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40 ALGORITHMIC MOTION PLANNINGMiha Sharir
INTRODUCTIONMotion planning is a fundamental problem in robotis. It omes in a variety offorms, but the simplest version is as follows. We are given a robot system B,whih may onsist of several rigid objets attahed to eah other through variousjoints, hinges, and links, or moving independently, and a two-dimensional or three-dimensional environment V luttered with obstales. We assume that the shapeand loation of the obstales and the shape of B are known to the planning system.Given an initial plaement Z1 and a �nal plaement Z2 of B, we wish to determinewhether there exists a ollision-avoiding motion of B from Z1 to Z2, and, if so, toplan suh a motion. In this simpli�ed and purely geometri setup, we ignore issuessuh as inomplete information, nonholonomi onstraints, ontrol issues relatedto inauraies in sensing and motion, nonstationary obstales, optimality of theplanned motion, and so on.Sine the early 1980's, motion planning has been an intensive area of study inrobotis and omputational geometry. In this hapter we will fous on algorithmimotion planning, emphasizing theoretial algorithmi analysis of the problem andseeking worst-ase asymptoti bounds, and only mention briey pratial heuristiapproahes to the problem. The majority of this hapter is devoted to the sim-pli�ed version of motion planning, as stated above. Setion 40.1 presents generaltehniques and lower bounds. Setion 40.2 onsiders eÆient solutions to a vari-ety of spei� moving systems with a small number of degrees of freedom. TheseeÆient solutions exploit various sophistiated methods in omputational and om-binatorial geometry related to arrangements of urves and surfaes (Chapter 21).Setion 40.3 then briey disusses various extensions of the motion planning prob-lem, inorporating unertainty, moving obstales, et. We onlude in Setion 40.4with a brief review of Davenport-Shinzel sequenes, a ombinatorial struture thatplays an important role in many motion planning algorithms.40.1 GENERAL TECHNIQUES AND LOWER BOUNDSGLOSSARYRobot B: A mehanial system onsisting of one or more rigid bodies, possiblyonneted by various joints and hinges.733



734 M. SharirPhysial spae: The two- or three-dimensional environment in whih the robotmoves.Plaement: The portion of physial spae oupied by the robot at some instant.Degrees of freedom k: The number of real parameters that determine the robotB's plaements. Eah plaement an be represented as a point in Rk.Free plaement: A plaement at whih the robot is disjoint from the obstales.Semifree plaement: A plaement at whih the robot does not meet the interiorof any obstale (but may be in ontat with some obstales).Con�guration spae C: A portion of k-spae (where k is the number of degreesof freedom of B) that represents all possible robot plaements; the oordinatesof any point in this spae speify the orresponding plaement.Expanded obstale / C-spae obstale / forbidden region: For an obstaleO, this is the portion O� of on�guration spae onsisting of plaements at whihthe robot intersets (ollides with) O.Free on�guration spae F: The subset of on�guration spae onsisting offree plaements of the robot: F = C nSO O�. (In the literature, this usually alsoinludes semifree plaements.)Contat surfae: For an obstale feature a (orner, edge, fae, et.) and for afeature b of the robot, this is the lous in C of plaements at whih a and b are inontat with eah other. In most appliations, these surfaes are semialgebraisets of onstant desription omplexity (see de�nitions below).Collision-free motion of B: A path ontained in F . Any two plaements ofB that an be reahed from eah other via a ollision-free path must lie in thesame (arwise-)onneted omponent of F .Arrangement A(�): The deomposition of k-spae into ells of various dimen-sions, indued by a olletion � of surfaes in Rk. Eah ell is a maximal on-neted portion of the intersetion of some �xed subolletion of surfaes thatdoes not meet any other surfae. See Chapter 21. Sine a ollision-free motionshould not ross any ontat surfae, F is the union of some of the ells of A(�),where � is the olletion of ontat surfaes.Semialgebrai set: A subset of Rk de�ned by a Boolean ombination of poly-nomial equalities and inequalities in the k oordinates. See Setion 29.2.Constant desription omplexity: Said of a semialgebrai set if it is de�nedby a onstant number of polynomial equalities and inequalities of onstant max-imum degree (where the number of variables is also assumed to be onstant).Example. Let B be a rigid polygon with k edges, moving in a planar polygonalenvironment V with n edges. The system has three degrees of freedom, (x; y; �),where (x; y) are the oordinates of some referene point on B, and � is the orien-tation of B. Eah ontat surfae is the lous of plaements where some vertex ofB touhes some edge of V , or some edge of B touhes some vertex of V . Thereare 2kn ontat surfaes, and if we replae � by tan �2 , then eah ontat surfaebeomes a portion of some algebrai surfae of degree at most 4, bounded by aonstant number of algebrai ars, eah of degree at most 2.



Algorithmi motion planning 73540.1.1 GENERAL SOLUTIONSGLOSSARYCylindrial algebrai deomposition of F : A reursive deomposition of Finto ylindrial-like ells originally proposed by Collins. Over eah ell of thedeomposition, eah of the polynomials involved in the de�nition of F has a�xed sign (positive, negative, or zero), implying that F is the union of some ofthe ells of this deomposition. See Setion 29.5 for further details.Connetivity graph: A graph whose nodes are the (free) ells of a deompositionof F and whose ars onnet pairs of adjaent ells.Roadmap R: A network of 1-dimensional urves within F , having the propertiesthat (i) it preserves the onnetivity of F , in the sense that the portion of Rwithin eah onneted omponent of F is (nonempty and) onneted; and (ii) itis reahable, in the sense that there is a simple proedure to move from any freeplaement of the robot to a plaement on R; we denote the mapping resultingfrom this proedure by �R.Retration of F onto R: A ontinuous mapping of F ontoR that is the identityon R. The roadmap mapping �R is usually a retration. When this is the ase,we note that for any path  within F , represented as a ontinuous mapping : [0; 1℄ 7! F , �R Æ is a path within R, and, onatenating to it the motionsfrom  (0) and  (1) toR, we see that there is a ollision-free motion of B betweentwo plaements Z1; Z2 i� there is a path within R between �R(Z1) and �R(Z2).Silhouette: The set of ritial points of a mapping; see Setion 29.6.CELL DECOMPOSITIONF is a semialgebrai set in Rk. Applying Collins's ylindrial algebrai deompo-sition results in a olletion of ells whose total omplexity is O((nd)3k ), where dis the maximum algebrai degree of the polynomials de�ning the ontat surfaes;the deomposition an be onstruted within a similar time bound. If the oor-dinate axes are generi, then we an also ompute all pairs of ells of F that areadjaent to eah other (i.e., ells whose losures (within F) overlap), and storethis information in the form of a onnetivity graph. It is then easy to searh fora ollision-free path through this graph, if one exists, between the (ell ontainingthe) initial robot plaement and the (ell ontaining the) �nal plaement. Thisleads to a doubly-exponential general solution for the motion planning problem:THEOREM 40.1.1 Cylindrial Cell Deomposition [SS83℄Any motion planning problem, with k degrees of freedom, for whih the ontatsurfaes are de�ned by a total of n polynomials of maximum degree d, an besolved by Collins's ylindrial algebrai deomposition, in randomized expeted timeO((nd)3k ).(The randomization is needed only to hoose a generi diretion for the oor-dinate axes.)



736 M. SharirROADMAPSA more reent and improved solution is given in [Can87, BPR96℄ based on thenotion of a roadmap R, a network of 1-dimensional urves within (the losure of)F , having properties de�ned in the glossary above. One suh a roadmap R hasbeen onstruted, any motion planning instane redues to path searhing withinR, whih is easy to do. R is onstruted reursively, as follows. One projets Fonto some generi 2-plane, and omputes the silhouette of F under this projetion.Next, the ritial values of the projetion of the silhouette on some line are found,and a roadmap is onstruted reursively within eah slie of F at eah of theseritial values. The resulting \sub-roadmaps" are then merged with the silhouette,to obtain the desired R.The original algorithm of Canny relies heavily on the polynomials de�ning Fbeing in general position, and on the availability of a generi plane of projetion.This algorithm runs in nk(log n)dO(k4) deterministi time, and in nk(log n)dO(k2)expeted randomized time. Reent work [BPR96℄ addresses and overomes the gen-eral position issue, and produes a roadmap for any semialgebrai set; the runningtime of this solution is nk+1dO(k2).If we ignore the dependene on the degree d, the algorithm of Canny is loseto optimal in the worst ase, assuming that some representation of the entire Fhas to be output, sine there are easy examples where the free on�guration spaeonsists of 
(nk) onneted omponents.THEOREM 40.1.2 Roadmap Algorithm [Can87℄Any motion planning problem, as in the preeding theorem, an be solved by theroadmap tehnique in nk(logn)dO(k4) deterministi time, and in nk(log n)dO(k2)expeted randomized time.40.1.2 LOWER BOUNDSBoth general solutions are (at least) exponential in k (but are polynomial in theother parameters when k is �xed). This raises the problem of alibrating the om-plexity of the problem when k an be arbitrarily large.THEOREM 40.1.3 Lower BoundsThe motion planning problem, with arbitrarily many degrees of freedom, is PSPACE-hard for the instanes of: (a) oordinated motion of many retangular boxes alonga retangular oor; (b) motion planning of a planar mehanial linkage with manylinks; and () motion planning for a multi-arm robot in a 3-dimensional polyhedralenvironment.All these results appear in papers olleted in [HSS87℄. There are also manyNP-hardness results for other systems.Faing these �ndings, we an either approah the general problem with heuristiand approximate shemes, or attak spei� problems with small values of k, withthe goal of obtaining solutions better than those yielded by the general tehniques.We will mostly survey here the latter approah, and mention towards the end whathas been ahieved by the �rst approah.



Algorithmi motion planning 73740.2 MOTION PLANNING WITH A SMALL NUMBER OFDEGREES OF FREEDOMIn this main setion of the hapter, we review solutions to a variety of spei� motionplanning problems, most of whih have 2 or 3 degrees of freedom. Exploiting thespeial struture of these problems leads to solutions that are more eÆient thanthe general methods desribed above.GLOSSARYJordan ar/urve: The image of the losed unit interval under a ontinuousbijetive mapping into the plane. A losed Jordan urve is the image of the unitirle under a similar mapping, and an unbounded Jordan urve is an image ofthe open unit interval (or of the entire real line) that separates the plane.Randomized algorithm: An algorithm that applies internal randomization(\oin-ips"). We onsider here algorithms that always terminate, and produethe orret output, but whose running time is a random variable that dependson the internal oin-ips. We will state upper bounds on the expetation of therunning time (the randomized expeted time) of suh an algorithm, whihhold for any input. See Chapter 34.Minkowski sum: For two planar (or spatial) sets A and B, their Minkowskisum, or pointwise vetor addition, is the set A�B = fx+ y j x 2 A; y 2 Bg.General position: The input to a geometri problem is said to be in generalposition if no nontrivial algebrai identity with integer oeÆients holds amongthe parameters that speify the input (assuming the input is not overspei�ed).For example: no three input points should be ollinear, no four points oirular,no three lines onurrent, et.Convex distane funtion: A onvex region B that ontains the origin in itsinterior indues a onvex distane funtion dB de�ned bydB(p; q) = min f� j q 2 p� �Bg :B-Voronoi diagram: For a set S of sites, and a onvex region B as above, theB-Voronoi diagram VorB(S) of S is a deomposition of spae into Voronoi ellsV (s), for s 2 S, suh thatV (s) = fp j dB(p; s) � dB(p; s0) for all s0 2 S g :Here dB(p; s) = minq2s dB(p; q).�(n): The extremely slowly-growing inverse Akermann funtion; see Setion 40.4.Contat segment: The lous of semifree plaements of a polygon B translatingin the plane, at eah of whih either some spei� vertex of B touhes somespei� obstale edge, or vie-versa.Contat urve: A generalization of \ontat segment" to the lous of semifreeplaements of B, assuming that B has only two degrees of freedom, where somespei� feature of B makes ontat with some spei� obstale feature.



738 M. Sharir40.2.1 TWO DEGREES OF FREEDOMA TRANSLATING POLYGON IN 2DThis is a system with two degrees of freedom (translations in the x and y diretions).A CONVEX POLYGONSuppose �rst the translating polygon B is a onvex k-gon, and there are m onvexpolygonal obstales, A1; : : : ; Am, with pairwise disjoint interiors, having a total of nedges. The region of on�guration spae where B ollides with Ai is the Minkowskisum Ki = Ai � (�B) = fx� y j x 2 Ai; y 2 Bg :The free on�guration spae is the omplement of Smi=1Ki. Assuming generalposition, one an show:THEOREM 40.2.1 [KLPS86℄(a) Eah Ki is a onvex polygon, with ni + k edges, where ni is the number ofedges of Ai.(b) For eah i 6= j, the boundaries of Ki and Kj interset in at most two points.(This also holds when the Ai's and B are not polygons.)() Given a olletion of planar regions K1; : : : ;Km, eah enlosed by a losedJordan urve, suh that any pair of the bounding urves intersets at mosttwie, then the boundary of the union Smi=1Ki onsists of at most 6m � 12maximal onneted portions of the boundaries of the Ki's, provided m � 3,and this bound is tight in the worst ase.These properties, ombined with several algorithmi tehniques, imply:THEOREM 40.2.2(a) The free on�guration spae for a translating onvex polygon, as above, is apolygonal region with at most 6m�12 onvex verties and N =Pmi=1(ni+k) =n+ km nononvex verties.(b) F an be omputed in deterministi time O(N log2 n), or in randomized ex-peted time O(N � 2�(n) logn).AN ARBITRARY POLYGONSuppose next that B is an arbitrary polygonal region with k edges. Let A be theunion of all obstales, whih is another polygonal region with n edges. As above,the free on�guration spae is the omplement of the Minkowski sumK = A� (�B) = fx� y j x 2 A; y 2 Bg :



Algorithmi motion planning 739K is again a polygonal region, but, in this ase, its maximum possible omplexity is�(k2n2), so omputing it might be onsiderably more expensive than in the onvexase.A single fae suÆes. If the initial plaement Z of B is given, then we do nothave to ompute the entire (omplement of) K; it suÆes to ompute the onnetedomponent f of the omplement of K that ontains Z, beause no other plaementis reahable from Z via a ollision-free motion.Let � be the olletion of all ontat segments; there are 2kn suh segments.The desired omponent f is the fae of A(�) that ontains Z. Using the theoryof Davenport-Shinzel sequenes (Setion 40.4), one an show that the maximumpossible ombinatorial omplexity of a single fae in a two-dimensional arrangementof N segments is �(N�(N)). A more areful analysis [HCA+95℄ shows:THEOREM 40.2.3(a) The maximum ombinatorial omplexity of a single fae in the arrangement ofontat segments for the ase of an arbitrary translating polygon is �(kn�(k))(this improvement is signi�ant only when k � n).(b) Suh a fae an be omputed in deterministi time O(kn log2 n), or in random-ized expeted time O(kn � 2�(n) logn).VORONOI DIAGRAMSAnother approah to motion planning for a translating onvex objet B, is via gen-eralized Voronoi diagrams (see Chapter 20), based on the onvex distane funtiondB(p; q). This funtion e�etively plaes B entered at p and expands it until ithits q. The saling fator at this moment is the dB-distane from p to q (if B is aunit disk, dB is the Eulidean distane). dB satis�es the triangle inequality, and isthus \almost" a metri, exept that it is not symmetri in general; it is symmetrii� B is entrally symmetri with respet to the point of referene.Using this distane funtion dB , a B-Voronoi diagram VorB(S) of S may bede�ned for a set S of m pairwise disjoint obstales.THEOREM 40.2.4Assuming that eah of B and the obstales in S has onstant desription omplexity,and that they are in general position, the B-Voronoi diagram has O(m) omplexity,and an be omputed in O(m logm) time (in an appropriate model of omputation).If B and the obstales are onvex polygons, as above, then the omplexity of VorB(S)is O(N) and it an be omputed in time O(N logm).One an show that if Z1 and Z2 are two free plaements of B, then thereexists a ollision-free motion from Z1 to Z2 if and only if there exists a ollision-free motion of B where its enter moves only along the edges of VorB(S), betweentwo orresponding plaements W1;W2, where Wi, for i = 1; 2, is the plaementobtained by pushing B from the plaement Zi away from its dB-nearest obstale,until it beomes equally nearest to two or more obstales (so that its enter lies onan edge of VorB(S)).Thus motion planning of B redues to a path-searhing in the 1-dimensionalnetwork of edges of VorB(S). This tehnique is alled the retration tehnique ,and an be regarded as a speial ase of the general roadmap algorithm. The



740 M. Sharirresulting motions have \high learane," and so are safer than arbitrary motions,beause they stay equally nearest to at least two obstales.THEOREM 40.2.5The motion planning problem for a onvex objet B translating amidst m onvexand pairwise disjoint obstales an be solved in O(m logm) time, by onstrutingand searhing in the B-Voronoi diagram of the obstales, assuming that B andthe obstales have onstant desription omplexity eah. If B and the obstalesare onvex polygons, then the same tehnique yields an O(N logm) solution, whereN = n+ km is as above.THE GENERAL MOTION PLANNING PROBLEM WITH TWODEGREES OF FREEDOMIf B is any system with two degrees of freedom, its on�guration spae is 2-dimensional, and, for simpliity, let us think of it as the plane (spaes that aretopologially more omplex an be deomposed into a onstant number of \planar"pathes). We onstrut a olletion � of ontat urves, whih, under reasonableassumptions onerning B and the obstales, are eah an algebrai Jordan ar orurve of some �xed maximum degree b. In partiular, eah pair of ontat urveswill interset in at most some onstant number, s � b2, of points.As above, it suÆes to ompute the single fae of A(�) that ontains theinitial plaement of B. The theory of Davenport-Shinzel sequenes implies thatthe omplexity of suh a fae is O(�s+2(n)), where �s+2(n) is the maximum lengthof an (n; s+2)-Davenport-Shinzel sequene (Setion 40.4), whih is slightly super-linear in n when s is �xed.The fae in question an be omputed in deterministi time O(�s+2(n) log2 n),using a fairly involved divide-and-onquer tehnique based on line-sweeping; seeSetion 21.5. (Some slight improvements in the running time have been obtainedreently.) Using randomized inremental (or divide-and-onquer) tehniques, thefae an be omputed in randomized expeted O(�s+2(n) logn) time.THEOREM 40.2.6Under the above assumptions, the general motion planning problem for systems withtwo degrees of freedom an be solved in deterministi time O(�s+2(n) log2 n), or inO(�s+2(n) logn) randomized expeted time.40.2.2 THREE DEGREES OF FREEDOMA ROD IN A PLANAR POLYGONAL ENVIRONMENTWe next pass to systems with three degrees of freedom. Perhaps the simplest in-stane of suh a system is the ase of a line segment B (\rod," \ladder," \pipe")moving (translating and rotating) in a planar polygonal environment with n edges.The maximum ombinatorial omplexity of the free on�guration spae F of B is�(n2) (reall that the naive bound for systems with three degrees of freedom isO(n3)). A ell-deomposition representation of F an be onstruted in (deter-



Algorithmi motion planning 741ministi) O(n2 logn) time [LS87b℄. Several alternative near-quadrati algorithmshave also been developed, inluding one based on onstruting a Voronoi diagramin F [OSY87℄.An 
(n2) lower bound for this problem has been established in [KO88℄. Itexhibits a polygonal environment with n edges and two free plaements of B thatare reahable from eah other. However, any free motion between them requires
(n2) \elementary moves," that is, the spei�ation of any suh motion requires
(n2) omplexity. This is a fairly strong lower bound, sine it does not rely on lowerbounding the omplexity of the free on�guration spae (or of a single onnetedomponent thereof); after all, it is not lear why a motion planning algorithmshould have to produe a full desription of the whole free spae (or of a singleomponent).THEOREM 40.2.7Motion planning for a rod moving in a polygonal environment bounded by n edgesan be performed in O(n2 logn) time. There are instanes where any ollision-free motion of the rod between two spei�ed plaements requires 
(n2) \elementarymoves."A CONVEX POLYGON IN A PLANAR POLYGONAL ENVIRONMENTHere B is a onvex k-gon, free to move (translate and rotate) in an arbitrarypolygonal environment bounded by n edges. The free on�guration spae is 3-dimensional, and there are at most 2kn ontat surfaes, of maximum degree 4.The naive bound on the omplexity of F is O((kn)3) (attained if B is nononvex),but, using Davenport-Shinzel sequenes, one an show that the omplexity of Fis only O(kn�6(kn)). Geometrially, a vertex of F is a semifree plaement of B atwhih it makes simultaneously three obstale ontats. The above bound impliesthat the number of suh ritial plaements is only slightly super-quadrati (andnot ubi) in kn.Computing F in time lose to this bound has proven more diÆult, and onlyreently has a omplete solution, running in O(kn�6(kn) log kn) time and onstrut-ing the entire F , been attained [AAAS96℄.Another approah was given in [CK93℄. It omputes the Delaunay triangulationof the obstales under the distane funtion dB , when the orientation of B is �xed,and then traes the disrete ombinatorial hanges in the diagram as the orientationvaries. The number of hanges was shown to be O(k4n�3(n)). Using this struture,the algorithm of [CK93℄ produes a high-learane motion of B between any twospei�ed plaements, in time O(k4n�3(n) logn).Sine all these algorithms are fairly ompliated, one might onsider in pratiean alternative approximate sheme, proposed in [AFK+90℄. This sheme disretizesthe orientation of B, solves the translational motion planning for B at eah ofthe disrete orientations, and �nds those plaements of B at whih it an rotate(without translating) between two suessive orientations. This sheme works verywell in pratie.THEOREM 40.2.8Motion planning for a k-sided onvex polygon, translating and rotating in a planar



742 M. Sharirpolygonal environment bounded by n edges, an be performed in O(kn�6(kn) log kn)or O(k4n�3(n) logn) time.EXTREMAL PLACEMENTSA related problem is to �nd the largest free plaement of B in the given polygonalenvironment. This has appliations in manufaturing, where one wants to ut outopies of B that are as large as possible from a sheet of some material.If only translations are allowed, the B-Voronoi diagram an be used to �nd thelargest free homotheti opy of B. If general rigid motions are allowed, the tehniqueof [CK93℄ omputes the largest free similar opy of B in time O(k4n�3(n) logn).An alternative tehnique is given in [AAAS96℄, with randomized expeted runningtime O(kn�6(kn) log4 kn). Both bounds are nearly quadrati in n.Finally, we mention the speial ase where the polygonal environment is theinterior of a onvex n-gon. This is simpler to analyze. The number of free ritialplaements of (similar opies of) B, at whih B makes simultaneously four obstaleontats, is O(kn2) [AAAS96℄, and they an all be omputed in O(kn2 logn) time.THEOREM 40.2.9The largest similar plaement of a k-sided onvex polygon in a planar polygonalenvironment bounded by n edges an be omputed in randomized expeted timeO(kn�6(kn) log4 kn) or in deterministi time O(k4n�3(n) logn). When the en-vironment is the interior of an n-sided onvex polygon, the running time improvesto O(kn2 logn).A NONCONVEX POLYGONNext we onsider the ase where B is an arbitrary polygonal region (not neessar-ily onneted), translating and rotating in a polygonal environment bounded by nedges, as above. Here one an show that the maximum omplexity of F is �((kn)3).Using standard tehniques, F an be onstruted in �((kn)3 log kn) time, an algo-rithm whih has been implemented. However, as in the purely translational ase, itsuÆes to onstrut the onneted omponent of F ontaining the initial plaementof B. The general result, stated below, for systems with three degrees of freedom,implies that the omplexity of suh a omponent is only near-quadrati in kn. Analgorithm that omputes the omponent in time O((kn)2+�) is given in [HS96℄.THEOREM 40.2.10Motion planning for an arbitrary k-sided polygon, translating and rotating in a pla-nar polygonal environment bounded by n edges, an be performed in time O((kn)2+�),for any � > 0.A TRANSLATING POLYTOPE IN A 3-D POLYHEDRAL ENVIRONMENTAnother interesting motion planning problem with three degrees of freedom involvesa polytope B, with a total of k verties, edges, and faets, translating amidstpolyhedral obstales in R3, with a total of n verties, edges, and faes. The ontatsurfaes in this ase are planar polygons, omposed of a total of O(kn) triangles in3-spae.



Algorithmi motion planning 743Without additional assumptions, the omplexity of F an be �((kn)3) in theworst ase. However, the omplexity of a single omponent is only O((kn)2 log kn).Suh a omponent an be onstruted in O((kn)2+�) time, for any � > 0 [AS94℄.If B is a onvex polytope, and the obstales onsist of m onvex polyhedra,with pairwise disjoint interiors and with a total of n faes, the omplexity of theentire F is O(kmn logm) and it an be onstruted in O(kmn log2m) time [AS℄.THEOREM 40.2.11Translational motion planning for an arbitrary polytope with k faets, in an arbi-trary 3-dimensional polyhedral environment bounded by n faets, an be performedin time O((kn)2+�), for any � > 0. If B is a onvex polytope, and there are monvex pairwise disjoint obstales with a total of n faets, then the motion planningan be performed in O(kmn log2m) time.THE GENERAL MOTION PLANNING PROBLEM WITHTHREE DEGREES OF FREEDOMThe last several instanes were speial ases of the general motion planning problemwith three degrees of freedom. In abstrat terms, we have a olletion � of Nontat surfaes in R3, where these surfaes are assumed to be (pathes of) algebraisurfaes of onstant maximum degree. The free on�guration spae onsists of someells of the arrangement A(�), and a single onneted omponent of F is just asingle ell in that arrangement.Inspeting the preeding ases, a unifying observation is that while the maxi-mum omplexity of the entire F an be �(N3), the omplexity of a single omponentis invariably only near-quadrati in N . This was reently shown in [HS95a℄ to holdin general: the ombinatorial omplexity of a single ell of A(�) is O(N2+�), forany � > 0, where the onstant of proportionality depends on � and on the maximumdegree of the surfaes; f. Setion 21.5.A general-purpose algorithm for omputing a single ell in suh an arrange-ment was reently given in [SS96℄. It runs in randomized expeted time O(N2+�),for any � > 0, and is based on vertial deompositions in suh arrangements (seeSetion 21.3.2).THEOREM 40.2.12An arbitrary motion planning problem with three degrees of freedom, involving Nontat surfae pathes, eah of onstant desription omplexity, an be solved intime O(N2+�), for any � > 0.40.2.3 OTHER PROBLEMS WITH FEW DEGREES OF FREEDOMCOORDINATED MOTION PLANNINGAnother lass of motion planning problems involves oordinated motion planning ofseveral independently moving systems. Coneptually, this situation an be handledas just another speial ase of the general problem: Consider all the moving objetsas a single system, with k = Pti=1 ki degrees of freedom, where t is the number



744 M. Sharirof moving objets, and ki is the number of degrees of freedom of the ith objet.However, k will generally be too large, and the problem then will be more diÆultto takle.A better approah is as follows [SS91℄. Let B1; : : : ; Bt be the given independentobjets. For eah i = 1; : : : ; t, onstrut the free on�guration spae F (i) for Bialone (ignoring the presene of all other moving objets). The atual free on�gu-ration spae F is a subset of Qti=1 F (i). Suppose we have managed to deomposeeah F (i) into subells of onstant desription omplexity. Then F is a subset ofthe union of Cartesian produts of the form 1 � 2 � � � � � t, where i is a subellof F (i).We next ompute the portion of F within eah suh produt. Eah suh sub-problem an be intuitively interpreted as the oordinated motion planning of ourobjets, where eah moves within a small portion of spae, amidst only a onstantnumber of nearby obstales; so these subproblems are muh easier to solve. More-over, in typial ases, for most produts P = 1�2�� � ��t the problem is trivial,beause P represents situations where the moving objets are far from one another,and so annot interat at all, meaning that F\P = P . The number of subproblemsthat really need to be solved will be relatively small.The onnetivity graph that represents F is also relatively easy to onstrut.Its nodes are the onneted omponents of the intersetions of F with eah ofthe above ell produts P , and two nodes are onneted to eah other if they areadjaent in the overall F . In many typial ases, determining this adjaeny is easy.As an example, one an apply this tehnique to the oordinated motion plan-ning of k disks moving in a planar polygonal environment bounded by n edges,to get a solution with O(nk) running time. Sine this problem has 2k degrees offreedom, this is a signi�ant improvement over the bound O(n2k logn) yielded byCanny's general algorithm.TABLE 40.2.1 Summary of motion planning algorithms.SYSTEM MOTION ENVIRONMENT df RUNNING TIMEConvex k-gon translation planar polygonal 2 O(N logm)Arbitrary k-gon translation planar polygonal 2 O(kn log2 n)General 2 O(�s+2(n) log2 n)Line segment trans & rot planar polygonal 3 O(n2 log n)Convex k-gon trans & rot planar polygonal 3 O(k4n�3(n) log n)O(kn�6(kn) log n)Arbitrary k-gon trans & rot planar polygonal 3 O((kn)2+�)Convex polytope translation 3-d polyhedral 3 O(kmn log2m)Arbitrary polytope translation 3-d polyhedral 3 O((kn)2+�)General 3 O(N2+�)MOTION PLANNING AND ARRANGEMENTSAs an be seen from the preeding subsetions, motion planning is losely relatedto the study of arrangements of surfaes in higher dimensions. Motion planninghas motivated many problems in arrangements, suh as the problem of boundingthe omplexity of, and designing eÆient algorithms for, omputing a single ell



Algorithmi motion planning 745in an arrangement of n low-degree algebrai surfae pathes in d dimensions. Thegoal is to obtain bounds lose to O(nd�1) for both ombinatorial and algorithmiproblems. This has been settled satisfatorily for d = 2; 3, as noted above, but bothproblems are still open in higher dimensions. See Chapter 21 for further details.SUMMARYSome of the above results are summarized in Table 40.2.1. For eah spei� system,only one or two algorithms are listed.40.3 VARIANTS OF THE MOTION PLANNING PROBLEMWe now briey review several variants of the basi motion planning problem, inwhih additional onstraints are imposed on the problem. Further material onmany of these problems an be found in Chapter 41.OPTIMAL MOTION PLANNINGThe preeding setion desribed tehniques for determining the existene of aollision-free motion between two given plaements of some moving system. Itpaid no attention to the optimality of the motion, whih is an important onsider-ation in pratie. There are several problems involved in optimal motion planning.First, optimality is a notion that an be de�ned in many ways, eah of whih leadsto di�erent algorithmi onsiderations. Seond, optimal motion planning is usuallymuh harder than motion planning per se.SHORTEST PATHSThe simplest ase is when the moving system B is a single point. In this ase theost of the motion is simply the length of the path traversed by the point (normally,we use the Eulidean distane, but other metris have been onsidered as well). Wethus fae the problem of omputing shortest paths amidst obstales in a two- orthree-dimensional environment.The planar ase. Let V be a losed planar polygonal environment bounded byn edges, and let s (the \soure") be a point in V . For any other point t 2 V , let�(s; t) denote the (Eulidean) shortest path from s to t within V . Finding �(s; t)for any t is failitated by onstrution of the shortest path map SPM(s; V ) froms in V , a deomposition of V into regions detailed in Chapter 24. A very reentresult omputes SPM(s; V ) in optimal O(n logn) time.The same problem may be onsidered in other metris. For example, it is easierto give an O(n logn) algorithm for the shortest path problem under the L1 or L1metri. See Setion 24.3.The three-dimensional ase. Let V be a losed polyhedral environment boundedby a total of n faes, edges, and verties. Again, given two points s; t 2 V , we wishto ompute the shortest path �(s; t) within V from s to t. Here �(s; t) is a polygonalpath, bending at edges (sometimes also at verties) of V . To ompute �(s; t), we



746 M. Sharirneed to solve two subproblems: to �nd the sequene of edges (and verties) ofV visited by �(s; t) (the shortest-path sequene from s to t), and to ompute theatual points of ontat of �(s; t) with these edges. These points obey the rulethat the inoming angle of �(s; t) with an edge is equal to the outgoing angle.Hene, given the shortest-path sequene of length m, we need to solve a system ofm quarti equations in m variables in order to �nd the ontat points. This an besolved either approximately, using an iterative sheme, or exatly, using tehniquesof omputational real algebrai geometry; the latter method requires exponentialtime. Even the �rst, more \ombinatorial," problem of omputing the shortest-path sequene is NP-hard [CR87℄, so the general shortest-path problem is ertainlymuh harder in three dimensions.Many speial ases of this problem, with more eÆient solutions, have beenstudied. See Setion 24.5.VARIOUS OPTIMAL MOTION PLANNING PROBLEMSSuppose next that the moving system B is a rigid body free only to translate intwo or three dimensions. Then the notion of optimality is still well de�ned|itis the total distane traversed by (any referene point attahed to) B. One anthen apply the same tehniques as above, after replaing the obstales by theirexpanded versions. For example, if B is a onvex polygon in the plane, and theobstales are m pairwise openly-disjoint onvex polygons A1; : : : ; Am, then we formthe Minkowski sums Ki = Ai � (�B), for i = 1; : : : ;m, and ompute a shortestpath in the omplement of their union. Sine the Ki's may overlap, we �rst need toompute their union, as above. A similar approah an be used in planning shortestmotion of a polyhedron translating amidst polyhedra in 3-spae, et.If B admits more omplex motions, then the notion of optimality begins tobe fuzzy. For example, onsider the ase of a line segment (\rod") translating androtating in a planar polygonal environment. One ould measure the ost of a motionby the total distane traveled by a designated endpoint (or the enterpoint) of B,or by a weighted average between suh a distane and the total turning angle of B,et. See Setion 24.3.The notion of optimality gets even more ompliated when one introdues kine-mati onstraints on the motion of B. It is then often hallenging even withoutobstales; see Setion 41.5.4. A version of this problem, involving obstales, hasreently been shown to be NP-hard [AKY96℄.EXPLORATORY MOTION PLANNINGIf the environment in whih the robot moves is not known to the system a priori,but the system is equipped with sensory devies, motion planning assumes a more\exploratory" harater. If only tatile (or proximity) sensing is available, then aplausible strategy might be to move along a straight line (in physial or on�gu-ration spae) diretly to the target position, and when an obstale is reahed, tofollow its boundary until the original straight line of motion is reahed again. Thistehnique has been developed and re�ned for arbitrary systems with two degreesof freedom (see, e.g., [LS87℄). It an be shown that this strategy provably reahesthe goal, if at all possible, with a reasonable bound on the length of the motion.This tehnique has been implemented on several real and simulated systems, and



Algorithmi motion planning 747has appliations to maze-searhing problems.One attempt to extend this tehnique to a system with three degrees of free-dom is given in [CY91℄. This tehnique omputes within F a ertain 1-dimensionalskeleton (roadmap) R whih aptures the onnetivity of F . The twist here is thatF is not known in advane, so the onstrution of R has to be done in an inre-mental, exploratory manner. This exploration an be implemented in a ontrolledmanner that does not require too many \probing" steps, and whih enables thesystem to reognize when the onstrution of R has been ompleted (if the goalhas not been reahed beforehand).If vision is also available, then other possibilities need to be onsidered, e.g.,the system an obtain partial information about its environment by viewing it fromthe present plaement, and then \explore" it to gain progressively more informationuntil the desired motion an be fully planned. Results of this type an be foundin [GMR92℄ and Setion 41.7.TIME-VARYING ENVIRONMENTSInteresting generalizations of the motion planning problem arise when some of theobstales in the robot's environment are assumed to be moving along known traje-tories. In this ase the robot's goal will be to \dodge" the moving obstales whilemoving to its target plaement. In this \dynami" motion planning problem, it isreasonable to assume some limit on the robot's veloity and/or aeleration. Twostudies of this problem are [SM88, RS94℄. They show that the problem of avoidingmoving obstales is substantially harder than the orresponding stati problem.By using time-related on�guration hanges to enode Turing mahine states, theyshow that the problem is PSPACE-hard even for systems with a small and �xednumber of degrees of freedom. However, polynomial-time algorithms are availablein a few partiularly simple speial ases. Another variant of this problem involvesmovable obstales, whih the robot B an, say, push aside to lear its passage.Again, it an be shown that the general problem of this kind is PSPACE-hard, butthat polynomial-time algorithms are available in ertain speial ases [Wil91℄.COMPLIANT MOTION PLANNINGIn realisti situations, the moving system has only approximate knowledge of thegeometry of the obstales and/or of its urrent position and veloity, and it hasan inherent amount of error in ontrolling its motion. The objetive is to devise astrategy that will guarantee that the system reahes its goal, where suh a strat-egy usually proeeds through a sequene of free motions (until an obstale is hit)intermixed with ompliant motions (sliding along surfaes of ontated obstales)until it an be asertained that the goal has been reahed.A standard approah to this problem is through the onstrution of pre-images(or bak projetions). See Setion 41.5.3.NONHOLONOMIC MOTION PLANNINGAnother realisti onstraint on the possible motions of a given system is kinemati(or kinodynami). For example, the moving objet B might be onstrained not to



748 M. Sharirexeed ertain veloity or aeleration thresholds, or has only limited steering apa-bility. Even without any obstales, suh problems are usually quite hard, and thepresene of (stationary or moving) obstales makes them extremely ompliated tosolve. These so-alled nonholonomi motion planning problems are usually handledusing tools from ontrol theory. See Setion 41.5.2.GENERAL TASK AND ASSEMBLY PLANNINGIn task planning problems, the system is given a omplex task to perform, suh asassembling a part from several omponents or restruturing its workell into a newlayout, but the preise sequene of substeps needed to attain the �nal goal is notspei�ed and must be inferred by the system.Suppose we want to manufature a produt onsisting of several parts. LetS be the set of parts in their �nal assembled form. The �rst question is whetherthe produt an be disassembled by translating in some �xed diretion one partafter the other, so that no ollision ours. An order of the parts that satis�es thisproperty is alled a depth order . It need not always exist, but when it does, theprodut an be assembled by translating the onstituent parts one after another,in the reverse of the depth order, to their target positions. Produts that an beassembled in this manner are alled stak produts [WL94℄. The simpliity of theassembly proess makes stak produts attrative to manufature. Computing adepth order in a given diretion (or deiding that no suh order exists) an be donein O(m4=3+�) time, for any � > 0, for a set of polygons in 3-spae with m verties intotal [dBOS94℄. Faster algorithms are known for the speial ases of axis-parallelpolygons, -oriented polygons, and \fat" objets.Many produts, however, are not stak produts, that is, a single diretion inwhih the parts must be moved is not suÆient to assemble the produt. Onesolution is to searh for an assembly sequene that allows a subolletion of partsto be moved as a rigid body in some diretion. This an be aomplished inpolynomial time, though the running time is rather high in the worst ase: it mayrequire 
(m4) time for a olletion of m tetrahedra in 3-spae. A more modest,but onsiderably more eÆient, solution allows eah disassembly step to proeed inone of a few given diretions [ABHS96℄. It has running time O(m4=3+�), for any� > 0. See Setion 41.3 for further details on assembly sequening, and Chapter 46for related problems.ON-LINE MOTION PLANNINGConsider the problem of a point robot moving through a planar environment �lledwith polygonal obstales, where the robot has no a priori information about theobstales that lie ahead. One models this situation by assuming that the robotknows the loation of the target position and of its own absolute position, but thatit only aquires knowledge about the obstales as it ontats them. The goal is tominimize the distane that the robot travels. See also the disussion on exploratorymotion planning above.Beause the robot must make deisions without knowing what lies ahead, it isnatural to use the ompetitive ratio to evaluate the performane of a strategy.



Algorithmi motion planning 749In partiular, one would like to minimize the ratio between the distane traveledby the robot and the length of the shortest start-to-target path in that sene. Theompetitive ratio is the worst-ase ratio ahieved over all senes having a givensoure-target distane. A speial ase of interest is when all obstales are axis-parallel retangles of width at least 1 loated in the in�nite Eulidean plane. Nat-ural greedy strategies yield a ompetitive ratio of �(n), where n is the Eulideansoure-target distane. More sophistiated algorithms obtain ompetitive ratios of�(pn) [BRS91℄. Randomized algorithms an do muh better [BBF+96℄. Throughthe use of randomization, one an translate the ase of arbitrary onvex obstales[BRS91℄ to retilinearly-aligned retangles, at the ost of some inrease in the om-petitive ratio. If the sene is not on an in�nite plane but rather within some �niteretangular \warehouse," and the start loation is one of the warehouse orners,then the ompetitive ratio drops to logn [BBFY92℄.PRACTICAL APPROACHES TO MOTION PLANNINGWhen the number of degrees of freedom is even moderately large, exat solutions ofthe motion planning problem are very ineÆient in pratie, so one seeks heuristibut pratial solutions. Several suh tehniques have been developed.Potential �eld and probabilisti tehniques. The �rst heuristi regards therobot as moving in a potential �eld indued by the obstales and by the targetplaement, where the obstales at as repulsive barriers, and the target as a stronglyattrating soure. By letting the robot follow the gradient of suh a potential �eld,we obtain a motion that avoids the obstales and that an be expeted to reahthe goal. An attrative feature of this tehnique is that planning and exeutingthe desired motion are done in a single stage. Another important feature is thegenerality of the approah; it an easily be applied to systems with many degreesof freedom.This tehnique, however, may lead to a motion where the robot gets stuk ata loal minimum of the potential �eld, leaving no guarantee that the goal will bereahed. To overome this problem, several solutions have been proposed. One isto try to esape from suh a \potential well" by making a few small random moves,in the hope that one of them will put the robot in a position from whih the �eldleads it away from this well. Another approah is to use the potential �eld only forsubproblems where the initial and �nal plaements are lose to eah other, so thehane to get stuk at a loal minimum is small. One then generates many randomplaements throughout the workspae, and applies the potential �eld tehnique toattempt to onnet many pairs of them, until a path is generated from start togoal. (In this randomized tehnique, any onvenient loal planner may be used.)See [Lat91, KSLO℄ and Setion 41.4 for more details onerning this tehnique.Fat obstales. Another tehnique exploits the fat that, in typial layouts, theobstales an be expeted to be \fat" (this has several de�nitions; intuitively, theydo not have long and skinny parts). Also, the obstales tend not to be too lustered,in the sense that eah plaement of the robot an interat with only a onstantnumber of obstales. These fats tend to make the problem easier to solve. See[SO94℄ for suh a solution.



750 M. Sharir40.4 DAVENPORT-SCHINZEL SEQUENCESDavenport-Shinzel sequenes are interesting and powerful ombinatorial struturesthat arise in the analysis and alulation of the lower or upper envelope of olletionsof funtions, and therefore have appliations in many geometri problems, inludingnumerous motion planning problems, whih an be redued to the alulation ofsuh an envelope. A reent omprehensive survey of Davenport-Shinzel sequenesand their geometri appliations an be found in [SA95℄.An (n; s) Davenport-Shinzel sequene, where n and s are positive integers,is a sequene U = (u1; : : : ; um) omposed of n symbols with the properties:(i) No two adjaent elements of U are equal: ui 6= ui+1 for i = 1; : : : ;m� 1.(ii) U does not ontain as a subsequene any alternation of length s+ 2 betweentwo distint symbols: there do not exist s+ 2 indies i1 < i2 < � � � < is+2 sothat ui1 = ui3 = ui5 = � � � = a and ui2 = ui4 = ui6 = � � � = b, for two distintsymbols a and b.Thus, for example, an (n; 3) sequene is not allowed to ontain any subsequene ofthe form (a � � � b � � �a � � � b � � � a). Let �s(n) denote the maximum possible length ofan (n; s) Davenport-Shinzel sequene.The importane of Davenport-Shinzel sequenes lies in their relationship to theombinatorial struture of the lower (or upper) envelope of a olletion of funtions(Setion 21.2). Spei�ally, for any olletion of n real-valued ontinuous funtionsf1; : : : ; fn de�ned on the real line, having the property that eah pair of theminterset in at most s points, one an show that the sequene of funtion indies iin the order in whih these funtions attain their lower envelope (i.e., their pointwiseminimum f = mini fi) from left to right is an (n; s) Davenport-Shinzel sequene.Conversely, any (n; s) Davenport-Shinzel sequene an be realized in this way foran appropriate olletion of n ontinuous univariate funtions, eah pair of whihinterset in at most s points.The ruial and surprising property of Davenport-Shinzel sequenes is that,for a �xed s, the maximal length �s(n) is nearly linear in n, although for s � 3 itis slightly super-linear. Spei�ally, one has�1(n) = n�2(n) = 2n� 1�3(n) = �(n�(n))�4(n) = �(n � 2�(n))�2s(n) � n � 2�(n)s�1+C2s(n)�2s+1(n) � n � 2�(n)s�1 log�(n)+C2s+1(n)�2s(n) = 
(n � 2 1(s�1)!�(n)s�1+C02s(n)) ;where �(n) is the inverse of Akermann's funtion, and where Cr(n), C 0r(n) areasymptotially smaller than the leading terms in the respetive exponents. Aker-mann's funtion A(n) grows extremely quikly, with A(4) an exponential \tower"of 65636 2's. Thus �(n) � 4 for all pratial values of n. See [SA95℄.



Algorithmi motion planning 751If one onsiders the lower envelope of n ontinuous, but only partially de�ned,funtions, then the omplexity of the envelope is at most �s+2(n), where s is themaximum number of intersetions between any pair of funtions. Thus for a ol-letion of n line segments (for whih s = 1), the lower envelope onsists of at mostO(n�(n)) subsegments. A surprising result is that this bound is tight in the worstase: there are olletions of n segments, for arbitrarily large n, whose lower en-velope does onsist of 
(n�(n)) subsegments. This is perhaps the most naturalexample of a ombinatorial struture de�ned in terms of n simple objets, whoseomplexity involves the inverse Akermann's funtion.Algorithms. The lower envelope of n given total or partial ontinuous funtions,eah pair of whih interset in at most s points, an be omputed by a simpledivide-and-onquer tehnique that runs (in an appropriate model of omputation)in time O(�s(n) logn) or O(�s+2(n) logn) (depending on whether the funtions aretotally or partially de�ned). A re�ned tehnique redues the time for partially-de�ned funtions to O(�s+1(n) logn). Thus, in the ase of segments, the algorithmomputes their lower envelope in optimal O(n logn) time. More omplex ombi-natorial and algorithmi appliations of Davenport-Shinzel sequenes (suh as theomplexity and onstrution of a single fae in a planar arrangement) are mentionedthroughout this hapter.40.5 SOURCES AND RELATED MATERIALSURVEYSAll results not given an expliit referene above, and additional material on motionplanning and related problems may be traed in these surveys:[Lat91℄: A book devoted to robot motion planning.[HSS87℄: A olletion of early papers on motion planning.[SA95℄: A book on Davenport-Shinzel sequenes and their geometri appliations;ontains a setion on motion planning.[HS95b℄: A reent review on arrangements and their appliations to motion plan-ning.[SS88, SS90, Sha89, Sha95, AY90℄: Several survey papers on algorithmi motionplanning.RELATED CHAPTERSChapter 20: Voronoi diagrams and Delaunay triangulationsChapter 21: ArrangementsChapter 24: Shortest paths and networksChapter 29: Computational real algebrai geometryChapter 41: Robotis
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