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ABSTRACT

We present an algorithm that efficiently counts all inter-
secting triples among a collection T of n triangles in R,
in time O(n***), for any ¢ > 0. This solves a problem
posed by Pellegrini [18]. Using a variant of the technique,
one can represent the set of all x triple intersections, in
compact form, as the disjoint union of complete tripartite
hypergraphs, which requires O(n?**) construction time and
storage, for any € > 0. Our approach also applies to any
collection of convex planar objects of constant description
complexity in R®, with the same performance bounds. We
also prove that this counting problem belongs to the 3sum-
hard family, and thus our algorithm is likely to be nearly
optimal (since it is believed that 3sum-hard problems can-
not be solved in subquadratic time).

1. INTRODUCTION

Intersection problems are among the most basic problems
in computational geometry. Many intersection problems in-
volving geometric objects in the plane have been investi-
gated, such as reporting all intersections in a set of general
arcs [8], detecting a red-blue intersection between two sets of
“red” and “blue” Jordan arcs [5], and counting intersections
in a set of segments [1], or in a set of circular arcs [4]. In
contrast, there exist much fewer studies of intersection prob-
lems involving objects in three dimensions. In [2], Agarwal
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et al. present an algorithm for counting or reporting all inter-
secting pairs in a collection of convex polytopes in three di-
mensions. Counting requires time O(ng/5+5)7 for any € > 0,
where n is the overall complexity of the input polytopes, and
reporting takes O(n®/°° + k) time, where & is the number
of intersecting pairs. An earlier work of de Berg et al. [12]
includes a procedure for constructing all intersecting pairs in
a collection of n triangles in R?® in an output-sensitive man-
ner. The running time of this procedure is O(n*/>*=£*/°+),
for any € > 0, where & is the number of intersecting pairs.
If & < n®/?, this will take subquadratic time. Once the &
intersection segments of the triangles are constructed, we
perform, in batched mode, segment intersection queries be-
tween these segments and the triangles. This step too can
be implemented in O(n*/°**x*5%¢) time, for any ¢ > 0.
Hence, when k < n3/2, we obtain a subquadratic algorithm
for counting (and for representing) all triple intersections.

We are not aware of any previous specific work on counting
intersecting triples among n objects in three dimensions, al-
though known solutions for the planar case can be employed
to solve (suboptimally) three-dimensional instances. For ex-
ample, counting the number of intersecting triples among n
given triangles in R® can be done as follows: For each input
triangle ¢, intersect all other input triangles with ¢, obtain-
ing at most n — 1 segments within ¢, and then count, in time
O(n*/3+=), the number of intersections between them, us-
ing the algorithm of Agarwal [1]. Repeating this procedure
to each triangle ¢, the number of intersecting triples is one
third of the total count. The overall running time is thus
O(n"/3+%), for any € > 0. Another approach might be to
construct the intersection segments of all pairs of triangles,
and then perform repeatedly ray shooting queries along each
of them in the collection of input triangles, thereby obtaining
all triple intersections. Using the best available algorithm of
Agarwal and Matousek [3], this will take O(n*2/°+¢) time,
for any € > 0, which is even worse than the first method.
As our paper shows, both solutions are far from being opti-
mal. (However, as already noted above, the latter approach
may result in a subquadratic algorithm, when the number of
intersection segments formed by the triangles is small. We
will use this as a supplementary routine in our solution, to
take advantage of such situations.)



1.1 Our Result

We present an efficient algorithm that counts all inter-
secting triples among a collection T of n triangles in R?
in nearly-quadratic time. This problem was posed by Pel-
legrini [18]. Our algorithm is recursive, and exploits 3-
dimensional “curve-sensitive” cuttings that were recently in-
troduced by Koltun and Sharir [16]. A cutting of this kind
is a standard (1/r)-cutting of an arrangement of surfaces
(the input triangles in our case), which is also sensitive to
a set of curves (the triangles edges), in the sense that the
overall number of crossings between the curves and the cells
of the cutting is small. See [16] and below for more de-
tails. More specifically, we recursively partition R® using
such a cutting. Each triangle is decomposed into portions
that lie in different cells of the cutting. We take each such
portion A, and intersect it with all other triangles, obtain-
ing a system of segments within A. We then count the
number of intersections between these segments, applying
standard techniques that count intersections between lines,
and between line-segments and lines in the plane [1]. The
recursion is handled in a careful manner that ensures that
the algorithm indeed runs in nearly-quadratic time.

Using a variant of this technique, it is possible to construct
a representation of the triple-intersection hypergraph of the
triangles in 7' as the disjoint union of complete tripartite
3-uniform subhypergraphs {4; x B; x C;};—; (where s is
the overall number of subhypergraphs), so that > 7_, (|A:|+
|B;| + |Ci]) = O(n®*¢), for any £ > 0. The construction
takes O(n?*¢) time as well.

One motivation for constructing such a compact repre-
sentation is the ability to sample a random vertex of the
arrangement A(71'), without constructing this arrangement
explicitly. This technique has been recently used by the au-
thors [13] to efficiently construct the union of n simplices in
three dimensions, when the union is determined by ¢ < n
simplices. Another application of this problem is to select
the k-th highest vertex in an arrangement of n triangles in
R?. This can be performed using an implicit binary search
on the vertices of the arrangement, where in each step we
choose a random vertex v from among those that lie in some
specified slab, and count the number of vertices that lie be-
low v, in order to determine how to continue the search. This
extends similar approaches for the 2-dimensional version of
the problem [10, 17]. Using our machinery, the problem can
be solved in nearly-quadratic time.

We also extend our technique to count or represent all
intersecting triples among n planar convex simply shaped
objects that lie in distinct planes.

Finally, we show that it is unlikely that the triangle inter-
section counting problem has a subquadratic solution, since
it belongs to the 3suM-hard family [14], and thus our algo-
rithm is likely to be nearly worst-case optimal.

We note that the problem of reporting all intersecting
triples among the triangles of 7" is much simpler, and can be
trivially solved in O(n” log n+k) time, where & is the overall
number of triple intersections in T, as follows. We intersect
each triangle ¢t € T with the other triangles, obtaining O(n)
segments on ¢t. We then run a line-sweeping procedure on
these segments, constructing all s triple intersections that
involve ¢, in time O(nlog n+ k), for a total of O(n? log n+x)
time over all the triangles of 7'. This phenomenon that re-
porting is simpler than counting also arises for intersecting
segments in the plane.

In the next section we present an algorithm that counts all
intersecting triples among a collection of n triangles in R3.
In Section 3 we show how these intersections can be repre-
sented as the disjoint union of complete tripartite 3-uniform
hypergraphs, with an overall storage (and construction time)
that is nearly-quadratic in the size of the input. In Section 4
we show that the triangle intersection counting problem be-
longs to the 3sum-hard family. In Section 5 we extend our
algorithm to count intersecting triples among a collection of
planar convex objects of constant description complexity in
R?®. We give concluding remarks and suggestions for further
research in Section 6.

2. COUNTING INTERSECTING TRIPLES
AMONG TRIANGLES IN R?

Given a collection T of n triangles in R®| we present an al-
gorithm that efficiently counts all intersecting triples among
the triangles in T'.

If the number of pairs of intersecting triangles is signifi-
cantly smaller than n%/? then the problem can be solved in
subquadratic time, using the algorithm of de Berg et al. [12],
briefly reviewed in the introduction. To detect such favor-
able situations, we first run this algorithm, as a preliminary
stage. If the running time of this step becomes quadratic,
we abandon it, and run the main algorithm, presented in
detail below.

2.1 Ingredients of the Algorithm

Curve-Sensitive Cuttings

We use a recent result of Koltun and Sharir [16] on the
existence of “curve-sensitive” cuttings. In our context, it
implies the following. For any r < n there exists a (1/r)-
cutting = for T of size O(r®**), for any ¢ > 0, which is
a partition of R® into O(r3T*) simplices, such that every
simplex (also referred to as a cell of Z) is crossed by at
most 7 triangles of T', with the additional property that the
number of crossings between the edges of the triangles and
the cells of Z is O(n**°r). The time needed to construct
such a cutting, when 7 is at most O(n®), is O(nH'EI)
any €' > 0 that is sufficiently larger than e.

We note that, for the case of triangles, one can obtain
such a cutting using a simpler construction than that in [16].
Specifically, the cutting is constructed from a random sam-
ple R of O(r log r) of the planes containing the triangles of 7'.
We form the arrangement A(R) of R and triangulate each of
its cells using the Dobkin-Kirkpatrick hierarchical decompo-
sition [11], which has the property that a line that crosses a
cell C crosses only O(logr) of its simplices. Since a line (or,
rather, an edge of a triangle) crosses at most O(rlogr) cells
of A(R) (it has to cross a plane of R to move from one cell
to another), it crosses at most O(rlog®r) simplices, so the
total number of edge-cell crossings is O(nrlog?r). A cut-
ting of this kind can be constructed in time O(nr?log® r):
We construct A(R) and hierarchically decompose each cell
A of it, in a total of O(r®log® r) time [11]. We next com-
pute, for every original cell A of A(R), the subset T of the
triangles of T that cross A, in overall time O(nr? log? r) [9],
and then determine the crossings between the triangles in
T2 and the subcells of A (constructed by the hierarchi-
cal decomposition). The running time of the latter step is
O(log r) for each triangle of T [11], for a total of O(Zlogr)

, for



time over all triangles of T2, and thus for a grand total of
O(nr? log* ) time over all cells of A(R). However, for more
general planar convex figures, that we will consider in Sec-
tion 5, this simpler approach does not work, and the more
general curve-sensitive cutting of [16] is needed.

The Recursive Decomposition—An Overview

We construct an “edge-sensitive” (1/r)-cutting Z, as de-
scribed above, with a value of r that will be specified later,
and count the intersecting triples in each cell of = separately.
Fix a cell A of Z. We classify each triangle ¢ € T that in-
tersects A as being either long in A, if 3t N A = 0, or short,
otherwise. Each intersecting triple in A is consequently clas-
sified as

LLL, if all three triangles that form the intersection are long
in A,

LLS, if two of these triangles are long and one is short,
LSS, if one of these triangles is long and two are short,
SSS, if all three triangles are short.

In what follows we assume that each triangle (long or
short) that crosses A is clipped to within A. In particular,
for any long triangle ¢, tN A is a triangle or a quadrilateral.
For short triangles, ¢ N A is at most a 7-gon: Since A is a
simplex, the plane containing ¢ intersects A in at most a
quadrilateral, and the edges of ¢ contribute at most three
additional edges to the cross-section.

We count the number of intersecting triples within each
cell Ay by further partitioning Ag into smaller subcells A,
and recursively derive from each such subcell new subprob-
lems. We partition Ao using the same kind of sensitive
(1/r)-cutting, for the same r, with respect to the set of long
and short triangles in A, and the set of edges bounding the
short triangles in Ay (and crossing Ag). Initially, Ag is the
entire three-dimensional space, and all triangles are short in
Ay, but they may become long in further recursive steps.

Let us denote by Ng = NSAO the overall number of short
input triangles (within a cell Ap) and by N; = N.° the
overall number of long input triangles (within Ap). Dur-
ing each step of the recursion, we partition Ap into smaller
subcells A, and immediately dispose of any new LLL and
LLS intersections within each subcell A, using two simple al-
gorithms that count all intersecting triples of types LLL and

LLS within A in time O ((Nf‘)2 log NLA) and O(NS N2 log N&),

respectively. These intersections are not recounted during
any further recursive substep. At the bottom of the recur-
sion (when Ns < max {V/Nz,c}, for some constant ¢ > 3),
we use two additional simple algorithms that count inter-
secting triples of types LSS and SSS, which run in time
O(Ns3 + NsNp log N1 )—see below. We note that the goal
of the recursive step is only to count efficiently intersecting
triples of types LSS and SSS; the (new) intersecting triples
of types LLL and LLS are counted before entering the re-
cursive step. (Of course, each recursive step may generate
its own LLL and LLS intersections, involving triangles that
were short in the input but became long in some of its sub-
problems.)

For the algorithm to attain the desired efficiency, we need,
for each parent cell Ay, to construct a sensitive (1/r)-cutting
of Ao that has the pAroperty that each subcell A of Ay is

0

crossed by at most Nf short triangles in Ay and by at most
Ao
A long triangles in Ag. This problem can be solved by

T

Figure 1: The long triangles that intersect the tri-
angle ¢, drawn as lines crossing t. Two lines [; and
l> intersect within ¢ if and only if their intersection
points p;,, ¢, Pisy @i, With Ot interleave along 0t.

sampling two subsets of O(rlogr) triangles each, one from
the long triangles in Ap and one from the short ones. The
standard e-net theory [15] implies that the resulting cutting
has the desired property.

We first describe these four simple intersection counting
algorithms, and then present in detail the complete recur-
sive algorithm, which uses these simple algorithms as sub-
routines.

Counting Intersections of Type LLL

Let A be a simplex cell of (some recursive cutting) = and
let L® denote the set of clipped long triangles in A. Let
N = N£ = |L®| denote, as above, the total number of long
triangles in A. We apply the planar algorithm of Agarwal [1]
to each clipped triangle t € LA, That is, we intersect ¢ with
all the other triangles in L, and count all intersecting pairs
within ¢. Since the boundary of every triangle ¢ € L* lies
outside A, t' must cross ¢ in a line segment, both of whose
endpoints lie on 0¢; see Figure 1. As described in [1], this
problem can be solved in time

0 (‘LA‘ log ‘LAD = O(NL log N1),

by sorting the intersection points of these lines with 0t along
Ot in a clockwise direction, say, and by counting all pairs
whose intersection points appear along 0t in an interleaved
order, as illustrated in Figure 1. It follows that the overall
running time needed for counting all LLL intersections over
all the clipped long triangles within A is O(N7 log Ni.).
Note that once a triangle has become long in a cell A, it
will remain long in all recursive steps involving subcells of
A. Since we need to ensure that each LLL intersection is
counted only once. we count only intersections that involve
at least one new long triangle (a triangle that is short in
the parent cell of A but long in A). To do so, we take only
new long triangles as the base triangles ¢, within which the
planar counting algorithm is applied. Moreover, we enu-
merate the new long triangles as ¢1,...,tr, and apply the
algorithm, within each ¢;, only to the new long triangles t;,
for j > ¢, and to all the old triangles. With these modifi-
cations, the running time of the algorithm just presented is
O(Nr N2 log Ni), where N? is the number of new long tri-
angles (which are also counted among all Nz, long triangles).



Counting Intersections of Type LLS

We use a similar approach as in the LLL case. Let Ng = N5
denote the number of short triangles in A. We apply the
preceding two-dimensional scheme within each short trian-
gle. That is, we intersect each short triangle with all the
long triangles, obtaining O(Ny) lines on each such (clipped)
triangle. Then we count all intersecting pairs within each
short triangle, using the preceding algorithm. The overall
running time is thus O(NsNg log N). Here too we need
to ensure that no intersection is recounted in further re-
cursive substeps. This is done as follows: On each short
triangle in A, we solve the bichromatic version of the prob-
lem, which counts all intersections between the new long
triangles and all the long triangles. The algorithm for solv-
ing this problem is similar to the preceding one, and runs
in time O(Ng log Nr); see [1] for further details. Then we
count the intersections involving only new long triangles,
using the two-dimensional procedure described in the LLL
case. It thus follows that the running time of the modified
algorithm remains O(NsNg log Nz).

Counting Intersections of Type LSS

Let S® denote the set of (clipped) short triangles in A,
so Ns = N& = |S®|. Intersect each (clipped) triangle in
t € S® with all the other triangles of S® and L®. We thus
face the problem of counting intersecting pairs of long seg-
ments (whose endpoints lie on the boundary of ¢) and short
segments, within every triangle ¢ € S®. Note that each such
problem has an input of O(Ns) short segments and O(Nz)
long segments. Since the short segments are confined to
within ¢, we may replace the long segments by their contain-
ing lines, without affecting the set of intersecting pairs. The
problem can then be solved in O(Ns2 + N log Np) time, us-
ing an approach presented in [1], in which we construct the
arrangement of the lines dual to the endpoints of the primal
segments (representing short triangles), and then locate in
this arrangement all points that are dual to the primal lines
(representing long triangles). Since each face of the arrange-
ment consists of points dual to lines that cross a fixed set
of segments, this easily yields the count of the intersections
between the (primal) segments and the (primal) lines.

To make sure that each intersection is counted only once,
we enumerate the short triangles as t1,...,tny, and make
each triangle ¢; process only short segments that are formed
by its intersections with triangles ¢; with j > ¢. Thus, the
overall running time of the algorithm, for a fixed cell A, is
O (Ns® + NsNylog NL).

Counting Intersections of Type SSS

We count all intersecting triples of type SSS using a brute-
force algorithm which examines all triples, in time O(N3).
Note that this bound is subsumed by the bound on the time
needed to compute LSS intersections.

The Overall Recursive Algorithm

Each step of the algorithm involves a simplex Ag, which is
initially the entire 3-space, or, in further recursive steps, is
a cell of a cutting of some larger simplex. The algorithm
receives as input a set of Ns short triangles and a set of Nr
long triangles clipped to within Ag.

If Ns < max {+/Nz,c}, for some constant ¢ > 3, we stop
the recursion and compute the number of LSS and SSS in-

tersections, using the explicit algorithms described above.
Note that, in this case, there is no need to count intersect-
ing triples of type LLL and LLS, since all intersecting triples
of these types have already been counted in the preceding
step that has processed the parent cell of Agp.

If Ns > max {\/NL,c}, we first compute a (1/r)-cutting
= of the arrangement of all long and short triangles within
Ay, which is also sensitive to the edges of the short trian-
gles, in the sense defined above. (We apply the variant that
samples O(r log r) triangles from each of the sets of long tri-
angles and of short triangles.) Then we count all LLL and
LLS intersections within each subcell A of Ay, that involve
at least one new long triangle (a triangle that is short in Ag
but long in A), using the algorithms described above. We
then continue to solve the problem recursively in every cell
A € E, with some extra care — see below.

Since there are only O(N&™r) crossings between short
triangles and the cells of Z,* it follows that, for any 7> <

s < r37¢, the number of cells in Z that are crossed by at

1+e
least ES; short triangles is at most O(s). (The case s < r?
cannot arise, since each cell of = is intersected by at most
% short triangles of 7', due to the sampling that we have
used.) We partition the set of all cells in = into at most

log (47) subsets, where M is the overall number of cells in
Z (note that log (45) = O((1+¢)logr)), so that in the i-th
subset Z;, for i = 0,...,log (%), we have O(2'r*) cells of
Z, each of which satisfies (recall that S° denotes the set of
short triangles in A)

N1+e 2N1+E
S <98 < =2
2ty T A

)

1+4¢
where the last subset of O(r®7¢) cells satisfies |S®| = O (ﬂfz—
for each cell A in this subset.

We now create recursive subproblems, taking into account
the number of long triangles in each subcell A, as follows.
For each cell A € Z;, we partition (arbitrarily) the set of
long triangles in A into 2° subsets, each of size at most
NsTNL (note that the number of long triangles in A is at

2tp
most ﬁsj—NL, because of the cutting property, and because
some of the short triangles in the parent cell Ag may have
become long in A), and process each subset in a separate
recursive step. Thus, A generates 2° subproblems, each in-

1+4¢
volving all O <NS

2ip

) short triangles in A, and at most

N52+TNL long triangles in A. These subproblems are then
solved recursively. Note that counting all LLL an LLS in-
tersections within A, before proceeding down the recursion,
is crucial. Otherwise, in addition to the issues discussed
earlier, we might miss intersecting triples of types LLL and
LLS that involve long triangles from two different subsets.
We estimate the cost of computing the LLL and LLS in-
tersections within each cell A of Z in the following crude
manner. The number of new long triangles in A is at most
%, the overall number of long triangles in A is at most

'We use here the more general and slightly weaker bound
of [16] for the number of edge-cell crossings, rather than
the slightly improved bound that can be obtained from the
Dobkin-Kirkpatrick hierarchical decomposition. This does
not affect the asymptotic running time bound, and allows
us to extend the analysis essentially verbatim to the case of
general convex planar objects.



ﬂs‘:—NL, and the number of short triangles in A is at most

%. Hence the cost of computing the LLL and LLS inter-

NS(NS+NL);OS (Ns+Ngp)
r

sections within A is O ( ) Summing

over all cells A, the overall running time is

0 <1"3+EN5(N5 -I-NL)lOg (NS -I-NL)) _

r2

O (r'**Ns(Ns + N)log (Ns + Nv)) .

Let F(Ns, Nr) denote the maximum time needed to count
all intersecting triples at a recursive step involving Ns short
triangles and Nz long triangles. Then F satisfies the follow-
ing recurrence:

(O(r'™*Ns(Ns + Nz)log (Ns + Ni))+
O (Vs +Nu)+) +

o AL . €
Eizgo(rz) 0(22zr2)F (Ns_1+ , NS'{'NL) ,

2ty 2ty

<
F(Ns,Nv) < if Ng >max{\/NL,c}

O(N2 + NsNy, log N1.),
if Ng < max{\/NL,c} ,

where ¢ > 3 is constant, and the term O ((Ns + NL)H'E’)

is the time to construct the curve-sensitive cutting, for any
¢’ > 0, whose choice depends on the choice of 7.

To solve the recurrence, for a given £ > 0, we substitute
r= nclgl, for an appropriate constant ¢’ > 0. It is then easy
to see, using induction on n and choosing ¢’ appropriately,
that the solution is

F(Ns,Np) = O(Ns(Ns + N.)'™), for any e >0, (1)

with a constant of proportionality that depends on e. (Note
that in the case Ns < +/Nr, the term O(N2), that ap-
pears in the bound for the cost of counting all intersect-
ing triples of types LSS and SSS, is dominated by the term
O(NsNL lOg NL))

Initially, the algorithm begins with A equal to the entire
three-dimensional space, and Ns = n, N = 0. Note that
at this point there are only intersecting triples of type SSS,
but the recursive process will generate the other types of
intersections as space is progressively cut up into subcells.

In summary, we have shown:

THEOREM 2.1. The number of intersecting triples in a set
of n triangles in R® can be counted in time

min {O(n*/* k74, 0(n*) },

for any € > 0, where k is the overall number of pairs of
intersecting triangles.

Remark. We note that by slightly modifying this algo-
rithm, we can solve the following trichromatic variant of the
problem in nearly-quadratic time:

“Given three sets, T of n, “red” triangles, T} of n, “blue”
triangles, and T}, of n, “green” triangles, all in R?, efficiently
count the number of triples in T, x T; x Ty with nonempty
intersection.”

3. COMPACT REPRESENTATION OF ALL
INTERSECTING TRIPLES

Given a collection T on n triangles in R®, we represent
the set of all intersecting triples among the triangles of T' as
a 3-uniform hypergraph [7) H = (T, E) where

E = {{ts, tj,te} | ti,tj,tx €T and ¢; NE; ﬂtk#w},

foralll1<i< j<k<n.

The size of the above representation is ©(n®) in the worst
case. Our goal is to provide a compact representation for
H of nearly-quadratic size, so that the set of all intersecting
triples in T need not be listed in the above explicit manner.
As noted in the introduction, one immediate application of
such a compact representation is for sampling a random el-
ement out of the set of all intersecting triples in 7', without
having to list all these intersections explicitly. We discuss a
few applications, already mentioned in the introduction, at
the end of this section.

The compact representation for H that we seek (defined
analogously to that in [6]) is a collection H = {H; = (V;, Ei)};
of s subhypergraphs of H, such that

1. Each H; is a complete tripartite 3-uniform hypergraph,
that is, the set of its vertices V; can be partitioned
into three disjoint subsets A;, B; and C;, such that
any triple of triangles {a:,b;,c;}, such that a; € Aj;,
b; € B;, and ¢; € C;, is an edge of H.

2. E=\J._ E;.
3. E;\E; =0, for i # j.

Clearly, the storage needed for such a compact representa-
tion is >.;_, |Vi|, since the edges of H are now defined im-
plicitly. We show that the algorithm described in Section 2
can be modified to produce such a compact representation
of H, with }>°_, |Vi| = O(n°**), for any & > 0. We use the
same recursive mechanism as in the preceding section, but
modify the four simple algorithms (that the recursive algo-
rithm uses as subroutines) so that they construct a compact
representation for all relevant intersecting triples (instead of
counting them). We first describe these simple algorithms.

(As in the preceding section, we first run as a preliminary
stage the algorithm of de Berg et al., which can be eas-
ily modified to produce all vertices along each intersection
segment as the union of precomputed canonical subsets, so
that the total size of all these subsets is O(n*/®+cg4/5+¢),
for any ¢ > 0. (With some care, we can ensure that no
vertex is implicitly constructed more than once.) Hence,
when the number & of intersection segments is significantly
smaller than n3/2, this method will yield a compact repre-
sentation of subquadratic size. As above, we abandon this
alternative computation when its output size becomes more
than quadratic, and resort to the main algorithm.)

Representing Intersections of Types LLL and LLS

We describe the compact representation of intersecting triples
of type LLS; the intersecting triples of type LLL are handled
similarly. As described in the preceding section, given a cell
A, the algorithm that counts all intersecting triples of type
LLS in A applies the planar algorithm on each (clipped)
short triangle ¢ in A. Let L; denote the set of the lines
obtained by intersecting ¢ with all the long triangles in A.
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(Recall that the actual algorithm is slightly modified, to ac-
count only for intersections that involve new long triangles;
for simplicity of presentation, we ignore this issue in what
follows.) It is sufficient to obtain a separate compact repre-
sentation of all intersecting pairs of lines in L, for each short
triangle ¢ in A. These intersecting pairs are represented as
follows. Sort the intersection points of the lines in L; with
the boundary of ¢, and turn the resulting circular sequence
into a linear sequence o; by breaking it at some arbitrary
point. For each original triangle t; (i = 1,...,Nr = Nf)
that intersects ¢ in a line I, we write I} for its first intersec-
tion point in oy and I§ for its second intersection point in
o¢. We want to represent compactly all pairs {t;,t;}, ¢ # j,
that satisfy I} < I <1 <.

We use a 2-level tree-like structure. The first-level struc-
ture T stores the points li in sorted order. For each node
(subtree) v of T, we construct a secondary structure T>(v)
that stores all the points I3 whose matching points I are
stored at v. We now query with each triangle ¢;. We first
search with IJ in 7%, and find all elements that (strictly)
precede l{, represented as the disjoint union of O(log Nz)
subtrees. For each subtree (rooted at some node) v, we go
to Th(v) and search there for all elements that lie (strictly)
between [} and I}, again, obtaining them as a collection of
O(log Ni1) subtrees. Altogether, t; “lands” in O(log® Ni)
subtrees of the secondary structures. For each such subtree
7, we collect the set A, of all triangles of 7' in A that reach
it, and output the complete bipartite graph A, x B, where
B; is the set of triangles that are stored at 7 (more pre-
cisely, those triangles ¢; whose second intersection points /5
are stored there).

The overall size of the vertex sets of the output graphs is
O(Ng log® Ni). Indeed, the overall size of all the secondary
trees is O(NLlog N1), and the overall size of all subtrees
of a secondary tree 7 with k vertices is O(klogk), which
easily implies that >°_|B-| = O(Nplog® Ni). Similarly,
since each triangle reaches as a query O(log? Nz) subtrees,
we also have > _|A,| = O(Nplog” No). We now add, for
each subtree 7, the tripartite hypergraph {¢t} x A; x B; to
the output representation. Hence, the overall size of the
sets of the compact representation, over all short triangles
t; in A, is O(N§Nf log® N£). The time for constructing
such a representation has the same upper bound. Note that
the output consists of edge-disjoint complete tripartite 3-
uniform hypergraphs, with one of the three vertex sets in
each hypergraph being a singleton.

Asin Section 2, we need to ensure that each triple intersec-
tion is represented only once. Proceeding as in Section 2, the
algorithm can be modified so that it represents only bichro-
matic intersections between the new long triangles and all
the long triangles. This can be done by constructing the two-
level tree-like structure for all the long triangles as above,
but query only with the points obtained by the new long
triangles.

Handling LLL intersections is done similarly. We ensure
that each triple intersection is represented only once, us-
ing similar arguments to those described in the LLL count-
ing algorithm (see Section 2 for further details). The size
of the resulting representation is O(Nz N2 log® Nz), where
N? is defined as in Section 2, and it can be constructed in
O(NLN?log? Ny1) time.

Representing Intersections of Type LSS

Here too we adapt the corresponding algorithm of the pre-
ceding section, so that it represents (rather than counts) all
intersecting pairs between the O(Ng) short segments and
the O(NL) long segments within every short triangle ¢ in
A. As in the LSS counting algorithm, to make sure that
each intersection is represented only once, we enumerate the
short triangles as ¢1,...,tnyg, and make each triangle ¢; pro-
cess only short segments that are formed by its intersections
with triangles ¢; with j > i. By repeating this procedure
for all short triangles, we obtain a compact representation
of all LSS intersections.

Fix a short triangle ¢, denote by S; the set of short seg-
ments within ¢, obtained by intersecting ¢ with all the short
triangles in A (that succeed ¢ in the above enumeration),
and by L; the set of lines within ¢, obtained by intersecting
t with all the long triangles in A. Denote by S; the set of
the double wedges dual to the segments in S; (each endpoint
of a segment s in the primal plane is transformed into a line
in the dual plane, and thus the two endpoints of s form a
double wedge in the dual plane, which is the locus of all
points dual to lines that intersect s), and by L; the set of
points dual to the lines in L;.

We construct a (1/r)-cutting II for the double wedges
in S7, for a sufficiently large constant parameter r. Next,
we locate all the points of L} in the cells of II, and then
compute for each cell 7 € II all the double wedges of S}
that contain w. The overall running time of this step is
O(r?|S;| + |L;|logr). Let us denote by L.(mw) the set of
lines of L; whose dual points lie in the interior of 7, and by
S¢(m) the set of segments in S; whose dual double wedges
contain w. We add {t} x L¢(w) x S¢(m) to the output rep-
resentation. Since each double wedge may contain O(r?)
cells in its interior, and since ) . |L:(m)| = |Lf], it fol-
lows that the overall size of the vertex sets of this compact
representation, at this stage, is

Y L+ Le(m)] +[Se(m)]) = 0?17 | + L7,

mell

(we add 1 for each cell of II, since {t} is also a part of the
representation). We now subdivide, if needed, each cell in
IT into smaller subcells, each containing at most “;“g‘ points
of L; in its interior. Let IT" denote this new set of cells (it is
easily seen that this decomposition does not asymptotically
increase the number of cells in IT', and thus |IT'| = O(r?)).
We now recursively continue to construct such a compact
representation within each cell 7 of IT', where the subprob-

lem at 7 involves the at most lfgl dual points in 7 and the

at most @ double wedges whose boundaries cross m. The
recursion is stopped when either Ns or N become smaller
than r. We then report all intersecting pairs in a brute-force
manner. The complexity of the representation, at any such
bottom step, is O(r(Ng + Ng)).

Let G(Ns, N1) denote the maximum size of the compact
representation of all intersecting pairs at a recursive step
involving Ns segments and Nz lines. Then G satisfies the



following recurrence:

O (r2Ns + N1) + O(r2)G (NS , N—ZL) ,
if Ng, N >r
O(r(Ns+Nw)),
if Ns<r or Np <r.

G(N57NL) <

The solution of this recurrence (for a sufficiently large value
of r) is easily seen to be

G(Ns,Np) = O(N5™ + N; %),

for any § > 0. (We note that the same bound applies for
the time needed to construct this representation.) Thus
the overall size of the compact representation of all inter-
secting triples of type LSS within a cell A is O((N§)*10 +
NE(NE£), for any 6 > 0.

Representing Intersections of Type SSS

The compact representation for all intersecting triples of
type SSS is constructed in a brute-force manner, by exam-
ining all triples, and reporting separately each intersecting
triple, as a separate single-edge tripartite graph. The overall
size of the representation, and the time needed to compute
it, are both O(N3). This bound is subsumed by the bound
on the representation of the intersecting triples of type LSS.

The Overall Compact Representation

We use the same recursive mechanism as in Section 2. In
this case, we let F'(Ns, N1) denote the time needed to con-
struct the compact representation of all intersecting triples
at a recursive step involving N5 short triangles and Nz long
triangles. Then F satisfies the following recurrence:

'O(T1+EN5(NS + NL) lOg2 (NS + NL))-l-
O (Vs +Nu)+) +

log ,,Mz . Nelte N N
Ei:O( )0(2211,,2)F( 2ty 2?; L):

F(Ns,Ni) < if Ng >max{\/NL,c}

O(NET + NsN1T9),

| if Ns < max{\/NL,c} ,

for any § > 0, where ¢ > 3 is constant, and M and ¢’ are
defined as in Section 2.

Applying arguments similar to those in Section 2, we con-
clude that the solution of this recurrence is

F(Ns,N.) = O (Ns(Ns + Np)'**), for any & > 0,

and the same bound applies for the size of the compact rep-
resentation. We have thus shown:

THEOREM 3.1. Given a collection T of n triangles in R3,
the set of all intersecting triples among the triangles of T
can be represented in compact form, as the disjoint union of
complete tripartite 3-uniform hypergraphs, with an overall
size of

min {O(n4/5+an4/5+5), O(n2+g)} ,

for any € > 0, where k is the overall number of pairs of in-
tersecting triangles. The time needed to construct this rep-
resentation has the same bound.

Drawing a Random Intersecting Triple

We now present an application that exploits the compact
representation of the intersecting triples among a set T of n
triangles in R®. In this application we wish to draw at ran-
dom an element from the set of all intersecting triples. This
is easy to do, in O(log n) time, using the compact represen-
tation of this set.? We first count all the intersecting triples

among the triangles of 7', in time min {O(n4/5+5 rA/5Fe), O(n2+g)}

, for any € > 0, where k denotes the overall number of in-
tersecting pairs. If x < n®/2 we construct all intersect-
ing triples explicitly in subquadratic time, using the pro-
cedure of de Berg et al. [12]. Otherwise, if the number of
intersecting triples is O(n?), we construct all intersecting
triples explicitly in time O(n? logn), using the reporting al-
gorithm described in Section 1. In this case a random in-
tersection can be drawn in O(1) time. Otherwise, let the
compact representation of all intersecting triples be given as
Ui_, 4i x B; x C;. We first compute, as a preprocessing
step, all the “prefix sums” k; = >, _; |Ay| - |Bir| - |Cy|, for
t=1,...,5. We store these sums in a (sorted) array. The
cost of this step is O(n?'¢), for any £ > 0. Next, to draw
a random intersecting triple, we draw a random number j
between 1 and &, and find in O(log n) time the index ¢ that
satisfies ki < j < Ki+1. We then pick the (j — k;)-th edge
of the hypergraph A; x B; x C;, according to some obvious
lexicographical order, and output the corresponding inter-
secting triple of triangles. Thus, drawing an intersecting
triple takes O(logn) time, with O(n**) preprocessing and
storage, for any ¢ > 0.

We have mentioned in the introduction another applica-
tion of our machinery: Given a set T' of n triangles in R3,
and a parameter k, find the k-th highest vertex of A(T"). We
have noted that our results can be used to solve this prob-
lem in nearly quadratic time, using an appropriate form of
randomized binary search on the vertices. For lack of space
we omit the full details of this application in this version.

4. COUNTING INTERSECTING TRIPLES
IS A 3SUM-HARD PROBLEM

In this section we show that the problem of counting all
intersecting triples among triangles in R, a problem that
we denote as 3COUNTING, belongs to the 3suM-hard family
(see [14]), and thus, the best solution to this problem is likely
to require ©(n?) time in the worst case. We show that the
following problem

Problemssum’:

“Given three sets of integers A, B, and C of total
size n, are there a € A, b € B, ¢ € C with
a+b=c?”

is linear-time reducible to 3COUNTING.

Given three sets A, B and C of integers, we proceed as
follows. We transform each element a € A (resp., b € B,
¢ € C) to the plane hy : x = a (resp., hy : y =b, he : 2 = ¢).
We denote the three resulting sets of planes by A*, B* and
C™, respectively. Every triple of planes h, € A*, h, € B*
and h. € C” intersects at the point (a,b, c), and the overall

>This algorithm is a variant of another algorithm presented
by the authors, for drawing a random element of the set of
all intersecting pairs of n given segments in the plane [13].



B*

C*

Figure 2: The construction used to reduce 3COUNT-
ING to 3suM’. The vertical lines are the planes rep-
resenting the elements of A, the rectangles are the
planes representing the elements of B, and the hori-
zontal lines are the planes representing the elements
of C. We exclude the region z+y—1/2 < z < z+y+1/2.

number of such intersecting triples is |A||B||C|. We now
add to the scene the plane H : z = x + y. See Figure 2 for
an illustration.

The (obvious but) key observation is that there is a triple
a € A, b€ B, ¢ € C such that a + b = ¢ if and only if the
plane H contains the intersection point of the three planes
ha, hy and h.. We thus split each plane h € A* U B* U C”
into two halfplanes at the intersection line h N H, result-
ing in six sets of open halfplanes, such that the halfplanes
in three subfamilies lie above H and the halfplanes in the
other three subfamilies lie below H.  (Since 3COUNTING
receives as input closed triangles, we actually replace each
plane in A* U B* U C" by its intersections with the two
closed halfspaces z <z +y—1/2and z > x+y+1/2; it is
easy to see that all the triple intersections in the remaining
slabz+y—1/2 < z<z+y+1/2lie on H itself.) We now
count all triple intersections among the resulting closed half-
planes that lie above H, and all triple intersections among
the closed halfplanes that lie below H. It now follows
that the overall number of intersections on both sides of H
is strictly smaller than |A||B||C| if and only if there are three
planes h, € A", hy € B™ and h, € C*, such that H contains
their intersection point (a,b, c), which is equivalent to the
existence of three numbers a € A, b € B, ¢ € C such that
a+b=c

We note that the construction of the six families of tri-
angles takes O(n) time. Thus we have shown that 3sum’
< n 3COUNTING, implying that 3COUNTING is a 3suM-hard
problem.

5. EXTENSIONS

In this section we extend the algorithms presented in Sec-
tions 2 and 3 to count or represent all intersecting triples
among n planar convex objects in R3.

Let S be a collection of n planar convex objects in R3,
such that each object s € S is bounded by a closed (and con-

~\ z=c+y+1/2
H:z=xz+y
A z=x+y—1/2

Figure 3: A view from above on four ellipses in R?.
After the vertical walls from their boundaries are
erected, a nonconvex cell A is generated. Thus, the
intersection of A with any ellipse that crosses A is
not convex.

Figure 4: The lines [, l2, 3 are cross sections within
s of corresponding long objects of S. The lines [;
and /> intersect within s since the intersection points
Diys iy 5 Pisy i, Oof their contained segments interleave
along 0s. The lines [; and [3 do not intersect within s
since they do not contain segments that are clipped
to within s and have interleaving endpoints.



vex) planar curve c € R® of constant description complezity.
That is, each bounding curve is defined as a Boolean com-
bination of a constant number of polynomial equalities and
inequalities of constant maximum degree. We also assume
that the objects in S are in general position, and in partic-
ular that no two of them are coplanar. In this case, we can
construct for S a (1/r)-cutting = of size O(r3*¢), which is
sensitive to all the bounding curves of the elements in S, in
the sense that the number of crossings between these bound-
ing curves and the cells of Z is O(n'**r), for any & > 0; see
Section 2 and [16]. The time needed to construct this cut-
ting, when r is at most O(n°), is O(n***'), for any &’ > 0
that is sufficiently larger than e.

Note that the cells of = need not be convex, since, as part
of the construction of =, we draw a random sample R of the
bounding curves, and erect vertical walls up and down from
each such curve; see [16] for further details. Thus, a clipped
object s € § to within a cell A € = need not be convex; see
Figure 3. Nevertheless, since the given objects have constant
description complexity (and hence so does each cell A € E),
it follows that each clipped object s has constant description
complexity, and each element s’ € S intersects the (clipped)
object s in O(1) line-segments. Note that a clipped object
need not be connected, but it has at most O(1) connected
components, and we treat each of them separately. In what
follows we abuse the notation of s to denote a (connected
component of a) clipped object to within a cell A of =.

These properties allow us to apply a similar algorithm to
that presented in Section 2, in order to count all intersect-
ing triples among the elements of S. More specifically, the
recursive mechanism remains the same, and the four simple
algorithms can be applied with slight modifications. In the
case of counting intersecting triples of type LLL (or LLS),
the input to the planar algorithm, that we apply within each
(clipped) object s (see Section 2 for further details), is the
set of all clipped segments that are generated by the inter-
sections of s with an appropriate subset of the long objects.
Note that, since we intersect s only with long objects, the
endpoints of each intersection segment lie on 0s. In this case,
two clipped segments 1, l> intersect within s if and only if
(obeying the same rules as in Section 2, so as to ensure that
no intersection is counted twice) their endpoints interleave
along Os; see Figure 4 for an illustration. Since each long
object s intersects s in a constant number of segments, the
number of input segments to the two-dimensional algorithm
is O(N¢1), and thus the running time of the planar algorithm
remains O(Ng log N1.).

In the case of counting intersecting triples of type LSS,
the input to the two-dimensional algorithm (described in
Section 2), that we apply within each clipped object, is the
set of all clipped short segments and the set of the contain-
ing lines of all the clipped long segments. Note that if s
is long, then it follows from the convexity of s and s’ that
replacing all the long segments that constitute s N s’ by the
line [ that contains them does not generate new (clipped)
long segments within s. Since the overall number of short
segments is O(Ns) (due to the properties that we have dis-
cussed above), and the overall number of lines is Nz, the
running time of the two-dimensional algorithm is, as in Sec-
tion 2, O(NZ + N log Ni).

In the case of counting intersecting triples of type SSS,
we use a brute-force algorithm as in Section 2. The running
time of this algorithm is O(N2), because the objects in S

have constant description complexity, and thus each triple
is examined in constant time.

Arguing as in Section 3, we can use the same mechanism,
with appropriate modifications, to derive an algorithm for
constructing a compact representation of these intersections,
with the same nearly-quadratic bound on the storage and
the running time.

Note that the preliminary algorithm of [12] is not applica-
ble to general convex planar objects, since it operates only
on polygonal objects. We therefore do not run this stage at
all. It would be interesting to investigate to what extent this
technique can be extended to more general planar regions.
We thus conclude:

THEOREM 5.1. The number of intersecting triples in a set
of n planar convex objects of constant description complez-
ity in R® can be counted in time O(n®T), for any € > 0.
Moreover, these intersecting triples can be represented in o
compact form, as the disjoint union of complete tripartite
S-uniform hypergraphs, using O(n*T¢) time and storage.

It follows, as in Section 3, that with O(n>*¢) preprocess-
ing time and storage, we can draw a random intersecting
triple of objects of S in O(logn) time. Similarly, we can
find in nearly quadratic time the k-highest vertex in an ar-
rangement of such objects.

6. CONCLUDING REMARKS AND OPEN
PROBLEMS

In this paper we have presented an algorithm that counts
all intersecting triples among n triangles in R® in nearly-
quadratic time. This algorithm can be modified so that it
constructs a compact representation of these intersections

with an overall size of min{O(n4/5+€n4/5+5),O(n2+5)} ,

for any € > 0, where x denotes the overall number of inter-
secting pairs of triangles. We also proved that the problem
of counting all intersecting triples is 3sum-hard, and thus
the algorithm presented in this paper is likely to be nearly
worst-case optimal.

We have extended these results to planar convex objects
in R?, and showed that the problem of counting all intersect-
ing triples in this case can be solved in nearly-quadratic time
as in the case of triangles. However, this problem becomes
more challenging when the input objects are not necessarily
planar, but are curved surface patches (or closed shapes) in
R? of constant description complexity. The three subtasks
of counting LLL, LLS or LSS intersections become consid-
erably harder, because they call for counting the number of
intersections between curves and arcs on some curved sur-
face, and the best known algorithms for these tasks are much
less efficient than those for lines and line-segments, which we
have used above.

Cousider, for example, the problem of counting all inter-
secting triples among n balls in R®. In this case, in the
LLL subroutine, we need to solve the problem of counting
all intersecting pairs among circles and long circular arcs
(that is, arcs within a patch of a ball, that completely cross
this patch). However, we are not aware of any algorithm
for this task that is faster than the standard algorithm that
counts intersections between circular arcs, and runs in time
O(n®/**=), for any € > 0 [4]. Thus, in this case, our al-
gorithm is not better than a simple-minded algorithm that
intersects each ball with all the others balls, and uses the



two-dimensional algorithm of [4] on each ball. The running
time of this algorithm is thus O(n°/?*9), for any € > 0.

Finally, another challenging problem is to count d-wise
intersections among (d — 1)-simplices in R?, for d > 4. This
can be performed, for example, by induction on the dimen-
sion d, as follows. Given n simplices in R, we intersect the
facets of each simplex s with all the other n — 1 input sim-
plices, obtaining O(n) subproblems in one dimension lower
(with a constant of proportionality that depends on d). We
now continue to solve each such subproblem recursively. We
stop the recursion when we reach three-dimensional prob-
lems, and then solve each of them in nearly-quadratic time.
It thus follows that the overall running time of this algo-
rithm is O(n¢=1%°), for any € > 0, for each d > 3, where the
constant of proportionality depends on d and €. An open
problem is to prove that this bound is nearly optimal, or, al-
ternatively, design an improved algorithm for this problem.

We also note that in higher dimensions there is a wider
range of problems, in which we wish to count the number
of k-wise intersections among n (d — 1)-simplices in d-space,
where k can vary from 2 to d. Each of these variants is a
challenging open problem.
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