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ABSTRACT
We study the question of how long it takes players to reach
a Nash equilibrium in uncoupled setups, where each player
initially knows only his own payoff function. We derive
lower bounds on the communication complexity of reaching a
Nash equilibrium, i.e., on the number of bits that need to be
transmitted, and thus also on the required number of steps.
Specifically, we show lower bounds that are exponential in
the number of players in each one of the following cases: (1)
reaching a pure Nash equilibrium; (2) reaching a pure Nash
equilibrium in a Bayesian setting; and (3) reaching a mixed
Nash equilibrium. We then show that, in contrast, the com-
munication complexity of reaching a correlated equilibrium
is polynomial in the number of players.
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1. INTRODUCTION
Equilibrium is a central concept in interactions between

decision-makers. The definition of equilibrium is static: it is
characterized by the property that the participants (“play-
ers”) have no incentive to depart from it. No less fundamen-
tal, however, are the dynamic issues of how such an equilib-
rium arises (see, e.g., [11, 25]). Since decisions are assumed
to be taken independently by the participants, it is only
natural to study dynamics in decentralized environments,
where each decision-maker has only partial information—
for instance, he knows only his own preferences and not
those of the other players. As a result, no player can find
an equilibrium on his own, and the resulting dynamics be-
come complex and need not converge to a rest-point (i.e.,
an equilibrium).

Significant progress has been made in understanding the
dynamic aspects of one equilibrium concept, that of corre-
lated equilibrium [1]. A correlated equilibrium obtains when
players receive signals before the game is played; these sig-
nals, which may be correlated, do not affect the payoffs in
the game. Of course, the players may well use these sig-
nals when making their strategic choices. To date, there are
several efficient algorithms [8, 14, 15, 3, 4, 23, 24, 2, 25, 13]
that, in all games, converge fast to (approximate) correlated
equilibria.

In contrast, convergence to Nash equilibrium is a much
more complex and less clear-cut issue.1 As we have stated
above, a natural assumption that most dynamics satisfy is
that of uncoupledness [16]: each player is assumed to know
initially only his own payoff function, and not those of the
other players.2 On the one hand, it has been shown that
it is impossible for uncoupled dynamics that are determin-
istic and continuous3 always to converge to a Nash equi-
librium, even when it is unique [16]. On the other hand,
there are a number of uncoupled dynamics that converge to
Nash equilibria; these dynamics use various techniques such
as hypothesis-testing, regret-testing, and other variants of
exhaustive or stochastic search [9, 10, 25, 7, 17, 12]. Since

1A Nash equilibrium is a fixed point of a nonlinear func-
tion, whereas a correlated equilibrium is a solution of finitely
many linear inequalities. This may be one reason—though
not the only one—that it appears to be more difficult to
converge to the former than to the latter.
2Similar notions are “distributed” in computer science,
“privacy-preserving” in mechanism design, and “decentral-
ized” in economics.
3Continuous with respect to both actions and time.



all these dynamics perform some form of search over all ac-
tion combinations, it follows that the number of steps until
a Nash equilibrium is reached is exponential in the num-
ber of players (when the number of actions of each player
is kept fixed). In the current work we will show that this is
a general phenomenon and not a deficiency of the existing
literature: there is an exponential lower bound on the speed
of convergence to Nash equilibria.

To make this precise, define a Nash equilibrium procedure
as a dynamic process whereby the players reach a Nash equi-
librium, whether pure or mixed.4 We study the number of
steps needed before the procedure terminates at the appro-
priate equilibrium. Again, we are considering uncoupled
procedures: each player’s payoff function is private, initially
known only to him. We use the theory of communication
complexity to derive lower bounds on the amount of commu-
nication, measured in terms of the number of transmission
bits—and thus also the number of steps—that the players
have to perform in order to reach a Nash equilibrium. This
important connection was first observed in [6], where various
lower bounds for two-person games are derived (as the num-
ber of actions increases). Here we analyze general n-person
games.

Our results provide lower bounds that are exponential in
the number of players (we keep the number of actions of each
player bounded, e.g., two) for the communication complex-
ity in each of the following cases: (1) reaching a pure Nash
equilibrium—in general games, and also in the restricted
class of games having the “finite improvement property”
(Section 3 and Appendix A); (2) reaching a pure Nash equi-
librium in a Bayesian setup (Section 4); and (3) reaching
a mixed Nash equilibrium (Section 5). In the full version
of the paper we exhibit simple procedures that yield upper
bounds that are also exponential (for both pure Nash equi-
libria and mixed Nash equilibria). The proofs omitted from
this extended abstract and additional material can also be
found there.

These exponential lower bounds may seem unsurprising,
given that the size of the input (i.e., the players’ private
payoff functions) is also exponential. We thus analyze the
communication complexity of reaching correlated equilibria,
and we show that it is, in contrast, only polynomial in the
number of players (Section 6). Therefore, the exponential
communication complexity of Nash equilibrium procedures
is a result of the equilibrium requirement, and not of the
size of the input.

In summary, this paper may be viewed as providing fur-
ther evidence of the intrinsic difficulty of reaching Nash equi-
libria, in contrast to correlated equilibria.5

2. PRELIMINARIES

2.1 Game-Theoretic Setting
The basic setting is as follows. There are n ≥ 2 players,

i = 1, 2, . . . , n. Each player i has a finite set of actions Ai

with |Ai| ≥ 2, and the joint action space is A =
Qn

i=1 Ai.
Let ∆i denote the set of probability distributions over Ai

4We emphasize that we make no assumptions about the
players’ incentives. We obtain lower bounds, which give the
minimum it takes to reach an equilibrium—no matter what
the incentives are (see [6]).
5See [17], Section 5(g), particularly the last sentence there.

and put ∆ =
Qn

i=1 ∆i. Most of the games we introduce
will be binary-action games, where the action space of each
player i is Ai = {0, 1}, and so A = {0, 1}n; in this case a
mixed action of player i is given by 0 ≤ pi ≤ 1, interpreted
as the probability that ai = 1.

Each player i has a payoff (or utility) function ui which
maps A to the real numbers, i.e., ui : A → R. We extend
ui to ∆ in a multilinear way, by defining ui(p1, . . . , pn) =
E[ui(a1, . . . , an)] for each (p1, . . . , pn) ∈ ∆, where the ex-
pectation E is taken with respect to the product distribu-
tion p1 × · · · × pn on A. We denote this game by G =
(n, {Ai}i, {ui}i).

For a joint action a = (a1, . . . , ai, . . . , an) ∈ A, let a−i

be the joint action of all players except player i, i.e., a−i =
(a1, . . . , ai−1, ai+1, . . . , an). For each player i, the (pure)
best-reply correspondence maps a joint action a−i of the
other players to the set BR(a−i; ui) = arg maxai∈Ai ui(ai,
a−i). A joint action a ∈ A is a pure Nash equilibrium if for
every player i we have ui(a) ≥ ui(bi, a

−i) for any bi ∈ Ai; or
equivalently, ai ∈ BR(a−i; ui) for all i. Similarly, a combi-
nation of mixed actions p ∈ ∆ is a mixed Nash equilibrium
if ui(p) ≥ ui(qi, p

−i) for every player i and any qi ∈ ∆i.
Finally, we define the concepts of “improvement step” and

“improvement path.” Given a joint action a ∈ A, an im-
provement step of player i is an action bi ∈ Ai such that
ui(bi, a

−i) > ui(a); we refer to i as the improving player.
An improvement path is a sequence of improvement steps
(where the improvement steps can be performed by differ-
ent players). A game G has the finite improvement property
if all the improvement paths are finite;6 such a game always
possesses a pure Nash equilibrium.

2.2 Communication Complexity Background
In the “classical” setting in communication complexity

there are two agents,7 one holding an input x ∈ {0, 1}K

and the other holding an input y ∈ {0, 1}K , where K is a
finite set. Their task is to compute a joint function of their
inputs f(x, y) ∈ {0, 1}. The agents send messages to one
another, and we assume that at the end of the communica-
tion they each have the value of f(x, y). The communica-
tion complexity of a deterministic communication protocol
Π for computing f(x, y) is the number of bits sent during
the computation of f(x, y) by Π; denote this number of bits
by CC(Π, f, x, y). The communication complexity CC(Π, f)
of a protocol Π for computing a function f is defined as the
worst case over all possible inputs (x, y) ∈ {0, 1}K×{0, 1}K ,
i.e., CC(Π, f) = maxx,y∈{0,1}K CC(Π, f, x, y). Finally, the
communication complexity CC(f) of computing a function
f is the minimum over all protocols Π for computing f , i.e.,
CC(f) = minΠ CC(Π, f).

A well-studied function in communication complexity is
the disjointness function. Let S be a finite set; the S- dis-
jointness function DISJS is defined on the subsets of S (i.e.,
on {0, 1}S × {0, 1}S) by DISJS(S1, S2) = 1 if the two in-
puts S1, S2 ⊂ S are disjoint sets, i.e., S1 ∩ S2 = ∅, and
DISJS(S1, S2) = 0 otherwise. There is a large literature on
the communication complexity of the disjointness function
(see [20]). We state here one result that will be used to
derive bounds in our setting (see [20], Chapter 1.3).

6These are the “generalized ordinal potential games” [21].
7We call them “agents” to avoid confusion with the players
of the game.



Theorem 1. The communication complexity of the S-
disjointness function is |S| bits, i.e., CC(DISJS) = |S|.

2.3 Nash Equilibrium Procedures
A Nash equilibrium procedure is a dynamic process by

which the players reach a Nash equilibrium of the game,
whether pure or mixed (both cases will be considered be-
low). Fix the number of players n and the action spaces
Ai; a game G is thus identified with its payoff functions
(u1, . . . , un). Let G be a family of games to which the pro-
cedure should apply. The basic assumption is that of uncou-
pledness: each player knows only his own payoff function ui

[16, 17].
Formally, the n players who participate in a Nash equi-

librium procedure have the following information and ca-
pabilities. The “input” of the procedure is a game G =
(u1, . . . , un) in the family G. Initially, each player i has ac-
cess only to his own “private” payoff function8 ui. In each
round t = 1, 2, . . ., every player i performs an action9,10

ai,t ∈ Ai. At the end of round t all the players observe
each other’s actions; i.e., they all observe the joint action
(a1,t, . . . , an,t) ∈ A.

In a mixed Nash equilibrium procedure Π for G, the “out-
put” of each player i is a distribution pi ∈ ∆i, such that
(p1, . . . , pn) ∈ ∆ is a mixed Nash equilibrium of the game
G = (u1, . . . , un) that was given as input.11 In a pure Nash
equilibrium procedure Π for G, the “output” of player i is
either (1) a pure action ai ∈ Ai, or (2) a declaration of
“no pure Nash equilibrium.” In case (1), the joint output
(a1, . . . , an) ∈ A is a pure Nash equilibrium of G, whereas
in case (2) G has no pure Nash equilibrium. Let pnep and
mnep denote the collection of pure and mixed Nash equilib-
rium procedures, respectively.

The communication complexity CC(Π, G) of a Nash equi-
librium procedure Π applied to a game G is the number of
bits communicated until Π terminates when the input is G.
Given a family of games G, the communication complexity of
a Nash equilibrium procedure Π for the family G is the worst-
case communication complexity of Π over all games G ∈ G,
i.e., CC(Π,G) = maxG∈G CC(Π, G). Finally, CC(pure,G),
the communication complexity of pure Nash equilibrium pro-
cedures for a family of games G, is the minimal commu-
nication complexity of any pure Nash equilibrium proce-
dure Π for the family of games G, i.e., CC(pure,G) =
minΠ∈pnep CC(Π,G); similarly, CC(mixed,G) = minΠ∈mnep

CC(Π,G) is the communication complexity of mixed Nash
equilibrium procedures for G.

One may measure the communication complexity of Nash
procedures also in terms of the number of rounds; this may
be more natural from the game-theoretic viewpoint. For-
mally, the time communication complexity tCC(Π, G) of a
Nash equilibrium procedure Π applied to a game G is the

8The number of players n, the action spaces Ai, and the set
of games G are fixed and commonly known.
9It is natural to consider dynamics in the framework of re-
peated games, and so the communication proceeds through
actions. However, one may well use any set Bi instead of Ai

for the period-by-period communication. For binary-action
games, ai,t ∈ Ai just means that the communication of each
player in each period is 1 bit.

10The procedure is thus deterministic; in the complete ver-
sion of the paper we also discuss stochastic procedures, and
show that similar results hold there.

11Finite games always possess mixed Nash equilibria.

number of time periods until Π terminates. The two com-
munication complexity measures, CC and tCC, are closely
related: in each time period the players transmit at least 1
bit and at most

P
i log |Ai| = log |A| bits.12

Proposition 2. The (bit) communication complexity CC
and the time communication complexity tCC satisfy:

1

log |A| CC ≤ tCC ≤ CC. (1)

(A similar connection for two-player games was observed
in [6].)

We are interested in the asymptotic behavior of the com-
munication complexity of Nash equilibrium procedures as
the number of players n increases, while the size of the ac-
tion sets is fixed. Let Γn

s be the family of all n-person games
where each player has at most s actions, i.e., |Ai| ≤ s for all
i. We want to estimate the communication complexity of
Nash equilibrium procedures on the class Γn

s as n increases
and s is fixed. Our results will deal with the class Γn

2 of
binary-action games (except for Theorem 4, where we need
4 actions). Since the communication complexity is defined
as the worst case over all games, any lower bound for Γn

2 is
clearly also a lower bound for Γn

s for every s ≥ 2. In the
complete version of the paper we discuss the extension of
our results to s ≥ 2 actions (we get better lower bounds
that depend on s).

3. PURE EQUILIBRIA
In this section we derive exponential lower bounds on the

communication complexity of pure Nash equilibrium proce-
dures. Our result is

Theorem 3. Any pure Nash equilibrium procedure has
communication complexity Ω(2n), i.e., for every s ≥ 2,

CC(pure, Γn
s ) ≥ CC(pure, Γn

2 ) = Ω(2n).

Proposition 2 implies that the time communication com-
plexity of pure Nash equilibrium procedures is tCC(pure,
Γn

2 ) = Ω(2n/n) = Ω(2n−log n).
At this point one may conjecture that restricting the class

of games to those that have pure Nash equilibria may de-
crease the communication complexity. However, this is not
so. Even if one considers only the restricted class FIPn

s

of n-person s-action games that have the “finite improve-
ment property” (see Section 2.1) and thus always possess
pure Nash equilibria, the lower bound remains exponential.
Specifically, for games with s ≥ 4 actions, we have

Theorem 4. Any pure Nash equilibrium procedure on the
class FIPn

s of s-action games with the finite improvement
property has communication complexity Ω(2n/2), i.e., for ev-
ery s ≥ 4,

CC(pure,FIPn
s ) ≥ CC(pure,FIPn

4 ) = Ω(2n/2).

Theorem 3 will be proved in Section 3.2 below using a
simple reduction from the disjointness problem (recall The-
orem 1), whereas Theorem 4 will require a much more com-
plex construction, which we present in the Appendix A (the
full proof appears in the complete version of the paper).

12Throughout this paper log is always log2.



3.1 Reductions
We now show how to reduce the disjointness problem to

the problem of finding pure Nash equilibria. Divide the
player set {1, . . . , n} into two sets T1 and T2 of size n/2 each
(assume for simplicity that n is even), say T1 = {1, . . . , n/2}
and T2 = {n/2 + 1, . . . , n}. It will be convenient to rename
the players such that the players in T` are (`, i) for i ∈
{1, . . . , n/2} and ` ∈ {1, 2}. For any two sets S1, S2 ⊂ S—
an input of the S-disjointness problem—the reduction will
define a game G = (n, {Ai}i, {ui}i), such that two proper-
ties are satisfied:

• Reducibility : S1 ∩ S2 6= ∅ if and only if G has a pure
Nash equilibrium.

• Constructibility : The payoff function of each player
(`, i) in T` is constructible from S` (i.e., for every a ∈ A
the number u`,i(a) is computable, by a finite algo-
rithm, from a, S`, and i).

The reducibility property enables us to relate the outcome
of a pure Nash equilibrium procedure on G with the outcome
of the S-disjointness function on S1 and S2. Namely, if the
players reach a pure Nash equilibrium in G then the sets S1

and S2 are not disjoint, and if they do not reach a pure Nash
equilibrium then the sets are disjoint. The constructibility
property ensures that given a pure Nash equilibrium pro-
cedure ΠNE we are able to generate a protocol ΠD for the
disjointness problem, with the same communication com-
plexity. More specifically, given ΠNE we create a protocol
ΠD by having agent ` ∈ {1, 2} simulate all the players in T`

(he can do so by the constructibility property). We summa-
rize this in the following claim, which is based on Theorem
1.

Claim 5. Assume that there exists a reduction from the
S-disjointness problem to n-person pure Nash equilibrium
procedures that satisfies the reducibility and constructibility
properties. Then any pure Nash equilibrium procedure has
communication complexity of at least |S| bits.

3.2 Matching Pennies Reduction
We now provide a simple reduction, which we call the

matching pennies reduction, and establish Theorem 3.
Take S = {0, 1}n; for each S1, S2 ⊂ S the reduction will

generate a binary-action game G in Γn
2 as follows. The ac-

tion spaces are Ai = {0, 1} for all i, and a joint action is thus
a ∈ A = {0, 1}n. The payoff u`,i(a) of each player (`, i) in T`

will be high (specifically, 2) if the joint action a lies in the set
S`, and low (specifically, 0) if it does not. In the latter case,
two distinguished players in T`, say (`, 1) and (`, 2), will in
addition play a matching pennies game between themselves.

Formally, for ` = 1, 2, the payoff function u`,i of a player
(`, i) in T` is defined as follows. For i ≥ 3, put13

u`,i(a) =


2, if a ∈ S`,
0, if a /∈ S`;

as for players (`, 1) and (`, 2) in T`, their payoff functions

13Alternatively: put u`,i(a) = 0 for all a ∈ A and all i ≥ 3.

are

u`,1(a) =

8
<
:

2, if a ∈ S`,
1, if a /∈ S` and a`,1 = a`,2,
0, if a /∈ S` and a`,1 6= a`,2;

u`,2(a) =

8
<
:

2, if a ∈ S`,
0, if a /∈ S` and a`,1 = a`,2,
1, if a /∈ S` and a`,1 6= a`,2.

Claim 6. For n ≥ 4, the reducibility and constructibility
properties hold for the matching pennies reduction.

Proof. The payoff functions of the players in T` depend
on S` only, and so the constructibility property holds. For
the reducibility property, note that a is a pure Nash equi-
librium if and only if a ∈ S1 ∩ S2 (indeed, if a ∈ S1 ∩ S2,
then every player gets the maximal payoff of 2; otherwise,
a /∈ S` for some `, and then either (`, 1) or (`, 2) benefits by
deviating).

We can now prove Theorem 3.
Proof of Theorem 3: Follows from Claims 5 and 6 (re-

call that S = {0, 1}n).

4. PURE EQUILIBRIA
IN A BAYESIAN SETTING

We now consider a Bayesian setting where the game (i.e.,
the payoff functions) is chosen according to a probability dis-
tribution that is known to all players. While the communi-
cation complexity of pure Nash equilibrium procedures has
been shown to be exponential in the worst case, it is con-
ceivable that the expected communication complexity will be
smaller (where the expectation is taken over the randomized
selection of the payoff functions). However, that turns out
not to be the case. We will exhibit a simple distribution
for which the expected communication complexity of pure
Nash equilibrium procedures is exponential. Our result is
the following.

Theorem 7. There exists a probability distribution over
games such that any pure Nash equilibrium procedure has
expected communication complexity Ω(2n); i.e., there exists
a probability distribution P over the family of binary-action
games Γn

2 such that

E[CC(pure, G)] = Ω(2n),

where the expectation E is taken over games G ∈ Γn
2 chosen

according to the probability distribution P.

(Note that Theorem 3 is implied by Theorem 7.) Unlike
the results in the previous section, here we will not apply
a reduction, but rather provide a direct proof, using tech-
niques from “distributional communication complexity” (see
[20], Chapter 3.4).

Some further background from communication complex-
ity is needed at this point. A combinatorial rectangle is
X = X1 × · · · × Xn, where each Xi is a subset of inputs
of player i. Every sequence of messages in a communica-
tion protocol can be described by a combinatorial rectan-
gle, namely, all inputs generating that sequence of messages.
Given a function f of n inputs x1, . . . , xn, a combinatorial
rectangle X is called monochromatic if f(x) has the same
value for all x = (x1, . . . , xn) ∈ X . A minimal covering of



a function f using combinatorial rectangles is the minimum
number of monochromatic combinatorial rectangles needed
to represent f (i.e., the minimal number of monochromatic
rectangles whose union covers the space of all possible in-
puts). Clearly, the logarithm of this number is a lower bound
on the communication complexity of f (since, roughly speak-
ing, every bit of communication can only split combinatorial
rectangles into two; for more details see [20], Chapter 1).

In our setting, the combinatorial rectangles are U = U1 ×
· · · ×Un, where each Ui is a set of payoff functions of player
i. A monochromatic combinatorial rectangle is labeled by
either (1) a pure joint action a ∈ A (when a is a Nash
equilibrium for every game (u1, . . . , un) ∈ U), or (2) “no
pure Nash equilibrium” (when no game (u1, . . . , un) ∈ U
has a pure Nash equilibrium).

Informally, the lower bound on the expected communi-
cation complexity of pure Nash equilibrium procedures will
be a consequence of the fact that it will be “hard” for the
players to agree that there is no pure Nash equilibrium. We
will construct a probability distribution over payoff func-
tions such that, first, the probability that there is no pure
Nash equilibrium is bounded away from 0 as the number
of players n increases. And second, we will show that any
combinatorial rectangle that is labeled “no pure Nash equi-
librium” has a low probability. This will yield a lower bound
on the number of monochromatic combinatorial rectangles,
and thus on the communication complexity.

Formally, our probability distribution P is defined on the
family Γn

2 of binary-action games (i.e., Ai = {0, 1} for all
i). The payoff function ui of player i is selected randomly
as follows. For every a−i ∈ {0, 1}n−1, with probability 1/2
put ui(0, a−i) = 0 and ui(1, a−i) = 1, and with probability
1/2 put ui(0, a−i) = 1 and ui(1, a−i) = 0; these choices are
made independently over all a−i and over all i. Note that for
every a ∈ {0, 1}n each player i has a unique best reply, and
P[ui : ai ∈ BR(a−i; ui)] = P[ui : ai /∈ BR(a−i; ui)] = 1/2.

We start by showing that the probability that there are
no pure Nash equilibria is bounded away from 0.

Lemma 8. There exists a constant α > 0 such that the
probability that there are no pure Nash equilibria is at least
α for all n ≥ 2.

Next we show that every combinatorial rectangle labeled
“no pure Nash equilibrium” has low probability.

Lemma 9. Let U = U1×· · ·×Un be a combinatorial rect-
angle labeled “no pure Nash equilibrium.” Then

P[(u1, . . . , un) ∈ U ] ≤ 2−2n−1
.

Combining the two lemmata allows us to prove Theorem
7.

Proof of Theorem 7: By Lemma 8, the total proba-
bility of the event that there is no pure Nash equilibrium
is bounded from below by α > 0. By Lemma 9, each
combinatorial rectangle labeled “no pure Nash equilibrium”

has probability at most 2−2n−1
. Therefore R, the num-

ber of such rectangles, satisfies R ≥ α22n−1
; this gives a

lower bound on the expected communication complexity of
log R = Ω(2n) (see [20], Chapter 2.1, for details).

5. MIXED EQUILIBRIA
Before we introduce our result for mixed Nash equilibrium

procedures, a certain preliminary discussion is in order. In
the case of mixed Nash equilibria the values of the payoff
functions play a crucial role. Consider the following variant
of the matching pennies game

1, 0 0, 1
0, 1 M, 0

where M is a positive integer. There is a unique Nash equi-
librium: (1/2,

1/2) for the row player and (M/(M +1), 1/(M +
1)) for the column player. Since the parameter M appears
only in the payoff function of the row player, and in equi-
librium the column player needs to know the precise value
of M , it follows that log M bits have to be communicated.
This is a somewhat unsatisfactory result, since the number
of bits needed to encode one of the values of the payoff func-
tion of the row player is also log M . However, had it been
commonly known, for instance, that the payoff functions
under consideration have either 1 or M in that entry, then
only one bit would have sufficed. We therefore distinguish
between two concepts, “magnitude” and “encoding.”

Let Ui be a family of payoff functions of player i. The
magnitude of a rational number ρ is mag(ρ) = log |M | +
log |K|, where ρ = M/K is a reduced fraction (i.e., M and K
have no common divisor higher than 1), and the magnitude
of the family Ui is mag(Ui) = maxui∈Ui,a∈A mag(ui(a)). For
each a ∈ A, the encoding of the payoff of player i at a
is enc(Ui, a) = log |{ui(a) : ui ∈ Ui}|; i.e., the number of
bits required to encode the possible values of ui(a) as ui

varies over Ui; the encoding of the family Ui is enc(Ui) =
maxa∈A enc(Ui, a). For example, if every payoff function ui

in Ui has two values 1 and M (i.e., ui(a) ∈ {1, M} for all
ui ∈ Ui and all a ∈ A), then the encoding of Ui is enc(Ui) = 1
bit, whereas its magnitude is mag(Ui) = log M bits. Finally,
if U = U1 × · · · × Un is a family of games, then enc(U) =
max1≤i≤n enc(Ui) and mag(U) = max1≤i≤n mag(Ui).

When deriving lower bounds on the communication com-
plexity of mixed Nash equilibrium procedures, one would
like the encoding as well as the magnitude to be as low as
possible (so that a high complexity will not be just a trivial
consequence, as in the example above). Specifically, we will
construct a large family of games U that has an encoding of
1 bit and a magnitude of O(n) bits, such that each game in
U will have a different unique Nash equilibrium. This will
imply that, in order to reach the correct Nash equilibrium,
the number of bits to be transmitted must be at least the
logarithm of the size of the family U . Formally, our result is

Theorem 10. For every n ≥ 2 there exists a family of
binary-action games Un ⊂ Γn

2 whose encoding is 1 bit and
whose magnitude is O(n) bits (i.e., enc(Un) = 1 and mag(Un

) = O(n)), such that any mixed Nash equilibrium procedure
over Un has communication complexity Ω(2n), i.e.,

CC(mixed,Un) = Ω(2n).

Our construction is based on a generalization of Jordan’s
game [19] in which we modify the payoff of one of the players.
For n ≥ 2, the n-person Jordan game Jn is a binary-action
game with payoff functions ui(a) = 1{ai=ai−1}(a) for all
players i 6= 2 and u2(a) = 1{a2 6=a1}(a) for player 2 (we
write 1X for the indicator function of the event X; e.g.,
1{a1=an}(a) = 1 if a1 = an and 1{a1=an}(a) = 0 otherwise;



and we put a0 ≡ an). Thus player 2 wants to “mismatch”
the action of player 1, whereas every other player i 6= 2
wants to “match” the action of the previous player i− 1.14

Let f be a real function from {0, 1}n−2 to the half-open
interval [0, 1), i.e., f : {0, 1}n−2 → [0, 1); we define the f -
modified Jordan game Jn(f) by

ui(a) = 1{ai=ai−1}(a), for i 6= 2; and

uf
2 (a) = 1{a2 6=a1}(a) + 1{a1=a2=1}(a) · f(a3, . . . , an)(2)

(only the payoff of player 2 has been modified).
The following lemma shows that a modified Jordan game

has a unique Nash equilibrium, and gives an explicit formula
for it. For every function f as above, let

µ(f) =
1

2n−2

X

(a3,...,an)∈{0,1}n−2

f(a3, . . . , an)

be the average of the values of f ; equivalently, this is the ex-
pected value of f when every player i randomizes uniformly,
i.e., pi = 1/2 for all i.

Lemma 11. The modified Jordan game Jn(f) has a
unique Nash equilibrium (p1, . . . , pn), where pi = 1/2 for all
players i 6= 1, and15

p1 =
1

2− µ(f)
. (3)

To construct our family of games, we vary the function f
over a set F of functions; thus, for each i 6= 2, the family
Ui = {ui} is a singleton, whereas the family U2 = {uf

2 :

f ∈ F} consists of all payoff functions uf
2 of player 2 that

are obtained for all f ∈ F . The property of the family F
will be that, for each function f ∈ F , when we substitute
f in (3) we get a different value for p1. The lower bound
on the communication complexity will follow from the fact
that for each f ∈ F the communication to player 1 must be
different. (Indeed, player 1 needs to reach a different value of
p1 for each f , and always starts with the same information.)
This will imply that the number of bits that have to be
communicated is at least log |F|. To formalize this, we will
call a set of functions F separating if for any two functions
f1 6= f2 in F we have µ(f1) 6= µ(f2). Thus

Claim 12. Let U be given as above by a separating set
of functions F . Then the communication complexity of any
mixed Nash equilibrium procedure on U is at least log |F|.

We now construct our family of functions. For every x =
(x1, . . . , xn−2) in {0, 1}n−2, let [x]2 =

Pn−2
i=1 xi2

n−2−i be the
integer corresponding to the binary string x. Let H be the
set of Boolean functions h : {0, 1}n−2 → {0, 1}. For every
h ∈ H, define a function fh on {0, 1}n−2 by

fh(x) = h(x)
1

prime([x]2)

for each x ∈ {0, 1}n−2, where prime(k) is the k-th prime,
starting for convenience with prime(0) = 2 (thus prime(1) =
3, prime(2) = 5, and so on; note that indeed fh(x) ∈ [0, 1)).
Let FH = {fh : h ∈ H}. The following lemma shows that
FH is a separating family.

14This game has a unique Nash equilibrium (1/2, ...,
1/2) (this

also follows from Lemma 11 below).
15Recall that pi stands for the probability of action 1, i.e.,
pi = P[ai = 1].

Lemma 13. The family FH is separating; i.e., for any
two Boolean functions h1 6= h2 in H we have µ(fh1) 6=
µ(fh2).

Next, the magnitude of FH is O(n) bits, since prime(k) =
O(k log k) by the Prime Number Theorem and so log(prime
([x]2)) ≤ log(prime(2n−2)) = O(n); whereas the encoding of
FH is just 1 bit, since fh(x) has only two possible values,
1/prime ([x]2) and 0. The same therefore holds for the re-
sulting family of games U ≡ Un := {Jn(f) : f ∈ FH} (see
(2)). We have thus established

Claim 14. The family U satisfies enc(U) = 1 and mag(U)
= O(n).

We can now complete the Proof of Theorem 10.

Proof of Theorem 10: There are 22n−2
Boolean func-

tions h in H, so |FH| = |H| = 22n−2
. Combining this with

Claims 12 and 14 and Lemma 13 proves Theorem 10.

6. CORRELATED EQUILIBRIA
In this section we study the communication complexity of

reaching a correlated equilibrium, and prove that it is poly-
nomial rather than exponential. This shows that the expo-
nential bounds for Nash equilibrium procedures are not due
just to the complexity of the input, i.e., to the payoff func-
tions being of exponential size, but rather to the intrinsic
complexity of reaching Nash equilibria.

Based on the polynomial-time algorithm of Papadimitriou
[22] for computing correlated equilibria of certain “succinct
polynomial games,” we derive a correlated equilibrium pro-
cedure with polynomial communication complexity, for all
games with integer payoffs. Specifically, let Un

u ⊂ Γn
2 be the

family of n-person binary-action games with integer payoffs
of magnitude at most u bits, i.e., max1≤i≤n mag(ui) ≤ u; our
correlated equilibrium procedure will have a commmunica-
tion complexity that is polynomial in the number of players
n and the magnitude of the payoffs u (for simplicity we again
consider only binary-action games; otherwise, it would be
polynomial in n, u, and max1≤i≤n |Ai|).

We start by recalling the definition of a correlated equilib-
rium; see Aumann [1]. Given a game G = (n, {Ai}i, {ui}i),
a distribution Q over the space of joint actions A =

Qn
i=1 Ai

is (the distribution of) a correlated equilibrium of G if for
each player i and all actions bi, b

′
i ∈ Ai, we have EQ[ui(bi,

a−i) 1{ai=bi}] ≥ EQ[ui(b
′
i, a

−i)1{ai=bi}] (where EQ denotes
expectation with respect to the distribution Q). Equiv-
alently, consider the “extended game” where, before G is
played, a joint action a = (a1, ..., an) ∈ A is randomly cho-
sen according to Q and each player i is given a “recommen-
dation” to play ai, his coordinate of the chosen a; then Q is
a correlated equilibrium of G if and only if the combination
of strategies where each player always plays according to
his recommendation constitutes a Nash equilibrium of the
extended game.

A correlated equilibrium procedure Π is defined in the same
way as a Nash equilibrium procedure, except that now the
output of each player is a distribution Q, such that Q is a
correlated equilibrium of the game G = (u1, . . . , un) that
was given as input.16 Let cep be the collection of corre-
lated equilibrium procedures. Similarly to CC(mixed,G)

16Finite games always possess correlated equilibria.



and CC(pure,G), we define the communication complexity
of correlated equilibrium procedures for a family of games G
as CC(correlated,G) = minΠ∈cep CC(Π,G) = minΠ∈cep

maxG∈G CC(Π, G).
We come now to the construction of [22], which consists

of running an ellipsoid algorithm in the Hart-Schmeidler
setup [18]. In our communication complexity framework,
every player can run internally the computations of the al-
gorithm at no cost. However, since the payoff function ui

is known only to player i, only i can compute his own ex-
pected payoffs—which he can then broadcast to all players.
The communication complexity counts only the number of
bits transmitted, and therefore, as we will see, there is no
need to restrict ourselves to “succinct games of polynomial
type” as in [22].

We define the procedure Πcorr as follows. All players sim-
ulate the algorithm of [22]. At each step of the ellipsoid algo-
rithm, an n-tuple of mixed strategies p = (p1, ..., pn) ∈ ∆ =Qn

i=1 ∆i is generated (the whole vector p is computed inter-
nally by—and thus known to—each player). Every player i
then computes his expected payoff ui(p) and broadcasts it.
In terms of communication complexity, again, the local com-
putation of p and ui(p) has no cost; only the transmission
of ui(p) counts.

Papadimitriou [22] proves, first, that a correlated equilib-
rium is reached in a number of steps that is bounded by
a polynomial in n and u; and second, that the n-tuples of
mixed strategies p ∈ ∆ generated at every step have a mag-
nitude mag(p) = O(nu) bits. Therefore, when the payoffs
ui(a) for all a ∈ A are integers of at most u bits, the expected
payoff ui(p) for p ∈ ∆ requires at most O(n mag(p)+u+n) =
O(n2u) bits (since it is a weighted sum of 2n entries). Alto-
gether, this implies that the total number of bits transmitted
in the procedure Πcorr is bounded by a polynomial in n and
u, and we have shown

Theorem 15. For every n ≥ 2 and u ≥ 1, let Un
u ⊂ Γn

2

be the family of n-person binary-action games with integer
payoffs of magnitude at most u, i.e., max1≤i≤n mag(ui) ≤ u.
Then, there exists a correlated equilibrium procedure Πcorr

whose communication complexity over Un
u is polynomial in

n and u, i.e.,

CC(correlated,Un
u ) ≤ CC(Πcorr,Un

u ) ≤ poly(n, u).

In the full version of the paper we present further re-
sults on the communication complexity of reaching corre-
lated equilibria. Specifically, in the classes of games of Sec-
tions 4 and 5 where the communication complexity of reach-
ing Nash equilibria was shown to be exponential, that of cor-
related equilibria turns out to be quite low. We also analyze
procedures for reaching correlated approximate equilibria.

7. NASH APPROXIMATE EQUILIBRIA
An approximate equilibrium requires each player’s gain

from deviating to be small. Formally, given ε > 0, a Nash ε-
equilibrium is a combination of mixed actions p = (p1, ..., pn)
∈ Πn

i=1∆i = ∆ such that ui(p) ≥ ui(qi, p
−i) − ε for every

player i and any mixed action qi ∈ ∆i of i.
It is clearly of interest to study the communication com-

plexity of reaching Nash approximate equilibria, and deter-
mine whether or not it is also exponential in the number of
players.

However, the techniques we have developed in this work
do not seem to be able to deal with the communication
complexity of approximate Nash equilibrium procedures. In-
deed, our analysis is based on games that have no pure Nash
equilibria (Sections 3 and 4), or whose mixed Nash equilib-
ria require large descriptions (Section 5) —whereas there al-
ways exist approximate Nash equilibria, and moreover with
succinct representations.
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APPENDIX
A. POTENTIAL GAME REDUCTION

In Section 3.2 we provided a reduction—the matching
pennies reduction—from procedures for the 2n-disjointness
problem to n-person pure Nash equilibrium procedures. We
now construct another reduction, which we call the potential
game reduction, whose additional property17 is that when-
ever the two sets in the disjointness problem intersect, the
corresponding game has the finite improvement path prop-
erty. This reduction will establish Theorem 4.

Before we describe the potential game reduction, it is
worthwhile to investigate why an alternative naive reduc-
tion fails. Let us start with a few notations, which will
be useful later on. The Hamming distance dH(w, v) be-
tween two vectors w, v ∈ {0, 1}k equals the number of co-
ordinates in which they differ; for a set V ⊂ {0, 1}k, put
dH(w, V ) = minv∈V dH(w, v).

Recall from Section 3.1 that n is assumed even and the set
of n players is partitioned into two sets of n/2 players, T1 and
T2; the players of T` are denoted (`, i) for i ∈ {1, . . . , n/2}
and ` ∈ {1, 2}. Take S = {0, 1}n/2, and consider the fol-
lowing reduction from the S-disjointness problem to binary-
action games Γn

2 . Let S1, S2 ⊂ S = {0, 1}n/2. For each

joint action a ∈ {0, 1}n define z = z(a) ∈ {0, 1}n/2 by
xi = a1,i ⊕ a2,i for all i ∈ {1, . . . , n/2}, and let the payoff
functions be u`,i(a) = −dH(z(a), S`), for all a ∈ {0, 1}n, i ∈
{1, . . . , n/2}, and ` ∈ {1, 2}. One can show that there ex-
ists a pure Nash equilibrium in this game iff S1 ∩ S2 6= ∅.
However, improvement paths in these games are not neces-
sarily finite.18 Our potential game reduction will also use
the Hamming distance to drive the joint action to a certain
region, but will require a much more complex structure in
order to guarantee that all improvement paths are finite.

We now present the potential game reduction. Let H
be a Hamiltonian cycle in the hypercube {0, 1}n/2. For

x, y ∈ {0, 1}n/2, when y immediately follows x in the cy-
cle H we write y = next(x) and x = prev(y); also, let

17Besides reducibility and constructibility; see Section 3.1.
18For example, take S1, S2 such that S1 ∩ S2 6= ∅ and
there are two vectors w and v with dH(w, S1) < dH(w, S2),
dH(v, S2) < dH(v, S1), and dH(w, v) = 1. Let i be the in-
dex where w and v differ; players (1, i) and (2, i) can then
alternate indefinitely in performing improvement steps.

r(x) ∈ {1, . . . , n/2} denote the index of the unique bit in
which x and next(x) differ. Let

L =
n

xx : x ∈ {0, 1}n/2
o

∪
n

yx : y, x ∈ {0, 1}n/2, y = next(x)
o

,

where zw denotes the concatenation of the strings z and
w. Clearly L ⊂ {0, 1}n and |L| = 2 · 2n/2. In our games
every joint action a ∈ A will be mapped to some z(a) ∈
{0, 1}n, and the payoff of every player will increase as z(a)
approaches the set L. A pure Nash equilibrium a, if it exists,
will always have z(a) ∈ L.

The players in T1 have binary actions, i.e., A1,i = {0, 1},
whereas those in T2 have four actions: A2,i = {0, 1}×{0, 1}.
For an action a2,i = (c2,i, d2,i) ∈ A2,i, we will refer to c2,i

as the action bit and to d2,i as the done bit. A joint action
a ∈ A can be written a = (a1, a2), where a1 ∈

Q
i A1,i and

a2 ∈
Q

i A2,i are the joint actions of T1 and T2, respectively.
Given a = (a1, a2), define

x1 ≡ x1(a1) = a1 = (a1,1, . . . , a1,n/2) ∈ {0, 1}n/2,

x2 ≡ x2(a2) = (c2,1, . . . , c2,n/2) ∈ {0, 1}n/2,

d2 ≡ d2(a2) = (d2,1, . . . , d2,n/2) ∈ {0, 1}n/2, and

z ≡ z(a) = x1x2 ∈ {0, 1}n

(x1x2 is the concatenation of x1 and x2).
We will view L as a cycle that moves from each xx to yx,

where y = next(x), and then from yx to yy. As the joint
action a changes, so does the resulting z(a). To move z(a)
in L between xx and yx one player in T1, namely (1, r(x)),
must change his action; we call him the forward active 1-
player at xx, and also the backward active 1-player at yx,
and denote him by r1(xx) = r1(yx) = (1, r(x)). Similarly,
the move between yx and yy is controlled by the action bit
of one player in T2, namely r2(yx) = r2(yy) = (2, r(x)),
which we call the forward active 2-player at yx, and also
the backward active 2-player at yy.

A high-level description of our reduction is as follows.
Given two subsets S1 and S2 of S = {0, 1}n/2, we define
the payoff functions of the players such that: (1) all players
want to reach L (i.e., have z(a) ∈ L) and stay in it; (2) when
in L, only the active players have an incentive to change their
actions; (3) if the joint action is xx and x ∈ S1 ∩S2 then no
active player has an incentive to change his action, and we
are at a pure Nash equilibrium; and (4) the payoff functions
of the players in T` depend only on S`, for ` ∈ {1, 2}.

Specifically, for each player (1, i) in T1 we define his payoff
function

u1,i(a) =

8
>>>>><
>>>>>:

−d, if x1x2 /∈ L,
1, if x1x2 ∈ L and x1 6= x2,
2, if x1x2 ∈ L, x1 = x2, x1 ∈ S1,

and dr2(x1x2) = 1,
0, if x1x2 ∈ L, x1 = x2,

x1 /∈ S1 or dr2(x1x2) = 0,

where d = dH(x1x2, L).
Thus, if z = x1x2 /∈ L then u1,i(a) is the negative of the

Hamming distance from z to the set L (this provides the
incentive always to move in the direction of L, and once
L is reached not to leave it). If x1 = x2, x1 ∈ S1, and
dr2(x1x2) = 1, then u1,i(a) has the maximal value of 2 (this
is where the pure Nash equilibria will be, if at all); note that



players in T1 can test dr2(x1x2) = 1 since the identity of the
active 2-player r2(x1x2) = r2(z(a)) is just a function of the
joint action a. If x1 6= x2 then u1,i(a) = 1, and otherwise
u1,i(a) = 0 (this will cause the players in T1 to prefer to
move from x1 = x2 to x1 6= x2, unless both x1 ∈ S1 and
dr2(x1x2) = 1).

For each player (2, i) in T2, we first define an auxiliary
function GoodDone2,i

GoodDone2,i(a) =

8
<
:

0, if x1 = x2, (2, i) = r2(x1x2),
and d2,i 6= 1{x2∈S2},

1, otherwise,

and then the payoff function

u2,i(a) =

8
>>>>>>><
>>>>>>>:

−dH(x1x2, L), if x1x2 /∈ L,
0, if x1x2 ∈ L

and x1 6= x2,
2 ·GoodDone2,i(a), if x1x2 ∈ L, x1 = x2,

and x2 ∈ S2,
GoodDone2,i(a), if x1x2 ∈ L, x1 = x2,

and x2 /∈ S2.

The idea is that when x1 = x2 the active 2-player (2, i) =
r2(x1x2) should “signal” through his done bit whether or
not x2 ∈ S2 (this is needed to let the players in T1 know
when a Nash equilibrium has been reached); if he does not
signal correctly he is “penalized” by having GoodDone2,i =
0 instead of 1, which decreases his payoff.

Claim 16. The constructibility and reducibility proper-
ties hold for the potential game reduction.

Proof. By definition of the reduction, the payoffs of the
players in T` depend only on S`, and so the constructibility
property holds. It remains to show that the reducibility
property holds.

We will distinguish five types of joint actions a in A and
analyze each in turn.

(1) a such that z(a) = x1x2 ∈ L, x1 = x2, x1 ∈ S1,
dr2(x1x2) = 1 and x2 ∈ S2—thus x1 = x2 ∈ S1∩S2—is a pure
Nash equilibrium, since all players get their maximal payoff
of 2 (we have GoodDone2,i(a) = 1 for all players (2, i) in T2).
Such an a is obtained from x = x1 = x2 ∈ S1∩S2 by putting
a1,i = x(i) (= the i’s coordinate of x) for each player (1, i)
in T1, and a2,i = (c2,i, d2,i) with action bit c2,i = x(i) and
arbitrary done bit d2,i for each player (2, i) in T2, except for
the active 2-player r2(x1x2), whose done bit is dr2(x1x2) = 1.

(2) a such that z(a) = x1x2 /∈ L cannot be a Nash equilib-
rium since at least one player (`, i), by changing his action,
can bring the new z(a′) closer to L and thus increase his
payoff by 1.

(3) a such that z(a) = x1x2 ∈ L, x1 6= x2 cannot be
a Nash equilibrium, since the (forward) active 2-player, by
changing his action bit and also setting his done bit correctly
(to dr2(x1x2) = 1{x2∈S2}), can increase his payoff from 0 to
either 1 or 2.

(4) a such that z(a) = x1x2 ∈ L, x1 = x2, and either
x1 /∈ S1 or dr2(x1x2) = 0 cannot be a Nash equilibrium since
the active 1-player can increase his payoff from 0 to 1 by
changing his action.

(5) a such that z(a) = x1x2 ∈ L, x1 = x2, x1 ∈ S1,
dr2(x1x2) = 1 and x2 /∈ S2 cannot be a Nash equilibrium
since GoodDoner2(x1x2) (a) = 0 and so the active 2-player
r2(x1 x2) can increase his payoff from 0 to 1 by changing his
done bit to dr2(x1x2) = 0.

Now (1)–(5) cover all possibilities, and we have shown
that if S1 ∩ S2 6= ∅ then there is a pure Nash equilibrium
(case (1)), whereas if S1∩S2 = ∅ then there is no pure Nash
equilibrium.

In the complete version of the paper we show that when
S1 ∩ S2 6= ∅ all the improvement paths are finite, which
establishes Theorem 4.


