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ABSTRACTWe present an algorithm that eÆ
iently 
ounts all inter-se
ting triples among a 
olle
tion T of n triangles in R3 ,in time O(n2+"), for any " > 0. This solves a problemposed by Pellegrini [18℄. Using a variant of the te
hnique,one 
an represent the set of all � triple interse
tions, in
ompa
t form, as the disjoint union of 
omplete tripartitehypergraphs, whi
h requires O(n2+") 
onstru
tion time andstorage, for any " > 0. Our approa
h also applies to any
olle
tion of 
onvex planar obje
ts of 
onstant des
ription
omplexity in R3 , with the same performan
e bounds. Wealso prove that this 
ounting problem belongs to the 3sum-hard family, and thus our algorithm is likely to be nearlyoptimal (sin
e it is believed that 3sum-hard problems 
an-not be solved in subquadrati
 time).
1. INTRODUCTIONInterse
tion problems are among the most basi
 problemsin 
omputational geometry. Many interse
tion problems in-volving geometri
 obje
ts in the plane have been investi-gated, su
h as reporting all interse
tions in a set of generalar
s [8℄, dete
ting a red-blue interse
tion between two sets of\red" and \blue" Jordan ar
s [5℄, and 
ounting interse
tionsin a set of segments [1℄, or in a set of 
ir
ular ar
s [4℄. In
ontrast, there exist mu
h fewer studies of interse
tion prob-lems involving obje
ts in three dimensions. In [2℄, Agarwal�Work on this paper has been supported by NSF GrantsCCR-97-32101 and CCR-00-98246, by a grant from the U.S.-Israeli Binational S
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et al. present an algorithm for 
ounting or reporting all inter-se
ting pairs in a 
olle
tion of 
onvex polytopes in three di-mensions. Counting requires time O(n8=5+"), for any " > 0,where n is the overall 
omplexity of the input polytopes, andreporting takes O(n8=5+" + �) time, where � is the numberof interse
ting pairs. An earlier work of de Berg et al. [12℄in
ludes a pro
edure for 
onstru
ting all interse
ting pairs ina 
olle
tion of n triangles in R3 in an output-sensitive man-ner. The running time of this pro
edure is O(n4=5+"�4=5+"),for any " > 0, where � is the number of interse
ting pairs.If � � n3=2, this will take subquadrati
 time. On
e the �interse
tion segments of the triangles are 
onstru
ted, weperform, in bat
hed mode, segment interse
tion queries be-tween these segments and the triangles. This step too 
anbe implemented in O(n4=5+"�4=5+") time, for any " > 0.Hen
e, when �� n3=2, we obtain a subquadrati
 algorithmfor 
ounting (and for representing) all triple interse
tions.We are not aware of any previous spe
i�
 work on 
ountinginterse
ting triples among n obje
ts in three dimensions, al-though known solutions for the planar 
ase 
an be employedto solve (suboptimally) three-dimensional instan
es. For ex-ample, 
ounting the number of interse
ting triples among ngiven triangles in R3 
an be done as follows: For ea
h inputtriangle t, interse
t all other input triangles with t, obtain-ing at most n�1 segments within t, and then 
ount, in timeO(n4=3+"), the number of interse
tions between them, us-ing the algorithm of Agarwal [1℄. Repeating this pro
edureto ea
h triangle t, the number of interse
ting triples is onethird of the total 
ount. The overall running time is thusO(n7=3+"), for any " > 0. Another approa
h might be to
onstru
t the interse
tion segments of all pairs of triangles,and then perform repeatedly ray shooting queries along ea
hof them in the 
olle
tion of input triangles, thereby obtainingall triple interse
tions. Using the best available algorithm ofAgarwal and Matou�sek [3℄, this will take O(n12=5+") time,for any " > 0, whi
h is even worse than the �rst method.As our paper shows, both solutions are far from being opti-mal. (However, as already noted above, the latter approa
hmay result in a subquadrati
 algorithm, when the number ofinterse
tion segments formed by the triangles is small. Wewill use this as a supplementary routine in our solution, totake advantage of su
h situations.)



1.1 Our ResultWe present an eÆ
ient algorithm that 
ounts all inter-se
ting triples among a 
olle
tion T of n triangles in R3in nearly-quadrati
 time. This problem was posed by Pel-legrini [18℄. Our algorithm is re
ursive, and exploits 3-dimensional \
urve-sensitive" 
uttings that were re
ently in-trodu
ed by Koltun and Sharir [16℄. A 
utting of this kindis a standard (1=r)-
utting of an arrangement of surfa
es(the input triangles in our 
ase), whi
h is also sensitive toa set of 
urves (the triangles edges), in the sense that theoverall number of 
rossings between the 
urves and the 
ellsof the 
utting is small. See [16℄ and below for more de-tails. More spe
i�
ally, we re
ursively partition R3 usingsu
h a 
utting. Ea
h triangle is de
omposed into portionsthat lie in di�erent 
ells of the 
utting. We take ea
h su
hportion �, and interse
t it with all other triangles, obtain-ing a system of segments within �. We then 
ount thenumber of interse
tions between these segments, applyingstandard te
hniques that 
ount interse
tions between lines,and between line-segments and lines in the plane [1℄. There
ursion is handled in a 
areful manner that ensures thatthe algorithm indeed runs in nearly-quadrati
 time.Using a variant of this te
hnique, it is possible to 
onstru
ta representation of the triple-interse
tion hypergraph of thetriangles in T as the disjoint union of 
omplete tripartite3-uniform subhypergraphs fAi � Bi � Cigsi=1 (where s isthe overall number of subhypergraphs), so thatPsi=1(jAij+jBij + jCij) = O(n2+"), for any " > 0. The 
onstru
tiontakes O(n2+") time as well.One motivation for 
onstru
ting su
h a 
ompa
t repre-sentation is the ability to sample a random vertex of thearrangement A(T ), without 
onstru
ting this arrangementexpli
itly. This te
hnique has been re
ently used by the au-thors [13℄ to eÆ
iently 
onstru
t the union of n simpli
es inthree dimensions, when the union is determined by � � nsimpli
es. Another appli
ation of this problem is to sele
tthe k-th highest vertex in an arrangement of n triangles inR3 . This 
an be performed using an impli
it binary sear
hon the verti
es of the arrangement, where in ea
h step we
hoose a random vertex v from among those that lie in somespe
i�ed slab, and 
ount the number of verti
es that lie be-low v, in order to determine how to 
ontinue the sear
h. Thisextends similar approa
hes for the 2-dimensional version ofthe problem [10, 17℄. Using our ma
hinery, the problem 
anbe solved in nearly-quadrati
 time.We also extend our te
hnique to 
ount or represent allinterse
ting triples among n planar 
onvex simply shapedobje
ts that lie in distin
t planes.Finally, we show that it is unlikely that the triangle inter-se
tion 
ounting problem has a subquadrati
 solution, sin
eit belongs to the 3sum-hard family [14℄, and thus our algo-rithm is likely to be nearly worst-
ase optimal.We note that the problem of reporting all interse
tingtriples among the triangles of T is mu
h simpler, and 
an betrivially solved in O(n2 log n+�) time, where � is the overallnumber of triple interse
tions in T , as follows. We interse
tea
h triangle t 2 T with the other triangles, obtaining O(n)segments on t. We then run a line-sweeping pro
edure onthese segments, 
onstru
ting all �t triple interse
tions thatinvolve t, in time O(n log n+�t), for a total of O(n2 log n+�)time over all the triangles of T . This phenomenon that re-porting is simpler than 
ounting also arises for interse
tingsegments in the plane.

In the next se
tion we present an algorithm that 
ounts allinterse
ting triples among a 
olle
tion of n triangles in R3 .In Se
tion 3 we show how these interse
tions 
an be repre-sented as the disjoint union of 
omplete tripartite 3-uniformhypergraphs, with an overall storage (and 
onstru
tion time)that is nearly-quadrati
 in the size of the input. In Se
tion 4we show that the triangle interse
tion 
ounting problem be-longs to the 3sum-hard family. In Se
tion 5 we extend ouralgorithm to 
ount interse
ting triples among a 
olle
tion ofplanar 
onvex obje
ts of 
onstant des
ription 
omplexity inR3 . We give 
on
luding remarks and suggestions for furtherresear
h in Se
tion 6.
2. COUNTING INTERSECTING TRIPLES

AMONG TRIANGLES IN R3Given a 
olle
tion T of n triangles in R3 , we present an al-gorithm that eÆ
iently 
ounts all interse
ting triples amongthe triangles in T .If the number of pairs of interse
ting triangles is signi�-
antly smaller than n3=2 then the problem 
an be solved insubquadrati
 time, using the algorithm of de Berg et al. [12℄,brie
y reviewed in the introdu
tion. To dete
t su
h favor-able situations, we �rst run this algorithm, as a preliminarystage. If the running time of this step be
omes quadrati
,we abandon it, and run the main algorithm, presented indetail below.
2.1 Ingredients of the Algorithm

Curve-Sensitive CuttingsWe use a re
ent result of Koltun and Sharir [16℄ on theexisten
e of \
urve-sensitive" 
uttings. In our 
ontext, itimplies the following. For any r � n there exists a (1=r)-
utting � for T of size O(r3+"), for any " > 0, whi
h isa partition of R3 into O(r3+") simpli
es, su
h that everysimplex (also referred to as a 
ell of �) is 
rossed by atmost nr triangles of T , with the additional property that thenumber of 
rossings between the edges of the triangles andthe 
ells of � is O(n1+"r). The time needed to 
onstru
tsu
h a 
utting, when r is at most O(n"), is O(n1+"0 ), forany "0 > 0 that is suÆ
iently larger than ".We note that, for the 
ase of triangles, one 
an obtainsu
h a 
utting using a simpler 
onstru
tion than that in [16℄.Spe
i�
ally, the 
utting is 
onstru
ted from a random sam-ple R of O(r log r) of the planes 
ontaining the triangles of T .We form the arrangement A(R) of R and triangulate ea
h ofits 
ells using the Dobkin-Kirkpatri
k hierar
hi
al de
ompo-sition [11℄, whi
h has the property that a line that 
rosses a
ell C 
rosses only O(log r) of its simpli
es. Sin
e a line (or,rather, an edge of a triangle) 
rosses at most O(r log r) 
ellsof A(R) (it has to 
ross a plane of R to move from one 
ellto another), it 
rosses at most O(r log2 r) simpli
es, so thetotal number of edge-
ell 
rossings is O(nr log2 r). A 
ut-ting of this kind 
an be 
onstru
ted in time O(nr2 log4 r):We 
onstru
t A(R) and hierar
hi
ally de
ompose ea
h 
ell� of it, in a total of O(r3 log3 r) time [11℄. We next 
om-pute, for every original 
ell � of A(R), the subset T� of thetriangles of T that 
ross �, in overall time O(nr2 log2 r) [9℄,and then determine the 
rossings between the triangles inT� and the sub
ells of � (
onstru
ted by the hierar
hi-
al de
omposition). The running time of the latter step isO(log r) for ea
h triangle of T� [11℄, for a total of O(nr log r)



time over all triangles of T�, and thus for a grand total ofO(nr2 log4 r) time over all 
ells of A(R). However, for moregeneral planar 
onvex �gures, that we will 
onsider in Se
-tion 5, this simpler approa
h does not work, and the moregeneral 
urve-sensitive 
utting of [16℄ is needed.
The Recursive Decomposition—An OverviewWe 
onstru
t an \edge-sensitive" (1=r)-
utting �, as de-s
ribed above, with a value of r that will be spe
i�ed later,and 
ount the interse
ting triples in ea
h 
ell of � separately.Fix a 
ell � of �. We 
lassify ea
h triangle t 2 T that in-terse
ts � as being either long in �, if �t\� = ;, or short,otherwise. Ea
h interse
ting triple in � is 
onsequently 
las-si�ed asLLL, if all three triangles that form the interse
tion are longin �,LLS, if two of these triangles are long and one is short,LSS, if one of these triangles is long and two are short,SSS, if all three triangles are short.In what follows we assume that ea
h triangle (long orshort) that 
rosses � is 
lipped to within �. In parti
ular,for any long triangle t, t\� is a triangle or a quadrilateral.For short triangles, t \� is at most a 7-gon: Sin
e � is asimplex, the plane 
ontaining t interse
ts � in at most aquadrilateral, and the edges of t 
ontribute at most threeadditional edges to the 
ross-se
tion.We 
ount the number of interse
ting triples within ea
h
ell �0 by further partitioning �0 into smaller sub
ells �,and re
ursively derive from ea
h su
h sub
ell new subprob-lems. We partition �0 using the same kind of sensitive(1=r)-
utting, for the same r, with respe
t to the set of longand short triangles in �0, and the set of edges bounding theshort triangles in �0 (and 
rossing �0). Initially, �0 is theentire three-dimensional spa
e, and all triangles are short in�0, but they may be
ome long in further re
ursive steps.Let us denote by NS = N�0S the overall number of shortinput triangles (within a 
ell �0) and by NL = N�0L theoverall number of long input triangles (within �0). Dur-ing ea
h step of the re
ursion, we partition �0 into smallersub
ells �, and immediately dispose of any new LLL andLLS interse
tions within ea
h sub
ell �, using two simple al-gorithms that 
ount all interse
ting triples of types LLL andLLS within � in timeO �(N�L )2 logN�L � andO(N�S N�L logN�L ),respe
tively. These interse
tions are not re
ounted duringany further re
ursive substep. At the bottom of the re
ur-sion (when NS < max�pNL; 
	, for some 
onstant 
 � 3),we use two additional simple algorithms that 
ount inter-se
ting triples of types LSS and SSS, whi
h run in timeO(NS3 +NSNL logNL)|see below. We note that the goalof the re
ursive step is only to 
ount eÆ
iently interse
tingtriples of types LSS and SSS; the (new) interse
ting triplesof types LLL and LLS are 
ounted before entering the re-
ursive step. (Of 
ourse, ea
h re
ursive step may generateits own LLL and LLS interse
tions, involving triangles thatwere short in the input but be
ame long in some of its sub-problems.)For the algorithm to attain the desired eÆ
ien
y, we need,for ea
h parent 
ell �0, to 
onstru
t a sensitive (1=r)-
uttingof �0 that has the property that ea
h sub
ell � of �0 is
rossed by at most N�0Sr short triangles in �0 and by at mostN�0Lr long triangles in �0. This problem 
an be solved by

l1l2 ql2pl1tpl2 ql1
Figure 1: The long triangles that interse
t the tri-angle t, drawn as lines 
rossing t. Two lines l1 andl2 interse
t within t if and only if their interse
tionpoints pl1 , ql1 , pl2 , ql2 with �t interleave along �t.sampling two subsets of O(r log r) triangles ea
h, one fromthe long triangles in �0 and one from the short ones. Thestandard "-net theory [15℄ implies that the resulting 
uttinghas the desired property.We �rst des
ribe these four simple interse
tion 
ountingalgorithms, and then present in detail the 
omplete re
ur-sive algorithm, whi
h uses these simple algorithms as sub-routines.
Counting Intersections of Type LLLLet � be a simplex 
ell of (some re
ursive 
utting) � andlet L� denote the set of 
lipped long triangles in �. LetNL = N�L = jL�j denote, as above, the total number of longtriangles in �. We apply the planar algorithm of Agarwal [1℄to ea
h 
lipped triangle t 2 L�. That is, we interse
t t withall the other triangles in L�, and 
ount all interse
ting pairswithin t. Sin
e the boundary of every triangle t0 2 L� liesoutside �, t0 must 
ross t in a line segment, both of whoseendpoints lie on �t; see Figure 1. As des
ribed in [1℄, thisproblem 
an be solved in timeO ����L���� log ���L����� = O(NL logNL);by sorting the interse
tion points of these lines with �t along�t in a 
lo
kwise dire
tion, say, and by 
ounting all pairswhose interse
tion points appear along �t in an interleavedorder, as illustrated in Figure 1. It follows that the overallrunning time needed for 
ounting all LLL interse
tions overall the 
lipped long triangles within � is O(N2L logNL).Note that on
e a triangle has be
ome long in a 
ell �, itwill remain long in all re
ursive steps involving sub
ells of�. Sin
e we need to ensure that ea
h LLL interse
tion is
ounted only on
e. we 
ount only interse
tions that involveat least one new long triangle (a triangle that is short inthe parent 
ell of � but long in �). To do so, we take onlynew long triangles as the base triangles t, within whi
h theplanar 
ounting algorithm is applied. Moreover, we enu-merate the new long triangles as t1; : : : ; tk, and apply thealgorithm, within ea
h ti, only to the new long triangles tj ,for j > i, and to all the old triangles. With these modi�-
ations, the running time of the algorithm just presented isO(NLN0L logNL), where N0L is the number of new long tri-angles (whi
h are also 
ounted among all NL long triangles).



Counting Intersections of Type LLSWe use a similar approa
h as in the LLL 
ase. Let NS = N�Sdenote the number of short triangles in �. We apply thepre
eding two-dimensional s
heme within ea
h short trian-gle. That is, we interse
t ea
h short triangle with all thelong triangles, obtaining O(NL) lines on ea
h su
h (
lipped)triangle. Then we 
ount all interse
ting pairs within ea
hshort triangle, using the pre
eding algorithm. The overallrunning time is thus O(NSNL logNL). Here too we needto ensure that no interse
tion is re
ounted in further re-
ursive substeps. This is done as follows: On ea
h shorttriangle in �, we solve the bi
hromati
 version of the prob-lem, whi
h 
ounts all interse
tions between the new longtriangles and all the long triangles. The algorithm for solv-ing this problem is similar to the pre
eding one, and runsin time O(NL logNL); see [1℄ for further details. Then we
ount the interse
tions involving only new long triangles,using the two-dimensional pro
edure des
ribed in the LLL
ase. It thus follows that the running time of the modi�edalgorithm remains O(NSNL logNL).
Counting Intersections of Type LSSLet S� denote the set of (
lipped) short triangles in �,so NS = N�S = jS�j. Interse
t ea
h (
lipped) triangle int 2 S� with all the other triangles of S� and L�. We thusfa
e the problem of 
ounting interse
ting pairs of long seg-ments (whose endpoints lie on the boundary of t) and shortsegments, within every triangle t 2 S�. Note that ea
h su
hproblem has an input of O(NS) short segments and O(NL)long segments. Sin
e the short segments are 
on�ned towithin t, we may repla
e the long segments by their 
ontain-ing lines, without a�e
ting the set of interse
ting pairs. Theproblem 
an then be solved in O(NS2+NL logNL) time, us-ing an approa
h presented in [1℄, in whi
h we 
onstru
t thearrangement of the lines dual to the endpoints of the primalsegments (representing short triangles), and then lo
ate inthis arrangement all points that are dual to the primal lines(representing long triangles). Sin
e ea
h fa
e of the arrange-ment 
onsists of points dual to lines that 
ross a �xed setof segments, this easily yields the 
ount of the interse
tionsbetween the (primal) segments and the (primal) lines.To make sure that ea
h interse
tion is 
ounted only on
e,we enumerate the short triangles as t1; : : : ; tNS , and makeea
h triangle ti pro
ess only short segments that are formedby its interse
tions with triangles tj with j > i. Thus, theoverall running time of the algorithm, for a �xed 
ell �, isO �NS3 +NSNL logNL�.
Counting Intersections of Type SSSWe 
ount all interse
ting triples of type SSS using a brute-for
e algorithm whi
h examines all triples, in time O(N3S).Note that this bound is subsumed by the bound on the timeneeded to 
ompute LSS interse
tions.
The Overall Recursive AlgorithmEa
h step of the algorithm involves a simplex �0, whi
h isinitially the entire 3-spa
e, or, in further re
ursive steps, isa 
ell of a 
utting of some larger simplex. The algorithmre
eives as input a set of NS short triangles and a set of NLlong triangles 
lipped to within �0.If NS � max�pNL; 
	, for some 
onstant 
 � 3, we stopthe re
ursion and 
ompute the number of LSS and SSS in-

terse
tions, using the expli
it algorithms des
ribed above.Note that, in this 
ase, there is no need to 
ount interse
t-ing triples of type LLL and LLS, sin
e all interse
ting triplesof these types have already been 
ounted in the pre
edingstep that has pro
essed the parent 
ell of �0.If NS > max�pNL; 
	, we �rst 
ompute a (1=r)-
utting� of the arrangement of all long and short triangles within�0, whi
h is also sensitive to the edges of the short trian-gles, in the sense de�ned above. (We apply the variant thatsamples O(r log r) triangles from ea
h of the sets of long tri-angles and of short triangles.) Then we 
ount all LLL andLLS interse
tions within ea
h sub
ell � of �0, that involveat least one new long triangle (a triangle that is short in �0but long in �), using the algorithms des
ribed above. Wethen 
ontinue to solve the problem re
ursively in every 
ell� 2 �, with some extra 
are | see below.Sin
e there are only O(N1+"S r) 
rossings between shorttriangles and the 
ells of �,1 it follows that, for any r2 �s � r3+", the number of 
ells in � that are 
rossed by atleast N1+"S rs short triangles is at most O(s). (The 
ase s < r2
annot arise, sin
e ea
h 
ell of � is interse
ted by at mostNSr short triangles of T , due to the sampling that we haveused.) We partition the set of all 
ells in � into at mostlog �Mr2 � subsets, where M is the overall number of 
ells in� (note that log �Mr2 � = O((1 + ") log r)), so that in the i-thsubset �i, for i = 0; : : : ; log �Mr2 �, we have O(2ir2) 
ells of�, ea
h of whi
h satis�es (re
all that S� denotes the set ofshort triangles in �)N1+"S2ir � jS�j � 2N1+"S2ir ;where the last subset of O(r3+") 
ells satis�es jS�j = O�N1+"Sr2 �,for ea
h 
ell � in this subset.We now 
reate re
ursive subproblems, taking into a

ountthe number of long triangles in ea
h sub
ell �, as follows.For ea
h 
ell � 2 �i, we partition (arbitrarily) the set oflong triangles in � into 2i subsets, ea
h of size at mostNS+NL2ir (note that the number of long triangles in � is atmost NS+NLr , be
ause of the 
utting property, and be
ausesome of the short triangles in the parent 
ell �0 may havebe
ome long in �), and pro
ess ea
h subset in a separatere
ursive step. Thus, � generates 2i subproblems, ea
h in-volving all O�N1+"S2ir � short triangles in �, and at mostNS+NL2ir long triangles in �. These subproblems are thensolved re
ursively. Note that 
ounting all LLL an LLS in-terse
tions within �, before pro
eeding down the re
ursion,is 
ru
ial. Otherwise, in addition to the issues dis
ussedearlier, we might miss interse
ting triples of types LLL andLLS that involve long triangles from two di�erent subsets.We estimate the 
ost of 
omputing the LLL and LLS in-terse
tions within ea
h 
ell � of � in the following 
rudemanner. The number of new long triangles in � is at mostNSr , the overall number of long triangles in � is at most1We use here the more general and slightly weaker boundof [16℄ for the number of edge-
ell 
rossings, rather thanthe slightly improved bound that 
an be obtained from theDobkin-Kirkpatri
k hierar
hi
al de
omposition. This doesnot a�e
t the asymptoti
 running time bound, and allowsus to extend the analysis essentially verbatim to the 
ase ofgeneral 
onvex planar obje
ts.



NS+NLr , and the number of short triangles in � is at mostNSr . Hen
e the 
ost of 
omputing the LLL and LLS inter-se
tions within � is O �NS(NS+NL) log (NS+NL)r2 �. Summingover all 
ells �, the overall running time isO�r3+"NS(NS +NL) log (NS +NL)r2 � =O �r1+"NS(NS +NL) log (NS +NL)� :Let F (NS; NL) denote the maximum time needed to 
ountall interse
ting triples at a re
ursive step involving NS shorttriangles and NL long triangles. Then F satis�es the follow-ing re
urren
e:
F (NS; NL) � 8>>>>>>>>>>>><>>>>>>>>>>>>:

O(r1+"NS(NS +NL) log (NS +NL))+O �(NS +NL)1+"0�+Plog �Mr2 �i=0 O(22ir2)F �NS1+"2ir ; NS+NL2ir � ;if NS > max�pNL; 
	O(N3S +NSNL logNL);if NS � max�pNL; 
	 ;where 
 � 3 is 
onstant, and the term O �(NS +NL)1+"0�is the time to 
onstru
t the 
urve-sensitive 
utting, for any"0 > 0, whose 
hoi
e depends on the 
hoi
e of r.To solve the re
urren
e, for a given " > 0, we substituter = n
0"0 , for an appropriate 
onstant 
0 > 0. It is then easyto see, using indu
tion on n and 
hoosing "0 appropriately,that the solution isF (NS; NL) = O(NS(NS +NL)1+"); for any " > 0; (1)with a 
onstant of proportionality that depends on ". (Notethat in the 
ase NS < pNL, the term O(N3S), that ap-pears in the bound for the 
ost of 
ounting all interse
t-ing triples of types LSS and SSS, is dominated by the termO(NSNL logNL).)Initially, the algorithm begins with � equal to the entirethree-dimensional spa
e, and NS = n, NL = 0. Note thatat this point there are only interse
ting triples of type SSS,but the re
ursive pro
ess will generate the other types ofinterse
tions as spa
e is progressively 
ut up into sub
ells.In summary, we have shown:Theorem 2.1. The number of interse
ting triples in a setof n triangles in R3 
an be 
ounted in timeminnO(n4=5+"�4=5+"); O(n2+")o ;for any " > 0, where � is the overall number of pairs ofinterse
ting triangles.Remark. We note that by slightly modifying this algo-rithm, we 
an solve the following tri
hromati
 variant of theproblem in nearly-quadrati
 time:\Given three sets, Tr of nr \red" triangles, Tb of nb \blue"triangles, and Tg of ng \green" triangles, all in R3 , eÆ
iently
ount the number of triples in Tr � Tb � Tg with nonemptyinterse
tion."

3. COMPACT REPRESENTATION OF ALL
INTERSECTING TRIPLESGiven a 
olle
tion T on n triangles in R3 , we representthe set of all interse
ting triples among the triangles of T asa 3-uniform hypergraph [7℄ H = (T;E) whereE = ffti; tj ; tkg j ti; tj ; tk 2 T and ti \ tj \ tk 6= ;g ;for all 1 � i < j < k � n.The size of the above representation is �(n3) in the worst
ase. Our goal is to provide a 
ompa
t representation forH of nearly-quadrati
 size, so that the set of all interse
tingtriples in T need not be listed in the above expli
it manner.As noted in the introdu
tion, one immediate appli
ation ofsu
h a 
ompa
t representation is for sampling a random el-ement out of the set of all interse
ting triples in T , withouthaving to list all these interse
tions expli
itly. We dis
uss afew appli
ations, already mentioned in the introdu
tion, atthe end of this se
tion.The 
ompa
t representation for H that we seek (de�nedanalogously to that in [6℄) is a 
olle
tionH = fHi = (Vi; Ei)gsi=1,of s subhypergraphs of H, su
h that1. Ea
hHi is a 
omplete tripartite 3-uniform hypergraph,that is, the set of its verti
es Vi 
an be partitionedinto three disjoint subsets Ai, Bi and Ci, su
h thatany triple of triangles fai; bi; 
ig, su
h that ai 2 Ai,bi 2 Bi, and 
i 2 Ci, is an edge of H.2. E = Ssi=1Ei.3. EiTEj = ;, for i 6= j.Clearly, the storage needed for su
h a 
ompa
t representa-tion is Psi=1 jVij, sin
e the edges of H are now de�ned im-pli
itly. We show that the algorithm des
ribed in Se
tion 2
an be modi�ed to produ
e su
h a 
ompa
t representationof H, with Psi=1 jVij = O(n2+"), for any " > 0. We use thesame re
ursive me
hanism as in the pre
eding se
tion, butmodify the four simple algorithms (that the re
ursive algo-rithm uses as subroutines) so that they 
onstru
t a 
ompa
trepresentation for all relevant interse
ting triples (instead of
ounting them). We �rst des
ribe these simple algorithms.(As in the pre
eding se
tion, we �rst run as a preliminarystage the algorithm of de Berg et al., whi
h 
an be eas-ily modi�ed to produ
e all verti
es along ea
h interse
tionsegment as the union of pre
omputed 
anoni
al subsets, sothat the total size of all these subsets is O(n4=5+"�4=5+"),for any " > 0. (With some 
are, we 
an ensure that novertex is impli
itly 
onstru
ted more than on
e.) Hen
e,when the number � of interse
tion segments is signi�
antlysmaller than n3=2, this method will yield a 
ompa
t repre-sentation of subquadrati
 size. As above, we abandon thisalternative 
omputation when its output size be
omes morethan quadrati
, and resort to the main algorithm.)

Representing Intersections of Types LLL and LLSWe des
ribe the 
ompa
t representation of interse
ting triplesof type LLS; the interse
ting triples of type LLL are handledsimilarly. As des
ribed in the pre
eding se
tion, given a 
ell�, the algorithm that 
ounts all interse
ting triples of typeLLS in � applies the planar algorithm on ea
h (
lipped)short triangle t in �. Let Lt denote the set of the linesobtained by interse
ting t with all the long triangles in �.



(Re
all that the a
tual algorithm is slightly modi�ed, to a
-
ount only for interse
tions that involve new long triangles;for simpli
ity of presentation, we ignore this issue in whatfollows.) It is suÆ
ient to obtain a separate 
ompa
t repre-sentation of all interse
ting pairs of lines in Lt, for ea
h shorttriangle t in �. These interse
ting pairs are represented asfollows. Sort the interse
tion points of the lines in Lt withthe boundary of t, and turn the resulting 
ir
ular sequen
einto a linear sequen
e �t by breaking it at some arbitrarypoint. For ea
h original triangle ti (i = 1; : : : ; NL = N�L )that interse
ts t in a line li, we write li1 for its �rst interse
-tion point in �t and li2 for its se
ond interse
tion point in�t. We want to represent 
ompa
tly all pairs fti; tjg, i 6= j,that satisfy li1 < lj1 < li2 < lj2.We use a 2-level tree-like stru
ture. The �rst-level stru
-ture T1 stores the points li1 in sorted order. For ea
h node(subtree) v of T1, we 
onstru
t a se
ondary stru
ture T2(v)that stores all the points li2 whose mat
hing points li1 arestored at v. We now query with ea
h triangle tj . We �rstsear
h with lj1 in T1, and �nd all elements that (stri
tly)pre
ede lj1, represented as the disjoint union of O(logNL)subtrees. For ea
h subtree (rooted at some node) v, we goto T2(v) and sear
h there for all elements that lie (stri
tly)between lj1 and lj2, again, obtaining them as a 
olle
tion ofO(logNL) subtrees. Altogether, tj \lands" in O(log2NL)subtrees of the se
ondary stru
tures. For ea
h su
h subtree� , we 
olle
t the set A� of all triangles of T in � that rea
hit, and output the 
omplete bipartite graph A� �B� , whereB� is the set of triangles that are stored at � (more pre-
isely, those triangles ti whose se
ond interse
tion points li2are stored there).The overall size of the vertex sets of the output graphs isO(NL log2NL). Indeed, the overall size of all the se
ondarytrees is O(NL logNL), and the overall size of all subtreesof a se
ondary tree � with k verti
es is O(k log k), whi
heasily implies that P� jB� j = O(NL log2NL). Similarly,sin
e ea
h triangle rea
hes as a query O(log2NL) subtrees,we also have P� jA� j = O(NL log2NL). We now add, forea
h subtree � , the tripartite hypergraph ftg � A� �B� tothe output representation. Hen
e, the overall size of thesets of the 
ompa
t representation, over all short trianglestj in �, is O(N�S N�L log2N�L ). The time for 
onstru
tingsu
h a representation has the same upper bound. Note thatthe output 
onsists of edge-disjoint 
omplete tripartite 3-uniform hypergraphs, with one of the three vertex sets inea
h hypergraph being a singleton.As in Se
tion 2, we need to ensure that ea
h triple interse
-tion is represented only on
e. Pro
eeding as in Se
tion 2, thealgorithm 
an be modi�ed so that it represents only bi
hro-mati
 interse
tions between the new long triangles and allthe long triangles. This 
an be done by 
onstru
ting the two-level tree-like stru
ture for all the long triangles as above,but query only with the points obtained by the new longtriangles.Handling LLL interse
tions is done similarly. We ensurethat ea
h triple interse
tion is represented only on
e, us-ing similar arguments to those des
ribed in the LLL 
ount-ing algorithm (see Se
tion 2 for further details). The sizeof the resulting representation is O(NLN0L log2NL), whereN0L is de�ned as in Se
tion 2, and it 
an be 
onstru
ted inO(NLN0L log2NL) time.

Representing Intersections of Type LSSHere too we adapt the 
orresponding algorithm of the pre-
eding se
tion, so that it represents (rather than 
ounts) allinterse
ting pairs between the O(NS) short segments andthe O(NL) long segments within every short triangle t in�. As in the LSS 
ounting algorithm, to make sure thatea
h interse
tion is represented only on
e, we enumerate theshort triangles as t1; : : : ; tNS , and make ea
h triangle ti pro-
ess only short segments that are formed by its interse
tionswith triangles tj with j > i. By repeating this pro
edurefor all short triangles, we obtain a 
ompa
t representationof all LSS interse
tions.Fix a short triangle t, denote by St the set of short seg-ments within t, obtained by interse
ting t with all the shorttriangles in � (that su

eed t in the above enumeration),and by Lt the set of lines within t, obtained by interse
tingt with all the long triangles in �. Denote by S�t the set ofthe double wedges dual to the segments in St (ea
h endpointof a segment s in the primal plane is transformed into a linein the dual plane, and thus the two endpoints of s form adouble wedge in the dual plane, whi
h is the lo
us of allpoints dual to lines that interse
t s), and by L�t the set ofpoints dual to the lines in Lt.We 
onstru
t a (1=r)-
utting � for the double wedgesin S�t , for a suÆ
iently large 
onstant parameter r. Next,we lo
ate all the points of L�t in the 
ells of �, and then
ompute for ea
h 
ell � 2 � all the double wedges of S�tthat 
ontain �. The overall running time of this step isO(r2jS�t j + jL�t j log r). Let us denote by Lt(�) the set oflines of Lt whose dual points lie in the interior of �, and bySt(�) the set of segments in S�t whose dual double wedges
ontain �. We add ftg � Lt(�) � St(�) to the output rep-resentation. Sin
e ea
h double wedge may 
ontain O(r2)
ells in its interior, and sin
e P�2� jLt(�)j = jL�t j, it fol-lows that the overall size of the vertex sets of this 
ompa
trepresentation, at this stage, isX�2� (1 + jLt(�)j+ jSt(�)j) = O(r2jS�t j+ jL�t j);(we add 1 for ea
h 
ell of �, sin
e ftg is also a part of therepresentation). We now subdivide, if needed, ea
h 
ell in� into smaller sub
ells, ea
h 
ontaining at most jL�t jr2 pointsof L�t in its interior. Let �0 denote this new set of 
ells (it iseasily seen that this de
omposition does not asymptoti
allyin
rease the number of 
ells in �0, and thus j�0j = O(r2)).We now re
ursively 
ontinue to 
onstru
t su
h a 
ompa
trepresentation within ea
h 
ell � of �0, where the subprob-lem at � involves the at most jL�t jr2 dual points in � and theat most jS�t jr double wedges whose boundaries 
ross �. There
ursion is stopped when either NS or NL be
ome smallerthan r. We then report all interse
ting pairs in a brute-for
emanner. The 
omplexity of the representation, at any su
hbottom step, is O(r(NL +NS)).Let G(NS ; NL) denote the maximum size of the 
ompa
trepresentation of all interse
ting pairs at a re
ursive stepinvolving NS segments and NL lines. Then G satis�es the



following re
urren
e:G(NS ; NL) � 8>>>><>>>>:O �r2NS +NL� +O(r2)G�NSr ; NLr2 � ;if NS ; NL > rO (r (NS +NL)) ;if NS � r or NL � r:The solution of this re
urren
e (for a suÆ
iently large valueof r) is easily seen to beG(NS ; NL) = O(N2+ÆS +N1+ÆL );for any Æ > 0. (We note that the same bound applies forthe time needed to 
onstru
t this representation.) Thusthe overall size of the 
ompa
t representation of all inter-se
ting triples of type LSS within a 
ell � is O((N�S )3+Æ +N�S (N�L )1+Æ), for any Æ > 0.
Representing Intersections of Type SSSThe 
ompa
t representation for all interse
ting triples oftype SSS is 
onstru
ted in a brute-for
e manner, by exam-ining all triples, and reporting separately ea
h interse
tingtriple, as a separate single-edge tripartite graph. The overallsize of the representation, and the time needed to 
omputeit, are both O(N3S). This bound is subsumed by the boundon the representation of the interse
ting triples of type LSS.
The Overall Compact RepresentationWe use the same re
ursive me
hanism as in Se
tion 2. Inthis 
ase, we let F (NS; NL) denote the time needed to 
on-stru
t the 
ompa
t representation of all interse
ting triplesat a re
ursive step involving NS short triangles and NL longtriangles. Then F satis�es the following re
urren
e:
F (NS ; NL) � 8>>>>>>>>>>>><>>>>>>>>>>>>:

O(r1+"NS(NS +NL) log2 (NS +NL))+O �(NS +NL)1+"0�+Plog �Mr2 �i=0 O(22ir2)F �NS1+"2ir ; NS+NL2ir � ;if NS > max�pNL; 
	O(N3+ÆS +NSN1+ÆL );if NS � max�pNL; 
	 ;for any Æ > 0, where 
 � 3 is 
onstant, and M and "0 arede�ned as in Se
tion 2.Applying arguments similar to those in Se
tion 2, we 
on-
lude that the solution of this re
urren
e isF (NS; NL) = O �NS(NS +NL)1+"� ; for any " > 0;and the same bound applies for the size of the 
ompa
t rep-resentation. We have thus shown:Theorem 3.1. Given a 
olle
tion T of n triangles in R3,the set of all interse
ting triples among the triangles of T
an be represented in 
ompa
t form, as the disjoint union of
omplete tripartite 3-uniform hypergraphs, with an overallsize of minnO(n4=5+"�4=5+"); O(n2+")o ;for any " > 0, where � is the overall number of pairs of in-terse
ting triangles. The time needed to 
onstru
t this rep-resentation has the same bound.

Drawing a Random Intersecting TripleWe now present an appli
ation that exploits the 
ompa
trepresentation of the interse
ting triples among a set T of ntriangles in R3 . In this appli
ation we wish to draw at ran-dom an element from the set of all interse
ting triples. Thisis easy to do, in O(log n) time, using the 
ompa
t represen-tation of this set.2 We �rst 
ount all the interse
ting triplesamong the triangles of T , in time minnO(n4=5+"�4=5+"); O(n2+")o, for any " > 0, where � denotes the overall number of in-terse
ting pairs. If � � n3=2, we 
onstru
t all interse
t-ing triples expli
itly in subquadrati
 time, using the pro-
edure of de Berg et al. [12℄. Otherwise, if the number ofinterse
ting triples is O(n2), we 
onstru
t all interse
tingtriples expli
itly in time O(n2 log n), using the reporting al-gorithm des
ribed in Se
tion 1. In this 
ase a random in-terse
tion 
an be drawn in O(1) time. Otherwise, let the
ompa
t representation of all interse
ting triples be given asSsi=1Ai � Bi � Ci. We �rst 
ompute, as a prepro
essingstep, all the \pre�x sums" �i =Pi0<i jAi0 j � jBi0 j � jCi0 j, fori = 1; : : : ; s. We store these sums in a (sorted) array. The
ost of this step is O(n2+"), for any " > 0. Next, to drawa random interse
ting triple, we draw a random number jbetween 1 and �, and �nd in O(log n) time the index i thatsatis�es �i < j � �i+1. We then pi
k the (j � �i)-th edgeof the hypergraph Ai �Bi �Ci, a

ording to some obviouslexi
ographi
al order, and output the 
orresponding inter-se
ting triple of triangles. Thus, drawing an interse
tingtriple takes O(log n) time, with O(n2+") prepro
essing andstorage, for any " > 0.We have mentioned in the introdu
tion another appli
a-tion of our ma
hinery: Given a set T of n triangles in R3 ,and a parameter k, �nd the k-th highest vertex of A(T ). Wehave noted that our results 
an be used to solve this prob-lem in nearly quadrati
 time, using an appropriate form ofrandomized binary sear
h on the verti
es. For la
k of spa
ewe omit the full details of this appli
ation in this version.
4. COUNTING INTERSECTING TRIPLES

IS A 3SUM-HARD PROBLEMIn this se
tion we show that the problem of 
ounting allinterse
ting triples among triangles in R3 , a problem thatwe denote as 3
ounting, belongs to the 3sum-hard family(see [14℄), and thus, the best solution to this problem is likelyto require �(n2) time in the worst 
ase. We show that thefollowing problem
Problem3sum':\Given three sets of integers A, B, and C of totalsize n, are there a 2 A, b 2 B, 
 2 C witha+ b = 
?"is linear-time redu
ible to 3
ounting.Given three sets A, B and C of integers, we pro
eed asfollows. We transform ea
h element a 2 A (resp., b 2 B,
 2 C) to the plane ha : x = a (resp., hb : y = b, h
 : z = 
).We denote the three resulting sets of planes by A�, B� andC�, respe
tively. Every triple of planes ha 2 A�, hb 2 B�and h
 2 C� interse
ts at the point (a; b; 
), and the overall2This algorithm is a variant of another algorithm presentedby the authors, for drawing a random element of the set ofall interse
ting pairs of n given segments in the plane [13℄.
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Y

Z H : z = x+ yA�
C�

z = x+ y � 1=2z = x+ y + 1=2
B�

Figure 2: The 
onstru
tion used to redu
e 3
ount-ing to 3sum'. The verti
al lines are the planes rep-resenting the elements of A, the re
tangles are theplanes representing the elements of B, and the hori-zontal lines are the planes representing the elementsof C. We ex
lude the region x+y�1=2 < z < x+y+1=2.number of su
h interse
ting triples is jAjjBjjCj. We nowadd to the s
ene the plane H : z = x+ y. See Figure 2 foran illustration.The (obvious but) key observation is that there is a triplea 2 A, b 2 B, 
 2 C su
h that a + b = 
 if and only if theplane H 
ontains the interse
tion point of the three planesha, hb and h
. We thus split ea
h plane h 2 A� [ B� [ C�into two halfplanes at the interse
tion line h \ H, result-ing in six sets of open halfplanes, su
h that the halfplanesin three subfamilies lie above H and the halfplanes in theother three subfamilies lie below H. (Sin
e 3
ountingre
eives as input 
losed triangles, we a
tually repla
e ea
hplane in A� [ B� [ C� by its interse
tions with the two
losed halfspa
es z � x+ y � 1=2 and z � x+ y + 1=2; it iseasy to see that all the triple interse
tions in the remainingslab x+ y� 1=2 < z < x+ y+ 1=2 lie on H itself.) We now
ount all triple interse
tions among the resulting 
losed half-planes that lie above H, and all triple interse
tions amongthe 
losed halfplanes that lie below H. It now followsthat the overall number of interse
tions on both sides of His stri
tly smaller than jAjjBjjCj if and only if there are threeplanes ha 2 A�, hb 2 B� and h
 2 C�, su
h that H 
ontainstheir interse
tion point (a; b; 
), whi
h is equivalent to theexisten
e of three numbers a 2 A, b 2 B, 
 2 C su
h thata+ b = 
.We note that the 
onstru
tion of the six families of tri-angles takes O(n) time. Thus we have shown that 3sum'nn 3
ounting, implying that 3
ounting is a 3sum-hardproblem.
5. EXTENSIONSIn this se
tion we extend the algorithms presented in Se
-tions 2 and 3 to 
ount or represent all interse
ting triplesamong n planar 
onvex obje
ts in R3 .Let S be a 
olle
tion of n planar 
onvex obje
ts in R3 ,su
h that ea
h obje
t s 2 S is bounded by a 
losed (and 
on-

�
Figure 3: A view from above on four ellipses in R3.After the verti
al walls from their boundaries areere
ted, a non
onvex 
ell � is generated. Thus, theinterse
tion of � with any ellipse that 
rosses � isnot 
onvex.

ql2l1l2 pl2
tl1 tl3sl3pl3 ql1pl1l3 sl1ql3s

Figure 4: The lines l1, l2, l3 are 
ross se
tions withins of 
orresponding long obje
ts of S. The lines l1and l2 interse
t within s sin
e the interse
tion pointspl1 , ql1 , pl2 , ql2 of their 
ontained segments interleavealong �s. The lines l1 and l3 do not interse
t within ssin
e they do not 
ontain segments that are 
lippedto within s and have interleaving endpoints.



vex) planar 
urve 
 2 R3 of 
onstant des
ription 
omplexity.That is, ea
h bounding 
urve is de�ned as a Boolean 
om-bination of a 
onstant number of polynomial equalities andinequalities of 
onstant maximum degree. We also assumethat the obje
ts in S are in general position, and in parti
-ular that no two of them are 
oplanar. In this 
ase, we 
an
onstru
t for S a (1=r)-
utting � of size O(r3+"), whi
h issensitive to all the bounding 
urves of the elements in S, inthe sense that the number of 
rossings between these bound-ing 
urves and the 
ells of � is O(n1+"r), for any " > 0; seeSe
tion 2 and [16℄. The time needed to 
onstru
t this 
ut-ting, when r is at most O(n"), is O(n1+"0 ), for any "0 > 0that is suÆ
iently larger than ".Note that the 
ells of � need not be 
onvex, sin
e, as partof the 
onstru
tion of �, we draw a random sample R of thebounding 
urves, and ere
t verti
al walls up and down fromea
h su
h 
urve; see [16℄ for further details. Thus, a 
lippedobje
t s 2 S to within a 
ell � 2 � need not be 
onvex; seeFigure 3. Nevertheless, sin
e the given obje
ts have 
onstantdes
ription 
omplexity (and hen
e so does ea
h 
ell � 2 �),it follows that ea
h 
lipped obje
t s has 
onstant des
ription
omplexity, and ea
h element s0 2 S interse
ts the (
lipped)obje
t s in O(1) line-segments. Note that a 
lipped obje
tneed not be 
onne
ted, but it has at most O(1) 
onne
ted
omponents, and we treat ea
h of them separately. In whatfollows we abuse the notation of s to denote a (
onne
ted
omponent of a) 
lipped obje
t to within a 
ell � of �.These properties allow us to apply a similar algorithm tothat presented in Se
tion 2, in order to 
ount all interse
t-ing triples among the elements of S. More spe
i�
ally, there
ursive me
hanism remains the same, and the four simplealgorithms 
an be applied with slight modi�
ations. In the
ase of 
ounting interse
ting triples of type LLL (or LLS),the input to the planar algorithm, that we apply within ea
h(
lipped) obje
t s (see Se
tion 2 for further details), is theset of all 
lipped segments that are generated by the inter-se
tions of s with an appropriate subset of the long obje
ts.Note that, sin
e we interse
t s only with long obje
ts, theendpoints of ea
h interse
tion segment lie on �s. In this 
ase,two 
lipped segments l1, l2 interse
t within s if and only if(obeying the same rules as in Se
tion 2, so as to ensure thatno interse
tion is 
ounted twi
e) their endpoints interleavealong �s; see Figure 4 for an illustration. Sin
e ea
h longobje
t s0 interse
ts s in a 
onstant number of segments, thenumber of input segments to the two-dimensional algorithmis O(NL), and thus the running time of the planar algorithmremains O(NL logNL).In the 
ase of 
ounting interse
ting triples of type LSS,the input to the two-dimensional algorithm (des
ribed inSe
tion 2), that we apply within ea
h 
lipped obje
t, is theset of all 
lipped short segments and the set of the 
ontain-ing lines of all the 
lipped long segments. Note that if s0is long, then it follows from the 
onvexity of s and s0 thatrepla
ing all the long segments that 
onstitute s\ s0 by theline l that 
ontains them does not generate new (
lipped)long segments within s. Sin
e the overall number of shortsegments is O(NS) (due to the properties that we have dis-
ussed above), and the overall number of lines is NL, therunning time of the two-dimensional algorithm is, as in Se
-tion 2, O(N2S +NL logNL).In the 
ase of 
ounting interse
ting triples of type SSS,we use a brute-for
e algorithm as in Se
tion 2. The runningtime of this algorithm is O(N3S), be
ause the obje
ts in S

have 
onstant des
ription 
omplexity, and thus ea
h tripleis examined in 
onstant time.Arguing as in Se
tion 3, we 
an use the same me
hanism,with appropriate modi�
ations, to derive an algorithm for
onstru
ting a 
ompa
t representation of these interse
tions,with the same nearly-quadrati
 bound on the storage andthe running time.Note that the preliminary algorithm of [12℄ is not appli
a-ble to general 
onvex planar obje
ts, sin
e it operates onlyon polygonal obje
ts. We therefore do not run this stage atall. It would be interesting to investigate to what extent thiste
hnique 
an be extended to more general planar regions.We thus 
on
lude:Theorem 5.1. The number of interse
ting triples in a setof n planar 
onvex obje
ts of 
onstant des
ription 
omplex-ity in R3 
an be 
ounted in time O(n2+"), for any " > 0.Moreover, these interse
ting triples 
an be represented in a
ompa
t form, as the disjoint union of 
omplete tripartite3-uniform hypergraphs, using O(n2+") time and storage.It follows, as in Se
tion 3, that with O(n2+") prepro
ess-ing time and storage, we 
an draw a random interse
tingtriple of obje
ts of S in O(log n) time. Similarly, we 
an�nd in nearly quadrati
 time the k-highest vertex in an ar-rangement of su
h obje
ts.
6. CONCLUDING REMARKS AND OPEN

PROBLEMSIn this paper we have presented an algorithm that 
ountsall interse
ting triples among n triangles in R3 in nearly-quadrati
 time. This algorithm 
an be modi�ed so that it
onstru
ts a 
ompa
t representation of these interse
tionswith an overall size of minnO(n4=5+"�4=5+"); O(n2+")o ,for any " > 0, where � denotes the overall number of inter-se
ting pairs of triangles. We also proved that the problemof 
ounting all interse
ting triples is 3sum-hard, and thusthe algorithm presented in this paper is likely to be nearlyworst-
ase optimal.We have extended these results to planar 
onvex obje
tsin R3 , and showed that the problem of 
ounting all interse
t-ing triples in this 
ase 
an be solved in nearly-quadrati
 timeas in the 
ase of triangles. However, this problem be
omesmore 
hallenging when the input obje
ts are not ne
essarilyplanar, but are 
urved surfa
e pat
hes (or 
losed shapes) inR3 of 
onstant des
ription 
omplexity. The three subtasksof 
ounting LLL, LLS or LSS interse
tions be
ome 
onsid-erably harder, be
ause they 
all for 
ounting the number ofinterse
tions between 
urves and ar
s on some 
urved sur-fa
e, and the best known algorithms for these tasks are mu
hless eÆ
ient than those for lines and line-segments, whi
h wehave used above.Consider, for example, the problem of 
ounting all inter-se
ting triples among n balls in R3 . In this 
ase, in theLLL subroutine, we need to solve the problem of 
ountingall interse
ting pairs among 
ir
les and long 
ir
ular ar
s(that is, ar
s within a pat
h of a ball, that 
ompletely 
rossthis pat
h). However, we are not aware of any algorithmfor this task that is faster than the standard algorithm that
ounts interse
tions between 
ir
ular ar
s, and runs in timeO(n3=2+"), for any " > 0 [4℄. Thus, in this 
ase, our al-gorithm is not better than a simple-minded algorithm thatinterse
ts ea
h ball with all the others balls, and uses the



two-dimensional algorithm of [4℄ on ea
h ball. The runningtime of this algorithm is thus O(n5=2+"), for any " > 0.Finally, another 
hallenging problem is to 
ount d-wiseinterse
tions among (d� 1)-simpli
es in Rd , for d � 4. This
an be performed, for example, by indu
tion on the dimen-sion d, as follows. Given n simpli
es in Rd , we interse
t thefa
ets of ea
h simplex s with all the other n � 1 input sim-pli
es, obtaining O(n) subproblems in one dimension lower(with a 
onstant of proportionality that depends on d). Wenow 
ontinue to solve ea
h su
h subproblem re
ursively. Westop the re
ursion when we rea
h three-dimensional prob-lems, and then solve ea
h of them in nearly-quadrati
 time.It thus follows that the overall running time of this algo-rithm is O(nd�1+"), for any " > 0, for ea
h d � 3, where the
onstant of proportionality depends on d and ". An openproblem is to prove that this bound is nearly optimal, or, al-ternatively, design an improved algorithm for this problem.We also note that in higher dimensions there is a widerrange of problems, in whi
h we wish to 
ount the numberof k-wise interse
tions among n (d� 1)-simpli
es in d-spa
e,where k 
an vary from 2 to d. Ea
h of these variants is a
hallenging open problem.
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