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Abstrat

We study (1+")-fator approximationalgorithms for several well-known optimization problems

on a given n-point set: (a) diameter, (b) width, () smallest enlosing ylinder, and (d) minimum-

width annulus. Among our results are new simple algorithms for (a) and () with an improved

dependene of the running time on ", as well as the �rst linear-time approximation algorithm for

(d) in any �xed dimension. All four problems an be solved within a time bound of the form

O(n+ "

�

) or O(n log(1=") + "

�

).
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1 Introdution

The purpose of this paper is to highlight some useful tehniques in the design of eÆient approxi-

mation algorithms in geometri optimization. For this reason, we have hosen four simple problems,

all well-studied from the perspetives of both exat and approximate omputation: given a set P of

n points in a �xed-dimensional Eulidean spae IR

d

, ompute

Diameter: the maximum distane over all pairs of points in P ;

Width: the minimum width over all slabs that enlose P , where a slab of width w refers to a region

between two parallel hyperplanes of distane w;

Smallest enlosing ylinder: the minimum radius over all ylinders that enlose P , where a ylin-

der of radius z refers to the region of all points of distane z from a line;

Minimum-width annulus: the minimum width over any all annuli that enlose P , where an an-

nulus (also alled a spherial shell) of width jz � yj is a region between two onentri spheres

of radii y and z.

The last three problems are motivated from statistial analysis and omputational metrology, as they

respetively ask for the hyperplane, line, and sphere that best �t the data (in the sense of minimizing

the maximum distane to the points).
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It is not known how to ompute an exat solution to these problems in near-linear time even for

low dimensions (spei�ally, d � 4 for diameter, d � 3 for width and smallest enlosing ylinder, and

d � 2 for minimum-width annulus). It is therefore of pratial interest to look for faster algorithms

that solve the problems approximately by returning a solution that is within a multipliative fator

1+ " of the optimal value, where " > 0 is an input parameter. Indeed, for all of the above problems,

a (1 + ")-fator approximation an be found in time linear in n (as we will see).

An important onsideration in approximation algorithms is the \onstant fator" in the running

time, whih undoubtedly inreases as we demand higher auray. In our time bounds, we will

therefore speify the dependene on both n and ". Sine we are primarily onerned with low

dimensions, we will ignore onstant fators that depend on d, whih usually have an exponential

growth. (EÆient high-dimensional algorithms seem to require a di�erent set of tehniques; for

example, see [11, 22, 24℄, and for onvex bodies, see [25℄.)

In the sequel, let E = 1=", let Æ > 0 be an arbitrarily small �xed onstant, and let the O

�

notation

hide log

O(1)

E fators. Many algorithms from the literature have time bounds of the formO

�

(E



n) for

a small onstant  (depending on d). We all suh an algorithm a linear-time approximation sheme

(LTAS) of order . We are interested in minimizing the order , beause this number ditates how

aurate an answer we an get in a reasonable amount of time. (Just imagine an appliation that

only tolerates a relative error of 1%; here, E = 100 and a fator like E

2

or E

3

would be substantial.)

Somewhat surprisingly, all of the above problems have algorithms with time bounds of the form

O

�

(n + E



) for a onstant . We all suh an algorithm a strong LTAS of order . A strong LTAS

is interesting, beause the running time does not grow asymptotially as long as E is kept below a

threshold of n

1=

. Again, we would like the order  to be as small as possible.

Known Exat Algorithms. The diameter problem has been extensively studied in omputational

geometry. In the plane, it is quite easy to obtain an optimal O(n logn) time bound [33℄. Muh e�ort

was direted to the more diÆult d = 3 ase: Clarkson and Shor [18℄ were the �rst to obtain an

optimal randomized O(n logn) algorithm; a deterministi algorithm that mathes this performane

was announed only reently by Ramos [35℄, after a long suession of work by various researhers

[10, 15, 31, 34℄. For d � 4, we an trivially solve the problem in quadrati time. With known data

strutures [28, 30℄ though, a slightly better bound of O(n

2�2=(dd=2e+1)

log

O(1)

n) an be attained [4℄.

The width problem has also been extensively studied. Again, in the plane, it is easy to obtain

an optimal O(n logn) time bound [33℄. In d = 3, Houle and Toussaint [26℄ were redited as the �rst

to obtain an O(n

2

)-time algorithm. A series of papers derived improved subquadrati algorithms [3,

5, 6, 15℄, the best of whih required O(n

3=2+Æ

) expeted time. We are not aware of any algorithms

for d � 4, although O(n

dd=2e

) time an be immediately ahieved by realizing the solution spae as

a onvex polytope in d + 1 variables/dimensions (see Setion 3) and applying an optimal halfspae

intersetion algorithm [14, 18℄.

The smallest enlosing ylinder for d = 2 is idential to width, so the �rst nontrivial ase for our

third problem is d = 3. Two papers studied this ase: one by Sh�omer et al. [37℄, who gave a near-

quarti algorithm, and a subsequent one by Agarwal et al. [2℄, who gave a faster O(n

3+Æ

) algorithm.

In higher dimensions, a rough bound of O(n

2d�1+Æ

) follows by realizing the solution spae as a ell

in an arrangement of surfaes in 2d� 1 dimensions (improvements are likely).

The minimum-width annulus problem for d = 2 has reeived muh attention beause of its relation

to testing the roundness of a point set. Quadrati algorithms are easy to obtain by onstrution of

2



Voronoi diagrams. A series of papers derived improved subquadrati algorithms [3, 5, 6℄, ulminating

in an O(n

3=2+Æ

) randomized algorithm. For d � 3, it is not diÆult to ahieve O(n

bd=2+1

) time, again

by realizing the solution spae as a onvex polytope, this time with d+ 2 variables (see Setion 5).

Inidently, this renders a reently published (and rather ompliated) 3-dimensional O(n

3�1=19+Æ

)

algorithm by Agarwal et al. [1℄ unneessary. Variants and speial ases of the problem have also

been addressed arising from pratial onsideration [9, 20, 23, 36℄.

Known Approximation Algorithms. For the diameter problem, it is quite easy to derive an

LTAS that runs in O(E

(d�1)=2

n) time, as noted by Agarwal et al. [4℄. Reently (apparently unaware

of this), Barequet and Har-Peled [8℄ desribed another simple (1 + ")-approximation algorithm; in

fat, their algorithm is a strong LTAS with a running time of O(n+E

2(d�1)

), whih, as they noted,

an be improved slightly to O(n+ E

2(d�1)d=(d+1)

) if advaned data strutures are used.

The approximate width problem was studied by Dunan et al. [20℄, who gave an O(E

(d�1)=2

n)-

time LTAS, generalizing an earlier two-dimensional idea they attributed to Janardan [27℄.

Sh�omer et al.'s and Agarwal et al.'s papers on smallest enlosing ylinders [2, 37℄ also ontained

approximation algorithms for d = 3. Sh�omer et al.'s algorithm omputes a (1 + ")-fator approx-

imation in O((EU)

2

n log(EU)) time, where U denotes the ratio of the diameter to the minimum

ylinder-radius. Note that this ratio an be large when the input points are \almost ollinear."

In ontrast, Agarwal et al.'s LTAS is independent of the ratio and takes O(E

2

n) time. Higher

dimensions were not disussed.

The approximate minimum-width annulus problem was attaked in the reent paper by Agarwal

et al. [1℄. They desribed the �rst near-linear-time algorithm for d = 2, running in O(n logn +

E

2

n). They also gave algorithms in higher dimensions with running time O(E

d

n log(EU)) and

O((E

d�2

n logn + E

d�1

n) log(EU)). Here, U may either stand for the ratio of an upper bound on

the larger sphere-radius to the diameter, or the ratio of the diameter to the minimum annulus-width.

The former ratio an be unbounded if the optimal annulus approahes a slab. On the other hand,

the latter ratio an be large when the input point set is \almost round" (an essential ase in ertain

appliations). Earlier attempts by Dunan et al. [20℄ again dealt only with speial ases or variants

of the approximation problem. A general LTAS remained inomplete.

New Approximation Algorithms. We desribe new simple algorithms that yield the following

for any �xed dimension d:

1. two strong LTASs for the diameter problem with running time O(n + E

d�0:5

), improving the

earlier O(n+E

2(d�1)

) result of Barequet and Har-Peled [8℄;

2. an LTAS for smallest enlosing ylinders with running time O(E

(d�1)=2

n), improving and gen-

eralizing the earlier 3-dimensional O(E

2

n) result by Agarwal et al. [2℄;

3. a strong LTAS for smallest enlosing ylinders, with running time O(n+E

3(d�1)=2

);

4. the �rst LTAS for minimum-width annuli (the simplest version takes O(E

(d�1)=2

n + E

4d�1

)

time, another version takes O(E

d

n logE) time), improving the 2-dimensional n logn result

by Agarwal et al. [2℄, and eliminating any dependene on distane ratios from their higher-

dimensional results.
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problem LTAS strong LTAS

previous new previous new

diameter d = 4 1.5 0.5 4.8 2.34

d = 5 2 0.8 6.67 3.34

d � 6 � d=2 � d=2 � 2d � d

width d = 3 1 0.34 { 1

d = 4 1.5 0.75 { 2.5

d � 5 � d=2 � d=2 { � 3d=2

ylinder d = 3 2 < 1 { < 2:5

d = 4 { < 1:5 { < 4

d � 5 { � d=2 { � 3d=2

annulus d = 2 1

y

0.67 { 2

d = 3 2

y

1.5 { 5

d � 4 � d

y

� d { � d

2

=4

Table 1: The order of LTASs and strong LTASs (the notation f(d) � g(d) means lim

d!1

f(d)=g(d) =

1). The \previous" olumn desribes the best results that were expliitly stated in earlier papers

(entries marked

y

do not tehnially represent LTASs, as running time has extra logn and logU

fators for a ertain distane ratio U). The \new" olumn desribes the fastest theoretial results

mentioned in this paper. Note that not all the new entries are obtained from new ideas (for example,

some follow just by using more advaned data strutures).

All of these algorithms are not diÆult to implement. In Appendix A, we also establish an inequal-

ity relating the minimum-width annulus to the \minimum-area" annulus that may be of pratial

interest.

Sine many of the previous papers expressed interest in improving the dependene of the running

time on ", we also point out (in paragraphs marked \Remark") how applying known data strutures

to the previous or new algorithms lead to the urrently best bounds on the order of LTASs and

strong LTASs. See Table 1 for a summary; for example, we an obtain a strong LTAS for the width

problem in three dimensions with the running time O

�

(n + E). It should be emphasized that the

data strutures used to obtain these results are quite ompliated and thus these results represent

what is possible in theory only. Nevertheless, the table indiates that determining the optimal order

an be nontrivial even for a simple problem like diameter. Lower bounds appear even harder and

will be left as open problems.

Tehniques. Our algorithms are all obtained by various ombinations of known elementary teh-

niques, for instane, of dividing spae into grid ells, or dividing the spae of diretions into narrow

ones . We �nd another tehnique to be quite powerful|namely, reduing a geometri approximation

problem into a number of instanes of �xed-dimensional linear/onvex programming . These teh-

niques should be appliable to other problems, and we hope that our study here will serve as helpful

examples, and at the same time, prompt a loser examination into the dependene on ".
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2 Diameter

We begin with the simplest of the four problems, diameter, mainly to illustrate some of the tehniques

we are going to use throughout. We �rst review two almost trivial algorithms: the �rst based on

grids (mentioned by Barequet and Har-Peled [8℄), the seond based on ones (mentioned by Agarwal

et al. [4℄). Interestingly, neither algorithm gives the best "-dependene. By ombining the two

algorithms, we immediately obtain a (new) third algorithm, and by instead \alternating" between

the two algorithms, we obtain an even better result.

Let �

�

denote the atual diameter of our n-point set P � IR

d

. A onstant-fator approximation is

easy to get in O(n) time. For example, pik any point in P and let �

0

be its farthest-point distane.

Obviously, �

0

� �

�

� 2�

0

. We want to ompute a (1 +O("))-fator approximation to �

�

.

Algorithm 1 (Grid). Here is an algorithm that easily omes to mind [8℄: build a uniform grid of

side length "�

0

, round eah point to the nearest grid point, then ompute the diameter of these grid

points. Rounding inurs an additive error of O("�

0

) = O("�

�

) to the diameter, so this algorithm

returns a (1 + O("))-fator approximation of �

�

.

The analysis is not diÆult. Sine the points lie within a ball of radius O(�

�

) = O(�

0

), there

are at most O(E

d

) grid points. Now, rounding an be done in O(n) time by using the oor funtion

(or in O(n logE) time without it). Dupliates an be removed by buketing in O(n+E

d

) time. The

diameter omputation on the O(E

d

) grid points an be done by brute fore in O(E

2d

) time. We thus

have a strong LTAS with a running time of O(n+ E

2d

).

A simple modi�ation to the algorithm improves the time bound to O(n + E

2(d�1)

): during

rounding, only keep the topmost and bottommost grid points along eah vertial line. The reason is

that the diameter is una�eted when the other points are pruned. As a result, we are left with only

O(E

d�1

) grid points, and the time needed to generate these points is only O(n+E

d�1

) by buketing.

Remark: Har-Peled (in personal ommuniation) noted that the number of grid points an be

further redued to O(E

d�4=3

) by keeping only the extreme points along eah of the O(E

d�2

)

parallel grid planes. Sine the onvex hull of a point set inside an O(E) � O(E) grid has only

O(E

2=3

) verties [7℄, eah plane has O(E

2=3

) extreme points, and they an be generated in O(n+

E

d�1

) total time by Graham san with pre-sorting [33℄.

He suggested that the number of grid points an be further redued to O(E

d�3=2

) by keeping

extreme points along eah of the O(E

d�3

) parallel grid 3-ats. Eah 3-at now has O(E

3=2

)

extreme points [7℄, and they an be generated in additional O(E

d�4=3

logE) total time by an

optimal 3-dimensional onvex hull algorithm [33℄. As a result, the total running time of the grid

algorithm is O(n+E

2d�3

).

Of ourse, one an onsider this �ltering trik for ats beyond dimension 3 using more ompliated

higher-dimensional onvex hull algorithms (as mentioned in Barequet and Har-Peled's paper [8℄),

but this theoretial improvement is at best minor and will not be onsidered here.

Algorithm 2 (Cones + RS). Let �

"

= aros(1=(1 + ")) = �(

p

"). The seond algorithm [4℄ is

based on the well-known observation [40℄ that the spae of diretions an be overed by O(1=�

d�1

"

)

ones of angle �

"

. In other words, we an form a set V

d

of O(1=�

d�1

"

) unit vetors in IR

d

satisfying

the following property: for every x 2 IR

d

, there exists a 2 V

d

suh that the angle

6

(a; x) is at most

�

"

.
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Note that os

6

(a; x) = a � x = kxk. The desired property of V

d

an therefore be paraphrased as

follows: for every x 2 IR

d

,

kxk=(1 + ") � max

a2V

d

a � x � kxk: (1)

Now, we want a pair of points p; q 2 P to maximize kp�qk. By (1), a (1+")-fator approximation

an be found by maximizing a � (p � q) over all p; q 2 P and a 2 V

d

. This value an be omputed

by determining for eah a 2 V

d

the point p 2 P that maximizes a � p and the point q 2 P that

minimizes a � q. In other words, we have redued our problem to �nding extreme points of P along

O(1=�

d�1

"

) = O(E

(d�1)=2

) query diretions. In the dual, these queries are more ommonly known as

ray shooting (RS) in a onvex polytope.

The trivial method for RS (and the one most suitable for implementation) requires O(n) time

per query. So, the running time of this simple algorithm, an LTAS, is O(E

(d�1)=2

n).

Remark: With advaned data strutures [28, 30℄, we an answer m RS queries on a d-dimensional

onvex polytope de�ned by n halfspaes in O(t

d

(n;m)) time [13℄, where

t

d

(n;m) := n logm + (nm)

1�1=(bd=2+1)

log

O(1)

n+m log

O(1)

n: (2)

So, the time bound of the algorithm an be improved to O(t

d

(n;E

(d�1)=2

)). By straightforward

alulations,

minfn

�

; t

d

(n;E

�

)g =

�

O

�

(E

�(��1)bd=2=(�+(��1)bd=2)

n) if � � bd=2

O

�

(E

�(��1)=�

n) otherwise;

(3)

and

t

d

(n;E

�

) = O

�

(n+ E

�bd=2

): (4)

This yields our fastest LTASs in theory for d = 4; 5 as shown in Table 1, sine we an bound

minfn

4=3

; t

4

(n;E

3=2

)g by O

�

(

p

En), and we an bound minfn

3=2

; t

5

(n;E

2

)g by O

�

(E

4=5

n).

Algorithm 3 (Algorithm 1 + Algorithm 2). Reall that Algorithm 1 redues the problem to

one involving O(E

d�1

) grid points. Instead of applying a brute-fore quadrati algorithm to these

grid points, we an apply Algorithm 2. (The underlying priniple: a (1+ ")-fator approximation of

a (1+")-fator approximation is a (1+O("))-fator approximation.) We thus obtain a more eÆient

strong LTAS, with a time bound of O(n+E

3(d�1)=2

).

Remark: With advaned data strutures, the time bound is O(n+t

d

(E

d�1

; E

(d�1)=2

)) and an be

redued slightly to O(n+E

d�1

+ t

d

(E

d�3=2

; E

(d�1)=2

)) by the �rst remark. Alternatively, we an

onsider the following idea (whih is better in low dimensions). After rounding, our point set an

be deomposed intoO(E

d�3

) subsets, eah lying in a grid 3-at. An RS query an be aomplished

by querying eah of these 3-dimensional subsets separately. The time bound an therefore be

rewritten as O(

P

O(E

d�3

)

i=1

t

3

(n

i

; E

(d�1)=2

)), where

P

i

n

i

= n. This is O

�

(n+E

(3d�7)=2

).

Algorithm 4 (Grid + Cones + Dimension Redution). A more eÆient strong LTAS is

based on the following idea: �rst apply the grid sheme of Algorithm 1 to redue the size of the point

set to O(E

d�1

); but instead of using d-dimensional ones to solve this redued problem diretly, use

2-dimensional ones to redue the problem to a number of (d�1)-dimensional subproblems and solve

these subproblems reursively. The subproblems are formed by projetions to O(E

1=2

) hyperplanes

orresponding to the 2-dimensional one diretions.
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To be preise, given a point x, let x

i

denote its i-th oordinate. Now, (1) in IR

2

tells us that

(x

2

1

+ x

2

2

)=(1 + ")

2

� max

a2V

2

(a

1

x

1

+ a

2

x

2

)

2

� x

2

1

+ x

2

2

:

De�ne the projetion �

a

: IR

d

! IR

d�1

: �

a

(x) = (a

1

x

1

+a

2

x

2

; x

3

; : : : ; x

d

) 2 IR

d�1

. The above implies

that for every x 2 IR

d

,

kxk

2

=(1 + ")

2

� max

a2V

2

k�

a

(x)k

2

� kxk

2

:

Consequently, to �nd a (1+O("))-fator approximation to the diameter of P � IR

d

, it suÆes to �nd

a (1+O("))-fator approximation to the maximum of k�

a

(p�q)k = k�

a

(p)��

a

(q)k over all p; q 2 P

and a 2 V

2

. In other words, it suÆes to approximate reursively the diameter of the projeted point

set �

a

(P ) � IR

d�1

over eah of the vetors a 2 V

2

.

Let T

d

(n) be the running time in d dimensions. Sine the grid sheme redues n to O(E

d�1

) and

O(1=�

"

) = O(E

1=2

) subproblems in d� 1 dimensions are generated, we have a reurrene

T

d

(n) = O(n+ E

1=2

T

d�1

(O(E

d�1

)));

whih solves to T

d

(n) = O(n+E

d�1=2

). We therefore obtain a strong LTAS of order d� 1=2.

Remark: As Har-Peled informed the author, by the �rst remark, the reurrene an be rewritten

as T

d

(n) = O(n + E

d�1

+ E

1=2

T

d�1

(O(E

d�3=2

))), whih solves to T

d

(n) = O(n + E

d�1

). As we

will see, a di�erent approah also enables a similar small improvement.

Algorithm 5 (Grid + Cones + Dimension Redution). We point out another ombination

of grid, ones, and indution that lead basially to the same result. The idea is a more re�ned way

to quikly redue the number of points. We �rst introdue a de�nition: given d-dimensional subset

P

0

� P , we say that P

0

(1 + ")-simpli�es P if for any q 2 IR

d

,

max

p

0

2P

0

kp

0

� qk � max

p2P

kp� qk=(1 + "):

Initially, we form the set P of grid points from Algorithm 1. Next, we �nd a subset P

0

of size

O(E

(d�1)=2

) that (1 + O("))-simpli�es P , as desribed by a reursive proedure below. Then by

Algorithm 2 in O(E

(d�1)=2

jP

0

j) = O(E

d�1

) time, we return a (1+O("))-fator approximation to the

diameter of P

0

, whih is easily seen to be a (1 +O("))-fator approximation to the diameter of P .

To onstrut P

0

, we �rst deompose the grid point set P into O(E) subsets P

i

eah lying in a grid

hyperplane. We then reursively �nd a subset P

0

i

of size O(E

(d�2)=2

) that (1+O("))-simpli�es P

i

. A

simple argument shows that

S

i

P

0

i

(1 +O("))-simpli�es P : given q 2 IR

d

, say its farthest neighbor p

in P lies in the grid hyperplane h ontaining P

i

, and let q

0

be the projetion of q to h; then

kp� qk

2

= kp� q

0

k

2

+ kq

0

� qk

2

� (1 +O("))

2

max

p

0

2P

0

i

kp

0

� q

0

k

2

+ kq

0

� qk

2

� (1 +O("))

2

max

p

0

2P

0

i

kp

0

� qk

2

:

Now,

S

i

P

0

i

has size O(E

d=2

), whih is still too large, so we employ ones to onstrut a smaller

simplifying subset P

0

from this set: for eah a 2 V

d

, �nd the point p

a

2

S

i

P

0

i

that maximizes a � p

a

7



and form P

0

= fp

a

j a 2 V

d

g of size O(E

(d�1)=2

), omputable by RS in time O(E

(d�1)=2

j

S

i

P

0

i

j) =

O(E

d�1=2

). It is easy to see from (1) that P

0

(1 + ")-simpli�es

S

i

P

0

i

: for any q 2 IR

d

and p 2

S

i

P

0

i

,

kp� qk � (1 + ")max

a2V

d

a � (p� q) � (1 + ")max

a2V

d

a � (p

a

� q)

� (1 + ")max

a2V

d

kp

a

� qk:

By transitivity, P

0

(1 + O("))-simpli�es P , as desired.

Let T

d

(n) be the running time of the above reursive proedure on an n-point set in a d-

dimensional grid. We have the reurrene

T

d

(n) =

O(E)

X

i=1

T

d�1

(n

i

) + O(E

d�1=2

);

where

P

i

n

i

= n. The overall running time is therefore O(n+ E

d�1=2

).

Remark: With advaned data strutures, the reurrene lowers to T

d

(n) =

P

O(E)

i=1

T

d�1

(n

i

) +

O(t

d

(E

d=2

; E

(d�1)=2

)). We an easily hek from (2) that t

d

(E

d=2

; E

(d�1)=2

) is at mostO

�

(E

d�5=3

)

for d � 4, so our best strong LTAS has an O

�

(n+ E

d�5=3

) time bound, as shown in Table 1.

3 Width

For the width problem, we will not give a new approximation algorithm but rather present a quik

reinterpretion of the previous algorithm by Dunan et al. [20℄ so as to set up the basi approah for

the subsequent problems.

We �rst formulate the optimization problem by using d + 2 variables x 2 IR

d

and y; z 2 IR to

parametrize the two parallel hyperplanes that bound the desired slab: f� 2 IR

d

j x � � = yg and

f� 2 IR

d

j x � � = zg. (Note that one variable an be be eliminated, e.g., by setting z = y + 1.) The

width of the slab is jz � yj=kxk. Thus, we want to

minimize (z � y)=kxk

subjet to y � x � p � z (8p 2 P )

x 2 IR

d

; y; z 2 IR:

Although the onstraints are all linear, this is not an instane of linear or onvex programming,

beause of the objetive funtion. The obvious way to �nd the exat optimum is to onstrut the

entire feasible region (a (d + 1)-dimensional onvex polytope, after eliminating a variable), whih

require O(n

dd=2e

) time in the worst ase (probably less in pratie, though). The region an then be

triangulated, and the objetive funtion an be optimized within eah simplex in onstant time.

Algorithm 1 (Cones + LP). If we just want an approximation, a faster algorithm an be ob-

tained by replaing this optimization problem with a number of linear programming problems. The

idea is one that we have seen before, namely ones. By (1), the following yields a (1 + ")-fator

approximation:

minimize (z � y)=ja � xj

subjet to y � x � p � z (8p 2 P )

x 2 IR

d

; y; z 2 IR; a 2 V

d

:

8



Changing variables, X = x=(z�y) and Y = y=(z�y), we see that this redues to a (d+1)-dimensional

linear program (LP) for eah of the O(E

(d�1)=2

) vetors a 2 V

d

:

maximize ja �X j

subjet to Y � p �X � Y + 1 (8p 2 P )

X 2 IR

d

; Y 2 IR; a 2 V

d

:

Several linear-time algorithms [16, 17, 21, 32, 38, 39℄ are known for �xed-dimensional LP. Conse-

quently, the approximate width problem an be solved by an LTAS in O(E

(d�1)=2

n) time [20℄.

Remark: While this result is known, new theoretial results an be obtained by using advaned

data strutures. We are solving a number of related LPs here, all with the same set of onstraints

in d+1 dimensions. Known results on LP queries tell us that a time bound of O(t

d+1

(n;E

(d�1)=2

))

is ahievable for a funtion t

d+1

of the same form as (2). The idea is to redue LP queries to

membership queries (speial ases of RS) in a onvex polytope, via parametri searh [29℄ or

Clarkson's randomized LP algorithm [12℄.

In fat, in our appliation, the membership queries redue to membership queries in two separate

d-dimensional polytopes f� 2 IR

d

j p � � � 1 (8p 2 P )g and f� 2 IR

d

j p � � � 1 (8p 2 P )g. This

observation allows us to lower the time bound to O(t

d

(n;E

(d�1)=2

)), yielding many of the entries

in Table 1. For example, aording to (3) and (4), for d = 3, minfn

3=2+o(1)

; t

3

(n;E)g an be

bounded by O(E

1=3+o(1)

n) or O

�

(n + E), and for d = 4, minfn

2

; t

4

(n;E

3=2

)g an be bounded

by O

�

(E

3=4

n). By (4), this also proves the existene of a strong LTAS in any dimension (with

running time O

�

(n+ E

bd=2(d�1)=2

)).

Algorithm 2 (Algorithm 1 + Grid). After reading a perliminary draft of this paper, Har-Peled

(in personal ommuniation) noted that the grid idea an be adapted for the approximate width

problem. Spei�ally, Barequet and Har-Peled [8℄ proved the existene of a box B (of arbitrary

orientation) ontaining P suh that B an be translated to �t inside onv(P ) for some onstant 

depending on d (their paper only stated this lemma in the d = 3 ase, but aording to Har-Peled,

it extends to any �xed dimension). Suh a box an be omputed in linear time.

Now, build a grid where eah ell is a translation of "B, and replae eah point by the verties

of the ell it is in to get a set P

0

of grid points. If P is ontained in a slab S

�

of width w

�

, then P

0

is ontained in a slab of width (1+ 2")w

�

sine P

0

an be translated to �t in P � "B, whih in turn

an be translated to �t inside P � "onv(P ) � S

�

� "S

�

.

Therefore, it suÆes to approximate the width of P

0

. The size of P

0

is learly O(E

d

), whih an

be further redued to O(E

d�1

) by keeping only the topmost and bottommost points on eah grid

line. Applying Algorithm 1 to P

0

yields a strong LTAS running in time O(n+E

3(d�1)=2

).

Remark: The third remark in Setion 2 applies here as well. For example, by deomposing

the grid points into O(E

d�3

) 3-dimensional subsets, we an answer the desired LP queries after

rounding in total time O

�

(n+E

(3d�7)=2

). This yields our best strong LTAS for d = 4, as indiated

in Table 1.

4 Smallest Enlosing Cylinder

We give two new approximation algorithms for the smallest enlosing ylinder in this setion.

9
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"

Figure 1: The plane ontaining the line `

�

and the point p.

First we formulate the problem by parametrizing the enter line of the ylinder by 2d variables

x 2 IR

d

and y 2 IR

d

(two of whih an be eliminated): ` = fx+ ty j t 2 IRg. The radius is represented

by an additional variable z 2 IR. Sine the losest point on ` to a given point p 2 P is given by the

expression x+

�

y�(p�x)

y�y

�

y, the optimization problem is:

minimize z

subjet to






x+

�

y�(p�x)

y�y

�

y � p






� z (8p 2 P )

x 2 IR

d

; y 2 IR

d

; z 2 IR:

(5)

Let (x

�

; y

�

; z

�

) be the optimal solution.

Algorithm 1 (Cones + CP). As in Setion 3, the idea is to replae this nononvex optimization

problem with an easier problem through ones. We will replae the Eulidean point-line distane

funtion with a more managable distane funtion based on a \skewed" projetion of the point to

the line that depends on the one diretion a 2 V

d

. As explained geometrially below, the following

turns out to give a (1 + ")-fator approximation:

minimize z

subjet to






x+

�

a�(p�x)

a�y

�

y � p






� z (8p 2 P )

x 2 IR

d

; y 2 IR

d

; z 2 IR; a 2 V

d

:

(6)

Lemma 4.1 If (x; y; z; a) is the optimal solution for (6), then (x; y; z) is feasible for (5) and z �

(1 + ")z

�

.

Proof: The �rst part is easy. For the seond part, hoose a

�

2 V

d

suh that

6

(a

�

; y

�

) � �

"

.

Take any point p 2 P . Let u = x

�

+

�

y

�

�(p�x

�

)

y

�

�y

�

�

y

�

, and v = x

�

+

�

a

�

�(p�x

�

)

a

�

�y

�

�

y

�

. As noted earlier,

u is the losest point on the line `

�

= fx

�

+ ty

�

j t 2 IRg to p. (Simply hek that u� p and y

�

have

zero dot produt and are thus orthogonal.) On the other hand, v is the point on `

�

that lies in the

hyperplane ontaining p and perpendiular to the diretion a

�

. (Simply hek that v�p and a

�

have

zero dot produt.) Now, by the triangle inequality for angles,

6

(p� v; y

�

) �

6

(p� v; a

�

) +

6

(a

�

; y

�

) � �=2 + �

"

:

From Figure 1, we see that � :=

6

(u�p; v�p) � �

"

, and thus kv�pk = ku�pk= os� � (1+")ku�pk.

We onlude that (x

�

; y

�

; (1 + ")z

�

; a

�

) is feasible for (6), hene, z � (1 + ")z

�

. 2
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Now, a hange of variables, X = x�

�

a�x

a�y

�

y, Y =

y

a�y

, and Z = z

2

, reveals that (6) is atually a

set of O(E

(d�1)=2

) onvex programs (CPs), one for eah a 2 V

d

:

minimize Z

subjet to kX + (a � p)Y � pk

2

� Z (8p 2 P )

a �X = 0; a � Y = 1

X 2 IR

d

; Y 2 IR

d

; Z 2 IR; a 2 V

d

:

(Note: the squared norm of a linear funtion is onvex.) Several linear-time algorithms [16, 17, 39℄ are

known for �xed-dimensional CP. Consequently, we obtain a simple LTAS that runs in O(E

(d�1)=2

n)

time.

Remark: With advaned data strutures and the tehnique of linearization, it is possible to

answer m membership queries for the above in a time bound O(t



(n;m)) of the form in (2) for

some onstant  (depending on d). Known redution of CP queries to membership queries [12℄

then yields a running time O(t



(n;E

(d�1)=2

)). This allows us to improve the order of our LTAS

to a number slightly less than (d�1)=2, as indiated in Table 1 (although the improvement would

probably not be pratial).

Algorithm 2 (Algorithm 1 + Grid). We next give a strong LTAS using the simple grid idea.

First ompute a ylinder enlosing P with radius z

0

� z

�

in O(n) time for a onstant  by Algo-

rithm 1 (alternatively, as one referee suggested, take the enlosing ylinder with enter line through

the approximate diametral pair). By rotation, assume that the enter line is vertial.

Our algorithm is similar to one in Setion 2: build a uniform grid of side length "z

0

, round eah

point to the nearest grid point, keeping only the topmost and bottommost grid point along eah

vertial line, and �nally ompute a (1 + ")-approximation to the smallest enlosing ylinder of the

redued set of grid points. Rounding inurs an additive error of O("z

0

) = O("z

�

), and points between

the topmost and bottommost on a line an be pruned by onvexity of ylinders. So, the result is

indeed a (1 + O("))-approximation to z

�

.

For the analysis, observe that sine the points lie within a distane of z

0

from a vertial line,

there are only O(E

d�1

) grid vertial lines (and thus, grid points) to onsider. Applying Algorithm 1

to the grid points, we get a total running time of O(n+ E

3(d�1)=2

).

Algorithm 3 (Algorithm 1 + Grid). Another grid algorithm with the same time bound an

be obtained by following the seond width algorithm, using Barequet and Har-Peled's lemma. Our

Algorithm 2 is learly simpler.

Remark: Minor speedups are possible with this approah, however. Har-Peled's omment from

the �rst remark of Setion 2 is now appliable to redue the number of grid points to O(E

d�3=2

).

The running time with this enhanement is O(n+E

(3d�4)=2

) (or marginally better by the previous

remark), as shown in Table 1.
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5 Minimum-Width Annulus

Our last problem, minimum-width annulus, an be formulated as follows, using d variables x 2 IR

d

to represent the enter point, and variables y 2 IR and z 2 IR to represent the inner and outer radii:

minimize z � y

subjet to y � kx� pk � z (8p 2 P )

x 2 IR

d

; y 2 IR; z 2 IR:

(7)

By translation, assume that one of the points in P is the origin, so that y � kxk � z.

Let (x

�

; y

�

; z

�

) denote the optimal solution and let w

�

= z

�

� y

�

. Although we an linearize

the onstraints by a hange of variables (see below) to transform the feasible region into a (d+ 2)-

dimensional onvex polytope, the resulting objetive funtion is neither linear nor onvex. So, the

trivial strategy would give a worst-ase time bound of O(n

bd=2+1

). An alternative objetive funtion

z

2

�y

2

is known to be linear after the transformation, but unfortunately, does not always approximate

z � y well.

Our idea is to divide the problem into two ases. The �rst ase is when the optimal annulus

is narrow , in the sense that z

�

� (1 + ")y

�

. This is the ase that is not overed by the previous

algorithms (sine the annulus may approah a slab or the annulus-width may approah 0). The key

is to observe that here, w

�

= (z

�2

� y

�2

)=(z

�

+ y

�

) would be near (z

�2

� y

�2

)=(2kx

�

k). We thus

onsider approximating the objetive funtion (z

2

� y

2

)=kxk, using ones and (1), as in Setion 3 for

the width problem.

The seond ase is when the annulus is wide, i.e., z

�

> (1+ ")y

�

. This ase turns out to be easy;

in fat, we point out at least three approximation algorithms (the �rst is a simple self-ontained grid

method, the seond is the algorithm by Agarwal et al. [1℄, and the third is a hybrid). Running both

a narrow-ase and a wide-ase algorithm would guarantee that a valid solution is found.

As a warm-up exerise though, we �rst give a onstant-fator approximation algorithm, to il-

lustrate the main elements of this approah. In ontrast to the two-dimensional fator-2 algorithm

by Agarwal et al. [1℄ (whih runs in O(n logn) time instead of O(n)), our orretness proof is quite

simple and nongeometri. In the appendix, we also prove that a known heuristi yields another

simple linear-time onstant-fator algorithm.

Constant-Fator Approximation (Cones + LP). Consider the following optimization prob-

lem:

minimize (z

2

� y

2

)=ja � xj

subjet to y � kx� pk � z (8p 2 P )

x 2 IR

d

; y 2 IR; z 2 IR; a 2 V

d

:

(8)

We prove that this yields a onstant-fator approximation.

Lemma 5.1 If (x; y; z; a) is the optimal solution for (8), then z � y � w

�

for some onstant .

Proof: Choose a

�

2 V

d

so that a

�

� x

�

� kx

�

k=(1 + "). Then

z

2

� y

2

z

�

z

2

� y

2

kxk

�

z

2

� y

2

ja � xj

�

z

�2

� y

�2

ja

�

� x

�

j

� (1 + ")

z

�2

� y

�2

kx

�

k

� (1 + ")

z

�2

� y

�2

y

�

;
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implying that

(1 + y=z)(z � y) � (1 + ")(1 + z

�

=y

�

)(z

�

� y

�

): (9)

Case 1: z

�

� 2y

�

. Then (9) tells us that z � y � (3 +O("))w

�

.

Case 2: z

�

> 2y

�

. Then w

�

> z

�

=2 � �

�

=4, where �

�

denotes the diameter of P . But any annulus

with both its inner and outer spheres touhing P has width upper-bounded by �

�

. 2

Now, (8) redues to O(E

(d�1)=2

) number of linear programs through the following hange of

variables: X = x=(z

2

� y

2

), Y = (y

2

� kxk

2

)=(z

2

� y

2

), and Z = 1=(z

2

� y

2

).

maximize ja �X j

subjet to Y � �2p �X + (p � p)Z � Y + 1 (8p 2 P )

X 2 IR

d

; Y 2 IR; Z 2 IR; a 2 V

d

:

(10)

We onlude that a onstant-fator approximation an be found in O(n) time. We may thus let w

0

be a value satisfying w

0

� w

�

� w

0

for a onstant .

Narrow Case: Algorithm (Cones + LP). We now re�ne the preeding algorithm to give a

(1 +O("))-fator approximation assuming that z

�

� (1 + ")y

�

.

As hinted earlier, this assumption lets us approximate 2(z

�

� y

�

) by (z

�2

� y

�2

)=kx

�

k. However,

a similar statement annot be made for 2(z � y) in an arbitrary feasible solution unless we impose

the ondition z � (1 + ")y expliitly in (8). Unfortunately, as written, this onstraint is nonlinear

(and nononvex). Nevertheless, we overome the diÆulty by onsidering an alternative onstraint,

shown in the following, that serves the purpose:

minimize (z

2

� y

2

)=ja � xj

subjet to y � kx� pk � z (8p 2 P )

w

0

� "(1 + ")a � x

x 2 IR

d

; y 2 IR; z 2 IR; a 2 V

d

:

(11)

The reasoning is given below.

Lemma 5.2 If (x; y; z; a) is the optimal solution for (11), then z � y � (1 + O("))w

�

.

Proof: First observe that (x

�

; y

�

; z

�

; a

�

) is feasible for (11), beause w

0

� w

�

� "y

�

� "kx

�

k �

"(1 + ")a

�

� x

�

. Therefore, (9) still holds. In partiular,

z � y � (2 + O("))w

�

� O(1)w

0

� O(")a � x � O(")kxk � O(")z:

So z � (1 + O("))y, and applying (9) a seond time yields

(2�O("))(z � y) � (2 +O("))w

�

:

2

In (10), the additional onstraint transforms to a linear one:

w

0

Z � "(1 + ")a �X:

As a result, we obtain a simple (1 +O("))-fator approximation algorithm for the narrow ase that

runs in O(E

(d�1)=2

n) time.
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Wide Case: Algorithm 1 (Grid). We now give a simple (1 +O("))-fator approximation algo-

rithm for the wide ase z

�

> (1 + ")y

�

. Note that w

�

> (1�

1

1+"

)z

�

= 
("z

�

).

The idea is one we have used several times before|namely, build a uniform grid of side length

"w

0

, and round eah point of P to the nearest grid point. This inurs only an additive error of

O("w

0

) = O("w

�

). For the analysis, observe that sine the points lie in an annulus of volume

O(z

�d

� y

�d

) = O(w

�

z

�(d�1)

) = O(E

d�1

w

d

0

), the number of points redues to O(E

2d�1

).

We an also restrit the possible enter points to grid points. Sine the enter lies within a radius

of kx

�

k � z

�

= O(Ew

0

) to the origin, there are only O(E

2d

) enter points to try. Eah requires

simply �nding the nearest/farthest point to P .

The wide ase an thus be solved in O(n + E

4d�1

) time. We now have a omplete LTAS for

minimum-width annulus, running in O(E

(d�1)=2

n+ E

4d�1

) time.

Remark: With advaned data strutures for LP queries, the time bound an be redued to

O(t

d+2

(n;E

(d�1)=2

) + E

4d�1

), or with the �rst remark from Setion 3, to O(t

d+1

(n;E

(d�1)=2

) +

E

4d�1

). While there are several ways that an improve the E

4d�1

term further, this result is

enough to give our best strong LTAS for a suÆiently large d by (4), as shown in Table 1: the

running time is O

�

(n + E

maxf4d�1;dd=2e(d�1)=2g

). We thus fous our attention next on small

dimensions like 2 and 3.

Wide Case: Algorithm 2 (Grid + LP). We observe another method for the wide ase. Spei�-

ally, Agarwal et al. [1, Theorem 4.3℄ gave a simple algorithm that solves the minimum-width annulus

problem in O(E

d

n logU) time when z

�

� U�

�

. We will not repeat their desription here: basially,

it involves solving an LP (under the objetive funtion z

2

� y

2

) for eah ell of a ertain nonuniform

grid.

In the wide ase, we know that z

�

= O(Ew

�

) = O(E�

�

), so we an set U = O(E) immedi-

ately and get an O(E

d

n logE)-time algorithm. Combined with our narrow-ase algorithm, the total

running time is O(E

d

n logE).

Remark: With advaned data strutures, the time bound is O(t

d+1

(n;E

d

logE)). This gives the

entries in Table 1 for d = 2, as aording to (3) and (4), minfn

3=2+o(1)

; t

3

(n;E

2

)g an be bounded

by O(E

2=3+o(1)

n) or O

�

(n +E

2

). For d = 3, we also have minfn

2

; t

4

(n;E

3

)g = O

�

(E

3=2

n).

Wide Case: Algorithm 3 (Algorithm 1 + Algorithm 2). For yet another algorithm for the

wide ase, apply the idea in Algorithm 1 to redue the problem to one involving O(E

2d�1

) points

and then apply Algorithm 2. The overall running time is O(E

(d�1)=2

n +E

3d�1

logE).

Remark: With advaned data strutures, the time bound is O(t

d+1

(n;E

(d�1)=2

) +

t

d+1

(E

2d�1

; E

d

logE)). Note that the O(E

2d�1

) grid points atually lie in O(E

2(d�2)

) grid planes.

So, by deomposing the point set into 2-dimensional subsets in the style of the third remark from

Setion 2, we an rewrite the time bound as O

�

(t

d+1

(n;E

(d�1)=2

)+

P

O(E

2(d�2)

)

i=1

t

3

(n

i

; E

d

)), where

P

i

n

i

= n. This is at most O

�

(n + E

maxf3d�4;dd=2e(d�1)=2g

), yielding the strong LTAS entry for

d = 3 in Table 1.
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A An Inequality for the Minimum-Width Annulus

In this appendix, we note another simple onstant-fator approximation algorithm for the minimum-

width annulus.

As pointed out earlier and is well-known, if the objetive is replaed by the funtion z

2

�y

2

, then

(7) hanges to a linear program and thus beomes solvable in O(n) time. (In the two-dimensional

ase, this optimal annulus is the minimum-area annulus.) Let (x

A

; y

A

; z

A

) be the new solution and

w

A

= z

A

� y

A

. Let x

�

; y

�

; z

�

; w

�

be as in Setion 5.

The value w

A

has been used in pratie as an approximation to w

�

. For instane, Ramos [36℄

noted that in many instanes arising from metrology appliations, the minimum-area annulus is

surprisingly the same as the minimum-width annulus. Although in the worst ase the approximation

an be arbitrarily poor, we nevertheless are able to derive the following inequality relating w

�

to w

A

,

where the third parameter w

S

here denotes the minimum width over all enlosing slabs, whih we

know how to approximate by Setion 3:

Lemma A.1 1=w

�

� 1=w

A

+ 2=w

S

.

Proof: We know that z

2

A

� y

2

A

� z

�2

� y

�2

. Let Æ be the distane between the two enters x

�

and

x

A

. Note that y

�

� y

A

� Æ and z

�

� z

A

� Æ. By a hange of oordinate system, we may assume

x

�

= (Æ=2; 0; : : : ; 0) and x

A

= (�Æ=2; 0; : : : ; 0). Then for every point p = (p

1

; : : : ; p

d

) 2 P ,

y

�2

� (p

1

� Æ=2)

2

+ p

2

2

+ � � �+ p

2

d

� z

�2

y

2

A

� (p

1

+ Æ=2)

2

+ p

2

2

+ � � �+ p

2

d

� z

2

A

;

implying that y

2

A

� z

�2

� 2Æp

1

� z

2

A

� y

�2

. So, we an upper-bound the minimum-slab width by

w

S

�

(z

2

A

� y

�2

)� (y

2

A

� z

�2

)

2Æ

�

z

�2

� y

�2

Æ

:

On the other hand,

1

w

�

�

1

w

A

=

z

�

+ y

�

z

�2

� y

�2

�

z

A

+ y

A

z

2

A

� y

2

A

�

(z

�

+ y

�

)� (z

A

+ y

A

)

z

�2

� y

�2

�

2Æ

z

�2

� y

�2

:

2

Consequently, either w

A

or w

S

yields a onstant-fator approximation to w

�

. (Note that a slab

may be viewed as an annulus with its enter at in�nity.)

Corollary A.2 minfw

A

; w

S

g � 3w

�

. 2
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The onstant 3 above annot be improved (as an be shown by a simple example), and unlike in

the approah in Setion 5, we are unable to modify this approah to obtain a (1+ ")-fator method.

Still, Lemma A.1 an yield quite an aurate bound on w

�

in some pratial instanes where the

given point set is almost round and \well-distributed" near its optimal irle. (For example, imagine

when w

A

= 0:01 and w

S

= 1, we have 0:0098 � w

�

� 0:01|an estimate with a 2% relative error at

most.)

After disovering our inequality, we learn that Devillers and Preparata [19℄ earlier have obtained

another (similar) inequality relating w

�

to w

A

. The width w

S

is not involved in the statement of

their result (but they needed to speify a ertain no-empty-setor assumption), and their proof is

somewhat lengthier.
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