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Abstract

The study of extremal problems on triangle areas was iadia a series of papers by Erdds and
Purdy in the early 1970s. In this paper we present new resalgsich problems, concerning the number
of triangles of the same area that are spanned by finite peistiis the plane and in 3-space, and the
number of distinct areas determined by the triangles.

In the plane, our main result is @\(n*4/19) = O(n?3158) upper bound on the number of unit-area
triangles spanned by points, which is the first breakthrough improving the cleasbound ofO(n"/3)
from 1992. We also make progress in a number of importaniapesses: We show that (i) For points
in convex position, there exist-element point sets that sp&{n logn) triangles of unit area. (i) The
number of triangles of minimum (nonzero) area determined pwints is at mosg(n2 —n); there exist
n-element point sets (for arbitrarily large that span(6/72 — o(1))n? minimum-area triangles. (iii)
The number of acute triangles of minimum area determined pgints isO(n); this is asymptotically
tight. (iv) Forn points in convex position, the number of triangles of minimarea isO(n); this is
asymptotically tight. (v) If no three points are allowed te tollinear, there are-element point sets
that spart2(n log n) minimum-area triangles (in contrast to (ii), where colaniges are allowed and a
quadratic lower bound holds).

In 3-space we prove a@(n'"/73(n)) = O(n?>*2%%) upper bound on the number of unit-area tri-
angles spanned by points, wherg3(n) is an extremely slowly growing function related to the irseer
Ackermann function. The best previous bou@dn®/?), is an old result of Erdés and Purdy from 1971.
We further show, for point sets in 3-space: (i) The number miimmum nonzero area triangles is at most
n? + O(n), and this is worst-case optimal, up to a constant factoy.T{iere aren-element point sets
that spar2(n*/3) triangles of maximum area, all incident to a common pointay n-element point
set, the maximum number of maximum-area triangles incitteatcommon point i€)(n*/3+), for any
e > 0. (iii) Every set ofn points, not all on a line, determines at le@¢i>/% /3(n)) triangles of distinct
areas, which share a common side.

1 Introduction

Givenn points in the plane, consider the following equivalencatieh defined on the set of (nondegenerate)
triangles spanned by the points: two trianglesexgaivalentf they have the same area. Extremal problems
typically ask for the maximum cardinality of an equivalertass, and for the minimum number of distinct

equivalence classes, in a variety of cases. A classical gheaism when we call two segments spanned by
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the given points equivalent if they have the same length. nBmg the maximum size of an equivalence

class is the famougepeated distanceproblem [8, 18, 35, 36], and bounding the minimum number of
distinct classes is the equally famadistinct distancegproblem [8, 18, 25, 34, 36, 38]. In this paper, we

make progress on several old extremal problems on triarmglesan two and in three dimensions. We

also study some new and interesting variants never comsidesfore. Our proof techniques draw from a

broad range of combinatorial tools such as the Szemen@dief theorem on point-line incidences [37], the

Crossing Lemma [5, 27], incidences between curves andgaimd tangencies between curves and lines,
extremal graph theory [26], quasi-planar graphs [3], Mimkki-type constructions, repeated distances on
the sphere [29], the partition technique of Clarksbml. [13], various charging schemes, etc.

In 1967, A. Oppenheim (see [21]) asked the following quest®ivenn points in the plane and > 0,
how many triangles spanned by the points can have 4PeBy applying an affine transformation, one may
assumed = 1 and count the triangles ohit area. Erdés and Purdy [19] showed thatlag n x (n/+/logn)
section of the integer lattice determin@¢n?loglogn) triangles of the same area. They also showed that
the maximum number of such triangles is at n‘@$h5/2). In 1992, Pach and Sharir [30] improved the
exponent and obtained &»"/?) upper bound using the Szemerédi-Trotter theorem [37] emtimber of
point-line incidences. We further improve the upper boup@$timating the number of incidences between
the points and a 4-parameter family of quadratic curves. Néavghatn points in the plane determine at
mostO(n**/19) = O(n*31%%) unit-area triangles. We also consider the case of pointsiinex position,
for which we construch-element point sets that sp&in log n) triangles of unit area.

BraR, Rote, and Swanepoel [9] showed thatoints in the plane determine at ma@gtn?) minimum-
area triangles, and they pointed out that this bound is astioglly tight. We introduce a simple charging
scheme to first bring the upper bound dowmto- » and then further t(%(nQ —n). Our charging scheme is
also instrumental in showing that4n x /n section of the integer lattice spaféy 72 — o(1))n? triangles of
minimum area. In the lower bound constructions, there amyroallinear triples and most of the minimum-
area triangles are obtuse. We show that there are at@estacutetriangles of minimum (nonzero) area,
for anyn-element point set. Also, we show thapoints in (strictly) convex position determine at moxt:)
minimume-area triangles—these bounds are best possibtefegra the constant factors. If no three points
are allowed to be collinear, we constructelement point sets that sp&{n log n) triangles of minimum
area.

Next we address analogous questions for triangles in 3espdfie number of triangles with some
extremal property might go up (significantly) when one mawe®ne dimension. For instance, Brafl3, Rote,
and Swanepoel [9] have shown that the number of maximum aaggles in the plane is at mastwhich is
tight). In 3-space we show that this number is at I64st*/3) in the worst case. In contrast, for minimum-
area triangles, we prove that the quadratic upper bound thenplanar case remains in effect for 3-space,
with a different constant of proportionality.

As mentioned earlier, Erdds and Purdy [19] showed that talsiein-element section of the integer
lattice determine$)(n?loglog n) triangles of the same area. Clearly, this bound is also Waspace. In
the same paper, via a forbidden graph argument applied fadltence graph between points and cylinders
whose axes pass through the origin, Erdés and Purdy dedarcétdn®/3) upper bound on the number
of unit-area triangles incident to a common point, and tieran O(n8/3) upper bound on the number
of unit-area triangles determined bypoints in 3-space. Here, applying a careful (and somewkahied)
analysis of the structure of point-cylinder incidence®&ihwe prove a new upper bound©{n'7/73(n)) =
O(n>4286), for B(n) = exp(a(n)?M)), wherea(n) is the extremely slowly growing inverse Ackermann
function.

It is conjectured [8, 10, 22] that points inR3, not all on a line, determine at ledsth — 1) /2] distinct
triangle areas. This bound has recently been establishtbé plane [32], but the question is still wide open
in R3. It is attained byn equally spaced points distributed evenly on two paralteddi(which is in fact a
planar construction). We obtain a first result on this qoestind show that points inR?3, not all on a line,



determine at least?/? exp(—a(n)°™M) = Q(n-%%) triangles of distinct areas. Moreover, all these triangles
share a common side.

2 Unit-areatrianglesin the plane

The general case. We establish a new upper bound on the maximum number of tgst{siangles deter-
mined byn points the plane.

Theorem 1 The number of unit-area triangles spannediqyoints in the plane i© (n>+6/19) = O(n?31%8),

Proof. Let S be a set of points in the plane. Consider a trianglenbec spanned bys. We call the three
lines containing the three sides Afube, base linesof A, and the three lines parallel to the base lines and
incident to the third vertextop linesof A. For a parametek, 1 < k < /n, to be optimized later, we
partition the set of unit-area triangles as follows.

e U; denotes the set of unit-area triangles where one of therep Is incident to fewer thanpoints ofS.

¢ [, denotes the set of unit-area triangles where all three t&s lare:-rich (i.e., each contains at ledist
points ofS).

We derive different upper bounds for each of these types ibfanea triangles.

Bound for |U;]. For any two distinct points;, b € R?, let/,;, denote the line throughandb. The points:
for which the triangleAabc has unit area lie on two lines),, ¢, parallel to/,; at distanceg/|ab| on either
side of/,;. The () segments determined ISygenerate at mog(;) such lines (counted with multiplicity).
If Aabc € Uy and its top line incident to the fewest points®fs ¢/, € {¢,, ¢4}, then’, is incident to at
mostk points, so the segmenb is the base of at mogttrianglesAabe € U; (with ¢ € ¢/,). This gives the
upper bound

Uh] < 2(2) -k = O(n2k).

Bound for |Us|. Let L be the set ok-rich lines, and lein = |L|. By the Szemerédi-Trotter theorem [37],
we havem = O(n?/k3) for anyk < /n. Furthermore, the cardinality of the sBtS, L) of point-line
incidences betweef and L is |I(S, L)| = O(n?/k?).

For any pair of nonparallel line&, /> € L, lety(¢1, ¢5) denote the locus of poinisc R?, p & £1 U /3,
such that the parallelogram that has a vertexatd two sides along; and/,, respectively, has area 2. The
sety(¢1, ¢2) consists of two hyperbolas with and/, as asymptotes. See Figure 1. For instancg, ify =
0and/s : y = ax, theny(fy,4s) = {(z,y) € R? : 2y = y*/a + 2} U {(z,y) € R?: zy = y%/a — 2}. Any
two nonparallel lines uniquely determine two such hypebollLetl’ denote the set of these hyperbolas.
Note that|T'| = O(m?). The family of such hyperbolas for all pairs of nonparalieek form a 4-parameter
family of quadratic curves (where the parameters are thiiceats of the defining lines).

For any triangleAabc € Uy, any pair of its top lines, say,, and/,., determine a hyperbola passing
througha, which is incident to the third top lin€ _; furthermore/; _ is tangent to the hyperbola ai. See
Figure 1. Any hyperbola in this 4-parameter family is unigugetermined by two incident points and the
two respective tangent lines at those points.

We define a topological grapti as follows. For each point € S, which is incident tai, lines of L, we
create2d, vertices inG, as follows (refer to Figure 2). Draw a cirofé (p) centered ap with a sufficiently

For a quick proof, lets (resp.,v) be a unit vector alond, . (resp.¢.;). The pointa can be parametrized as= tu+ Zv, where
k = 2/sin 6, andd is the angle betweef,. and¢,,,. Hence the tangent to the hyperbolaa given byx = u— Evtu— v =

cb.
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Figure 1:0ne of the hyperbolas defined by the trianglebc.

small radiug > 0, and place a vertex at every intersection point of the cittlg) with thed,, lines incident
to p. The number of vertices is; = 2|1(S, L)| = O(n?/k?). Next, we define the edges 6f. For each
connected branch of every hyperbola ii’, consider the sef () of pointsp € S that are (i) incident toy
and (ii) some line of_ is tangent toy atp. For any two consecutive pointsq € S(), draw an edge along
v between the two vertices ¢6f that (i) correspond to the incidencgs ¢,) and(q, ¢,), where/,, and/, are
the tangents of at p andgq, respectively, and (ii) are closest to each other alpn&pecifically, the edge
follows ~ between the circle€’s. (p) andCs.(¢) and follows straight line segments in the interiors of those
circles. Choose > 0 sufficiently small so that the circleS,. (p) have disjoint interiors and the portions of
the hyperbolas in the interiors of the circlés-(p), for everyp € S, meet ap only. This guarantees that the
edges of7 cross only at intersection points of the hyperbolas. Thplg€ais simplebecause two points and
two tangent lines uniquely determine a hyperbol& irThe number of edges is at le&st/;| — 2m?, since
every triangle inU; corresponds to three point-hyperbola incidence$(isi I') (satisfying the additional
condition of tangency with the respective top lines); armhgleach of th&m? hyperbola branches, each of

its incidences with the points of (of the special kind under consideration), except for onefributes one
edge toG.

edges along the hyperbolas.

Figure 2:0On the left: a poinp € S incident to three lines of (dashed) and 8 hyperbolas, each tangent to one of
those lines. On the right: the 6 vertices@fcorresponding to the 3 point-line incidence® aand the drawings of the

ThusG is a simple topological graph with; = 21(S, L) = O(n?/k?) vertices antkg > 3|Us| — 2m?



edges. Since in this drawing 6f, every crossing is an intersection of two hyperbolas, thesing number
of G is upper bounded byr(G) = O(|T|?) = O(m*). We can also bound the crossing numbe6diom
below via the Crossing Lemma of Ajtat al. [5] and Leighton [27]. It follows that

2

0 (—32) ~ g < r(G) < O,

Rearranging this chain of inequalities, we obtafn = O(m*v? + v3), oreq = O(m4/3vé/3 + vg).
Comparing this bound with our lower boung > 3|U| — 2m?, we havellly| = O(m*/3v2/* + v +m?).
Hence, fork < /n, we have

n2\Y3 rp2\?%3 2 n2\ 2 A n2 A
|U2|:O<<E> (ﬁ) +ﬁ+<ﬁ> :O<k16/3+ﬁ>20<k16/3>'
The total number of unit-area triangles|ig | + |Uz| = O(n?k + n*/k'%/3). This expression is minimized
for k = n%19, and we getU;| + |Us| = O(n**/19). -

2.1 Convex position

The construction of Erdés and Purdy [19] with many triasgié the same area, thglogn x (n/+/logn)
section of the integer lattice, also contains many collingples. Here we consider the unit-area triangle
problem in the special case of point sets in strictly convasifon, so no three points are collinear. We show
thatn points in convex position in the plane can determine a simgenl number of unit-area triangles. On
the other hand, we do not know of any subquadratic upper bound

Theorem 2 For all n > 3, there existn-element point sets in convex position in the plane that span
Q(nlogn) unit-area triangles.

Proof. We recursively construct a séf of n; = 3¢ points on the unit circle that determing= i3*~' unit-
area triangles, fof = 1,2,.... Take a circleC' of unit radius centered at the origin We start with a set
S1 of 3 points along the circle forming a unit-area trianglewsohaven; = 3 points andt; = 1 unit-area
triangles. In each step, we triple the number of points, ig.; = 3n;, and create new unit-area triangles,
so thatt;, | = 3t; + n,;. This impliesn; = 3!, andt; = i3'~!, yielding the desired lower bound. Tlgh
step,i > 2, goes as follows. Choose a generic angle valyelose tor/2, say, and let; be the angle such
that the three unit vectors at directidno;, andg; from the origin determine a unit-area triangle, which we
denote byD; (note thatg; lies in the third quadrant). Rotafe; around the origin to each position where its
0 vertex coincides with one of the; points ofS;, and add the other two vertices b% in these positions to
the point set. (With appropriate choices$f and the angles;, 3;, one can guarantee that no two points
of any S; coincide.) For each point &f;, we added two new points, 39,1 = 3n,. Also, we haver; new
unit-area triangles from rotated copies/of; and each of the; previous triangles have now two new copies
rotated byo; andg;. This givest;.1 = 3t; + n;. O

3 Minimum-areatrianglesin the plane

The general case. We first present a simple but effective charging scheme tirasgn upper bound of

n? —n on the number of minimum (nonzero) area triangles spanneddmjnts in the plane (Proposition 1).
This technique yields a very short proof of the minimum aesalt from [9], with a much better constant of
proportionality. Moreover, its higher-dimensional varts lead to an asymptotically tight bound @f»*)

5



on the maximum number of minimum-voluntedimensional simplices determined hypoints inR¢, for
anyl < k < d, presented in [16].

Proposition 1 The number of triangles of minimum (nonzero) area spanned fgints in the plane is at
mostn? — n.

Proof. Consider a sef of n points in the plane. Assign every triangle of minimum arearte of its longest
sides. For a segmenb, with a,b € S, let R}, andR_, denote the two rectangles of extefts| and2/|ab|
with ab as a common side. If a minimum-area triangebc is assigned tab, thenc must lie in the relative
interior of the side parallel tab in either R}, or R_,. If there were two pointsg; andcs, on one of these
sides, then the area &fac;co would be smaller than that dkabc, a contradiction. Therefore, at most two
triangles are assigned to each of (I@ segments (at most one on each side of the segments), ande&o the
are at mosi? — n minimum-area triangles. O

We now refine our analysis and establisgl(aQ — n) upper bound, which leaves only a small gap from
our lower bounc(% — o(1))n?; both bounds are presented in Theorem 3 below. Let us poirggain that
here we allow collinear triples of points. The maximum numbfecollinear triples is clearly’;) = ©(n?).
The bounds below, however, consider only nondegeneraiggtes ofpositiveareas.

Theorem 3 The number of triangles of minimum (nonzero) area spannedgmnyints in the plane is at most
2(n? — n). The points in the/n] x [/n] integer grid span-% — o(1))n? % .6079n? minimum-area
triangles.

Proof. We start with the upper bound. Consider a Seatf n points in the plane, and Idt be the set of
connecting lines determined I8y Assume, without loss of generality, that none of the limes is vertical.
Let 7' be the set of minimum (nonzero) area triangles spannefl,land putt = |T'|. There are3t pairs
(ab, c) whereAabe € T, and we may assume, without loss of generality, that foratlbalf of these pairs
(i.e., for at Ieast%t pairs) Aabc lies above the line spanned bhyandb.

For each line¢ € L, let /' denote the line parallel t§ lying abovel, passing through some point(s) of
S, and closest td among these lines. Clearly, df € S generates witla, b € ¢ a minimum-area triangle
which lies above:b then (i)a andb are a closest pair among the pairs of pointénS, and (ii)c € ¢/, (the
converse does not necessarily hold).

Now fix alinel € L; setk; = |[¢ N S| > 2, andky, = |/ N S| > 1, where?' is as defined above.
The number of minimum-area triangles determined by a papoaafits in¢ and lying above/ is at most

(k1 — 1)ko. We have
(21> + <k;> > (ki — 1)ko. (1)

Indeed, multiplying by2 and subtracting the right-hand side from the left-hand gides
]{7% — k‘l + k‘% — k‘g — 2]{71]432 + 2]{72 = (]{71 — ]{72)2 — (]{71 — ]{72) > 0,

which holds for anyky, ks € Z.

We now sum (1) over all lineé € L. The sum of the term§?) is (%), and the sum of the tern{&?) is
at most(g), because a lina € L spanned by at least two points $fcan arise as the lin€ for at most one
line ¢ € L. Hence we obtain

S Y- < 2(2‘) —n(n—1),

LeL

thust < 2(n? — n), as asserted.



We now prove the lower bound. Consider the Seif points in the| \/n| x | /n| section of the integer
lattice. Clearly|S| < n. The minimum nonzero area of trianglesSnis 1/2 (by Pick’s theorem). Recall
that the charging scheme used in the proof of Propositiorsijas each triangle of minimum area to one
of its longest sides, which is necessarilyisibility segmenfa segment not containing any point®in its
relative interior). We show that every visibility segmeibdtwhich is not axis-parallel is assigned to exactly
two triangles of minimum area.

Draw parallel lines ta:b through all points of the integer lattice. Every line paghtb ab and incident to
a point of S contains equally spaced points of the (infinite) integdidat The distance between consecutive
points along each line is exactlyb|. This implies that each of the two lines paralleld and closest to
it contains a lattice point on the side of the respectiveargie 2, or R:{b, opposite tazb, and this lattice
point is in.S. Finally, observe that there are no empty acute trianglésdrinteger lattice. It follows that
our charging scheme uniquely assigns empty triangles toilifig segments. An illustration is provided in
Figure 3.

Figure 3:In an integer lattice section, every visibility segment gvhis not axis-parallel is the longest side of two
triangles of minimum area.

A non-axis-parallel segmermt is a visibility segment if and only if the coordinates of thector ab
are relatively prime. It is well known that/72 is the limit of the probability that a pair of intege(s ;)
with 1 < i, < m are relatively prime, as: tends to infinity [39]. Hence, a fraction of aboGitr? of
the ('51) < (%) segments spanned Isyare visibility segments which are not axis-parallel. Eatthese
(% —0(1))(%) segments corresponds to two unique triangles of minimura, @S determines at least

(& — o(1))n? minimum-area triangles. O

T2

3.1 Special cases

In this subsection we consider some new variants of the nuimirarea triangle problem for the two special
cases (i) where no three points are collinear, and (ii) wheggoints are in convex position. We also show
that the maximum number afcutetriangles of minimum area, for any point set, is only linear.

Acutetriangles. We have seen thatpoints in an integer grid may sp&r(n?) triangles of minimum area.
However, in that construction, all these triangles are sbt{or right-angled). Here we prove that for any
n-element point set in the plane, the numberoiitetriangles of minimum area is only linear. This bound



is attained in the following simple example. Take two groopsboutn/2 equally spaced points on two
parallel lines: the first group consist of the poi(ts0), fori =0, ..., [n/2] — 1, and the second group of
the points(i + 1/2,+/3/2), fori = 0,...,|n/2] — 1. This point set determines — 2 acute triangles of
minimum area.

Theorem 4 The maximum number of acute triangles of minimum area détechbyn points in the plane
is O(n). This bound is asymptotically tight.

Proof. Let S be a set ofr points in the plane, and |&t denote the set of acute minimum-area triangles
determined byS. Define a geometric grapf = (V, E) onV = S, whereuv € FE if and only if uv is

a shortest side of a triangle ii. We first argue that every segmant is a shortest edge of at most two
triangles inT’, and then we complete the proof by showing tfiat planar and so it has onty(n) edges.

Let Aaibic; € T and assume thatf ¢ is a shortest side aha;bicq. Let Aasbocy be the triangle such
that the midpoints of its sides atg, b1, c1; and letAasbscs be the triangle such that the midpoints of its
sides areus, by, c3. Refer to Figure 4(a). SincAaibic; has minimum area, then, in the notation of the
figure, each point of \ {a1, b1, c1 } lies in one of the (closed) regiori®, throughRg or on one of the lines
Uy, £y Or l5; also, no point ofS'\ {a1, b1, c1} lies in the interior ofAasbscs. Similarly, any pointa € S of
a triangleAab;c; € T must lie oné; or £3. Thusa = a1 anda = ay are the only possible positions of
This follows from the fact that the triangles dfare acute: any point on, s&, N 9Rs or {1 N R forms
anobtusetriangle withb; c;.

Consider two acute triangleAaibic1, Azyz € T of minimum area with shortest sidésc; € F
andxzy € FE, respectively. Assume that edgles:; andxy cross each other. We have the following four
possibilities: (i)x andy lie in two opposite region&; R, 3, for somei € {1,2,3}; (ii) z = a; andy € Ry;

(i) z € 44 andy € Ry; (iv) x € 5 andy € R4. Sincexy is a shortest side akxyz, the distance from to
the line throughr andy is at least/3/2|xy|. But then, in all four caseAzyz cannot be an acute triangle of
minimum area, since it contains one of the verticedaf b, c; in its interior, a contradiction. (For instance
if x € Ry andy € Ry, Axyc; would be obtuse and\zyz containsc; in its interior, or ifz = a; and

y € R4, Axyz contains eitheb; or ¢ in its interior.) O
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Figure 4:(a) Acute triangles: the gragH is planar. (b) Convex position: the graphis quasi-planar.




Convex position. For points in strictly convex position we prove a tightn) bound on the maximum
possible number of minimum-area triangles. Note that alaegugon has: such triangles, so it remains
to show anO(n) upper bound. Alsop points equally distributed on two parallel lines (at equatahces)
give a well-known guadratic lower bound, so the requirentieait the points be in strictly convex position is
essential for the bound to hold.

Theorem 5 The maximum number of minimum-area triangles determined pgints in (strictly) convex
position in the plane i$)(n). This bound is asymptotically tight.

Proof. The argument below is similar to that in the proof of TheoremSince there can be onl§(n)
acute triangles of minimum area, it is sufficient to consgint-angled and obtuse triangles (for simplicity,
we refer to both types as obtuse), even though the argumsmtvadrks for acute triangles. We use a
similar notation: nowl" denotes the set of obtuse triangles of minimum area. We defgeommetric graph
G = (V,E)onV = S, whereuv € F if and only if uv is a shortest side of a triangleTn See Figure 4(b).

Let Aa1bicp € T with bycq a shortest side. By convexity, at most four triangle®’ican have a common
shortest sidé; c;: at most two such triangles have a third vertexX’pand at most another two of them have
a third vertex or/s. A graph drawn in the plane is said to §easi-planarif it has no three edges which are
pairwise crossing; it is known [3] (see also [2]) that anysiydanar graph wit vertices has at mog2(n)
edges. We now show thét is quasi-planar, which will complete the proof of the theore

Consider the triangle®\asbsco and Aagbscs, defined as in the proof of Theorem 4. Each point of
S\ {a1,b1,c1} lies in one of the (closed) region?; through Rg; in particular no such point lies in the
interior of Aasbscs. (Here, unlike the previous analysis, strict convexityesubut points on any of the three
middle lines, such a&,.) In addition, by convexity, the regiorf®;, R and R5 are empty of points. Assume
now thatb, ¢y, zy, uv form a triplet of pairwise crossing edges, wheteanduwv are distinct shortest sides
of two trianglesAzyz € T andAuvw € T It follows that each of the two edgeg anduv must have one
endpoint atz; and the other iR, (since each crossésc;). Thus two edges in this triplet have a common
endpoint, and so they do not cross, which is a contradiction. O

No three collinear points. We conjecture that if no three points are collinear, themtlagimum number
of triangles of minimum area is close to linear. It is not &nehough: It has been proved recently [14] that
there exist:-element point sets in the plane that spim log n) empty congruent triangles. Here, we show
that one can repeat this construction such that there is lfinea triples of points and that the(n log n)
empty congruent triangles have minimum (nonzero) area. édew we do not know of any sub-quadratic
upper bound.

Theorem 6 For all n > 3, there exist-element point sets in the plane that have no three collipaants
and sparf2(n log n) triangles of minimum (nonzero) area.

Proof. The construction is essentially the one given in [14], andowevide here only a brief description.
We then specify the additional modifications needed for amppses. First, a point sétis constructed with
many, i.e.f2(n logn), pairwise congruent triples of collinear points, which t&ralso viewed as degenerate
empty congruent triangles. Then this construction is fijgberturbed to obtain a set of pointswith no
collinear triples, so that these degenerate trianglesrbeamon-degenerate empty congruent triangles of
minimum (nonzero) area. The details are as follows (sed.[14]

Letn = 3* for somek € N. Considerk unit vectorsby, ..., b, and forl < i < k, let 5; be the
counterclockwise angle from theaxis tob;. Let A € (0,1) be fixed and let;; = \b;. Consider now alB*
possible sums of thesd: vectors,a; andb;, 1 < i < k, with coefficientsO or 1, satisfying the condition
that for eachi, at least one ofi; or b; has coefficiend. Let S be the set o8* points determined by these



vectors. Clearly, each triple of the form, (v + a;, v + b;), wherev is a subset sum that does not involve
a; or b;, consists of collinear points. For such a triple, denote}fy) the segment whose endpoints are
andv + b;. We say that the collinear triplev, v + a;,v + b;) is of typed, i = 1,..., k. For eachi there
are exactly3*~! triples of typei, therefore a total 0k3*~! = (nlogn)/(3log3) = Q(nlogn) triples of
collinear points. Clearly, all these triples form degete@ngruent triangles if. Denote by/;(v) the line
supporting the segmenf(v), and byL the set of lines corresponding to these triples.

We need the following slightly stronger version of Lemma Jld]. The proof is very similar to the
proof of Proposition 1 in [14], and we omit the detalils.

Lemmal There exist anglegs, ..., 8k, and A € (0, 1), such thaf(i) S consists of. distinct points;(ii) if
u,v,w € S are collinear (in this order), them = v + a; andw = u + b;.

Let ¢ be the minimum distance between poiptg S \ {v,v + a;,v + b;} and lines¢;(v) € L, over
all pairs(v,i). By Lemma 1, we have > 0. Now instead of choosing; to be collinear withp;, slightly
rotate \b; counterclockwise frond; through a sufficiently small angl&about their common origin, so the
collinearity disappears. This modification is carried outhe same time for all vectors;, i = 1,...,k,
that participate in the construction. By continuity, thesésts a sufficiently small = 6(¢) > 0, so that (i)
each of the trianglea\ (v, v + a;,v + b;) remains empty throughout this small perturbation, (ii) peént
setS is in general position after the perturbation, and (iii) deagruent trianglea (v, v + a;, v + b;) have
minimum area. This completes the proof. a

4 Unit-areatrianglesin 3-space

Erd6s and Purdy [19] showed that\d@logn x (n/\/logn) section of the integer lattice determines
Q(n%loglogn) triangles of the same area. Clearly, this bound is also vali8-space. They have also
derived an upper bound @ (n®/?) on the number of unit-area triangles R¥. Here we improve this
bound toO(n'"/73(n)) = O(n**2%6). We useB(n) to denote any function of the formxp(a(n)°M),
wherea(n) is the extremely slowly growing inverse Ackermann functidmy such function3(n) is also
extremely slowly growing.

Theorem 7 The number of unit-area triangles spannedrbgoints inR> is O(n'7/73(n)) = O(n>*2%).

The proof of the theorem is quite long, and involves seveetnical steps. Lef be a set oh points
in R3. For each pair, b of distinct points inS, let ¢,;, denote the line passing throughandb, and letC,;
denote the cylinder whose axisfig and whose radius /|ab|. Clearly, any point € S that forms with
ab a unit-area triangle, must lie afi,,. The problem is thus to bound the number of incidences betwee
(g) cylinders and points, but it is complicated for two reasons: (i) The cyBmnslneed not be distinct. (ii)
Many distinct cylinders can share a common generator litglwmay contain many points 6f.

Cylinderswith large multiplicity. LetC denote the multiset of th€)) cylindersC,;, for a,b € S. Since
the cylinders inC may appear with multiplicity, we fix a parameter= 27, j = 0,1,..., and consider
separately incidences with each of the sgts of all the cylinders whose multiplicity is betwegnand
21— 1. Write ¢, = |C,,|. We regardC,, as a set (of distinct cylinders), and will multiply the boutint
we get for the cylinders i, by 2., to get an upper bound on the number of incidences that weteeek
estimate. We will then sum up the resulting bounds vty get an overall bound.

Let C be a cylinder inC,. Then its axis’ must contairu pairs of points ofP at a fixed distance apart
(equal to2/r, wherer is the radius of”). That is,¢ containst > u points of S. Let us now fixt to be a
power of2, and consider the subsgt; C C,, of those cylinders i€, that have at leagtand at mosgt — 1
points on their axis. By the Szemerédi-Trotter Theoren] (87, rather, its obvious extension to 3-space),
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the number of lines containing at leagpoints of S is O(n?/t3 + n/t). Any such linel can be the axis of
many cylinders irC,, (of different radii). Any such cylinder “charge®) () pairs of points out of thé(¢?)
pairs along/, and no pair is charged more than once. Hence, for a giver Im&dent to at least > 1 and

at most2t — 1 points of S, the number of distinct cylinders i), that have/ as axis isO(t2/y). Summing
over all axes incident to at leastind at mosRt — 1 points yields that the number of distinct cylinders in

C%t is
n?  n\ t? n?  nt

We next sum this ovel, a power of 2 betweepn andv, and conclude that the number of distinct cylinders
in C,, having at most points on their axis is

n2 nv
C%SV = O <F + 7) . (3)

Restricted incidences between points and cylinders. We distinguish twatypes of incidences, which
we count separately. An incidence between a ppiahd a cylinderC is of type 1if the generator of”
passing througlp contains at least one additional point®f otherwise it is oftype 2 We begin with the
following subproblem, in which we bound the number of incides between the cylinders 6f counted
with multiplicity, and multiple points that lie on their generator lines, as well as incigsneith cylinders
with “rich” axes. Specifically, we have the following lemma.

Lemma2 LetS be a set of: points andC be the multiset of th¢}) cylindersC,,, for a,b € S (counted
with multiplicity). The total number of all incidences opgy1 and all incidences involving cylinders having
at leastn'*/%° points on their axis is bounded I6y(n'7/*>polylog(n)) = O(n?378).

Proof. Let L denote the set of lines spanned by the point$ oFix a parametek = 2,7 = 1,..., and
consider the sek,. of all lines that contain at leagtand at mos2k — 1 points ofS. We bound the number
of incidences between cylindersdrthat contain lines i, as generators and points that lie on those lines.
Formally, we bound the number of triplés, ¢, C'), wherep € S, ¢ € Ly, andC € C, such thap € ¢ and

¢ C C. Summing these bounds ovemill give us a bound for the number of incidences of type 1.#go
the way, we will also dispose of incidences with cylindersogd axes contain many points.

2
As already noted, the Szemerédi-Trotter Theorem [37]imspghat\; := |Lx| = O (% + %)

Line-cylinder incidences. Consider the subproblem of bounding the number of incidebetween lines

in L; and cylinders irC, where a line/ is said to be incident to cylindet' if ¢ is a generator of®. We
will then multiply the resulting bound bgk to get an upper bound on the number of point-line-cylinder
incidences involving_, and then sum the resulting bounds oker

Generator lineswith many points. Let us first dispose of the cage> n'/3. Any line ¢ € L, can be a
generator of at most cylinders (counted with multiplicity), because, havingefiba. € .S, the pointb € S
such thatC,;, contains? is determined (up to multiplicit2). Hence the number of incidences between the
points that lie orY and the cylinders of is O(nk). Summing ovek = 2¢ > n1/3 yields the overall bound

0) (Zk: nk)\k> =0 (Z (Z—i + n2>> =0(n™?).

k
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Hence, in what follows, we may assume that n'/3. In this range ok we have
n2
Ak =0 (ﬁ) . (4)

Axes with many points. Let us also fix the multiplicity of the cylinders under consideration (up to a
factor of2, as above). The number of distinct cylindergCinhaving betweert > 4 and2t — 1 points on
their axes, iSO (n?/(tu) + nt/u); see (2). While the first term is sufficiently small for our pose, the
second term may be too large whers large. To avoid this difficulty, we fix another thresholdoerent
z < 1/2 that we will optimize later, and handle separately the cases:”* andt < n*. That s, in the first
case, fort > n* a power of 2, we seek an upper bound on the overall number imfences between the
points ofS and the cylinders i€ whose axis contains betweemand2t — 1 points ofS. (For this case, we
combine all the multiplicities:, < t together.) By the Szemerédi-Trotter theorem [37], the lpeinof such
axes isO(n?/t3 + n/t).

Fix such an axisy. It defines©(¢?) cylinders, and the multiplicity of any of these cylindersaismost
O(t). Since no two distinct cylinders in this collection can p#s®ugh the same point &, it follows
that the total number of incidences between the point$ afid these cylinders i9(nt). Hence the overall
number of incidences under consideratio®ig:? /3 + n/t) - O(nt) = O(n3/t* + n?). Summing over all
t > n?, a power of2, we get the overall boun@(n3-2?).

Note that this bound takes careaf the incidences between the points$énd the cylinders having at
leastt > n* points along their axes, not just those of type 1 (involvingjtiple points on generator lines).

Cylinders with low multiplicity. We now confine the analysis to cylinders having fewer thamoints
on their axis, and go back to fixing the multiplicify, which we may assume to be at mast We thus
want to bound the number of incidences betwagrdistinct lines and:, <,,- distinct cylinders inC,, for
givenk < n'/3, u < n?. Note that a cylinder can contain a line if and only if it is kel to the axis of
the cylinder, so we can split the problem into subproblerasheassociated with some directiénso that in
the #-subproblem we have a set of sonﬁ@ cylinders and a set of son)éf) lines, so that the lines and the

cylinder axes are all parallel (and have directi®ynwe have) _, cff” = cy,<n=, and) A,(f) = Ag.

For a fixedd, we project the cylinders and lines in thesubproblem onto a plane with normal direction
#, and obtain a set oj,(f) circles and a set of\,(f) points, so that the number of line-cylinder incidences is
equal to the number of point-circle incidences. By [4, 6,28]e number of point-circle incidences between
N points andM circles in the plane i (N2/3M2/3 + NO/1 A9/ 10g?/ 1Y (N3 /M) + N + M). It follows
that the number of such line-cylinder incidences is

19) (()\1(69))2/3@&0))2/3 + ()\]({:9))6/11(629))9/11 log2/11((A,ge))3/cEL9)) + )\](f) + C&e)) . (5)

Note that, for any fixed, we have/\,(f) < n/k andcff)) < n'*#/u. The former inequality is trivial. To
see the latter inequality, note that an axis with n* points defines{g) cylinders. Since we only consider
cylinders with multiplicity ©(x), the number of distinct such cylinders@¢? /), and the number of lines
(of direction®) with aboutt points on them is at most/¢, for a total of at mos©(nt /) distinct cylinders.
Partitioning the range. < ¢ < n? by powers of2, as above, and summing up the resulting bounds, the
boundc,(f) < n!*+# /y follows.

2The bound that we use, from [28], is slightly better than tfevjpus ones.

12



Summing ove#, and using Holder’s inequality, we have (heres a parameter betwe&j11 and6/11
that we will fix shortly)

2\ x—2/11
Z()\(e))wn(c(e))g/n < (ﬁ)ﬁ/ll_x n't / Z()\(G))x(c(e))l—x <
k 13 = \k L ~ k 14 —
)

T 11—z

(4—22) /11422 (4—22) /11422

n (9) 0 _n z 1-x

|6/ 11—z o —2/11 <Z Ak ) (ch(t)> - k,6/11—mlum—2/11>\kcﬂ,§nz'
0 0

We need to multiply this bound b9 (k). Substituting the bounds, = O(n?/k?) from (4), ande,, <= =
O(n?/p? 4+ n'*# /u) from (3), we get the bound

0 (n(4 22)/ 14wz 511+ 13/11 (ﬁ) <E+ ; ) log2/ 1 p,
- 0 <k5/11—2x (n2+(4—2z)/11+xzux—9/11 1 n(l5+9z)/11+xlu2/11) log2/11 n) _

Choosingr = 5/22 (the smallest value for which the exponentkab non-positive), the first term becomes
O(n¥+4/11+2/221092/11 ) "which we need to balance with(n3~2%); for this, we choose = 14/45 and
obtain the bound) (n!97/45 1og?/M n) = O(n?378); for this choice ofz, recalling that: < »?, the second
term is dominated by the first. Summing overu only adds logarithmic factors, for a resulting overall
boundO (n?378).

Similarly, we have (with a different choice af soon to be made)

2\ £—1/3
S O@ sy < () (1 P S 0O poye <
k © = \k U - k ©w —
0

T 11—z
(1-2)/34z= (1—2)/34xz
e (0) (0) _one T e 1
Multiplying by ku and arguing as above, we get

2\ ¢ 2 142\ 1—z
0 <n(1—z)/3+xzk71/3+x'u4/3—x <%> <n_2 + n > 10g2/11 ’I’L)

I I
-0 (k1/3—2m <n2+(1—z)/3+:vzlum—2/3 + n1+(1+2z)/3+x#1/3> 10g2/11 n) '

We choose here = 1/6 and note that, for = 14/45 andu < n?, the bound is smaller tha@(n"/3),
which is dominated by the preceding boufn?37®).
Finally, the linear terms in (5), multiplied by, add up to

O + —0 2 2,
k. (A,(f) cf{’)) (ki (A + Cpsnz)) = O <T;€—2“ t nT 4l k) ’
6

which, by our assumptions o 1, andz is also dominated by (n237®). Summing overk, ;. only add
logarithmic factors, for a resulting overall boust{n?-37®). This completes the proof of Lemma 2. O

It therefore remains to count point-cylinder incidencesygie 2, involving cylinders having at most
n'4/45 points on their axes.

13



The intersection pattern of three cylinders. We need the following consequence of Bézout's Theo-
rem [23].

Lemma3 LetC, (4, Cs be three cylinders with no pair of parallel axes. Theém C; N Cs consists of at
most 8 points.

Point-cylinder incidences. Using the partition technique [11, 31] for disjoint cylinden R3, we show
the following:

Lemma4 For any parameter, 1 < r < min{m,n1/3}, the maximum number of incidences of type 2
betweem points andm cylinders in 3-space satisfies the following recurrence:

I(n,m) = O(n + mr?3(r)) + O(*3(r) - 1 (5. ). (6)

3’y
for some slowly growing functiofi(n), as above.

Proof. LetC be a set ofn cylinders, ands be a set ofi points. Construct &l /r)-cutting of the arrangement
A(C). The cutting hagD(r®3(r)) relatively open pairwise disjoint cells, each crossed bynastm /r
cylinders and containing at most/r® points of S [12] (see also [33, p. 271]); the first property is by
definition of (1/r)-cuttings, and the second is enforced by subdividing ceith o many points. The
number of incidences between points and cylindeossingtheir cells is thus

3 n o m
O(*a(r) - 1 (5. 7).
(Note that any incidence of type 2 remains an incidence & &/ the subproblem it is passed to.)

It remains to bound the number of incidences between thegoinS and the cylinders thatontain
their cells. Letr be a (relatively open) lower-dimensional cell of the cugtinf dim(7) = 2 then we can
assign any poinp in 7 to one of the two neighboring full-dimensional cells, andimoall but at most one
of the incidences witlp within that cell. Hence, this increases the count by at most

If dim(7) = 0, i.e.,7 is a vertex of the cutting, then any cylinder containingust cross or define one
of the full-dimensional cells adjacent to Since each cell has at ma@st1) vertices, it follows that the total
number of such incidences@&(r33(r)) - (m/r) = O(mr2B(r)).

Suppose then thatim(7) = 1, i.e., 7 is an edge of the cutting. An immediate implication of Lemma 3
is that onlyO(1) cylinders can contaim, unlessr is a line, which can then be a generator of arbitrarily
many cylinders.

Since we are only counting incidences of type 2, this implied any straight-edge 1-dimensional cell
7 of the cutting generates at most one such incidence with @imder that fully contains-. Non-straight
edges of the cutting are contained in ofly1) cylinders, as just argued, and thus the points on such edges
generate a total of onlg(n) incidences with the cylinders. Thus the overall number ofdences in this
subcase is onlY(n + r33(r)). Sincer < m, this completes the proof of the lemma. O

Lemma5 The number of incidences of type 2 betweeoints andn cylinders inR? is
(@) ((m6/7n5/7 +m+ n) ﬁ(n)) . @)
Proof. LetC be a set ofn cylinders, ands be a set of: points. We first derive an upper bound®fn° +m)

on the number of incidences of type 2 betwé&eand S. We represent the cylinders as points in a dual 5-
space, so that each cylindéris mapped to a point™, whose coordinates are the five degrees of freedom
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of C (four specifying its axis and the fifth specifying its radius point ¢ € R? is mapped to a surfagg

in R, which is the locus of all points dual to cylinders that areident tog. With an appropriate choice of
parameters, each surfageis semi-algebraic of constant description complexity. Bfimtion, this duality
preserves incidences.

After dualization, we have an incidence problem involvingoints and. surfaces irR>. We construct
the arrangementl of then dual surfaces, and bound the number of their incidencesthéth, dual points
as follows. The arrangemept consists of0(n%) relatively open cells of dimensionis 1, ..., 5. LetT be a
cell of A. We may assume thdim(7) < 4, because no point in a full-dimensional cell can be incident
any surface.

If 7is a vertex, consider any surfagethat passes through Thenrt is a vertex of the arrangement
restricted tap, which is a4-dimensional arrangement with(n*) vertices. This implies that the number of
incidences at vertices of is at mostn - O(n?) = O(n).

Let thenT be a cell of A of dimension> 1, and letu denote the number of surfaces that contairif
u < 8 then each point inr (dual to a cylinder) has at moék(1) incidences of this kind, for a total @(m).

Otherwiseu > 9. Sincedim(7) > 1, it contains infinitely many points dual to cylinders (notaessarily
in C). By Lemma 3, back in the primal 3-space, if three cylindenstain the same nine points, then the axes
of at least two of them are parallel. Hence @lpoints lie on one line or on two parallel lines, which are
common generators of these pair of cylinders. In this cdkeylanders whose dual points lie in contain
these generator(s). But then, by definition, the incidebetween these points and the cylinder€ @fhose
dual points lie onr are of type 1, and are therefore not counted at all by the cuamalysis. Since is a
face of A4, no other point lies on any of these cylinders, so we may igtioem completely.

Hence, the overall number of incidences under consideraio (n® + m).

If m > nb, this bound isO(m). If m < n'/3, we apply Lemma 4 withr = m, which then yields
that each recursive subproblem has at most one cylindeadomoint in a subproblem generates at most
one incidence, for a total @P(n) incidences. Hence, in this case (6) implies that the numbieicences
betweerC andS is O(n + m38(m)) = O(nB3(n)).

Otherwise we havei!/> < m < n°, so we can apply Lemma 4 with parameter= (n°/m)'/14;
observe that < r < min{m,n'/3} in this case. Using the above bound for each of the subprabienie
recurrence, we obtaif(n/r®,m/r) = O((n/r3)° + m/r), and thus the total number of incidences of type
2 in this case is

n m

O(n+mr2A(r)) + O(38(r)) - O ((T—g)‘f’ ; 7) ) (”_ +mr2> B(r).

The choicer = (n°/m)'/* yields the bound (7). Combining this with the other cases,ttbund in the
lemma follows. 0

We are now in position to complete the proof of Theorem 7.

Proof of Theorem 7: We now return to our original setup, where the cylinder§ imay have multiplicities.
We fix some parametgr and consider, as above, all cylindersGf, and recall our choice of = 14/45.
The case: > n? is taken care of by Lemma 2, accounting for at mo$h'07/45polylog(n)) incidences.

In fact, Lemma 2 takes care of all cylinders that contain asie* points on their axes. Assume then that
< n*, and consider only those cylinders @) containing fewer tham?® points on their axes. By (3),
we havec, <,,- = O(n?/u?). Consequently, the number of incidences with the remaioytigders inC,,,
counted with multiplicity, but excluding multiple pointsidhe same generator line, is

n2\ %7 5/7 n2 a7 2
O<#ﬁ(n)<<ﬁ> n —I—E%—n)):O((m/?+;+nu>ﬁ(n)>.
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Summing over all. < n* (powers of 2), and adding the boudt{n'°7/*>polylog(n)) = O(n>378) from
Lemma 2 on the other kinds of incidences, we get the desiredathbound of0(n7/73(n)) = O(n?4285),
O

Remark. In a nutshell, the “bottleneck” in the analysis is the casenely is small (say, a constant) and
we count incidences of type 2. The rest of the analysis, wagbhs it is, just shows that all the other cases
contribute fewer (in fact, much fewer) incidences. One dgubbably simplify some parts of the analysis,
at the cost of weakening the other bounds, but we leave tleetegs they are, in the hope that the bottleneck
case could be improved, in which case these bounds mighbiettte dominant ones.

5 Minimum-areatrianglesin 3-space

Placen equally spaced points on the three parallel edges of a rigbinpwhose base is an equilateral
triangle, such that inter-point distances are small alcagheedge. This construction yieh%m? — O(n)
minimume-area triangles, a slight improvement over the logind construction in the plane. Here is yet
another construction with the same constft in the leading term: Form a rhombus in thg-plane from
two equilateral triangles with a common side, extend it toisnp in 3-space, and place/3 equally spaced
points on each of the lines passing through the verticeseothtiorter diagonal of the rhombus, ang
equally spaced points on each of the two other lines, wheamdlge inter-point distances along these lines
are all equal and small. The number of minimum-area trianigle

1 AN 2 oy =22
2<3'3+3'6>n O(n)—gn O(n).

An O(n?) upper bound has been shown in [16], which is optimal up to temtdactors. The following
theorem significantly improves the constant factor. Siryileo the planar case, we assign each triangl€ in
to one of its longest sides. However, here we distinguistvéenfat andthin triangles (defined below). We
show that the numbeW; of thin triangles of minimum area is at max;) = n* — n, and that the number
N, of fat triangles of minimum area is only (n).

Theorem 8 The number of triangles of minimum (nonzero) area spanned pgints inRR3 is at most
n? + O(n).

Proof. Consider a sef of n points inR3, and letT be the set of triangles of minimum (nonzero) area
spanned bys. Without loss of generality, assume the minimum area td.b€onsider a segmenb, with
a,b € S, and leth = |ab|. Every pointc € S\ {a, b} for which the triangleAabc has minimum (unit) area
must lie on a bounded cylindér with axis ab, radiusr = 2/h, and bases that lie in the planes and,,
incident toa andb, respectively, and orthogonal té. In fact, if Aabc is assigned tab (that is,ab is the
longest side), then must lie on a smaller portio” of C, bounded by bases that interseétat points at
distanceh — vh? — r2 from a andb, respectively. Assume for convenience théts vertical,a is the origin
andb = (0,0, k). Sinceab is the longest side ahabc, the side of the isosceles triangle with bageand
heightr must be no larger thah, i.e.,h? + r* < h?, orr? < 3h2. Notice that the triangle formed by any
two points ofS lying on C’ with eithera or b is non-degenerate.

We next derive a simple formula that relates the area of diayted) triangle to the area of itsy-
projection. Consider a trianglA that is spanned by two vectots v, and letAq, ug, andvy denote the
xy-projections ofA, u, andv, respectively. Write (wherk denotes, as usual, the vectér0, 1))

u=wug+zk and v=uvg+ vk,
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and putA = area(A), Ag = area(4y). Then

(luo x vol* + [lyuo — zvo|?) ,

1=

1 1
A? = Zllu x o] = 7| (uo + 2k) x (v + yk)|| =

or
1
A? :A3+ ZHyuo—wvon. (8)

We distinguish between the cases in which the minimum-araagles charged to the segmeibtare
“thin” or “fat.” A triangle is calledfat (resp.,thin) if the length of the height corresponding to its longest
side is at least (resp., less than) half of the length of thgdst side.

@r< %h (thin triangles). We claim that in this case at most two tgias can be assigned &. Indeed,
suppose to the contrary that at least three triangles aignasistoad, so their third verticesg, d, e € S lie
onC’ c C. Write thez-coordinates of:, d, e aszh, zoh, z3h, respectively, and assume, without loss of
generality, that < z; < 29 < 23 < 1, andz, < 1/2. Consider the triangl&acd, and letA denote its area.
As before, write, without loss of generality,

c¢=(r,0,z1h) and d= (rcosa,rsina, z2h),

for some0 < o < 180°. Using (8), we get
o 1 4. o L ooio 2, 2
A® = 7 sina + i h*(2{ + 25 — 22122 cos ).

Thus, recalling that < 14 and thath?r? = 4, we get

1 1 1
A? < Zr2h2 <Z sin? o + 27 + 22 — 22,2y cos a> =1 sin? o + 27 + 22 — 221z cos . 9)

Let us fixz1, 29 and vary onlya. Write
L. 2 2 2 / 1. .
fla) = i +2i{ 4+ 25 —2z129cosa, and f'(a) = g sinacosa + 22129 sin a.
f attains its maximum at the zero of its derivative, namelyathat satisfies

cos ag = —4z129.

(Note that sincex; < z9 < % we always havelz;zo < 1. Also, at the other zera. = 0, f attains its
minimum (z; — 22)2.)
Substitutingay into (9), and using; < z < 1, we get

1— 162222

A2
< 4

1 1 1
+ 22+ 28+ 82828 = Z—Fz%—i—z%—i-élz%zg = <§+2z%> <§+2z§> <1,
which contradicts the minimality of the areaftibe (recall thatAacd is non-degenerate).
We have thus shown that at most two thin triangles of minimusa @an be assigned to any segment

SoON; < 2(3) =n?—n.
(b) r > %h (fat triangles). Recall that we always havec @h. Multiplying these two inequalities by/2,
we get

h%V/3 2

— < h<2.
1 or 31/4_h_2

h2
— <1<
y ==
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Let F denote the set of all segments such that the minimum-area triangles chargedit@re fat. Note
that the length of each edge His in the intervall2/3'/4,2].

We next claim that, for any pair of poinis ¢ € S with |pg| < 1, neitherp nor ¢ can be an endpoint
of an edge inE. Indeed, suppose to the contrary thaf is such a pair and thata is an edge oft, for
somea € S; by constructiona # q. Let Apab be a fat minimum-area triangle chargedpi@ If ¢ is
collinear withpa, then Apqb is a nondegenerate triangle of area strictly smaller thahdhApab (recall
that|pq| < 1 < |pal), a contradiction. I is not collinear withpa, Apag is a nondegenerate triangle of area
< M < 2l =1, again a contradiction.

Let S’ C S be the set obtained by repeatedly removing the poinis whose nearest neighbor fis
at distance smaller than Clearly, the minimum inter-point distance i1 is at leastl, and the endpoints
of each edge irE lie in S’. This implies, via an easy packing argument, that the nurobedges ofE/
incident to any fixed point ir$” (all of length at mosg) is only O(1). Hence|E| = O(n). Since each edge
in £ determines at mosP(1) minimum-area triangles, as shown in [16], we conclude Mat= O(n), as
claimed. Hence there are at magt) + O(n) = n? + O(n) minimum-area triangles in total. O

6 Maximum-areatrianglesin 3-space

Abrego and Fernandez-Merchant [1] showed that one car plamints on the unit sphere R? so that
they determineﬂ(n4/3) pairwise distances of/2 (see also [29, p. 191] and [8, p. 261]). This implies the
following result:

Theorem 9 For any integern, there exists am-element point set ifiR? that spansf)(n4/3) triangles of
maximum area, all incident to a common point.

Proof. Denote the origin by, and consider a unit sphere centered.affhe construction in [1] consists
of a setS = {0} U S; U Sy of n points, whereS; U S, lies on the unit spherdS;| = |[(n — 1)/2],
|So| = [(n —1)/2], and there ar€(n*/3) pairs of orthogonal segments of the fofms;, 0s;) with s; € S;
ands; € So.

Moreover, this construction can be realized in such a way¥hbes in a small neighborhood 6f, 0, 0),
ands; lies in a small neighborhood 06, 1,0), say. The area of every right-angled isosceles triafgle; s ;
with s; € Sy ands; € Sy is 1/2. All other triangles have smaller area: this is clear if aisketwo vertices
of a triangle are front; or from Ss; otherwise the area is given t%ysin «, Wherea is the angle of the two
sides incident to the origin, so the area is less thanif these sides are not orthogonal. O

We next show that the construction in Theorem 9 is almost,tighthe sense that at moSk(n*/3+<)
maximum-area triangles can be incident to any point of-alement point set ilR3, for anye > 0.

Theorem 10 The number of triangles of maximum area spanned by & sét» points inR? and incident
to a fixed point € S is O(n*/3+¢), for anye > 0.

Assume, without loss of generality, that the maximum arda &imilarly to the proof of Theorem 7, we
map maximume-area triangles to point-cylinder inciden&secifically, if Aabc is @ maximum-area triangle
spanned by a point sé&, then every point of5 lies on, or in the interior of, the cylinder with axig$ and
radius2/|ab| (c itself lies on the cylinder). The following lemma gives upfunds on the number of
point-cylinder incidences in this setting.

Lemma6 LetS be a set of points, andC a set ofim cylinders inR?, such that the axis of each cylinder
passes through the origin, and no point lies in the exteri@ny cylinder. Then the number of point-cylinder
incidences i) ((n*3m?/3 4+ n + m)*<), for anye > 0.
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The proof is omitted—it is almost identical to an argumenEdelsbrunner and Sharir [17], where it is
shown that the number of point-sphere incidences betweaints andn spheres iR? is O(n?/3m?/? +
n + m), provided that no point lies in the exterior of any sphereeiflargument uses the fact that the
complexity of the intersection of balls inR? is O(n?). We use instead a result of Halperin and Sharir [24],
that the complexity of a single cell in the arrangement @onstant degree algebraic surfaces (cylinders in
our case) iR? is O(n?*¢), for anys > 0.

Proof of Theorem 10: Let A denote the maximum triangle area determined by &'s#ftn points inR?.
For every pointu € S, consider the system af — 1 points inS \ {a} andn — 1 cylinders, each defined by
apointb € S\ {a}, and has axigb and radiu2A/|ab|. Every point-cylinder incidence corresponds to a
triangle of aread spanned bys and incident taz. SinceA is the maximum area, no point 6fmay lie in
the exterior of any cylinder. By Lemma 6, the number of su@ngles isO(n4/3+€), for anye > 0. O

Theorems 9 and 10 imply the following bounds on the numberafimum-area triangles iR>:

Theorem 11 The number of triangles of maximum area spanned Ippints inRR3 is O(n"/3+¢), for any
e > 0. For all n > 3, there existr-element point sets iR? that spanQ(n4/3) triangles of maximum area.

7 Distinct triangle areasin 3-space

Following earlier work by Erdés and Purdy [20], Burton anar@® [10], and Dumitrescu and Toth [15],
Pinchasi [32] has recently proved thaihoncollinear points in the plane always determine at I@é\;{lj
distinct triangle areas, which is attained dyqually spaced points distributed evenly on two paralfeddi
No linear lower bound is known in 3-space, and the best we lvaw g the following:

Theorem 12 Any setS of n points inR?, not all on a line, determines at lea§(n?/3/3(n)) triangles
of distinct areas, for some extremely slowly growing fuorcti(n). Moreover, all these triangles share a
common side.

For the proof, we first derive a new upper bound (Lemma 7) omtimeber of point-cylinder incidences
in R3, for the special case where the axes of the cylinders passghithe origin (but without the additional
requirement that no point lies outside any cylinder). Caeisa setC of m such cylinders. These cylinders
have only three degrees of freedom, and we can dualize thpoirits in 3-space. Specifically, we fix some
generic halfspacé! whose bounding plane passes through the origin, say, tifgphaez > 0. We then
map each cylinder with axié and radiusp to the point on/ N H at distancel /o from the origin; and we
map each poinp € H to the cylinder whose axis is the line spannedpyand whose radius is/|op|. As
argued above, this duality preserves point-cylinder ieicabs.

By (a dual version of) Lemma 3, any three points can be muytuadident to at most eight cylinders
whose axes pass through the origin. That is, the bipartdiel@mce graph (whose two classes of vertices
correspond to the points ¢f and the cylinders of, respectively, and an edge represents a point-cylinder
incidence) isk3 g-free. It follows from the theorem of K6vari, S6s and ani{26] (see also [29, p. 121]) that
the number of point-cylinder incidences@nm?/? + m). We then combine this bound with the partition
technique of Clarksoat al. [13], to prove a sharper upper bound on the number of poilntasr incidences
of this kind. Specifically, we have:

Lemma7 Givenn points andm cylinders, whose axes pass through the origin, in 3-spdeentumber of
point-cylinder incidences i©(n*/*m?3/*3(n) +n +m).

Proof. Let C be the set of then given cylinders, and' be the set of the: given points. Leth be a plane
containing the origin, but no point ¢, and assume, without loss of generality, that the sulisef points
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lying in the positive halfspacé™ contributes at least half of the incidences withIf m > n3, then the
K6vari-Sos-Turan Theorem yields an upper bound @ ,C) = O(nm?® + m) = O(m). Similarly, if
m < n'/3, the duality mentioned above leads to the bouit§!,C) = O(mn?*? + n) = O(n). For these
two cases we have thdiiS, C) < 21(S’,C) = O(m + n). Assume henceforth that/? < m < n?,

We apply Lemma 4 with parameter= |n3/8 /m!/8], and use the Kévari-Sos-Turan Theorem to bound
the number of incidences between the at mgst® points andn /r cylinders in each subproblem. Note that
1 < r < minthe above range of.. The total number of incidences is thus

r3 r r

18.0) = O+ mr?a(r) +0G*5(r) - 0 (%5 ()" +2)
= @ 2 — 3/4, 3/4
O|n+ 373 B(n) +mr-p(r) O (n +n°%m 5(n)> )

Putting all three cases together gives the bound in the lemma O

Proof of Theorem 12: If there aren /100 points in a plane but not all on a line, then the points in tiese
already determin€(n) triangles of distinct areas [10]. We thus assume, in the irahea of the proof, that
there are at most/100 points on any plane.

According to a result of Beck [7], there is an absolute camtstac N such that if no line is incident to
n/100 points of S, thenS spansO(n?) distinct lines, each of which is incident to at mdspoints of S.
Since each point of is incident to at most — 1 of these lines, there is a poiate S incident to©(n) such
lines. Select a point of \ {a} on each of these lines, to obtain a $&bf ©(n) points.

Let ¢t denote the number of distinct triangle areas determinefl,land letay, as, . . . , oy denote these
areas. For each poiate P andi = 1,2,...,t, we define a cylinde€ (ab, «;) with axis (the line spanned
by) ab and radiu«; /|ab|. Every pointc € S for which the area of the triangl&abc is «; must lie on the
cylinder C'(ab, ;). LetC denote the set of th@(nt) cylindersC(ab, «;), forb € P andi = 1,2,...,t.
For each poinb € P, there arex — k = O(n) points off the line throughub, each of which must lie on
a cylinderC'(ab, «;) for somei = 1,2,...,t. Therefore, the numbei(.S, C) of point-cylinder incidences
betweenS andC is 2(n?). On the other hand, by Lemma 7, we have

Q(n?) < I(S,C) < O(n**(nt)**B(n) + n + nt) = Om>?t3/B(n)),

which givest = Q(n?/3/3%3(n)) = Q(n?/3/3'(n)), for another functiors’ (n) of the same slowly growing
type, as required. O

8 Conclusion

We have presented many results on the number of trianglgsecffic areas determined bypoints in the
plane or in three dimensions. Our results improve upon teeigus bounds, but, most likely, many of them
are not asymptotically tight. This leaves many open problefitlosing the respective gaps. Even in cases
where the bounds are asymptotically tight, such as thosdvimg minimum-area triangles in two and three
dimensions, determining the correct constants of progaatity still offers challenges.

Here is yet another problem on triangle areas, of a slightfgrént kind, with triangles determined by
lines, not points (motivated in fact by the question of bangdU:| in the proof of Theorem 1). Any three
nonconcurrent, and pairwise non-parallel lines in the @pkd@termine a triangle of positive area. What is the
maximum number of unit area triangles determinechbines in the plane?

Theorem 13 The maximum number of unit-area triangles determined lijes in the plane is?(n7/3),
and for anyn > 3, there aren lines that determin€)(n?) unit-area triangles.
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Proof. Lower bound Placen /3 equidistant parallel lines at angleésr/3, and2x /3, through the points of
an appropriate section of the triangular lattice, and olestirat there ar€@(n?) equilateral triangles of unit
side (i.e., of the same area) in this construction.

Upper bound Let L be a set of: lines in the plane. We define a variant of the hyperbolas usdiei
proof of Theorem 1: For any pair of non-parallel lines/s € L, lety(¢1,¢2) denote the locus of points
p € R%, p & {1 U ¢y, such that the parallelogram that has a vertex ahd two sides along; and /s,
respectively, has arey/2. The sety(¢1, ¢s) is the union of two hyperbolas with and /¢, as asymptotes
(four connected branches in total). Any two non-paralledd uniquely determine two such hyperbolas. Let
I denote the set of the branches of these hyperbolas, andhadtE|t= O(n?). Observe now that, if;, (2,
and/s determine a unit area triangle, thénis tangent to one of the two hyperbolas)ifty, ¢5).

We first derive a weaker bound. Construct two bipartite gsaph G2 C L x I". We put an edgé/, )
in Gy (resp.,G9) if ¢ is tangent toy and/ lies below (resp., above). The edges ofs; andG» account for
all line-curve tangencies. Observe that neither graphaositak’s », that is, there cannot be five distinct
lines in L tangent to two branches of hyperbolas from above (or froravielindeed, this would force the
two branches to intersect at five points, which is imposdititea pair of distinct quadrics. It thus follows
from the theorem of K&vari, S6s and Turan [26] (see al® p. 121]) that the number of line-hyperbola
tangencies between amy lines in L and anymg hyperbolas inl" is O(nomg/E’ + mp). Withng = n
andmg = O(n?), this already gives a bound 6f(n - n®/° + n?) = O(n'3/%) on the number of unit-area
triangles determined by lines in the plane. We next derive an improved bound.

Let L be the given set af lines, and lef” be the corresponding setof = O(n?) hyperbola branches.
We can assume that no line inis vertical, and apply a standard duality which maps ea@lia L to a
point £*. A hyperbolic branchy is then mapped to a curvg’, which is the locus of all points dual to lines
tangent toy; it is easily checked that eaeff is a quadric. Lef.* denote the set of the dual points, and let
I'* denote the set of = O(n?) dual curves. A line-hyperbola tangency in the primal planén mapped
to a point-curve incidence in the dual plane.

We next construct d1/r)-cutting for I'*, partitioning the plane int@(r?) relatively open cells of
bounded description complexity, each of which contains @tm/r? points and is crossed by at masy/'r
curves. By using the previous bound for each cell, the tatahlver of incidences involving points in the
interior of these cells is

o (F ) R)) o () o).
T r T r
We balance the two terms by setting= n°/% /m!/?, and observe that < r < m if m < n® andn < m?;
sincem = ©(n?), both inequalities do hold in our case. Hence, the total remalh incidences under
consideration i€ (m®n%?) = O(n"/3).
It remains to bound the overall number of incidences inv@\points lying on the boundaries of at least

two cells. A standard argument, which we omit, shows thahtimaber of these incidences is al9¢n/?),
and thereby completes the proof of the theorem. O
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