i.e., the set of functions which classify xi

as 1. We partition FS according to the size of sup(f, S), and define FS
k = {f ∈

FS : k ≤ |sup(f, S)| < 2k}. Let ` = |F| and `k = |FS
k |.

Lemma 2. Let F be a function class with 1-separation dimension d. Given an
unlabeled sample S, for every k ≥ 1, there exists an input xi ∈ S such that
|deg(xi,FS

k)| ≥ b`k/8dc.

Proof. For contradiction, assume that for some k ≥ 1 no such xi ∈ S exists. We
will show that the 1-separation dimension is at least d + 1, which would be a
contradiction.

Since we assume that no such xi exists for k, then for every xi ∈ S we
have |deg(xi,FS

k)| < `k/8d. By definition of FS
k , for every f ∈ FS

k we have
|sup(f, S)| ∈ [k, 2k). Consider the set of pairs Z that includes all the pairs (f, x)
such that x ∈ S, f ∈ FS

k and f(x) = 1. There are at least k`k such pairs in Z.

We would like to find a subset of pairs (f1, x1) . . . , (fd+1, xd+1) in Z such that
for any i 6= j we have fj(xi) = 0. Recall that by the definition of the pairs in
Z we have fi(xi) = 1. Therefore, such a subset would imply that the separation
dimension of F is at least d + 1.

For the first pair we pick any (f, x) in Z. We would like to delete some of the
pairs in Z such that any remaining pair (h, z) has the property that f(z) = 0
and h(x) = 0. This would guarantee that the subset that we select would have
the required property.

Formally, we delete from Z both the set {(g, y)|g ∈ FS
k , y ∈ sup(f, S)} and

the set {(g, y)|g ∈ FS
k , g ∈ deg(x,FS

k)}. The deletion of the first set guarantees
that any remaining pair (h, z) would have f(z) = 0 while the deletion of the
second set guarantees that for any remaining pair (h, z) we have h(x) = 0. The
size of the first set is at most

∑
y∈sup(f,S) deg(y,FS

k) ≤ k`k/4d while the size of
the second set is at most

∑
h∈deg(x,FS

k) sup(h, S) ≤ k`k/4d. This implies that we
delete at most k`k/2d pairs.

By iteratively selecting a pair from Z and deleting from Z the two related
sets, this implies that we can select 2d ≥ d+1 such pairs. This is a contradiction
to the assumption that separation dimension is d. ut

We can now use Lemma 2 to derive an output identification algorithm in the
transductive setting.

Theorem 4. Let F be a function class of separation dimension d. For any
unlabeled sample S, it can be output identified in active sample complexity of
O(d log |S| log |FS |).

Proof. Initially we query an arbitrary point in S. W.l.o.g., assume that the first
point has a label 0. This implies that we need to search for a point in S with a
label of 1. Note that the 1-separation dimension of F is at most d.

We run the algorithm in rounds, where in each round we select at most
log |S| inputs (one for to each FS

2i , where i ∈ [0, log |S|]). In each round for
each FS

2i we select the input x which maximizes deg(x,FS
2i). By Lemma 2, since

F has 1-separation dimension of at most d, there exists an input xi such that
|deg(x,FS

2i)| ≥ `k/8d. Therefore, in each round, the number of possible target
functions in each FS

2i shrink by a factor of (1−1/8d). After at most O(d log |FS |)
rounds we will either: (1) find an x ∈ S with label 1, i..e, f(x) = 1, or, (2) the
only remaining consistent function in FS is the all zero function, i.e., there are
no points in S with a label of 1. ut

Since, by Lemma 1, a d separation dimension implies that |FS | = O(|S|d),
we have,

Corollary 1. If F has separation dimension d then any unlabeled sample S can
be output identified with an active sample complexity of O(d2 log2 |S|).

5 Uniform distribution

In this section we discuss active sample complexity for specific distributions. We
will concentrate on the case that the input distribution is uniform over the unit
square, i.e., X = [0, 1]2. In this case we will be able to show that many natural
geometric concepts, which for a general distribution they require Ω(1/ε), are
efficiently output identified with respect to the uniform distribution.

Generic Convex-Hull Algorithm: Our algorithm would be a generic con-
sistency algorithm (Section ??) for the case where the domain of each output
value is convex. Initially we have S0 = C0 = ∅. At time t we sample the induced
distribution example oracle with X −Ct and receive an example < xt, kt >. For
each output value k let Sk

t be the set of points sampled with output value k. Let
Ck

t be the convex hull of the points in Sk
t , and let Ct be the union of all those

sets. We terminate when for every output value k we have Sk
t 6= ∅.

Review from computational geometry: There are classical results in com-
putational geometry regarding uniformly sampling from the plane. The results
related the area of the convex-hull to the total area of the convex domain from
which the points are sampled at uniform. For a set of points Z let ConvexHull(Z)
be their convex hull and for a body Y let area(Y) be its area. The following
theorem summarizes the related results (see, cf., [13]).

Theorem 5 ([14, 5]). Let G be an r-gon in [0, 1]2, and Sn be a sample of size
n sampled uniformly from G. Then, E[area(G−ConvexHull(Sn))] = Θ(r ln n

n).

Triangles in the plane: Let X = [0, 1]2 be the unit square. Consider the case
that there are m output values such that the domain of each output value is a
triangle and their union is the unit square.

It would be more beneficial in this case to consider an alternative way of
sampling. Assume that each time we access the induced distribution example
oracle with X − Ct, the oracle samples from X until it hits a point x 6∈ Ct. In
our analysis let us consider also the extra points that oracle samples (but we
will give them zero weight). Assume that in this process the total number of
samples the oracle makes is T . (Recall that the generic convex hull algorithm
terminates when each of the m output values is sampled at least once.) Let Ti

be the number of times the oracle samples output value i (out of the T samples).
Let Xi

j be a random variable which is 1 if the j-th point with output value i
is outside the convex hull of the previous j − 1 points, and 0 otherwise. This
implies that the expected number of samples of the generic convex hull algorithm
is ET ET1...Tm [

∑m
i=1

∑Ti

j=1 Xi
j].

3

3 This follows, since an equivalent way of sampling, is to sample always points uni-
formly from the unit square, and to request a label (and charge) only for points not
in Ct.

From Theorem 5, applied to triangles (i.e., r = 3), we can deduce that,
E[Xi

j+1] = O(ln j
j). Therefore,

∑Ti

j=1 E[Xi
j+1] =

∑Ti

j=1 O(ln j
j) ≤ α log2 Ti, for

some constant α > 0. Summing over all possible output values we have

ET ET1,...Tm
E[

m∑

i=1

Ti∑

j=1

Xi
j] ≤ ET

[
α

m∑

i=1

ETi [log2 Ti]

]
≤ ET [αm log2 T

m
] ≤ αm log2 1

ε

where the second inequality follows since
∑m

i=1 Ti = T , and the last inequality
uses the fact that E[T] ≤ m/ε and the concavity of the logarithm function. This
implies the following theorem,

Theorem 6. Let F∆ be a function class such that every f ∈ F∆ partitions
the unit square to m triangles each of area at least ε. Then for the uniform
distribution U , the expected active sample complexity of the generic convex hull
algorithm is O(m log2 1/ε).

Lines in the plane: Consider the case where there are k lines in the plane
that partition the unit square. Each of the m output values is one of the cells
created by the intersection of the lines. We can perform a triangulation of the
cells and have at most O(k2) triangles. (By performing a triangulation we are
only increasing the running time of the generic convex hull algorithm, since each
output value is de-composed to smaller convex hulls.) Since k lines in the plane
create at least k cells, this implies that m ≥ k. By using Theorem 6, we can
show the following,

Theorem 7. Let Fk−line be a function class such that every f ∈ Fk−line is
represented by at most k lines in the plane. If each of the m cells has area at
least ε then for the uniform distribution U the expected active sample complexity
of the generic convex hull algorithm is O(m2 log2 1/ε).

Note that Fls, for which we showed a lower bound of Ω(1/ε) with respect to
an arbitrary distribution, is simply F1−line and m = 2.

6 Monomials in a hypercube

In this section we will concentrate on the Boolean cube and consider the case
that each output value is a monomial. Formally, the domain X is {0, 1}n. The
function class Fmon includes functions of the following type: For every output
k there is a monomial Mk such that f(x) = k iff Mk(x) = 1, where f ∈ Fmon.
(Note that the monomials Mi are a partition of the hypercube.)

For any i let xi be the input x ∈ {0, 1}n with the i-th bit flipped. Note that
if Mk(x) = 1 then Mk(xi) = 0 iff Mk depends on attribute xi. This would be
the basic property that will allow us to efficiently output identify Fmon.

Monomial Output Identification algorithm: The algorithm performs an
exact identification using (essentially) membership queries. Let KN be the set
of known output values and CH be a set of inputs we need to “check”. Initially
both KN = ∅ and CH = ∅. In the first phase, we sample any x, get its value
f(x) = k and add k to KN and x to CH. In every phase we take an input x
from CH, and for every i such that f(x) 6= f(xi), if f(xi) 6∈ KN then we add
the output value f(xi) to KN , add the input xi to CH, and continue to the
next input from CH. We terminate either when we have processed all the values
in CH or have already recovered m output values (i.e., |KN | = m).

Theorem 8. For any distribution which has non-zero probability for every ex-
ample {0, 1}n, the class Fmon can be output identified with active sample com-
plexity of mn.

Note that in this case we also end with a complete model of the target
function f in addition to the m output values.

References

1. S. Dasgupta. Analysis of a greedy active learning strategy. In Advances in Neural
Information Processing Systems (NIPS), 2004.

2. S. Dasgupta. Coarse sample complexity bounds for active learning. In Advances
in Neural Information Processing Systems (NIPS), 2005.

3. S. Dasgupta, A. Kalai, and C. Monteleoni. Analysis of perceptron-based active
learning. In Eighteenth Annual Conference on Learning Theory (COLT), 2005.

4. O. Edelstein, E. Farchi, Y. Nir G Ratzaby, and S Ur. Multithreaded java program
test generation. IBM Systems Journal, 41(3):111–125, 2002.

5. B. Efron. The convex hull of a rndom set of points. Biometrika, 52:331–343, 1965.
6. S. Fine, R. Gilad-Bachrach, and E. Shamir. Query by committee, linear separation

and random walks. Theoretical Computer Science, 284(1), 2002. (A preliminary
version appeared in EuroColt 1999.).

7. S. Fine and A. Ziv. Coverage directed test generation for functional verification us-
ing Bayesian networks. In Proceedings of the 40th Design Automation Conference,
pages 286–291, June 2003.

8. Y. Freund, H. Seung, E. Shamir, and N. Tishby. Selective sampling using the query
by committee algorithm. Machine Learning, 28(2/3):133–168, 1997.

9. S. R. Kulkarni, S. K. Mitter, and J. N. Tsitsiklis. Active learning using arbitrary
binary valued queries. Machine Learning, 11:23–35, 1993.

10. R. Liere and P. Tadepalli. Active learning with committees for text categorization.
In AAAI-97, 1997.

11. N. Linial, M. Luby, M. Saks, and D. Zuckerman. Efficient construction of a
small hitting set for combinatorial rectangles in high dimension. Combinatorica,
17(2):215–234, 1997. (A preliminary version appeard in STOC 1993).

12. Andrew Piziali. Functional Verification Coverage Measurement and Analysis.
Springer, 2004.

13. F. P. Preparata and M. I Shamos. Computational Geometry: An introduction.
Springer-Verlag, 1985.

14. A. Rényi and R. Sulamke. Uber die konvexe hulle von n zufallig gewahlten punkten.
Z. Wahrschein, 2:75–84, 1963.

15. N. Sauer. On the density of family of sets. J. of Combinatorial Theory, Ser. A
13:145–147, 1972.

16. H. S. Seung, M. Opper, and H. Sompolinsky. Query by committe. In Proceedings
of the Fith Workshop on Computational Learning Theory, pages 287–294. Morgan
Kaufman, San Mateo, CA, 1992.

17. S. Ur and Y. Yadin. Micro-architecture coverage directed generation of test pro-
grams. In Proceedings of the 36th Design Automation Conference, pages 175–180,
June 1999.

18. V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative fre-
quencies of events to their probabilities. Theory of Probability and its applications,
XVI(2):264–280, 1971.

19. B. Wile, J. C. Goss, and W. Roesner. Comprehensive Functional Verification The
Complete Industry Cycle. Elsevier, 2005.

A Axis parallel boxes: Analysis

The analysis of the axis parallel boxes would be similar to the analysis of intervals
on a line. At time t, we have a set KNt of output values which we have already
sampled and UKNt which are output values we have not sampled. For each
output value k ∈ KNt we define 2d boxes which extend the current Ck

t to Ak,
in each of the d dimensions both above and below. (Note that the boxes overlap
unlike in the intervals case.)

Formally, let Ck
t = ([c1

−, c1
+], . . . , [cd

−, cd
+]) and Ak = ([a1

−, a1
+], . . . , [ad

−, ad
+]).

Since Ck
t ⊂ Ak, then ai

− ≤ ci
− ≤ ci

+ ≤ ai
+. The 2d boxes are

Bk,i
− = [a1

−, a1
+], . . . [ai−1

− , ai−1
+], [ai

−, ci
−), [ai+1

− , ai+1
+], . . . , [ad

−, ad
+]).

and

Bk,i
+ = [a1

−, a1
+], . . . [ai−1

− , ai−1
+], (ci

+, ai
+], [ai+1

− , ai+1
+], . . . , [ad

−, ad
+]).

Let, γt =
∑

k∈KNt

∑d
i=1 D(Bk,i

+) + D(Bk,i
−), βt =

∑
k∈UKNt

D(Ak), and
αt = D(X −Ct). The potential function would be Φt = γt + 2dβt. For intuition,
note that when we sample an output value k ∈ UNKt for the first time, we
decrease βt by D(Ak) and increase γt by at most dD(Ak), so the net reduction
in the potential is at least dD(Ak). LetHt include all the history of the execution
of the algorithm until and including time t.

We will show that the potential Φt decreases by a certain factor each time
step. Specifically we show that

E[Φt − Φt+1|Ht] =
βt

αt

∑

k∈UKNt

D(Ak)
βt

dD(Ak) +

αt − βt

αt

∑

k∈KNt,i∈[1,d],b∈{+,−}

D(Bk,i
b)

αt − βt
· D(Bk,i

b)
2

The first part follows from the fact that with probability βt

αt
we sample an

example with output value in UKNt. Given that we sample such an example, the

probability that the output value is k is D(Ak)
βt

. Given that we sample from Ak

we reduce βt by D(Ak) and increase γt by at most dD(Ak), so the net reduction
in the potential is at least dD(Ak).

The second part follows from the fact that with probability αt−βt

αt
we sample

an example with output value in KNt. Given that we sample such an example,

the probability that the example is in box Bk,i
b is D(Bk,i

b)

αt−βt
. (Note that a point can

be in more than one box. We used here the linearity of expectations, to be able
to consider each box separately.) Given that we sample from Bk,i

b the expected
reduction is D(Bk,i

b)/2. Therefore,

E[Φt − Φt+1|Ht] =
1
αt

[
∑

k∈UKNt

dD(Ak)2 +
∑

k∈KNt,i∈[1,d],b∈{+,−}

1
2
D(Bk,i

b)2]

Again, we use the general inequality
∑n

i=1 X2
i ≥ (1/n)(

∑n
i=1 Xi)2, for each

summation separately,

∑

k∈UKNt

dD(Ak)2 +
∑

k∈KNt,i∈[1,d]b∈{+,−}

1
2
D(Bk,i

b)2 ≥ 1
m

dβ2
t +

1
4dm

γ2
t

=
1

4dm
(4d2β2

t + γ2
t)

Therefore,

E[Φt − Φt+1|Ht] ≥ 1
4dm

4d2β2
t + γ2

t

αt

Since each point can be counted at most d times in γt, we have that,

βt + γt ≥ αt = D(X − Ct) ≥ βt + γt/d

This implies that

E[Φt − Φt+1|Ht] ≥ 1
4dm

4d2β2
t + γ2

t

βt + γt
≥ 1

8dm
[2dβt + γt] =

1
8dm

Φt,

where in the second inequality we use that X2 +Y 2 ≥ 1
2 (X +Y)2. By averaging

over Ht we have that

E[Φt+1] ≤ (1− 1
8dm

)E[Φt] ≤ (1− 1
8dm

)tΦ1

Initially we have γ1 = 0 and β1 = 1, therefore the initial potential is Φ1 =
2d. After t = O(dm log(1/ε)) samples the expected potential is less than ε/2.
Therefore with probability at least 1/2 the potential is less than ε. If the potential
is less than ε, this implies that we hit every output value (since we assume that
each output value has probability of at least ε). Therefore we have establishes
Theorem 2.

