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The concept of this chapter is the idea of reducing the dimension of the points in
a given set P € R™ such that the distances are preserved approximately. In this
chapter, we will go through a series of theorems toward proving a theorem called
“The Johnson-Lindenstrauss Lemma” which tells us we can do so (reducing the
dimension while approximately preserving the distances ) by simply projecting
the set into random subspaces.

We shall start with 2 simple definitions :

Definition 1. (translation) : Let A € R? and p € R? . So the following set:

A+qg={a+qlac A}

is the translation of A by gq.
Definition 2. (Minkowsky sum) : Given A, B € R%, the minkowski sum of A
and B is given by:
A+B:={a+blacAbe B}
Theorem 3. (Brunn-Minkowsky) : Let A, B # ¢ be compact sets of R%. So :

Vol(A+ B)* > Vol(A)# + Vol(B)«

before proving the theorem, we shall define the following:

Definition 4. A C R" is a brick set if A = U§_, B; where B; are parallel to the
axis boxes with disjoint interiors :

Proof. (for theorem 3) :

Sufficient to prove for brick sets by the definition of volume as a limit of brick
sets approximation.



The proof is by induction on the total number of bricks in A and B denoted by
k.

if kK =2 than A = o and B = 8 where o and 8 are bricks with dimensions
at,..,a, and By,..,06,. So A+ B = a + [ is a brick with the dimensions
a1+ P, .., an + B

So we need to prove:

(T + 807 < (Joi+ 8"
=1 =1 =1

equivalently we will prove:

([T )™ + (T 151)%
Hz 1o + ﬂz)

Now:

(T, a;)n + (IT;— 151)% T 1 S B 1
H?:10%+5z) (];[10%“‘&) +(Haz+,62)

by the arithmetic-geometric mean inequality :

1 Z a; + B
o+ B
as desired.

For k > 2 Assume A has at least 2 bricks. So there is a hyperplane h which
separates the interiors of two bricks of A

.We can assume WLOG the following assumptions: O

1. h= {l’l = O}
2. B is split in the same relation as A. That is, if we define AT = ANh™ and

A~ = AN h~ and similarly define B*, B~ then r := V{fxé;) = ‘1/055;).

The reason we can do it, is that volume is invariant to translations.

Now since AT + BT and A~ + B~ are interior disjoint subsets of A + B , and
by the induction hypothesis we get:

Vol(A+B) > Vol(AT+B1)+Vol(A~+B™) > (Vol(A+)%+Vol(B+)%) +(Vol(A™ ) +Vol(B

)
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= (r=Vol(A) + 17 Vol(B))" + (1 — r)Vol(A)7) + (1 — r)Vol(B)=)" =

(Vol(A)= + Vol(B)=)"
As desired.

Theorem 5. Let P be a convex set in R" and let A= PN (z; =a), B=
PN (xy=b), C=PnN(x1=c) be three slices of A where a <b < c. So :

Vol(B) > min(Vol(A),Vol(C))
Proof. sufficient to show that v given by :

v(t) = Vol(PN (z1 =t))=

is concave on its support.

Let « = =2 . So b = (1—a)*a+axc. By the convexity of P, (1—a)A+aC C B.

—a

By theorem 3 :
v(b) = Vol(B)" > Vol((1 — a)A+ aC)n > Vol((1 — a)A)» + Vol(aC)w =

(1= a)"Vol(A) ™ + (a"Vol(C))* = (1 — a)Vol(A) + aVol(C)«

= (1 - a)v(a) +v(c)
So the function is indeed concave. O

Corollary 6. For compact sets A, B C R",Vol(4£8) > \/Vol(A)Vol(B)

1 1
Proof. Vol((A+B)/2)% = Vol(4+L)% > Vol(2)w+Vol(Z)w = YelAlm tVelB)x

2

VVol(A)F + Vol(B)+ O

v



1 The n- dimensional sphere/ball

Before continuing to our next theorem (about measure concentration on the
sphere ) we would like to get some intuition about the properties of the n-
dimensional sphere/ball in high dimensions.

Consider the ball of radius  in R™ where b,, is the unit ball. Then Vol(rb,) =
r"Vol(b,). If r = 1 —§ (think of it as shrinking the radius of the unit ball
by a little) . Then 7" < e~°" which decreases to 0 rapidly for § which is
asymptotically smaller than % We conclude that in high dimensions, almost

all of the ball’s volume is concentrated close to the surface.

Another interesting fact is that Vol(b,) —n—00 0. The method to analyze the
properties of the volume of b,, and surface area of S*~! is by using Cavalieri’s
principle which states that the volume of an object in R™ can be calculated by
one dimensional integration through the volumes of n — 1 dimensional slices of
the object. Using this principle we can obtain the recursive formula:

1

1
Vol(by) = / Vol(\/T—22by_1)dzn = Vol(bn_l)/ (1— 22)"7 da,

n=—1 n=—1

Now, when n is large, the term (1 — xn)%l is very close to 0 except for a
small interval around 0. Which means that in higher dimensions , most of the
contribution of the volumes lays in a small strip around an equator.

Measure concentration on the sphere

Theorem 7. Let A C S"~! be a measurable set with Pr(A) > 1, and let
A; denote the set of S"~! with distance at most t from A for t < 2. So 1-
Pr(4;) < 26xp(%t2)

Proof. We will prove a weaker bound , with _TQ in the exponent. Let A’ =

T(A) where

T(X)={az |z € X,a€0,1]} Cb,

where b, is the unit ball in R™. So Pr[A] = u(A’) , where u(A’) = \‘;3%?3 That

is true, since p(A’) = Pr(A’) by definition, and each point in A corresponds to
it’s normalized point in on the sphere. So Pr(A) = Pr(A’). Define B = S"~1\ 4,
and B’ = T(B), so for all a € A and b € B we have ||a — b|| > t. It can be

shown that @ C rb, where r =1 — % so we get :




_ Vol(rb,) t2

M) = Vo, TR
By corollary 6:
(1—%)" — u(rbn) > (& : B)) > \Jula (B = VPrAVPr(B) = PTQB)
Thus
Pr(B) < 2(1 — —2)2" < 2eap(— th)
As desired. -

2 Concentration of Lipschitz functions

Consider a function f : S*"! — R and assume we have a probability density
function over the sphere.

Let Pr(f <t)= Pr[{z € S"7! | f(x) < t}]
Definition 8. We define the median of f as Sup(t) such that Pr(f <t) <

N[

Lemma 9. Pr(f < med(f)) <% and Pr(f > med(f)) <3

The proof is trivial and we will skip it.

Theorem 10. Let f : S"~' — R be 1-Lipschitz . Then for all t € [0,1] we
have:

2

Prif > med(f) +t] < 2exp(

)

2

Prif < med(f) — 1] < 2eap(—2t)

Proof. We prove only the first inequality , since the second one follows by sym-
metry .

Define :

A={zeS" | f(z) < med(f)}



By the lemma we mentioned earlier , we get Pr(A) > % Now let z € A, where
A; is defined like in theorem 7. Let y € A. By definition of A; we get

|z —yll <t

So , since f is 1-Lipschitz we get :

f@) < fy) +ly — 2l < med(f) + ¢
Now we get by theorem 7:

2

Prif > med(f) + 1] < Pr(AS) < 2exp(—")

3 The Johnson -Lindenstrauss Lemma

Lemma 11. Define fi : S~ ! — R by:

The length of the projection into the first k& coordinates. Then f is sharply
concentrated . That is , there exists m = m(n, k) such that:

—tn
Pr(f>m+t) < 2exp(

)

2

Pr(f <m—t) < 2exp(

)

for all ¢ € [0, 1].Furthermore, for k > 10in(n), we have m > % -

3=

Proof. 1t isn’t too hard to verify that f is 1 — Lipschitz . So by theorem 10 we
get the first part of the claim with m = med(f).

Now, what is left to prove is the lower bound for m. Now, for any € S*~! we

get :

n

1= B(el]*) =) B(af) = nB(a?)
i=1



for any 1 < j <n (by symmetry) .Thus E(x?) ==

conclusion:

S:E(fQ) < Prif < mf(m+ )2+ Prif > m4 1] < (m+1)° + 2eap( Ll

)

Now let t = ./%. By assumption k > 10In(n), so we get Qearp(%zn) <2 and

n’
by the previous inequality :
Define u = x —y . Since the projection is a linear operator: P(u) = P(x)— P(y)
. So the so condition becomes :

(1= mllull < [IPF@) < (1 + 5)mllul

Also, since P is a linear operator, then for any « > 0 the condition is equivalent
to :

€ €
(1 = gImallul] < ||Pr(eu)] < (1 + g)ma|ul]

So by picking o = ﬁ we can assume ||u|| = 1. Namely we need to show:

€
HIP@I = m |< gm

Let f(u) = ||P(u)||.By lemma 11 , for t = <* we get that the probability this
not hold is bounded by:

2,,2 2k

m*n €
R P -
18 ) < dexp( = y<n

Pr{| f(u) —m [> ] < deap(— —2

since m > %\/g and k = 200¢2In(n)

k [ k.o 2

D < A z

n_(m+ 5n)+n
s JE2 /k>1\/?

= n 5 — 2V n

as desired. 0O



The last result tells us that by picking a random point on the sphere, we get
that the length of its projection is highly concentrated. Next thing we want to
do is to flip this result around, and argue that given a fixed point x, we can
project it into a random k dimensional subspace , such that its length is highly
concentrated.

The method by which we create a random unit vector is by sampling from
a multi-dimensional distribution. In a somewhat similar way we also create
a random orthogonal/rotation transform matrix . And to create a random
projection we simply use the transform on the given vector and then projecting
the result into the first k& coordinates.

Lemma 12. Let x € S" 'be an arbitrary unit vector. Let F be a random
k — dimensional subspace F, and let f(z) be the length of the projection of x
into F . So there exists m such which satisfy the conclusion Lemma 11.

Proof. Let v; be the ith unit vector , and let M be a random translation of

space (rotation). Clearly Mz is distributed uniformly on the sphere. Denote by
the e; the ith vector of the random matrix M.

so e; = MTv;. Now:

< Mz,v; >= (Mz)Tv; = 2T MTv; = 2Te; =< z,e; >

So by projecting Mz into the first k& coordinates we get:

k

k
f(Mz) = Z<M;v,vi >2 = Z<x,ei >2
i—1 i=1

Note that the right side is exactly a projection into a random k — dimensional
space. And we see it distributes exactly like f on random vector. So by the
previous lemma we get the result. O

Before proving the Johnson Lindenstrauss lemma we need to consider one more
definition :

Definition 13. The mapping f : R® — R* is called a K—bi Lipschitz for a
subset X C R" if there exist a constant ¢ > 0 such that :

Kz —yll < |If (@) = FW)I| < clle -yl

for all z,y € X.

if K is the least K for which f is bi-Lipschitz , we refer to f as a Ky-embedding
of X.



Theorem 14. (The Johnson Lindenstrauss lemma) : Let X be an n-point set
in the Euclidean space , and let € € (0,1]. Then There exists a (1+¢€) embedding
of X into R¥, where k = O(e 2log(n))

Proof. Assume X C R™. Let k = 200e 2In(n). Assume k < n and let F be
a random k — dimensional linear subspace of R". Let Pr : R™ — F be the
orthogonal projection to the subspace F.

We prove that:
€ €
(1= gImlle —yll < |Px(2) = Pr(y)ll < (1 + g)mllz —yl|

holds with probability > 1 — n~2. Since there are O(n?) pairs, we get that this
holds for all pairs with some constant probability, say > % In such case, the
mapping P is an D—embedding of X into R* with

—_

+

ol

D < <l+e

H
wlo

for e <1.

Define u = x —y . Since the projection is a linear operator: P(u) = P(x)— P(y)
. So the so condition becomes :

(1= mllull < [IPF@) < (1 + Z)mljul

Also, since P is a linear operator, then for any « > 0 the condition is equivalent
to :

€ €
(1 = g)mallull < [|Pr(au)]] < (1 + g)ma|ull

So by picking o = HTll we can assume ||u|| = 1. Namely we need to show:

€
HIP@I = m |< gm

Let f(u) = ||P(u)||.By lemma 11 , for ¢t = <* we get that the probability this
not hold is bounded by:

2.2 2

Pr]| flu) —m|>1t] < 4exp(%) < 4exp(—€7—2) <n72

since m > %\/g and k = 200e~2In(n) O



