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Abstract

We provide a variety of new results, including upper and lower bounds, as well as
simpler proof techniques for the efficient construction of binary space partitions (BSP’s)
of axis-parallel segments, rectangles, and hyperrectangles. (a) A consequence of the
analysis in [1] is that any set of n axis-parallel and pairwise-disjoint line segments in the
plane admits a binary space partition of size at most 2n — 1. We establish a worst-case
lower bound of 2n — o(n) for the size of such a BSP, thus showing that this bound is
almost tight in the worst case. (b) We give an improved worst-case lower bound of
%n —o(n) on the size of a BSP for isothetic pairwise disjoint rectangles. (c) We present
simple methods, with equally simple analysis, for constructing BSP’s for axis-parallel
segments in higher dimensions, simplifying the technique of [10] and improving the
constants. (d) We obtain an alternative construction (to that in [10]) of BSP’s for
collections of axis-parallel rectangles in 3-space. (e) We present a construction of
BSP’s of size O(n®/?) for n axis-parallel pairwise disjoint 2-rectangles in R*, and give a
matching worst-case lower bound of Q(n/3) for the size of such a BSP. (f) We extend
the results of [10] to axis-parallel k-dimensional rectangles in RY, for & < d/2, and
obtain a worst-case tight bound of ©(n%(#=k)) for the size of a BSP of n rectangles.
Both upper and lower bounds also hold for d/2 < k < d — 1 if we allow the rectangles
to intersect.
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1 Introduction

Let S be a collection of n pairwise-disjoint objects in R?. A binary space partition (or BSP
for short) for S is a recursively defined convex subdivision of space obtained by cutting
space into two open regions C,C’ by a hyperplane, and by constructing recursively a BSP
for {sN C | s € S} within C' and a BSP for {sNC" | s € S} within C’; the process
terminates when each (open) cell of the BSP is intersected by at most one object of S.
The input objects are usually assumed to be pairwise disjoint; however, the definition of a
BSP we have given is applicable to any set of polyhedral objects in R? for which no pair of
objects intersect in a full-dimensional set. In particular, the definition applies to arbitrary
sets of polyhedral objects S that are not full-dimensional. The definition also applies to sets
of curved objects; however, the number of cells of the BSP will depend on the complexity
of polyhedral separators between pairs of objects, and a BSP may not exist if the curved
objects are allowed to intersect.

Binary space partitions were introduced by the computer graphics community [6, 7, 8]
and have numerous applications for rendering, ray shooting and tracing, solid modeling,
rectangle tiling, etc. (see [5, 13]).

Ideally, a BSP for S should not split any object of S into pieces, and wind up with each
object lying fully in a separate cell or fully on a cutting hyperplane (see [3]). However, in most
cases this is impossible; cutting space (and objects) with a hyperplane may create fragments
of objects that either lie in one of the two open halfspaces bounded by the hyperplane or are
contained in the hyperplane. The size of a BSP for a set of k-dimensional objects (k < d) in
R? is the number of k-dimensional fragments of objects of S that it produces (in the ideal
case, the size is n [3]). We remark that one often defines the size of a BSP as the number of
convex regions of R? in the decomposition. Here, we opt for the definition in terms of the
number of object fragments; this choice makes some of the analysis cleaner, particularly in
the case of BSPs of low-dimensional hyperrectangles within higher-dimensional spaces.

One of the major research directions in this area is to construct BSP’s of small size.
Paterson and Yao [9, 10] proved that for a set of n line segments in the plane there exists a
BSP of size O(nlogn), and when the segments are rectilinear (i.e., parallel to the coordinate
axes), there exists a BSP of size at most 3n. They have also conjectured that any set of n
line segments admits a BSP of size O(n). Only very recently, a lower bound of Q(nlog)ﬁ)gn),
in the worst case, has been obtained by C. Téth [11]. For both the general case and the
axis-parallel case, BSP’s with the above size bounds can be computed in O(nlogn) time.
Linear size bounds for BSP’s have also been obtained (see [2]) for sets of fat objects, for sets
of line segments having a bounded (O(1)) ratio between the lengths of the longest and the
shortest segments, and for sets of homothetic objects. A linear bound for segments in the
plane with a fixed number of orientations was recently obtained by Téth [12].

The bound 3n of [10] on the size of a BSP for n axis-parallel line segments has been
(implicitly) improved by d’Amore and Franciosa in [1] to 2n. What they have explicitly
obtained is an upper bound of 4n for axis-parallel rectangles in 2D. By specializing their
analysis to the case of segments, one obtains the bound 2n (or rather 2n — 1, with an
obvious optimization). Once more, in [4], the same approach, accompanied by an improved
charging scheme, has reduced the upper bound for the case of axis-parallel rectangles to 3n.




In this paper we consider the case in which S is a collection of axis-parallel! hyperrect-
angles of various dimensions in R?. While we do consider some cases in which the hyper-
rectangles are allowed to intersect, unless otherwise specified, we assume from now on that
they are pairwise-disjoint. The simplest such case is that of line segments (or rectangles) in
the plane, mentioned above. In higher dimensions, Paterson and Yao [10] show that if S is
a set of n (axis-parallel) line segments in R?, then S admits a BSP of size O(n%(@~V), and
that this bound is tight in the worst case. They also consider the case of rectangles in R3
and show that the same bound, O(n*?), can also be obtained for rectangles (and also for
boxes). They leave as an open problem to obtain sharp bounds for the size of BSP’s for
higher-dimensional hyperrectangles in dimensions > 4.

In this paper we improve and simplify the analysis leading to the bounds obtained in
[10] and derive new bounds for the cases left open in that paper. Specifically, we first
consider the case of axis-parallel line segments in the plane. We show, in Section 2, that
there exist collections of n (axis-parallel) line segments in the plane for which any rectilinear
BSP has size at least 2n — o(n), thus showing that the upper bound of [1] is worst-case tight,
apart for lower-order terms. This answers the open problem posed by S. Smorodinsky at
EuroCG’2000. We also give an improved lower bound for the case of rectangles in the plane,
showing that in the worst case a BSP must have size at least sn —o(n).

We then consider the case of axis-parallel line segments in Rd and obtain, in Section 3,
a very simple alternative construction of BSP’s of size O(n®/(¢~ 1)). In addition to being
simpler, the constants of proportionality that our method yields appear to be considerably
smaller than those produced by the technique of [10]. We also consider the case of rectangles
in R3, and again present an alternative simple construction of a BSP of size O(n?/?).

We then (Sections 4,5) consider higher-dimensional cases. We provide the first nontrivial
bounds on the worst-case size of BSP’s for hyperrectangles of dimension greater than 1 in
higher dimensions, showing that, for k& < d/2 there exist BSP’s of size O(n¥(@=*)) for a set
of n k-rectangles in d dimensions, and that this bound is tight in the worst case. This bound
subsumes the bound ©(n%/(4- 1)) for segments, mentioned above. In fact, both upper and
lower bounds hold for any & < d — 1 if our rectangles are allowed to intersect.

The next simplest case that is not covered by the results reported so far is the case k = 2
and d = 4. We show that a BSP of size O(n®/?) exists for a set of n disjoint (axis-parallel)
2-rectangles in R*, improving the bound O(n?) that follows from the general bounds (for
possibly intersecting rectangles) stated in the preceding paragraph. We also have a matching
lower bound of Q(n°/?3)), showing that our upper bound is tight.

Our results are summarized in Table 1.

We make one final remark regarding the definition of BSP and how it applies to sets
of hyperrectangles that are not in general position? in higher dimensions. One can modify
the definition of BSP in order to require that lower-dimensional subconfigurations of objects
that are contained in a cutting hyperplane are decomposed according to a partitioning of
the hyperplane, and then recursively down dimensions. This modification is useful in some

'From now on, we freely drop the adjective “axis-parallel”; in all cases, the segments, rectangles, or
hyperrectangles we consider are axis-parallel.

2Here, a set of hyperrectangles is said to be in general position if for each i = 1,...,d the z; coordinates
that define the extents of the hyperrectangles are all distinct.



d k upper bound lower bound

2 1 2n—1 (1) 2n — o(n)

2 2 3n () /3 —o(n)

d 1 On=D) () | Q") ()

3 2 O(n*?) (¥) Q(n’?) (x)

d| k<d/2 | Ondh) Q(n®/(d=k))

d| k<d—1 | O(nddh) Q(n®/(d=k))
intersecting

4 2 O(n°/3) Q(n/3)

Table 1: Summary of our bounds. A bound tagged by (f) indicates a known bound, given
for reference. A bound tagged by (x) indicates a known bound, rederived here with a simpler
proof.

applications; e.g., see Vanécek [14]. It does lead to different complexity bounds on the size of
the resulting decomposition, since, for instance, a set of n line segments that lie in a common
hyperplane h in R* require only a single cutting hyperplane (h) for a BSP by our definition,
resulting in two cells and size n (since there are n object fragments). However, the n segments
may form a configuration in the three-dimensional space of the hyperplane h such that the
decomposition of & by a three-dimensional BSP of the segments requires size Q(n*?). (See
the discussion in Section 6 of [10].) In this paper, we use the strict definition of BSP defined
earlier (and introduced in [8]), not requiring that lower dimensional subconfigurations be
recursively decomposed. If the input objects are in general position, there is no modification
necessary to our stated bounds on the sizes of BSPs if one were to consider the modified
definition of BSP; in case the input is not in general position, though, our complexity bounds
would require appropriate modification under the modified definition.

2 Segments and Rectangles in Two Dimensions

We start with the case in which S is a set of n axis-parallel pairwise-disjoint line segments in
the plane. By applying the method of d’Amore and Franciosa [1], which is designed for the
case of rectangles (based on a minor variant of Paterson and Yao’s method [10]), we readily
obtain the following result for line segments:

Theorem 2.1 A set of n axis-parallel and pairwise-disjoint line segments in the plane admits
a binary space auto-partition of size at most 2n — 1. This BSP can be computed using
O(nlogn) time and space and has the additional property that no input segment is cut more
than once.

We turn our attention now to establishing the tightness of the upper bound. The best
construction known prior to this work is a cycle of thickness n/4, shown in Figure 1(a) for
n = 20, which requires a BSP of size at least 5n/4.
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Figure 1: (a). A cycle configuration of thickness w = 5. (b). A 4 x 4 1-grid. (¢). A 4 x4
2-grid (double grid). (d). Charging scheme in a 5-grid.



Theorem 2.2 There exists a set S of n disjoint axis-parallel line segments with the property
that any binary space auto-partition of S has size at least 2n — o(n).

Proof: If s,t € S, we say that s cuts t if by extending the supporting line of s (within the
cell of the current BSP containing s and ¢), the segment ¢ is the first that is cut in two parts.
Any segment can cut at most two other segments (on either side of s). This defines a directed
simple graph G = (S, F) with vertex set S, and edge set E given by the (asymmetric) cut
relation. A cycle is minimal if no proper subset of it is a cycle.

In general, the size of the BSP is n + ¢,, where ¢, denotes the number of cuts that are
made during the partitioning process. Since ¢, > 7 in the example of Figure 1(a), it yields
the lower bound n + 2 = 2.

Our construction for the lower bound is based on a grid-like configuration of segments,
as illustrated in Figure 1(b,c). We parameterize it by the number of anchored horizontal
segments on the left side of R, and the number of anchored vertical segments on the bottom
side of R: if these numbers are k£ and [ respectively, we have a k x [ simple grid (or a k x [
1-grid); see Figure 1(b). We restrict our attention to the set C of minimal cycles of length
4 associated with the (large and small) cells in the grid. It is easy to see that a BSP is
obtained only when all cycles in the set C have been cut.

First, consider a k£ x k 1-grid, to obtain a lower bound on ¢,. The number of cells is
e = k%>+(k—1)%, k? of which are small cells, and the total number of segments is n = 2k(k+1).
Each small cell is a cycle and requires at least one cut by itself. We have ¢, > k? = 2 —o(n),
from which we get a lower bound of 1.5n —o0(n) on the size of any BSP for this configuration.

In order to improve this lower bound, we consider a k x k m-grid, in which each single
segment of the simple £ x k 1-grid is replaced by a set of m parallel segments of equal length.
A 2-grid is shown in Figure 1(c), and a portion of a 5-grid is shown in Figure 1(d). Here
there are n = 2mk(k + 1) segments and e = k? + (k — 1)? cells.

We claim that ¢, > (m — 3)e; selecting m = k implies a lower bound of 2n — o(n) on the

size of any auto-partition BSP for this configuration, since
e (2k* =2k +1)(2k — 1)

o 42k + 1) =1-oll).

(To be more precise, the lower-order term is O(n?/?3).)

For a given cell C, denote by A(C) the set of at most 4m segments associated with C;
namely, A(C') consists of m segments on each of the four sides of C. We say that cell C' is
touched by a cutting line [ if either (i) [ intersects the interior of the cell, viewed as a convex
region (square), or (ii) [ is one of the supporting lines of the 4m segments associated with
C. Case (i) defines a middle cut, case (ii) defines a boundary cut.

The (current) thickness of C, denoted w(C'), is the minimum number of segments that one
needs to cut such that there are no more cycles determined by C'. We observe an equivalent
characterization of the (current) thickness: the minimum number of segments that one needs
to cut, such that w(C) is strictly decreased. In the example of Figure 1(d), the thickness
of the cell C'y after the first horizontal cut is 3, and one needs to cut at least 3 segments to
reduce it. After the second vertical cut, the thickness becomes 2. The thickness of each cell
is decreased during the cutting process, from m to 0, through one or more cuts.
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We employ a charging scheme that charges each cell of the grid with (at least) m — %
It maintains the following invariant: If a cell has not been touched, its current charge is 0;
if a cell has been touched, and its current thickness is w (0 < w < m — 1), its charge is (at
least) m —w — % Let us examine the first cut that touches a fixed cell C;. The number of
locally cut segments in A(C}) is ¢ = m. The charge (= m) is distributed to the cell and its
neighbor as illustrated in Figure 1(d): m —z — 2 =m —w; — 1 to cell C; and m —y — 5 to
its neighbor cell. The total charge is (m —z — 1)+ (m —y — 3) =m, since z + y + 1 = m.
Thus, the invariant holds after the first cut that touches C is made.

For any of the subsequent cuts, we distinguish two cases:
Case 1: The cut does not reduce the thickness of any adjacent cell. If the cut does not
reduce the current thickness of C'y, we can just ignore the excess charge. If it does reduce wy,
let w] < wy be its reduced thickness. We only have to ensure that the number ¢ of locally
cut segments in A(Cy) satisfies ¢ > w; — w} to maintain the invariant. But this is clear, since
¢ > wy from our second (equivalent) characterization of thickness.
Case 2: The cut reduces the thickness wy of the adjacent cell Cy (as well as the thickness
wy of C, otherwise the excess charge is ignored). Denote by A} = wy —w}], Ay = wy — wh,
the two reductions. We only have to ensure that the number ¢ of locally cut segments in
A(Ch) satisfies ¢ > A; + Ay to maintain the invariant. Since w} 4+ w), = m — 1 (by the
assumption of reduction), this is equivalent to ¢ +m — 1 > w; 4+ wo which follows from the
inequalities ¢ > wy and m — 1 > wy. The first is implied by our equivalent characterization
of thickness (more generally, ¢ > max(w;, ws)), and the second is true since this is not the
first cut for C.

After the partitioning process ends, each cell has thickness 0, and its charge is (at least)
m — %, as desired. O

We turn now to the case in which S is a set of n disjoint axis-parallel rectangles. The best
known upper bound on the size of the BSP is 3n, given in the recent paper of Berman et al. [4],
improving the prior bound of 4n [1]. Our construction for line segments gives immediately a
lower bound of 2n — o(n) (a similar bound was also obtained independently in [4]; however,
their bound applies only for rectangles, not for segments). We are able to show an even
better lower bound for rectangles:

Theorem 2.3 There exists a set S of n disjoint azxis-parallel rectangles (in fact, of n unit
squares, as in Figure 2) with the property that any binary space auto-partition of S has size
at least tn — o(n).

Proof: Consider a k x k square configuration (with n = k? unit squares) with the pattern
shown in Figure 2. We have s = (k — 1)? “junctions,” corresponding to the small cells in
the grid configuration (of size € > 0), at each of which 4 squares are “meeting”. Consider
any orthogonal cut in the BSP tree, having (physical) length [. We distinguish 3 types of
parts of our cut: (i) the border part, if any, of length [, > 0 lies on a side or in between the
2 sides of 2 adjacent squares (adjacency in the grid refers to the N,S,E;W squares only); (ii)
the aligned part, if any, of length [, > 0 measures the at most 2 parts of length < 1 adjacent
to the border part; (iii) the middle part, if any, of length [,, > 0 encompasses the rest of the
length.



Figure 2: A set of disjoint unit squares used in the lower bound of Theorem 2.3.

Figure 3: A 4 x 6 square configuration (an instance for 7'(3,5)); the three portions of the
cut are: border (solid), aligned (dashed) and middle (dotted)



We have | = [, + 1, + L, I, < 1+¢€ [, < 2. As before, let ¢, denote the number of
cuts (additional number of object parts in the BSP tree); then, the size of the BSP tree is
n+ c,. It is easy to see that each of the (k — 1)? junctions will create at least one cut. This
gives us a lower bound of 2n — o(n) on the size of the BSP tree. To account for more, we
will prove a lower bound on the number of additional parts generated by middle portions of
the cuts: unless a rectangular subcell R obtained during the BSP tree construction has one
“short” side, any cut of R will generate additional parts due to the middle part component,
which are unaccounted for by the junctions inside the rectangle. For 7,5 > 0, denote by
T(i,7) the minimum number of additional “middle” parts in the BSP tree attributed to the
middle portions of the cut, obtained when a rectangle containing a complete i x j array of
interior junctions is cut by a line. It is easy to see that 7(3,3) > 1 (a 3 x 3 array of interior
junctions is illustrated in Figure 2). A lower bound on the size of a BSP tree (with n = £?)
for a k£ x k square configuration is

n+cn=k+k-1)>2+T(k-1,k—1).
We proceed to prove by induction on ¢ 4 j the following
Claim 2.4 Fori,j >3, T(i,j) > (1—2)3& _

Proof: The basis ¢ = j = 3 holds by the above observation. Without loss of generality
assume the orthogonal cut splits the rectangle containing the ¢ x j array of junctions into 2
subrectangles containing 7 X j; and i X jy arrays of junctions, with 7—1 < j1+72 < j, j1 < Jo.
Then

T(i,j) > T(iyj1) + T, 72) +i— 2.

(For example, the bounding rectangle of the square configuration in Figure 3 would contribute
T(3,5) “middle” parts, while the 2 resulting subrectangles after the horizontal cut is made
would each contribute 7'(1,5) “middle” parts.) We distinguish 3 cases:
Case 1. j < 5. Then,
(i—2)(j—2)
3 .

T(i,j)>i—2>

The last inequality is satisfied by the choice of j.
Case 2. j > 6, j; < 2. Since j, > j — 3 > 3, we can use the inductive bound on T'(i, j5).

(-2G-5 . . (-2)(-2
e

Case 3. j > 6, 71,72 > 3. Using the inductive bounds on both terms yields

>T(i,51) +T(i,752) +i—2

T(i, j)
)(j

(—2)(i—2) (—2)(2—2) .
> 3 + 3 +1—2
=it (-9(-2)

3 - 3



Our lower bound on the size of the BSP tree becomes

2
l~c2+(l~c—1)2+u = Zn—o(n).
3 3
We note that, most likely, the constant in the lower bound offered by our square configu-
ration cannot be improved substantially, if at all; certainly, a BSP of size smaller than 2.5n
can be constructed for this configuration: using a 3 x k strip cutting yields a BSP of size
~ 2k? &~ 2.444n, using a 4 x k strip cutting yields a BSP of size &~ 32k? ~ 2.437n, etc. O

3 Segments in Higher Dimensions and Rectangles in
Rﬁ%

Segments in Three Dimensions. Let £ = XUY UZ be a set of n axis-parallel segments
in 3-space, where X (resp. Y, 7) is the subset of segments of E that are parallel to the x-axis
(resp. to the y-axis, z-axis). Put x = |X|, y = |Y|, 2 = |Z], so that x + y + z = n. For
simplicity of presentation, suppose that the segments of E are in general position, meaning
that no two endpoints of different segments have the same x, y or z-coordinate.

We construct a binary space partition of F in the following simple manner.

(i) If one of x, y, z is zero, say z = 0, then we can obtain a BSP of size O(n) by a sequence
of horizontal cuts.

(ii) Suppose next that each of z, y, z is at least 1 and that z < z, y. Then we have z < n/3
and x4y > 2n/3. Put ¢t = [2,/Z| > 2y/max{x,y} > 2,/%. We partition space into a stack
of ¢ horizontal slabs o1, ...,0; by a sequence of horizontal cuts, so that, if x;,1;, z; denote,
respectively, the numbers of segments in X,Y, Z that intersect (the interior of) o;, then we
require that z; < x/t, for each i. We clearly also have ). y; <.

For each slab o;, project all the segments of E that intersect o; onto the xy-plane. We
obtain x; horizontal segments, y; vertical segments and z; points. We partition the segments
into subsegments at their intersection points. The number of such points is k; < x;; and
the total number of subsegments is x; + y; + 2k; < x; + y; + 22;y;.

We apply the planar binary space partitioning scheme of Theorem 2.1, and note that
none of the z; < z singleton points will be split. We lift this planar partitioning scheme into
three dimensions, lifting each cut by a line (segment) in the zy-plane to a cut by the vertical
plane (strip) containing the line (segment). It follows that the size of the partition within o;

is at most
4dxy;

t

Hence the overall size of the BSP is at most 2z + 2y + 4’373’ + 2t <2(x+y)+4/Tyz + 2. We
have thus shown:

T
2(xi +yi + 23y:) + 2 < 2?+2y2~+ + z.

Theorem 3.1 Let E be a collection of n segments in 3-space, consisting of x segments
parallel to the x-axis, y segments parallel to the y-axis and z segments parallel to the z-axis.
Then E admits a BSP of size 4,/xyz + 2n — z, for z < z,y.
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4
Remark: The maximum value of this bound is easily seen to be at most ﬁn?’p + gn This
improves significantly the constant in the bound given in [10]. The lower bound construction

1
given in [10] yields a BSP of size at least ﬁn‘g/? + n. This leaves the open problem of

tightening the gap of the factor 4 in the constant of proportionality between our upper bound
and this lower bound.

Segments in Higher Dimensions. Let £ = X; UX,U---UX, be a set of n axis-parallel
segments in d-space, where X; is the subset of segments of F that are parallel to the x;-axis,
fori=1,...,d. Put n; = |X;|, fori=1,...,d, so that n; +---+ny = n.

We re-establish the following result of [10] with a simpler proof which also gives better
constants of proportionality. As noted in [10], the upper bound is tight in the worst case—see
also Section 4 below for an extended lower bound.

Theorem 3.2 Let E be a collection of n segments in d-space, for d > 3, consisting of n;
segments parallel to the x;-axis, fori =1,...,d. Then E admits a BSP of size at most

(2d — 2)(nyng - - ng) /@ 4 2(ny + 1y + -+ - + ny).

Proof: We proceed by induction on d, where the base case d = 3 has already been treated.
We assume, for simplicity of presentation, that the segments of E are in general position,
meaning that no two endpoints of different segments have an equal coordinate.

(i) If one of the n;’s is zero, say ngy = 0, then we can obtain a BSP of linear size by a
sequence of cuts orthogonal to the z4-axis.

(ii) Suppose next that each of the n;’s is at least 1 and that ngy <mng 1 <--- <n;. Put

(ming -+ -ng)/ @Y 1/(d~1) 1/(d~1)
t= (d-2)/(d-1) > > (n/d) :
Ng

We partition space into a stack of ¢ slabs oy, ..., 0, by a sequence of cuts orthogonal to the
xrg4-axis, so that the following property holds. Let n§f> denote the number of segments in

X; that intersect (the interior of) the slab o,. We require that ngg) < ny/t, for each £&. We
clearly also have 3, n® <, fori=2,...,d—1.

i
For each slab o¢, project all the segments of E that cross o¢ onto the hyperplane z4 = 0.
We obtain a collection of n§§)+- . -+n§21 segments which, by our general position assumption,

are pairwise disjoint (as long as d > 3), and nff) points. We apply the partitioning algorithm

for d—1 dimensions, provided by the induction hypothesis, to the projected set, lifting, along
the 24 dimension, each (d — 2)-dimensional cut performed by this algorithm to a (d — 1)-
dimensional cut (within o¢). Note that the presence of points in the input has little effect on
the algorithm and adds only a linear term to the size of the resulting BSP: We simply ignore
the points and apply the algorithm only to the segments. When we are done, we take the
cells of the resulting BSP that contain the input points, and split any such cell that contains
more than one point into subcells, say by a sequence of parallel cuts.

11



By the induction hypothesis, the size of the resulting BSP is at most

_1
}:[@d—dﬁ(n@n@~~n§h)“2+2(n¥”+n9—%~u+n$)}s
3

7 ..
(2d —4) (Tl)d 2 'Z(ng)---nf_)l)d S 20 me g ) + 20

We need the following easy inequality:
Claim: Let m be a positive integer and let ay,...,am,b1,..., b, be nonnegative. Then

(arag - - 'am)l/m + (b1by - - 'bm)l/m <

[(al +b1)(ag + b2) -+ (A + bm)} I/m.

Proof: By induction on m. In the case m = 1, there is nothing to prove. For m > 1 we
have, using Holder’s inequality,

(aray - - 'am)l/m + (b1by - - 'bm)l/m <

— m— (m—1)/m
(a1 +b1)1/m' [(GQ___am)l/(m 1) + (bg---bm)l/( 1)

Combining this with the induction hypothesis, the claim follows. a
Hence, applying this claim repeatedly, we conclude that the size of our BSP is at most

@d—@(%}w%m

- (ng -+ -nd_l)l/(d_Q) +2(ny +ng+ -+ ng_q) +2tng =

@d—@( t

By the choice of ¢, this becomes at most

+2(n1 +ng+ -+ ng_q) + 2tng.

(2d — 44 2) (nng -+ ng) TV £ 2(ny + ng + - -+ ng).

This establishes the induction step and thus completes the proof of the theorem. O

Remark: Theorem 4.1 given below subsumes in general Theorems 3.1 and 3.2. We have
considered separately these theorems because they also apply to situations where the sizes of
the sets X; are unbalanced and because their more careful analysis leads to smaller constants
of proportionality.

Rectangles in Three Dimensions. Let R be a set of n pairwise-disjoint axis-parallel
rectangles in 3-space, and let E denote the set of their edges. Write F = X UY U Z, as
above, and put x = |X|, y = |Y|, 2 = | Z|, so that z+y + z = 4n. We establish the following
theorem; the upper bound O(n?/?) was also obtained in [10].
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Theorem 3.3 Let R be a collection of n axis-parallel rectangles in 3-space, having a total of
x edges parallel to the x-axis, y edges parallel to the y-axis and z edges parallel to the z-axis.
Then R admits a BSP of size

O(n(min {z,y, 21)"? + n) = O(n*?).

Proof: We construct a binary space partition of R in the following manner.

(i) If one of x, y, z is zero, say z = 0, then all rectangles are horizontal, and we can obtain
a linear-size BSP as above.

(ii) Suppose next that each of z,y,z is at least 1 and that z < z,y. Then we have
z <4n/3 and z +y > 8n/3. Put

[z +y (8n/3) 43 .
t_"\/g-‘zx/éln/?)_ 3 V.

We partition space into t horizontal slabs oy, ..., 0, as above, so that z; + y; < (x + y)/t,
for each 7, where x;,y;, z; are as defined in Section 3. We then have

. N 2 2
Ty < <%+yz> SMS

z
1 .

2 412

Fix a slab o = ¢;, and consider the set R, of rectangles that intersect 0. These rectangles
are of two kinds: (a) rectangles that have a horizontal edge in the interior of o; (b) vertical
rectangles whose boundary crosses o only at two vertical segments, implying that they have
no horizontal edge inside 0. Note that rectangles of type (b) contribute only to the z;-count
within ¢ but not to the z; and y;-counts. The rectangles of type (a) are either horizontal
rectangles that are fully contained in o or vertical rectangles that ‘start’ or ‘end’ (or both)
within . We refer to the portions within o of all these rectangles as black rectangles. We
refer to the rectangles of type (b) as red. Their number is at most 3 < 2.

We project o onto the zy-plane. The projections of the red rectangles are red segments
that are pairwise disjoint and are also disjoint from the projection of any black rectangle.
Those black projections can be either segments or rectangles, and they can intersect (or
overlap) each other.

Let G be the (nonuniform) grid formed in the xy-plane by the horizontal and vertical
lines that contain the edges of the projections of the black rectangles. We refer to the atomic
rectangles of G as pizels. We classify those pixels into red pizels, which are those that are
intersected by a red segment, and the remaining black pizels. Note that there are a total of
O(z;y;) pixels. The black pixels can be grouped into black strips, which are maximal sets of
consecutive black pixels within a single column of G.

We now apply the 2-dimensional BSP construction (provided by Theorem 2.1) to the
collection of black strips and red segments. We obtain a decomposition of the zy-plane into
O(z;y; + z;) rectangular subregions. Moreover, any red segment or black strip is split by the
algorithm at most once.

We lift the BSP just constructed in the z-direction, to obtain a partition of the slab o
by vertical planes orthogonal to the z- and the y-axes. Let K be a cell produced by this
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partitioning. If K projects to a (portion of a) black strip, then it needs further partitioning,
which we do as follows. Ignoring black rectangles that overlap the boundary of K (which
are not part of the subproblem at K anyway), any other black rectangle that intersects K
crosses it from left to right, i.e., neither of its edges that are orthogonal to the z-axis meets
K. Project K onto the yz-plane. By the observation just made, the ng black rectangles
that intersect K project to a collection of nx pairwise-disjoint segments, and we can again
apply the 2-dimensional BSP construction within this projection, effectively obtaining a
BSP for K that uses only cuts parallel to the z-axis, whose size is O(ng). We claim that
Y ownk = O(x;y;). Indeed, a black rectangle that is counted in nx must have an edge
parallel to the z-axis that intersects K. This follows from the fact that any black rectangle
that violates this property must be horizontal and its zy-projection must cover that of K
completely. However, K is delimited from above and from below (in the y-direction) by
red pixels, which no horizontal black rectangle can cross. This contradiction establishes the
asserted property. Now an (z-parallel) edge of a black rectangle can cross at most x; black
regions, and since we have only y; such edges, we conclude that > . nx = O(z;y;).

We have thus constructed a BSP of size O(z;y; + z;) = O(z) for each of the ¢ slabs oy,
thus obtaining an overall BSP of size O(zt) = O((x + y)2'/2). This completes the proof of
the theorem. O

4 Arbitrary Hyperrectangles in Higher Dimensions

Let R be a set of n axis-parallel k-dimensional hyperrectangles (k-rectangles, or just rectan-
gles, in short) in RY. We assume that k& < d/2 and, for simplicity, that the k-rectangles are
in general position, as above. We note that this assumption implies that no pair of rectangles
intersect.

Each rectangle r € R has k extent coordinates, i.e., coordinates x; for which the projection
of r onto the x;-axis is an interval with nonempty interior, and d — k fized coordinates (those
for which this projection is a singleton point).

Let K be an axis-parallel box in R¢. Let r be a rectangle in R and put ' =r N K. We
say that r is an x;-pass-through in K if the projection of v’ on the z;-axis is equal to the
projection of K on the same axis. We denote by pt(r, K) the tuple of coordinates for which
r is a pass-through in K. The main result of this section is

Theorem 4.1 (a) A set R of n azis-parallel k-rectangles in d-space, as above, admits a BSP
of size O(n¥(4=k)). (b) There exist sets R of n axis-parallel k-rectangles in R?, as above, for

any n, d and k < d/2, so that any (rectilinear) binary space auto-partition for R has size
Q(nd/(d-k)),

Proof of the upper bound: Let R be a set of n k-rectangles in d-space, satisfying the
above properties. Put ¢ = ¢n'/(4=%) for some absolute constant ¢ > 1. The BSP construction
proceeds through d phases, where in the j-th phase we cut each of the cells produced in the
preceding phases by hyperplanes orthogonal to the z;-axis. Each cut that we perform is at
some fixed coordinate of some rectangle in R.
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In the first phase we slice R? by a sequence of ¢ — 1 hyperplanes orthogonal to the x;-axis,
partitioning space into ¢ slabs, so that each slab o contains at most n/t rectangles that are
either orthogonal to x; or have an extent in the x;-coordinate but are not x;-pass-throughs
in 0.

Suppose we are in the j-th phase. Let o be a cell (subslab) produced by the previous
phases. We assume inductively that, for each subset M of {1,...,7 — 1} of size |M| <k, o
contains at most n/t/~'~IM| rectangles that are pass-throughs in exactly the coordinates in
M. (We note that this property holds for j = 2.)

We cut o by O(t) cuts orthogonal to the z;-axis, to ensure that, for each subset M as
above, any resulting subslab ¢’ contains at most, n/t =M/ rectangles that were pass-throughs
in ¢ in exactly the coordinates in M and are not z;-pass-throughs in ¢’. (By the induction
hypothesis, o contains at most n/#/~'~IMl such rectangles, so it is easy to cut this number
down by a factor of ¢ for each ¢’.) In addition, one also has the property that for each subset
M of {1,...,j} of size < k that contains j, 0/ contains at most n/#/~/™| rectangles that are
pass-throughs in exactly the coordinates in M. (These bounds are simply ‘carried over’ from
the inductively assumed bounds for o and j — 1.)

This establishes the inductive property for j, and thus allows us to continue in this
manner until all d phases are executed.

Let us analyze the performance of this partitioning scheme. We claim that, for ¢ > 1,
none of the final cells can contain any rectangle in their interior. Indeed, let o be a final cell.
By the above property, for each set M of coordinates of size |M| < k, there are at most

n 1 1 1

— — <
_ d—|M — — — — _
4d—M] My, D) d— My (k—[M)/(d—k) = cd—k

(portions of) rectangles contained in o that are pass-throughs in o in exactly the coordinates
in M. By choosing ¢ > 1 we are guaranteed that the interior of 0 does not meet any rectangle
of R.

Hence the resulting subdivision is indeed a BSP for R. The number of cells of this BSP is

clearly O(t?) = O(n%(4=k)), with the constant of proportionality depending (exponentially)
on d and k. Further, any one rectangle is cut into at most t¥ = n*/(4=F) pieces, implying
a bound of O(n%(¢=F) on the number of fragments. This completes the proof of the upper
bound.
Proof of the lower bound: Put I = [0, n"/(4"® +1], and let K be the cube I%. Put L = ({).
For each k-tuple 7 of coordinates, we construct n k-rectangles whose extent coordinates are
those of 7, as follows. Put £ = {1,2,..., nl/(d_k)}d_k. For each a € F construct a rectangle
r = r(a) whose i-th fixed coordinate is a; + £(a, 7), and whose projection on each of the
extent coordinates (i.e., those in 7) is I. Here £(a, 7) is a number in (0,1), so that different
pairs (a,7) are assigned different numbers. We thus obtain a collection R of a total of Ln
rectangles.

We claim that any axis-parallel BSP for R must consist of Q(n%/(4=%)) cells. Consider
the integer grid G = {1,2,...,n"/(@=F)4 With each g € G associate the grid cell Q(g) =
H?Zl(gi,gi +1). A grid cell Q@ = Q(g) is crossed by exactly L rectangles of R: For each
k-tuple of coordinates there is exactly one rectangle of R whose extent coordinates are those
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in the tuple, that crosses ()—it is the rectangle whose fixed coordinates agree with the
corresponding elements of g.

Since L > 1, any BSP for R must have cuts that cross @), for otherwise () will be contained
in a single cell of the BSP, which is impossible since that cell is now crossed by more than
one rectangle of R. Moreover, we argue that ( must be cut by (portions of) hyperplanes in
at least k different orientations (we omit the easy proof). Halt the BSP construction right
after @) is cut for the first time by hyperplanes in k different orientations; suppose that they
are the first k£ coordinates. Let r be the unique rectangle of R that crosses () and whose
extent coordinates are the first k£ coordinates. For each i = 1,...,k let h; be a hyperplane

orthogonal to x; that has already crossed ). Then r N (ﬂle hi) is a singleton point v—a

vertex of a portion of r that the BSP has just formed. We assign () to this portion of r, or,
more precisely, to the final portion of r that will be formed by the BSP and will have v as a
vertex. No such portion can be charged by more than 2% grid cells, which implies that the
number of fragments of rectangles in R that the BSP has to form is at least proportional to
the number of grid cells, so the BSP has size Q(n%/(4=F))  as asserted. O

Remark: The upper bound of Theorem 4.1 hold also for d/2 < k < d — 1, even if the
rectangles in R are allowed to intersect. The lower bound applies also for d/2 < k < d —1,
but the construction uses rectangles that intersect. The proofs are essentially identical.

5 Disjoint 2-Rectangles in R!

Let R be a set of n axis-parallel pairwise disjoint 2-rectangles in R*. This is the simplest
instance not covered by Theorem 4.1.

Theorem 5.1 (a) A set R of n axis-parallel pairwise-disjoint 2-rectangles in R admits
a BSP of size O(n®?). (b) There egist collections of n (awis-parallel) pairwise-disjoint 2-
rectangles in R* that only admit (rectilinear) BSP’s of size Q(n’/?).

Proof of the upper bound: Let K be an axis-parallel box in R*. Apply the same round-
robin construction given in the preceding section, but with ¢t = ¢'n'/6 for an appropriate con-
stant ¢. We obtain O(n??) subcells, so that each subcell o contains at most n/t? = O(n?/?)
rectangles that are pass-throughs in two coordinates, at most n/t> = O(n'/?) rectangles that
are pass-throughs in exactly one coordinate, and at most n/t* = O(nl/ %) rectangles that are
not pass-throughs in any coordinate.

Lemma 5.2 A subcell o cannot contain two rectangles r,r' such that r is pass-through in o
in two coordinates and r' is pass-through in o in the two complementary coordinates.

Proof: Any two such rectangles must intersect, contrary to assumption. a

By Lemma 5.2, it is easily verified that there are only two possible maximal values for

the set
pt(c) = {pt(r,o) | r is a rectangle that is
pass-through in o in 2 coordinates},
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up to a permutation of the coordinates; namely:
(i) pt(o) € {(1,2),(1,3),(2,3)}

(i) pt(o) €{(1,4),(2,4),(3,4)}.

Case (i). Consider first case (i). Note that in this case all the rectangles that are pass-
throughs in ¢ in 2 coordinates are orthogonal to the z,-axis and lie at different heights.
We cut o by O(n'/) cuts orthogonal to the z4-axis so that each of the O(n®%) subcells
contains at most n'/? (portions of) rectangles. In particular, each subcell contains at most
n'/? rectangles that are pass-throughs in 2 coordinates, at most n'/? rectangles that are
pass-throughs in 1 coordinate, and at most n'/ rectangles that are not pass-throughs in any
coordinate. By Lemma 5.2, the extent coordinates of the 2-coordinate-pass-throughs in a
subcell may again fall into either case (i) or case (ii) (with a possible new permutation of the
coordinates). For a subcase-(i) subcell o, we cut o by O(n'/®) cuts orthogonal to the z, axis,
resulting in a total of O(n) subsubcells each containing at most n'/3 (portions of) rectangles.
For a subcase-(ii) subcell o, we apply the scheme described below, based on a round-robin
cutting of each subcell into n*/® pieces each containing at most n'/% (portions of) rectangles.
If we denote by F'(n) the maximum size of a BSP that the algorithm constructs for any
input set of n pairwise-disjoint axis-parallel 2-rectangles in R*, then the overall number of
final cells produced for cells o that belong to case (i) is O(n)F(n'/?) + O(n*/?)F(n'/®).
Case (ii). Next consider case (ii). We execute a round-robin procedure that only makes
cuts orthogonal to the xy, x5, and x3-axes. At each stage of this procedure we make t =
O(n'/%) cuts. This partitions each of the preceding O(n??) cells into O(n'/?) subcells, for a
total of O(n"/®) subcells. This can be done so that each subcell o contains

e at most n%3/t> = n'/3 rectangles that are pass-throughs in o in two coordinates, one
of which is x4,

e at most n'/?/t = n'/3 rectangles that are pass-throughs in ¢ in two coordinates, none
of which is x4,

e at most n'/2/t> = n'/® rectangles that are pass-throughs in ¢ in exactly one coordinate,
e and no other rectangles.

Note that, because of Lemma 5.2, the existence of 2-coordinate-pass-throughs of the second
category annihilates those pass-throughs of the first category that have complementary extent
coordinates. Consequently, the extent coordinates of the 2-coordinate-pass-throughs in o
may again fall into either case (i) or case (ii) (with a possible new permutation of the
coordinates).

In subcase (i) we proceed in a manner similar to the one above, cutting o by O(n'/%) cuts
orthogonal to the x4-axis, to obtain O(n'/%) subcells, each containing at most n'/® rectangles,
for an overall recursive bound of the form O(n*/?) - F(n'/%).

In subcase (ii), with, say, pt(o) = {(1,4),(2,4),(3,4)}, we again proceed as above,
cutting o in a round-robin fashion by cuts orthogonal to the z;, x3, and z3-axes, making
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t = O(n'/%) cuts in each round. This can be done so as to eliminate the at most n'/®
rectangles that are pass-throughs in one coordinate, as well as all of the at most n'/3 2-
coordinate-pass-throughs. Hence this step produces a BSP for o, whose size is O(n'/?), for
a total of O(n™/% - n'/2) = O(n°/?).

Putting everything together, we obtain the following recurrence for F'(n):

F(n) = O(n5/3) +O(n) - F(n1/3) + O(n4/3) . F(nl/ﬁ),
whose solution is easily seen to be
F(n) = O(n"?).

Proof of the lower bound: Let G be the n?? x n'/3 x n'/3 x n'/3 integer grid in 4-space.
Let I denote the interval [0, n'/? +1] and let I’ denote the interval [0, n%/? 4 1]. We construct
the following four families of rectangles:

Ry = {{z’—l—sl(-}j)} X {j—i—ez(.’lj)} x I x|

i=1,...,n*3 j=1,...,n'%}
Ry = {{z’—l—sg?} x I % {j—l—sg?} x I |

i=1,...,n*3 j=1,...,n'%}
Ry = {{z+5£3])} x I xTx {j—iregi-)} |

i=1,...,n*3 j=1,...,n'%}
Ra = AT x[i+ i+ el x [+ 2+ 20

< [k+el kel 05k =1,... 0%,

where the 5(?)

i s and 553%’5 are all distinct small positive real numbers (say, at most 0.1). In

addition, we require that all the intervals [55?’,9, 52(.’5]-)’,9] do not contain any of the numbers 52(-?),
for m = 1,2,3. The elements of R, are (long and skinny) 4-dimensional boxes rather than
rectangles, but we can replace each of them by its 24 bounding (2-dimensional) rectangles,
slightly shifted away from each other, to maintain the general position property. Note that
the rectangles in R = U?Zl R; are pairwise disjoint.

Fix any 1 < i <n?3,1 <4,k ¢ <n'3 and consider the cube
=i, 7,k 0) = [i,i +0.1] X [1,7 + 0.1] x [k, k +0.1] x [¢,£ + 0.1].

We refer to =(3, j, k, £) as the junction at (i, j, k, {).

Consider any rectilinear BSP for R, namely, one that only uses cuts orthogonal to the
coordinate axes. It is clear that each junction = = =(i, j, k, £) must be cut by at least one
hyperplane of the BSP, or else the BSP will have a final cell that is intersected by more than
one rectangle of R.

If the first hyperplane that intersects = is orthogonal to the z;-axis, then it intersects
the unique skinny box of R, that crosses =. Such an intersection is a tiny 3-rectangle that
lies inside =. Hence the number of fragments of the boxes in R4 produced by the BSP is at
least equal to the number of junctions = with this property.

Consider then a junction = = =(3, j, k, ) that is not crossed (for the first time) by any
hyperplane orthogonal to the z;-axis. We make the following claim:
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Claim 5.3 Fither the box of R4 that crosses = is eventually cut as in the preceding para-
graph, or else there exists a rectangle in R1 U Ro U R3 that is split by the BSP into subrect-
angles, so that at least one of them has a vertex inside =.

Intuitively, the only way to “get rid” of the box of R, that cuts = by cuts parallel to x; is
to cut along each of its 3-D facets; moreover, one cannot get rid of the other three rectangles
in Ry U Ry U Rj3 that cross = without making at least two differently-oriented cuts, each
being orthogonal to one of the axes x,, x3, 24.

Proof of the Claim: Suppose, with no loss of generality, that the first hyperplane h of
the BSP that cuts = is orthogonal to the xs-axis. Then h splits each of the two rectangles
of Ry URj3 that cross = into two subrectangles, and A may fully contain only the rectangle
of Ry that crosses = (if at all). The box of R4 that crosses = meets at least one of the two
subcells into which = is split. It follows that each of the two pieces into which = has been
split by h, which is met by all three elements of Ry U R3 U R, that cross = (and at least one
of these two sub-junctions has this property), must be further cut at least once more.

Suppose first that the next cut of such a sub-junction =’ is by a hyperplane A’ orthogonal
to another axis. If A’ is orthogonal to the z;-axis then we can charge = to the cut of the
relevant box of R4, as above. Otherwise, suppose h' is orthogonal to the x3-axis. Then the
rectangle of R3 that crosses = is cut by h and A’ into pieces that have at least one vertex
in (the closure of) ='. A similar property holds for the rectangle of R, if A’ is orthogonal to
the z4-axis.

The only remaining case is when A’ is also orthogonal to the x,-axis. In fact, in general,
= may be cut by several such hyperplanes. However, all of these portions are intersected by
each of the two rectangles of Ry U R3 that meet =, and at least one portion is also crossed
by the box of R, that meets =.

Let =" denote such a portion of =, which we assume not to be cut any more by hyperplanes
orthogonal to the x,-axis. But =" does have to be cut again, because it is still met by more
than one rectangle, and any cut in any other direction can be charged uniquely to =, using
the arguments in the preceding paragraphs. This completes the proof of the claim., O

This claimed property implies that the number of fragments of the rectangles in R, U
R, U Rj3 that is produced by the BSP is at least equal to the number of junctions =. Since
this number is n%/3, it follows that this is a lower bound on the size of any (rectilinear) BSP
for R. O

6 Conclusion

In conclusion, we refer again to our summary of results in Table 1. Perhaps the most
interesting remaining open problem is to generalize our techniques for (disjoint) 2-rectangles
in R* to higher dimensions, with the hope of obtaining asymptotically tight bounds for
k-rectangles in R?, for all k and d.

19



7 Acknowledgments

We thank Shakhar Smorodinsky and Saurabh Sethia for several useful discussions and valu-
able input on this work.

References

[1] F.d’Amore and P. G. Franciosa, On the optimal binary plane partition for sets of isothetic
rectangles, Inform. Process. Lett. 44 (1992), 255-259.

[2] M. de Berg, M. de Groot and M. Overmars, New results on binary space partitions in
the plane, Comput. Geom. Theory Appl. 8 (1997), 317-333.

[3] M. de Berg, M. de Groot and M. Overmars, Perfect binary space partitions, Comput.
Geom. Theory Appl. 7 (1997), 81-91.

[4] P. Berman, B. DasGupta and S. Muthukrishnan, On the exact size of the binary space
partitioning of sets of isothetic rectangles with applications, DIMACS Technical Report
2000-06, July 2000.

[5] P. Berman, B. DasGupta, S. Muthukrishnan and S. Ramaswami, Improved approxima-
tion algorithms for rectangle tiling and packing, Proc. 12th ACM-SIAM Symp. on Disc.
Alg., (2001), 427-436.

[6] S. Chin and S. Feiner, Near real-time shadow generation using BSP trees, Comput. Graph.
23 (1989), 99-106.

[7] S.E. Dorwald, A survey of object-space hidden surface removal, Intern. J. Comput. Geom.
Appl. 4 (1994), 325-362.

[8] H. Fuchs, Z. M. Kedem, and B. Naylor, On visible surface generation by a priori tree
structures, Comput. Graph. 14 (1980), 124-133.

[9] M.S. Paterson and F.F. Yao, Efficient binary space partitions for hidden-surface removal
and solid modeling, Discrete Comput. Geom. 5 (1990), 485-503.

[10] M.S. Paterson and F.F. Yao, Optimal binary space partitions for orthogonal objects, J.
Algorithms 13 (1992), 99-113.

[11] C. D. Té6th, A note on binary plane partitions, Proc. 17th ACM Sympos. Comput.
Geometry, 2001.

[12] C. D. Té6th, BSP for line segments with a limited number of directions, Manuscript,
ETH Ziirich, March, 2001.

[13] W.C. Thibault and B.F. Naylor, Set operations on polyhedra using binary space parti-
tioning trees, Comput. Graph. 21(4) (1987), 153-162 (Proc. SIGGRAPH ’87).

20



[14] G. Vanécek Jr., Brep-Index: A multidimensional space partitioning tree, Internat. J.
Comput. Geom. Appl. 1(3) (1991), 243-261.

21



