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1 Introdu
tionLet S be a 
olle
tion of n pairwise-disjoint obje
ts in Rd . A binary spa
e partition (or BSPfor short) for S is a re
ursively de�ned 
onvex subdivision of spa
e obtained by 
uttingspa
e into two open regions C;C 0 by a hyperplane, and by 
onstru
ting re
ursively a BSPfor fs \ C j s 2 Sg within C and a BSP for fs \ C 0 j s 2 Sg within C 0; the pro
essterminates when ea
h (open) 
ell of the BSP is interse
ted by at most one obje
t of S.The input obje
ts are usually assumed to be pairwise disjoint; however, the de�nition of aBSP we have given is appli
able to any set of polyhedral obje
ts in Rd for whi
h no pair ofobje
ts interse
t in a full-dimensional set. In parti
ular, the de�nition applies to arbitrarysets of polyhedral obje
ts S that are not full-dimensional. The de�nition also applies to setsof 
urved obje
ts; however, the number of 
ells of the BSP will depend on the 
omplexityof polyhedral separators between pairs of obje
ts, and a BSP may not exist if the 
urvedobje
ts are allowed to interse
t.Binary spa
e partitions were introdu
ed by the 
omputer graphi
s 
ommunity [6, 7, 8℄and have numerous appli
ations for rendering, ray shooting and tra
ing, solid modeling,re
tangle tiling, et
. (see [5, 13℄).Ideally, a BSP for S should not split any obje
t of S into pie
es, and wind up with ea
hobje
t lying fully in a separate 
ell or fully on a 
utting hyperplane (see [3℄). However, in most
ases this is impossible; 
utting spa
e (and obje
ts) with a hyperplane may 
reate fragmentsof obje
ts that either lie in one of the two open halfspa
es bounded by the hyperplane or are
ontained in the hyperplane. The size of a BSP for a set of k-dimensional obje
ts (k � d) inRd is the number of k-dimensional fragments of obje
ts of S that it produ
es (in the ideal
ase, the size is n [3℄). We remark that one often de�nes the size of a BSP as the number of
onvex regions of Rd in the de
omposition. Here, we opt for the de�nition in terms of thenumber of obje
t fragments; this 
hoi
e makes some of the analysis 
leaner, parti
ularly inthe 
ase of BSPs of low-dimensional hyperre
tangles within higher-dimensional spa
es.One of the major resear
h dire
tions in this area is to 
onstru
t BSP's of small size.Paterson and Yao [9, 10℄ proved that for a set of n line segments in the plane there exists aBSP of size O(n logn), and when the segments are re
tilinear (i.e., parallel to the 
oordinateaxes), there exists a BSP of size at most 3n. They have also 
onje
tured that any set of nline segments admits a BSP of size O(n). Only very re
ently, a lower bound of 
(n log nlog log n),in the worst 
ase, has been obtained by C. T�oth [11℄. For both the general 
ase and theaxis-parallel 
ase, BSP's with the above size bounds 
an be 
omputed in O(n logn) time.Linear size bounds for BSP's have also been obtained (see [2℄) for sets of fat obje
ts, for setsof line segments having a bounded (O(1)) ratio between the lengths of the longest and theshortest segments, and for sets of homotheti
 obje
ts. A linear bound for segments in theplane with a �xed number of orientations was re
ently obtained by T�oth [12℄.The bound 3n of [10℄ on the size of a BSP for n axis-parallel line segments has been(impli
itly) improved by d'Amore and Fran
iosa in [1℄ to 2n. What they have expli
itlyobtained is an upper bound of 4n for axis-parallel re
tangles in 2D. By spe
ializing theiranalysis to the 
ase of segments, one obtains the bound 2n (or rather 2n � 1, with anobvious optimization). On
e more, in [4℄, the same approa
h, a

ompanied by an improved
harging s
heme, has redu
ed the upper bound for the 
ase of axis-parallel re
tangles to 3n.2



In this paper we 
onsider the 
ase in whi
h S is a 
olle
tion of axis-parallel1 hyperre
t-angles of various dimensions in Rd . While we do 
onsider some 
ases in whi
h the hyper-re
tangles are allowed to interse
t, unless otherwise spe
i�ed, we assume from now on thatthey are pairwise-disjoint. The simplest su
h 
ase is that of line segments (or re
tangles) inthe plane, mentioned above. In higher dimensions, Paterson and Yao [10℄ show that if S isa set of n (axis-parallel) line segments in Rd , then S admits a BSP of size O(nd=(d�1)), andthat this bound is tight in the worst 
ase. They also 
onsider the 
ase of re
tangles in R3and show that the same bound, O(n3=2), 
an also be obtained for re
tangles (and also forboxes). They leave as an open problem to obtain sharp bounds for the size of BSP's forhigher-dimensional hyperre
tangles in dimensions � 4.In this paper we improve and simplify the analysis leading to the bounds obtained in[10℄ and derive new bounds for the 
ases left open in that paper. Spe
i�
ally, we �rst
onsider the 
ase of axis-parallel line segments in the plane. We show, in Se
tion 2, thatthere exist 
olle
tions of n (axis-parallel) line segments in the plane for whi
h any re
tilinearBSP has size at least 2n�o(n), thus showing that the upper bound of [1℄ is worst-
ase tight,apart for lower-order terms. This answers the open problem posed by S. Smorodinsky atEuroCG'2000. We also give an improved lower bound for the 
ase of re
tangles in the plane,showing that in the worst 
ase a BSP must have size at least 73n� o(n).We then 
onsider the 
ase of axis-parallel line segments in Rd , and obtain, in Se
tion 3,a very simple alternative 
onstru
tion of BSP's of size O(nd=(d�1)). In addition to beingsimpler, the 
onstants of proportionality that our method yields appear to be 
onsiderablysmaller than those produ
ed by the te
hnique of [10℄. We also 
onsider the 
ase of re
tanglesin R3 , and again present an alternative simple 
onstru
tion of a BSP of size O(n3=2).We then (Se
tions 4,5) 
onsider higher-dimensional 
ases. We provide the �rst nontrivialbounds on the worst-
ase size of BSP's for hyperre
tangles of dimension greater than 1 inhigher dimensions, showing that, for k < d=2 there exist BSP's of size O(nd=(d�k)) for a setof n k-re
tangles in d dimensions, and that this bound is tight in the worst 
ase. This boundsubsumes the bound �(nd=(d�1)) for segments, mentioned above. In fa
t, both upper andlower bounds hold for any k � d� 1 if our re
tangles are allowed to interse
t.The next simplest 
ase that is not 
overed by the results reported so far is the 
ase k = 2and d = 4. We show that a BSP of size O(n5=3) exists for a set of n disjoint (axis-parallel)2-re
tangles in R4 , improving the bound O(n2) that follows from the general bounds (forpossibly interse
ting re
tangles) stated in the pre
eding paragraph. We also have a mat
hinglower bound of 
(n5=3)), showing that our upper bound is tight.Our results are summarized in Table 1.We make one �nal remark regarding the de�nition of BSP and how it applies to setsof hyperre
tangles that are not in general position2 in higher dimensions. One 
an modifythe de�nition of BSP in order to require that lower-dimensional sub
on�gurations of obje
tsthat are 
ontained in a 
utting hyperplane are de
omposed a

ording to a partitioning ofthe hyperplane, and then re
ursively down dimensions. This modi�
ation is useful in some1From now on, we freely drop the adje
tive \axis-parallel"; in all 
ases, the segments, re
tangles, orhyperre
tangles we 
onsider are axis-parallel.2Here, a set of hyperre
tangles is said to be in general position if for ea
h i = 1; : : : ; d the xi 
oordinatesthat de�ne the extents of the hyperre
tangles are all distin
t.3



d k upper bound lower bound2 1 2n� 1 (y) 2n� o(n)2 2 3n (y) 7n=3� o(n)d 1 O(nd=(d�1)) (�) 
(nd=(d�1)) (�)3 2 O(n3=2) (�) 
(n3=2) (�)d k < d=2 O(nd=(d�k)) 
(nd=(d�k))d k � d� 1 O(nd=(d�k)) 
(nd=(d�k))interse
ting4 2 O(n5=3) 
(n5=3)Table 1: Summary of our bounds. A bound tagged by (y) indi
ates a known bound, givenfor referen
e. A bound tagged by (�) indi
ates a known bound, rederived here with a simplerproof.appli
ations; e.g., see Van�e�
ek [14℄. It does lead to di�erent 
omplexity bounds on the size ofthe resulting de
omposition, sin
e, for instan
e, a set of n line segments that lie in a 
ommonhyperplane h in R4 require only a single 
utting hyperplane (h) for a BSP by our de�nition,resulting in two 
ells and size n (sin
e there are n obje
t fragments). However, the n segmentsmay form a 
on�guration in the three-dimensional spa
e of the hyperplane h su
h that thede
omposition of h by a three-dimensional BSP of the segments requires size 
(n3=2). (Seethe dis
ussion in Se
tion 6 of [10℄.) In this paper, we use the stri
t de�nition of BSP de�nedearlier (and introdu
ed in [8℄), not requiring that lower dimensional sub
on�gurations bere
ursively de
omposed. If the input obje
ts are in general position, there is no modi�
ationne
essary to our stated bounds on the sizes of BSPs if one were to 
onsider the modi�edde�nition of BSP; in 
ase the input is not in general position, though, our 
omplexity boundswould require appropriate modi�
ation under the modi�ed de�nition.2 Segments and Re
tangles in Two DimensionsWe start with the 
ase in whi
h S is a set of n axis-parallel pairwise-disjoint line segments inthe plane. By applying the method of d'Amore and Fran
iosa [1℄, whi
h is designed for the
ase of re
tangles (based on a minor variant of Paterson and Yao's method [10℄), we readilyobtain the following result for line segments:Theorem 2.1 A set of n axis-parallel and pairwise-disjoint line segments in the plane admitsa binary spa
e auto-partition of size at most 2n � 1. This BSP 
an be 
omputed usingO(n logn) time and spa
e and has the additional property that no input segment is 
ut morethan on
e.We turn our attention now to establishing the tightness of the upper bound. The best
onstru
tion known prior to this work is a 
y
le of thi
kness n=4, shown in Figure 1(a) forn = 20, whi
h requires a BSP of size at least 5n=4.4



(a) (b)
C1

C2

y=1

x=3

(
) (d)Figure 1: (a). A 
y
le 
on�guration of thi
kness w = 5. (b). A 4 � 4 1-grid. (
). A 4 � 42-grid (double grid). (d). Charging s
heme in a 5-grid.
5



Theorem 2.2 There exists a set S of n disjoint axis-parallel line segments with the propertythat any binary spa
e auto-partition of S has size at least 2n� o(n).Proof: If s; t 2 S, we say that s 
uts t if by extending the supporting line of s (within the
ell of the 
urrent BSP 
ontaining s and t), the segment t is the �rst that is 
ut in two parts.Any segment 
an 
ut at most two other segments (on either side of s). This de�nes a dire
tedsimple graph G = (S;E) with vertex set S, and edge set E given by the (asymmetri
) 
utrelation. A 
y
le is minimal if no proper subset of it is a 
y
le.In general, the size of the BSP is n + 
n, where 
n denotes the number of 
uts that aremade during the partitioning pro
ess. Sin
e 
n � n4 in the example of Figure 1(a), it yieldsthe lower bound n + n4 = 5n4 .Our 
onstru
tion for the lower bound is based on a grid-like 
on�guration of segments,as illustrated in Figure 1(b,
). We parameterize it by the number of an
hored horizontalsegments on the left side of R, and the number of an
hored verti
al segments on the bottomside of R: if these numbers are k and l respe
tively, we have a k � l simple grid (or a k � l1-grid); see Figure 1(b). We restri
t our attention to the set C of minimal 
y
les of length4 asso
iated with the (large and small) 
ells in the grid. It is easy to see that a BSP isobtained only when all 
y
les in the set C have been 
ut.First, 
onsider a k � k 1-grid, to obtain a lower bound on 
n. The number of 
ells ise = k2+(k�1)2, k2 of whi
h are small 
ells, and the total number of segments is n = 2k(k+1).Ea
h small 
ell is a 
y
le and requires at least one 
ut by itself. We have 
n � k2 = n2 �o(n),from whi
h we get a lower bound of 1:5n�o(n) on the size of any BSP for this 
on�guration.In order to improve this lower bound, we 
onsider a k � k m-grid, in whi
h ea
h singlesegment of the simple k�k 1-grid is repla
ed by a set of m parallel segments of equal length.A 2-grid is shown in Figure 1(
), and a portion of a 5-grid is shown in Figure 1(d). Herethere are n = 2mk(k + 1) segments and e = k2 + (k � 1)2 
ells.We 
laim that 
n � (m� 12)e; sele
ting m = k implies a lower bound of 2n� o(n) on thesize of any auto-partition BSP for this 
on�guration, sin
e
nn = (2k2 � 2k + 1)(2k � 1)4k2(k + 1) = 1� o(1):(To be more pre
ise, the lower-order term is O(n2=3).)For a given 
ell C, denote by A(C) the set of at most 4m segments asso
iated with C;namely, A(C) 
onsists of m segments on ea
h of the four sides of C. We say that 
ell C istou
hed by a 
utting line l if either (i) l interse
ts the interior of the 
ell, viewed as a 
onvexregion (square), or (ii) l is one of the supporting lines of the 4m segments asso
iated withC. Case (i) de�nes a middle 
ut, 
ase (ii) de�nes a boundary 
ut.The (
urrent) thi
kness of C, denoted w(C), is the minimum number of segments that oneneeds to 
ut su
h that there are no more 
y
les determined by C. We observe an equivalent
hara
terization of the (
urrent) thi
kness: the minimum number of segments that one needsto 
ut, su
h that w(C) is stri
tly de
reased. In the example of Figure 1(d), the thi
knessof the 
ell C1 after the �rst horizontal 
ut is 3, and one needs to 
ut at least 3 segments toredu
e it. After the se
ond verti
al 
ut, the thi
kness be
omes 2. The thi
kness of ea
h 
ellis de
reased during the 
utting pro
ess, from m to 0, through one or more 
uts.6



We employ a 
harging s
heme that 
harges ea
h 
ell of the grid with (at least) m � 12 .It maintains the following invariant: If a 
ell has not been tou
hed, its 
urrent 
harge is 0;if a 
ell has been tou
hed, and its 
urrent thi
kness is w (0 � w � m� 1), its 
harge is (atleast) m� w � 12 . Let us examine the �rst 
ut that tou
hes a �xed 
ell C1. The number oflo
ally 
ut segments in A(C1) is 
 = m. The 
harge (= m) is distributed to the 
ell and itsneighbor as illustrated in Figure 1(d): m� x� 12 = m� w1 � 12 to 
ell C1 and m� y � 12 toits neighbor 
ell. The total 
harge is (m� x� 12) + (m� y � 12) = m, sin
e x + y + 1 = m.Thus, the invariant holds after the �rst 
ut that tou
hes C1 is made.For any of the subsequent 
uts, we distinguish two 
ases:Case 1: The 
ut does not redu
e the thi
kness of any adja
ent 
ell. If the 
ut does notredu
e the 
urrent thi
kness of C1, we 
an just ignore the ex
ess 
harge. If it does redu
e w1,let w01 < w1 be its redu
ed thi
kness. We only have to ensure that the number 
 of lo
ally
ut segments in A(C1) satis�es 
 � w1�w01 to maintain the invariant. But this is 
lear, sin
e
 � w1 from our se
ond (equivalent) 
hara
terization of thi
kness.Case 2: The 
ut redu
es the thi
kness w2 of the adja
ent 
ell C2 (as well as the thi
knessw1 of C1, otherwise the ex
ess 
harge is ignored). Denote by �1 = w1�w01; �2 = w2�w02;the two redu
tions. We only have to ensure that the number 
 of lo
ally 
ut segments inA(C1) satis�es 
 � �1 + �2 to maintain the invariant. Sin
e w01 + w02 = m � 1 (by theassumption of redu
tion), this is equivalent to 
 +m� 1 � w1 + w2 whi
h follows from theinequalities 
 � w2 and m� 1 � w1. The �rst is implied by our equivalent 
hara
terizationof thi
kness (more generally, 
 � max(w1; w2)), and the se
ond is true sin
e this is not the�rst 
ut for C1.After the partitioning pro
ess ends, ea
h 
ell has thi
kness 0, and its 
harge is (at least)m� 12 , as desired. 2We turn now to the 
ase in whi
h S is a set of n disjoint axis-parallel re
tangles. The bestknown upper bound on the size of the BSP is 3n, given in the re
ent paper of Berman et al. [4℄,improving the prior bound of 4n [1℄. Our 
onstru
tion for line segments gives immediately alower bound of 2n� o(n) (a similar bound was also obtained independently in [4℄; however,their bound applies only for re
tangles, not for segments). We are able to show an evenbetter lower bound for re
tangles:Theorem 2.3 There exists a set S of n disjoint axis-parallel re
tangles (in fa
t, of n unitsquares, as in Figure 2) with the property that any binary spa
e auto-partition of S has sizeat least 73n� o(n).Proof: Consider a k � k square 
on�guration (with n = k2 unit squares) with the patternshown in Figure 2. We have s = (k � 1)2 \jun
tions," 
orresponding to the small 
ells inthe grid 
on�guration (of size � > 0), at ea
h of whi
h 4 squares are \meeting". Considerany orthogonal 
ut in the BSP tree, having (physi
al) length l. We distinguish 3 types ofparts of our 
ut: (i) the border part, if any, of length lb � 0 lies on a side or in between the2 sides of 2 adja
ent squares (adja
en
y in the grid refers to the N,S,E,W squares only); (ii)the aligned part, if any, of length la � 0 measures the at most 2 parts of length � 1 adja
entto the border part; (iii) the middle part, if any, of length lm � 0 en
ompasses the rest of thelength. 7



Figure 2: A set of disjoint unit squares used in the lower bound of Theorem 2.3.

Figure 3: A 4 � 6 square 
on�guration (an instan
e for T (3; 5)); the three portions of the
ut are: border (solid), aligned (dashed) and middle (dotted)
8



We have l = lb + la + lm; lb � 1 + �; la � 2: As before, let 
n denote the number of
uts (additional number of obje
t parts in the BSP tree); then, the size of the BSP tree isn+ 
n. It is easy to see that ea
h of the (k� 1)2 jun
tions will 
reate at least one 
ut. Thisgives us a lower bound of 2n � o(n) on the size of the BSP tree. To a

ount for more, wewill prove a lower bound on the number of additional parts generated by middle portions ofthe 
uts: unless a re
tangular sub
ell R obtained during the BSP tree 
onstru
tion has one\short" side, any 
ut of R will generate additional parts due to the middle part 
omponent,whi
h are una

ounted for by the jun
tions inside the re
tangle. For i; j � 0, denote byT (i; j) the minimum number of additional \middle" parts in the BSP tree attributed to themiddle portions of the 
ut, obtained when a re
tangle 
ontaining a 
omplete i � j array ofinterior jun
tions is 
ut by a line. It is easy to see that T (3; 3) � 1 (a 3� 3 array of interiorjun
tions is illustrated in Figure 2). A lower bound on the size of a BSP tree (with n = k2)for a k � k square 
on�guration isn+ 
n = k2 + (k � 1)2 + T (k � 1; k � 1):We pro
eed to prove by indu
tion on i + j the followingClaim 2.4 For i; j � 3; T (i; j) � (i�2)(j�2)3 .Proof: The basis i = j = 3 holds by the above observation. Without loss of generalityassume the orthogonal 
ut splits the re
tangle 
ontaining the i� j array of jun
tions into 2subre
tangles 
ontaining i�j1 and i�j2 arrays of jun
tions, with j�1 � j1+j2 � j; j1 � j2.Then T (i; j) � T (i; j1) + T (i; j2) + i� 2:(For example, the bounding re
tangle of the square 
on�guration in Figure 3 would 
ontributeT (3; 5) \middle" parts, while the 2 resulting subre
tangles after the horizontal 
ut is madewould ea
h 
ontribute T (1; 5) \middle" parts.) We distinguish 3 
ases:Case 1. j � 5. Then, T (i; j) � i� 2 � (i� 2)(j � 2)3 :The last inequality is satis�ed by the 
hoi
e of j.Case 2. j � 6; j1 � 2. Sin
e j2 � j � 3 � 3, we 
an use the indu
tive bound on T (i; j2).T (i; j) � T (i; j2) + i� 2 � T (i; j � 3) + i� 2� (i� 2)(j � 5)3 + i� 2 = (i� 2)(j � 2)3 :Case 3. j � 6; j1; j2 � 3. Using the indu
tive bounds on both terms yieldsT (i; j) � T (i; j1) + T (i; j2) + i� 2� (i� 2)(j1 � 2)3 + (i� 2)(j2 � 2)3 + i� 2= (i� 2)(j1 + j2 � 1)3 � (i� 2)(j � 2)3 :9



2Our lower bound on the size of the BSP tree be
omesk2 + (k � 1)2 + (k � 3)23 = 73n� o(n):We note that, most likely, the 
onstant in the lower bound o�ered by our square 
on�gu-ration 
annot be improved substantially, if at all; 
ertainly, a BSP of size smaller than 2:5n
an be 
onstru
ted for this 
on�guration: using a 3 � k strip 
utting yields a BSP of size� 229 k2 � 2:444n, using a 4� k strip 
utting yields a BSP of size � 3916k2 � 2:437n, et
. 23 Segments in Higher Dimensions and Re
tangles inR3Segments in Three Dimensions. Let E = X[Y [Z be a set of n axis-parallel segmentsin 3-spa
e, where X (resp. Y; Z) is the subset of segments of E that are parallel to the x-axis(resp. to the y-axis, z-axis). Put x = jXj, y = jY j, z = jZj, so that x + y + z = n. Forsimpli
ity of presentation, suppose that the segments of E are in general position, meaningthat no two endpoints of di�erent segments have the same x, y or z-
oordinate.We 
onstru
t a binary spa
e partition of E in the following simple manner.(i) If one of x; y; z is zero, say z = 0, then we 
an obtain a BSP of size O(n) by a sequen
eof horizontal 
uts.(ii) Suppose next that ea
h of x; y; z is at least 1 and that z � x; y. Then we have z � n=3and x+y � 2n=3. Put t = �2pxyz � � 2pmaxfx; yg � 2pn3 . We partition spa
e into a sta
kof t horizontal slabs �1; : : : ; �t by a sequen
e of horizontal 
uts, so that, if xi; yi; zi denote,respe
tively, the numbers of segments in X; Y; Z that interse
t (the interior of) �i, then werequire that xi � x=t, for ea
h i. We 
learly also have Pi yi � y.For ea
h slab �i, proje
t all the segments of E that interse
t �i onto the xy-plane. Weobtain xi horizontal segments, yi verti
al segments and zi points. We partition the segmentsinto subsegments at their interse
tion points. The number of su
h points is ki � xiyi andthe total number of subsegments is xi + yi + 2ki � xi + yi + 2xiyi.We apply the planar binary spa
e partitioning s
heme of Theorem 2.1, and note thatnone of the zi � z singleton points will be split. We lift this planar partitioning s
heme intothree dimensions, lifting ea
h 
ut by a line (segment) in the xy-plane to a 
ut by the verti
alplane (strip) 
ontaining the line (segment). It follows that the size of the partition within �iis at most 2(xi + yi + 2xiyi) + zi � 2xt + 2yi + 4xyit + z:Hen
e the overall size of the BSP is at most 2x+2y+ 4xyt + zt � 2(x+ y) + 4pxyz + z. Wehave thus shown:Theorem 3.1 Let E be a 
olle
tion of n segments in 3-spa
e, 
onsisting of x segmentsparallel to the x-axis, y segments parallel to the y-axis and z segments parallel to the z-axis.Then E admits a BSP of size 4pxyz + 2n� z, for z � x; y.10



Remark: The maximum value of this bound is easily seen to be at most 43p3n3=2+ 53n. Thisimproves signi�
antly the 
onstant in the bound given in [10℄. The lower bound 
onstru
tiongiven in [10℄ yields a BSP of size at least 13p3n3=2 + n. This leaves the open problem oftightening the gap of the fa
tor 4 in the 
onstant of proportionality between our upper boundand this lower bound.Segments in Higher Dimensions. Let E = X1[X2[� � �[Xd be a set of n axis-parallelsegments in d-spa
e, where Xi is the subset of segments of E that are parallel to the xi-axis,for i = 1; : : : ; d. Put ni = jXij, for i = 1; : : : ; d, so that n1 + � � �+ nd = n.We re-establish the following result of [10℄ with a simpler proof whi
h also gives better
onstants of proportionality. As noted in [10℄, the upper bound is tight in the worst 
ase|seealso Se
tion 4 below for an extended lower bound.Theorem 3.2 Let E be a 
olle
tion of n segments in d-spa
e, for d � 3, 
onsisting of nisegments parallel to the xi-axis, for i = 1; : : : ; d. Then E admits a BSP of size at most(2d� 2)(n1n2 � � �nd)1=(d�1) + 2(n1 + n2 + � � �+ nd):Proof: We pro
eed by indu
tion on d, where the base 
ase d = 3 has already been treated.We assume, for simpli
ity of presentation, that the segments of E are in general position,meaning that no two endpoints of di�erent segments have an equal 
oordinate.(i) If one of the ni's is zero, say nd = 0, then we 
an obtain a BSP of linear size by asequen
e of 
uts orthogonal to the xd-axis.(ii) Suppose next that ea
h of the ni's is at least 1 and that nd � nd�1 � � � � � n1. Putt = &(n1n2 � � �nd�1)1=(d�1)n(d�2)=(d�1)d ' � n1=(d�1)1 � (n=d)1=(d�1):We partition spa
e into a sta
k of t slabs �1; : : : ; �t by a sequen
e of 
uts orthogonal to thexd-axis, so that the following property holds. Let n(�)i denote the number of segments inXi that interse
t (the interior of) the slab ��. We require that n(�)1 � n1=t, for ea
h �. We
learly also have P� n(�)i � ni, for i = 2; : : : ; d� 1.For ea
h slab ��, proje
t all the segments of E that 
ross �� onto the hyperplane xd = 0.We obtain a 
olle
tion of n(�)1 +� � �+n(�)d�1 segments whi
h, by our general position assumption,are pairwise disjoint (as long as d > 3), and n(�)d points. We apply the partitioning algorithmfor d�1 dimensions, provided by the indu
tion hypothesis, to the proje
ted set, lifting, alongthe xd dimension, ea
h (d � 2)-dimensional 
ut performed by this algorithm to a (d � 1)-dimensional 
ut (within ��). Note that the presen
e of points in the input has little e�e
t onthe algorithm and adds only a linear term to the size of the resulting BSP: We simply ignorethe points and apply the algorithm only to the segments. When we are done, we take the
ells of the resulting BSP that 
ontain the input points, and split any su
h 
ell that 
ontainsmore than one point into sub
ells, say by a sequen
e of parallel 
uts.11



By the indu
tion hypothesis, the size of the resulting BSP is at mostX� �(2d� 4)�n(�)1 n(�)2 � � �n(�)d�1� 1d�2 + 2�n(�)1 + n(�)2 + � � �+ n(�)d �� �(2d� 4)�n1t � 1d�2 �X� �n(�)2 � � �n(�)d�1� 1d�2 + 2(n1 + n2 + � � �+ nd�1) + 2tnd:We need the following easy inequality:Claim: Let m be a positive integer and let a1; : : : ; am; b1; : : : ; bm be nonnegative. Then(a1a2 � � �am)1=m + (b1b2 � � � bm)1=m ��(a1 + b1)(a2 + b2) � � � (am + bm)�1=m:Proof: By indu
tion on m. In the 
ase m = 1, there is nothing to prove. For m > 1 wehave, using H�older's inequality,(a1a2 � � �am)1=m + (b1b2 � � � bm)1=m �(a1 + b1)1=m � h(a2 � � �am)1=(m�1) + (b2 � � � bm)1=(m�1)i(m�1)=m :Combining this with the indu
tion hypothesis, the 
laim follows. 2Hen
e, applying this 
laim repeatedly, we 
on
lude that the size of our BSP is at most(2d� 4)�n1t �1=(d�2) � (n2 � � �nd�1)1=(d�2) + 2(n1 + n2 + � � �+ nd�1) + 2tnd =(2d� 4)�n1n2 � � �nd�1t �1=(d�2) + 2(n1 + n2 + � � �+ nd�1) + 2tnd:By the 
hoi
e of t, this be
omes at most(2d� 4 + 2) (n1n2 � � �nd)1=(d�1) + 2(n1 + n2 + � � �+ nd):This establishes the indu
tion step and thus 
ompletes the proof of the theorem. 2Remark: Theorem 4.1 given below subsumes in general Theorems 3.1 and 3.2. We have
onsidered separately these theorems be
ause they also apply to situations where the sizes ofthe sets Xi are unbalan
ed and be
ause their more 
areful analysis leads to smaller 
onstantsof proportionality.Re
tangles in Three Dimensions. Let R be a set of n pairwise-disjoint axis-parallelre
tangles in 3-spa
e, and let E denote the set of their edges. Write E = X [ Y [ Z, asabove, and put x = jXj, y = jY j, z = jZj, so that x+ y+ z = 4n. We establish the followingtheorem; the upper bound O(n3=2) was also obtained in [10℄.12



Theorem 3.3 Let R be a 
olle
tion of n axis-parallel re
tangles in 3-spa
e, having a total ofx edges parallel to the x-axis, y edges parallel to the y-axis and z edges parallel to the z-axis.Then R admits a BSP of sizeO(n(min fx; y; zg)1=2 + n) = O(n3=2):Proof: We 
onstru
t a binary spa
e partition of R in the following manner.(i) If one of x; y; z is zero, say z = 0, then all re
tangles are horizontal, and we 
an obtaina linear-size BSP as above.(ii) Suppose next that ea
h of x; y; z is at least 1 and that z � x; y. Then we havez � 4n=3 and x + y � 8n=3. Putt = �x + ypz � � (8n=3)p4n=3 = 4p33 pn:We partition spa
e into t horizontal slabs �1; : : : ; �t, as above, so that xi + yi � (x + y)=t,for ea
h i, where xi; yi; zi are as de�ned in Se
tion 3. We then havexiyi � �xi + yi2 �2 � (x + y)24t2 � z4 :Fix a slab � = �i, and 
onsider the set R� of re
tangles that interse
t �. These re
tanglesare of two kinds: (a) re
tangles that have a horizontal edge in the interior of �; (b) verti
alre
tangles whose boundary 
rosses � only at two verti
al segments, implying that they haveno horizontal edge inside �. Note that re
tangles of type (b) 
ontribute only to the zi-
ountwithin � but not to the xi and yi-
ounts. The re
tangles of type (a) are either horizontalre
tangles that are fully 
ontained in � or verti
al re
tangles that `start' or `end' (or both)within �. We refer to the portions within � of all these re
tangles as bla
k re
tangles. Werefer to the re
tangles of type (b) as red. Their number is at most zi2 � z2 .We proje
t � onto the xy-plane. The proje
tions of the red re
tangles are red segmentsthat are pairwise disjoint and are also disjoint from the proje
tion of any bla
k re
tangle.Those bla
k proje
tions 
an be either segments or re
tangles, and they 
an interse
t (oroverlap) ea
h other.Let G be the (nonuniform) grid formed in the xy-plane by the horizontal and verti
allines that 
ontain the edges of the proje
tions of the bla
k re
tangles. We refer to the atomi
re
tangles of G as pixels. We 
lassify those pixels into red pixels, whi
h are those that areinterse
ted by a red segment, and the remaining bla
k pixels. Note that there are a total ofO(xiyi) pixels. The bla
k pixels 
an be grouped into bla
k strips, whi
h are maximal sets of
onse
utive bla
k pixels within a single 
olumn of G.We now apply the 2-dimensional BSP 
onstru
tion (provided by Theorem 2.1) to the
olle
tion of bla
k strips and red segments. We obtain a de
omposition of the xy-plane intoO(xiyi+ zi) re
tangular subregions. Moreover, any red segment or bla
k strip is split by thealgorithm at most on
e.We lift the BSP just 
onstru
ted in the z-dire
tion, to obtain a partition of the slab �by verti
al planes orthogonal to the x- and the y-axes. Let K be a 
ell produ
ed by this13



partitioning. If K proje
ts to a (portion of a) bla
k strip, then it needs further partitioning,whi
h we do as follows. Ignoring bla
k re
tangles that overlap the boundary of K (whi
hare not part of the subproblem at K anyway), any other bla
k re
tangle that interse
ts K
rosses it from left to right, i.e., neither of its edges that are orthogonal to the x-axis meetsK. Proje
t K onto the yz-plane. By the observation just made, the nK bla
k re
tanglesthat interse
t K proje
t to a 
olle
tion of nK pairwise-disjoint segments, and we 
an againapply the 2-dimensional BSP 
onstru
tion within this proje
tion, e�e
tively obtaining aBSP for K that uses only 
uts parallel to the x-axis, whose size is O(nK). We 
laim thatPK nK = O(xiyi). Indeed, a bla
k re
tangle that is 
ounted in nK must have an edgeparallel to the x-axis that interse
ts K. This follows from the fa
t that any bla
k re
tanglethat violates this property must be horizontal and its xy-proje
tion must 
over that of K
ompletely. However, K is delimited from above and from below (in the y-dire
tion) byred pixels, whi
h no horizontal bla
k re
tangle 
an 
ross. This 
ontradi
tion establishes theasserted property. Now an (x-parallel) edge of a bla
k re
tangle 
an 
ross at most xi bla
kregions, and sin
e we have only yi su
h edges, we 
on
lude that PK nK = O(xiyi).We have thus 
onstru
ted a BSP of size O(xiyi + zi) = O(z) for ea
h of the t slabs �i,thus obtaining an overall BSP of size O(zt) = O((x + y)z1=2). This 
ompletes the proof ofthe theorem. 24 Arbitrary Hyperre
tangles in Higher DimensionsLet R be a set of n axis-parallel k-dimensional hyperre
tangles (k-re
tangles, or just re
tan-gles, in short) in Rd . We assume that k < d=2 and, for simpli
ity, that the k-re
tangles arein general position, as above. We note that this assumption implies that no pair of re
tanglesinterse
t.Ea
h re
tangle r 2 R has k extent 
oordinates, i.e., 
oordinates xi for whi
h the proje
tionof r onto the xi-axis is an interval with nonempty interior, and d�k �xed 
oordinates (thosefor whi
h this proje
tion is a singleton point).Let K be an axis-parallel box in Rd . Let r be a re
tangle in R and put r0 = r \K. Wesay that r is an xi-pass-through in K if the proje
tion of r0 on the xi-axis is equal to theproje
tion of K on the same axis. We denote by pt(r;K) the tuple of 
oordinates for whi
hr is a pass-through in K. The main result of this se
tion isTheorem 4.1 (a) A set R of n axis-parallel k-re
tangles in d-spa
e, as above, admits a BSPof size O(nd=(d�k)). (b) There exist sets R of n axis-parallel k-re
tangles in Rd , as above, forany n, d and k < d=2, so that any (re
tilinear) binary spa
e auto-partition for R has size
(nd=(d�k)).Proof of the upper bound: Let R be a set of n k-re
tangles in d-spa
e, satisfying theabove properties. Put t = 
n1=(d�k), for some absolute 
onstant 
 > 1. The BSP 
onstru
tionpro
eeds through d phases, where in the j-th phase we 
ut ea
h of the 
ells produ
ed in thepre
eding phases by hyperplanes orthogonal to the xj-axis. Ea
h 
ut that we perform is atsome �xed 
oordinate of some re
tangle in R.14



In the �rst phase we sli
e Rd by a sequen
e of t�1 hyperplanes orthogonal to the x1-axis,partitioning spa
e into t slabs, so that ea
h slab � 
ontains at most n=t re
tangles that areeither orthogonal to x1 or have an extent in the x1-
oordinate but are not x1-pass-throughsin �.Suppose we are in the j-th phase. Let � be a 
ell (subslab) produ
ed by the previousphases. We assume indu
tively that, for ea
h subset M of f1; : : : ; j � 1g of size jM j � k, �
ontains at most n=tj�1�jM j re
tangles that are pass-throughs in exa
tly the 
oordinates inM . (We note that this property holds for j = 2.)We 
ut � by O(t) 
uts orthogonal to the xj-axis, to ensure that, for ea
h subset M asabove, any resulting subslab �0 
ontains at most n=tj�jM j re
tangles that were pass-throughsin � in exa
tly the 
oordinates in M and are not xj-pass-throughs in �0. (By the indu
tionhypothesis, � 
ontains at most n=tj�1�jM j su
h re
tangles, so it is easy to 
ut this numberdown by a fa
tor of t for ea
h �0.) In addition, one also has the property that for ea
h subsetM of f1; : : : ; jg of size � k that 
ontains j, �0 
ontains at most n=tj�jM j re
tangles that arepass-throughs in exa
tly the 
oordinates inM . (These bounds are simply `
arried over' fromthe indu
tively assumed bounds for � and j � 1.)This establishes the indu
tive property for j, and thus allows us to 
ontinue in thismanner until all d phases are exe
uted.Let us analyze the performan
e of this partitioning s
heme. We 
laim that, for 
 > 1,none of the �nal 
ells 
an 
ontain any re
tangle in their interior. Indeed, let � be a �nal 
ell.By the above property, for ea
h set M of 
oordinates of size jM j � k, there are at mostntd�jM j = 1
d�jM jn d�jMjd�k �1 = 1
d�jM jn(k�jM j)=(d�k) � 1
d�k(portions of) re
tangles 
ontained in � that are pass-throughs in � in exa
tly the 
oordinatesinM . By 
hoosing 
 > 1 we are guaranteed that the interior of � does not meet any re
tangleof R.Hen
e the resulting subdivision is indeed a BSP for R. The number of 
ells of this BSP is
learly O(td) = O(nd=(d�k)), with the 
onstant of proportionality depending (exponentially)on d and k. Further, any one re
tangle is 
ut into at most tk = nk=(d�k) pie
es, implyinga bound of O(nd=(d�k)) on the number of fragments. This 
ompletes the proof of the upperbound.Proof of the lower bound: Put I = [0; n1=(d�k)+1℄, and letK be the 
ube Id. Put L = �dk�.For ea
h k-tuple � of 
oordinates, we 
onstru
t n k-re
tangles whose extent 
oordinates arethose of � , as follows. Put E = f1; 2; : : : ; n1=(d�k)gd�k. For ea
h a 2 E 
onstru
t a re
tangler = r(a) whose i-th �xed 
oordinate is ai + "(a; �), and whose proje
tion on ea
h of theextent 
oordinates (i.e., those in �) is I. Here "(a; �) is a number in (0; 1), so that di�erentpairs (a; �) are assigned di�erent numbers. We thus obtain a 
olle
tion R of a total of Lnre
tangles.We 
laim that any axis-parallel BSP for R must 
onsist of 
(nd=(d�k)) 
ells. Considerthe integer grid G = f1; 2; : : : ; n1=(d�k)gd. With ea
h g 2 G asso
iate the grid 
ell Q(g) =Qdi=1(gi; gi + 1). A grid 
ell Q = Q(g) is 
rossed by exa
tly L re
tangles of R: For ea
hk-tuple of 
oordinates there is exa
tly one re
tangle of R whose extent 
oordinates are those15



in the tuple, that 
rosses Q|it is the re
tangle whose �xed 
oordinates agree with the
orresponding elements of g.Sin
e L > 1, any BSP forRmust have 
uts that 
ross Q, for otherwise Q will be 
ontainedin a single 
ell of the BSP, whi
h is impossible sin
e that 
ell is now 
rossed by more thanone re
tangle of R. Moreover, we argue that Q must be 
ut by (portions of) hyperplanes inat least k di�erent orientations (we omit the easy proof). Halt the BSP 
onstru
tion rightafter Q is 
ut for the �rst time by hyperplanes in k di�erent orientations; suppose that theyare the �rst k 
oordinates. Let r be the unique re
tangle of R that 
rosses Q and whoseextent 
oordinates are the �rst k 
oordinates. For ea
h i = 1; : : : ; k let hi be a hyperplaneorthogonal to xi that has already 
rossed Q. Then r \ �Tki=1 hi� is a singleton point v|avertex of a portion of r that the BSP has just formed. We assign Q to this portion of r, or,more pre
isely, to the �nal portion of r that will be formed by the BSP and will have v as avertex. No su
h portion 
an be 
harged by more than 2k grid 
ells, whi
h implies that thenumber of fragments of re
tangles in R that the BSP has to form is at least proportional tothe number of grid 
ells, so the BSP has size 
(nd=(d�k)), as asserted. 2Remark: The upper bound of Theorem 4.1 hold also for d=2 � k � d � 1, even if there
tangles in R are allowed to interse
t. The lower bound applies also for d=2 � k � d� 1,but the 
onstru
tion uses re
tangles that interse
t. The proofs are essentially identi
al.5 Disjoint 2-Re
tangles in R4Let R be a set of n axis-parallel pairwise disjoint 2-re
tangles in R4 . This is the simplestinstan
e not 
overed by Theorem 4.1.Theorem 5.1 (a) A set R of n axis-parallel pairwise-disjoint 2-re
tangles in R4 admitsa BSP of size O(n5=3). (b) There exist 
olle
tions of n (axis-parallel) pairwise-disjoint 2-re
tangles in R4 that only admit (re
tilinear) BSP's of size 
(n5=3).Proof of the upper bound: Let K be an axis-parallel box in R4 . Apply the same round-robin 
onstru
tion given in the pre
eding se
tion, but with t = 
0n1=6 for an appropriate 
on-stant 
0. We obtain O(n2=3) sub
ells, so that ea
h sub
ell � 
ontains at most n=t2 = O(n2=3)re
tangles that are pass-throughs in two 
oordinates, at most n=t3 = O(n1=2) re
tangles thatare pass-throughs in exa
tly one 
oordinate, and at most n=t4 = O(n1=3) re
tangles that arenot pass-throughs in any 
oordinate.Lemma 5.2 A sub
ell � 
annot 
ontain two re
tangles r; r0 su
h that r is pass-through in �in two 
oordinates and r0 is pass-through in � in the two 
omplementary 
oordinates.Proof: Any two su
h re
tangles must interse
t, 
ontrary to assumption. 2By Lemma 5.2, it is easily veri�ed that there are only two possible maximal values forthe set pt(�) � fpt(r; �) j r is a re
tangle that ispass-through in � in 2 
oordinatesg;16



up to a permutation of the 
oordinates; namely:(i) pt(�) � f(1; 2); (1; 3); (2; 3)g(ii) pt(�) � f(1; 4); (2; 4); (3; 4)g:Case (i). Consider �rst 
ase (i). Note that in this 
ase all the re
tangles that are pass-throughs in � in 2 
oordinates are orthogonal to the x4-axis and lie at di�erent heights.We 
ut � by O(n1=6) 
uts orthogonal to the x4-axis so that ea
h of the O(n5=6) sub
ells
ontains at most n1=2 (portions of) re
tangles. In parti
ular, ea
h sub
ell 
ontains at mostn1=2 re
tangles that are pass-throughs in 2 
oordinates, at most n1=3 re
tangles that arepass-throughs in 1 
oordinate, and at most n1=6 re
tangles that are not pass-throughs in any
oordinate. By Lemma 5.2, the extent 
oordinates of the 2-
oordinate-pass-throughs in asub
ell may again fall into either 
ase (i) or 
ase (ii) (with a possible new permutation of the
oordinates). For a sub
ase-(i) sub
ell �, we 
ut � by O(n1=6) 
uts orthogonal to the x4 axis,resulting in a total of O(n) subsub
ells ea
h 
ontaining at most n1=3 (portions of) re
tangles.For a sub
ase-(ii) sub
ell �, we apply the s
heme des
ribed below, based on a round-robin
utting of ea
h sub
ell into n3=6 pie
es ea
h 
ontaining at most n1=6 (portions of) re
tangles.If we denote by F (n) the maximum size of a BSP that the algorithm 
onstru
ts for anyinput set of n pairwise-disjoint axis-parallel 2-re
tangles in R4 , then the overall number of�nal 
ells produ
ed for 
ells � that belong to 
ase (i) is O(n)F (n1=3) +O(n4=3)F (n1=6).Case (ii). Next 
onsider 
ase (ii). We exe
ute a round-robin pro
edure that only makes
uts orthogonal to the x1, x2, and x3-axes. At ea
h stage of this pro
edure we make t =O(n1=6) 
uts. This partitions ea
h of the pre
eding O(n2=3) 
ells into O(n1=2) sub
ells, for atotal of O(n7=6) sub
ells. This 
an be done so that ea
h sub
ell � 
ontains� at most n2=3=t2 = n1=3 re
tangles that are pass-throughs in � in two 
oordinates, oneof whi
h is x4,� at most n1=2=t = n1=3 re
tangles that are pass-throughs in � in two 
oordinates, noneof whi
h is x4,� at most n1=2=t2 = n1=6 re
tangles that are pass-throughs in � in exa
tly one 
oordinate,� and no other re
tangles.Note that, be
ause of Lemma 5.2, the existen
e of 2-
oordinate-pass-throughs of the se
ond
ategory annihilates those pass-throughs of the �rst 
ategory that have 
omplementary extent
oordinates. Consequently, the extent 
oordinates of the 2-
oordinate-pass-throughs in �may again fall into either 
ase (i) or 
ase (ii) (with a possible new permutation of the
oordinates).In sub
ase (i) we pro
eed in a manner similar to the one above, 
utting � by O(n1=6) 
utsorthogonal to the x4-axis, to obtain O(n1=6) sub
ells, ea
h 
ontaining at most n1=6 re
tangles,for an overall re
ursive bound of the form O(n4=3) � F (n1=6).In sub
ase (ii), with, say, pt(�) = f(1; 4); (2; 4); (3; 4)g, we again pro
eed as above,
utting � in a round-robin fashion by 
uts orthogonal to the x1, x2, and x3-axes, making17



t = O(n1=6) 
uts in ea
h round. This 
an be done so as to eliminate the at most n1=6re
tangles that are pass-throughs in one 
oordinate, as well as all of the at most n1=3 2-
oordinate-pass-throughs. Hen
e this step produ
es a BSP for �, whose size is O(n1=2), fora total of O(n7=6 � n1=2) = O(n5=3).Putting everything together, we obtain the following re
urren
e for F (n):F (n) = O(n5=3) +O(n) � F (n1=3) +O(n4=3) � F (n1=6);whose solution is easily seen to be F (n) = O(n5=3):Proof of the lower bound: Let G be the n2=3�n1=3�n1=3�n1=3 integer grid in 4-spa
e.Let I denote the interval [0; n1=3+1℄ and let I 0 denote the interval [0; n2=3+1℄. We 
onstru
tthe following four families of re
tangles:R1 = ffi+ "(1)i;j g � fj + "(1)i;j g � I � I ji = 1; : : : ; n2=3; j = 1; : : : ; n1=3gR2 = ffi+ "(2)i;j g � I � fj + "(2)i;j g � I ji = 1; : : : ; n2=3; j = 1; : : : ; n1=3gR3 = ffi+ "(3)i;j g � I � I � fj + "(3)i;j g ji = 1; : : : ; n2=3; j = 1; : : : ; n1=3gR4 = fI 0 � [i + "(4)i;j;k; i+ "(5)i;j;k℄� [j + "(4)i;j;k; j + "(5)i;j;k℄� [k + "(4)i;j;k; k + "(5)i;j;k℄ j i; j; k = 1; : : : ; n1=3g;where the "(m)i;j 's and "(m)i;j;k's are all distin
t small positive real numbers (say, at most 0:1). Inaddition, we require that all the intervals ["(4)i;j;k; "(5)i;j;k℄ do not 
ontain any of the numbers "(m)i;j ,for m = 1; 2; 3. The elements of R4 are (long and skinny) 4-dimensional boxes rather thanre
tangles, but we 
an repla
e ea
h of them by its 24 bounding (2-dimensional) re
tangles,slightly shifted away from ea
h other, to maintain the general position property. Note thatthe re
tangles in R = S4i=1Ri are pairwise disjoint.Fix any 1 � i � n2=3, 1 � j; k; ` � n1=3, and 
onsider the 
ube�(i; j; k; `) = [i; i+ 0:1℄� [j; j + 0:1℄� [k; k + 0:1℄� [`; `+ 0:1℄:We refer to �(i; j; k; `) as the jun
tion at (i; j; k; `).Consider any re
tilinear BSP for R, namely, one that only uses 
uts orthogonal to the
oordinate axes. It is 
lear that ea
h jun
tion � = �(i; j; k; `) must be 
ut by at least onehyperplane of the BSP, or else the BSP will have a �nal 
ell that is interse
ted by more thanone re
tangle of R.If the �rst hyperplane that interse
ts � is orthogonal to the x1-axis, then it interse
tsthe unique skinny box of R4 that 
rosses �. Su
h an interse
tion is a tiny 3-re
tangle thatlies inside �. Hen
e the number of fragments of the boxes in R4 produ
ed by the BSP is atleast equal to the number of jun
tions � with this property.Consider then a jun
tion � = �(i; j; k; `) that is not 
rossed (for the �rst time) by anyhyperplane orthogonal to the x1-axis. We make the following 
laim:18



Claim 5.3 Either the box of R4 that 
rosses � is eventually 
ut as in the pre
eding para-graph, or else there exists a re
tangle in R1 [R2 [R3 that is split by the BSP into subre
t-angles, so that at least one of them has a vertex inside �.Intuitively, the only way to \get rid" of the box of R4 that 
uts � by 
uts parallel to x1 isto 
ut along ea
h of its 3-D fa
ets; moreover, one 
annot get rid of the other three re
tanglesin R1 [ R2 [ R3 that 
ross � without making at least two di�erently-oriented 
uts, ea
hbeing orthogonal to one of the axes x2, x3, x4.Proof of the Claim: Suppose, with no loss of generality, that the �rst hyperplane h ofthe BSP that 
uts � is orthogonal to the x2-axis. Then h splits ea
h of the two re
tanglesof R2 [ R3 that 
ross � into two subre
tangles, and h may fully 
ontain only the re
tangleof R1 that 
rosses � (if at all). The box of R4 that 
rosses � meets at least one of the twosub
ells into whi
h � is split. It follows that ea
h of the two pie
es into whi
h � has beensplit by h, whi
h is met by all three elements of R2 [R3 [R4 that 
ross � (and at least oneof these two sub-jun
tions has this property), must be further 
ut at least on
e more.Suppose �rst that the next 
ut of su
h a sub-jun
tion �0 is by a hyperplane h0 orthogonalto another axis. If h0 is orthogonal to the x1-axis then we 
an 
harge � to the 
ut of therelevant box of R4, as above. Otherwise, suppose h0 is orthogonal to the x3-axis. Then there
tangle of R3 that 
rosses � is 
ut by h and h0 into pie
es that have at least one vertexin (the 
losure of) �0. A similar property holds for the re
tangle of R2 if h0 is orthogonal tothe x4-axis.The only remaining 
ase is when h0 is also orthogonal to the x2-axis. In fa
t, in general,� may be 
ut by several su
h hyperplanes. However, all of these portions are interse
ted byea
h of the two re
tangles of R2 [ R3 that meet �, and at least one portion is also 
rossedby the box of R4 that meets �.Let �00 denote su
h a portion of �, whi
h we assume not to be 
ut any more by hyperplanesorthogonal to the x2-axis. But �00 does have to be 
ut again, be
ause it is still met by morethan one re
tangle, and any 
ut in any other dire
tion 
an be 
harged uniquely to �, usingthe arguments in the pre
eding paragraphs. This 
ompletes the proof of the 
laim., 2This 
laimed property implies that the number of fragments of the re
tangles in R1 [R2 [ R3 that is produ
ed by the BSP is at least equal to the number of jun
tions �. Sin
ethis number is n5=3, it follows that this is a lower bound on the size of any (re
tilinear) BSPfor R. 26 Con
lusionIn 
on
lusion, we refer again to our summary of results in Table 1. Perhaps the mostinteresting remaining open problem is to generalize our te
hniques for (disjoint) 2-re
tanglesin R4 to higher dimensions, with the hope of obtaining asymptoti
ally tight bounds fork-re
tangles in Rd , for all k and d. 19
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