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The concept of this chapter is the idea of reducing the dimension of the points in
a given set P ∈ Rn such that the distances are preserved approximately. In this
chapter, we will go through a series of theorems toward proving a theorem called
�The Johnson-Lindenstrauss Lemma� which tells us we can do so (reducing the
dimension while approximately preserving the distances ) by simply projecting
the set into random subspaces.

We shall start with 2 simple de�nitions :

De�nition 1. (translation) : Let A ∈ Rd and p ∈ Rd . So the following set:

A+ q = {a+ q | a ∈ A}

is the translation of A by q.

De�nition 2. (Minkowsky sum) : Given A,B ∈ Rd, the minkowski sum of A
and B is given by:

A+B := {a+ b | a ∈ A, b ∈ B}

Theorem 3. (Brunn-Minkowsky) : Let A,B 6= φ be compact sets of Rd. So :

V ol(A+B)
1
n ≥ V ol(A) 1

n + V ol(B)
1
n

before proving the theorem, we shall de�ne the following:

De�nition 4. A ⊂ Rn is a brick set if A = ∪ci=1Bi where Bi are parallel to the
axis boxes with disjoint interiors :

Proof. (for theorem 3) :

Su�cient to prove for brick sets by the de�nition of volume as a limit of brick
sets approximation.
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The proof is by induction on the total number of bricks in A and B denoted by
k.

if k = 2 than A = α and B = β where α and β are bricks with dimensions
α1, .., αn and β1, .., βn. So A + B = α + β is a brick with the dimensions
α1 + β1, .., αn + βn.

So we need to prove:

(

n∏
i=1

αi)
1
n + (

n∏
i=1

βi)
1
n ≤ (

n∏
i=1

αi + βi)
1
n

equivalently we will prove:

(
∏n
i=1 αi)

1
n + (

∏n
i=1 βi)

1
n∏n

i=1 αi + βi)
1
n

≤ 1

Now:

(
∏n
i=1 αi)

1
n + (

∏n
i=1 βi)

1
n∏n

i=1 αi + βi)
1
n

= (

n∏
i=1

αi
αi + βi

)
1
n + (

n∏
i=1

βi
αi + βi

)
1
n

by the arithmetic-geometric mean inequality :

≤ 1

n

n∑
i=1

αi + βi
αi + βi

= 1

as desired.

For k > 2 Assume A has at least 2 bricks. So there is a hyperplane h which
separates the interiors of two bricks of A

.We can assume WLOG the following assumptions:

1. h = {x1 = 0}

2. B is split in the same relation as A. That is, if we de�ne A+ = A∩h+ and

A− = A ∩ h− and similarly de�ne B+, B− then r := V ol(A+)
V ol(A) = V ol(B+)

V ol(B) .

The reason we can do it, is that volume is invariant to translations.

Now since A+ + B+ and A− + B− are interior disjoint subsets of A+ B , and
by the induction hypothesis we get:

V ol(A+B) ≥ V ol(A++B+)+V ol(A−+B−) ≥ (V ol(A+)
1
n+V ol(B+)

1
n )n+(V ol(A−)

1
n+V ol(B−)

1
n )n
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= (r
1
nV ol(A) + r

1
nV ol(B))n + ((1− r)V ol(A) 1

n ) + ((1− r)V ol(B)
1
n )n =

(V ol(A)
1
n + V ol(B)

1
n )n

As desired.

Theorem 5. Let P be a convex set in Rn+1,and let A = P ∩ (x1 = a), B =
P ∩ (x1 = b), C = P ∩ (x1 = c) be three slices of A where a < b < c. So :

V ol(B) ≥ min(V ol(A), V ol(C))

Proof. su�cient to show that v given by :

v(t) = V ol(P ∩ (x1 = t))
1
n

is concave on its support.

Let α = b−a
c−a . So b = (1−α)∗a+a∗c. By the convexity of P , (1−α)A+αC ⊂ B.

By theorem 3 :

v(b) = V ol(B)
1
n ≥ V ol((1− α)A+ αC)

1
n ≥ V ol((1− α)A) 1

n + V ol(αC)
1
n =

((1− α)nV ol(A)) 1
n + (αnV ol(C))

1
n = (1− α)V ol(A) 1

n + αV ol(C)
1
n

= (1− α)v(a) + v(c)

So the function is indeed concave.

Corollary 6. For compact sets A,B ⊂ Rn,V ol(A+B
2 ) ≥

√
V ol(A)V ol(B)

Proof. V ol((A+B)/2)
1
n = V ol(A2 +

B
2 )

1
n ≥ V ol(A2 )

1
n+V ol(B2 )

1
n = V ol(A)

1
n +V ol(B)

1
n

2 ≥√
V ol(A)

1
n + V ol(B)

1
n
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1 The n- dimensional sphere/ball

Before continuing to our next theorem (about measure concentration on the
sphere ) we would like to get some intuition about the properties of the n-
dimensional sphere/ball in high dimensions.

Consider the ball of radius r in Rn where bn is the unit ball. Then V ol(rbn) =
rnV ol(bn). If r = 1 − δ (think of it as shrinking the radius of the unit ball
by a little) . Then rn ≤ e−δn which decreases to 0 rapidly for δ which is
asymptotically smaller than 1

n . We conclude that in high dimensions, almost
all of the ball's volume is concentrated close to the surface.

Another interesting fact is that V ol(bn) →n→∞ 0. The method to analyze the
properties of the volume of bn and surface area of Sn−1 is by using Cavalieri's
principle which states that the volume of an object in Rn can be calculated by
one dimensional integration through the volumes of n− 1 dimensional slices of
the object. Using this principle we can obtain the recursive formula:

V ol(bn) =

ˆ 1

xn=−1
V ol(

√
1− x2nbn−1)dxn = V ol(bn−1)

ˆ 1

xn=−1
(1− x2n)

n−1
2 dxn

Now, when n is large, the term (1 − xn)
n−1
2 is very close to 0 except for a

small interval around 0. Which means that in higher dimensions , most of the
contribution of the volumes lays in a small strip around an equator.

Measure concentration on the sphere

Theorem 7. Let A ⊂ Sn−1 be a measurable set with Pr(A) ≥ 1
2 , and let

At denote the set of Sn−1 with distance at most t from A for t ≤ 2. So 1-

Pr(At) ≤ 2exp(−nt
2

2 )

Proof. We will prove a weaker bound , with −nt
2

4 in the exponent. Let A′ =
T (A) where

T (X) = {ax | x ∈ X,α ∈ [0, 1]} ⊂ bn

where bn is the unit ball in Rn. So Pr[A] = µ(A′) , where µ(A′) = V ol(A′)
V ol(bn)

. That

is true, since µ(A′) = Pr(A′) by de�nition, and each point in A corresponds to
it's normalized point in on the sphere. So Pr(A) = Pr(A′). De�ne B = Sn−1\At
and B′ = T (B), so for all a ∈ A and b ∈ B we have ||a − b|| ≥ t. It can be

shown that (A′+B′)
2 ⊂ rbn where r = 1− t2

8 so we get :
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µ(rbn) =
V ol(rbn)

V ol(bn)
= rn = (1− t2

8
)n

By corollary 6:

(1− t
2

8
)n = µ(rbn) ≥ µ(

(A′ +B′)

2
) ≥

√
µ(A′)µ(B′) =

√
Pr(A)Pr(B) ≥

√
Pr(B)

2

Thus:

Pr(B) ≤ 2(1− t2

8
)2n ≤ 2exp(

−2nt2

8
)

As desired.

2 Concentration of Lipschitz functions

Consider a function f : Sn−1 → R and assume we have a probability density
function over the sphere.

Let Pr(f ≤ t) = Pr[{x ∈ Sn−1 | f(x) ≤ t}]

De�nition 8. We de�ne the median of f as Sup(t) such that Pr(f ≤ t) ≤ 1
2 .

Lemma 9. Pr(f < med(f)) ≤ 1
2 and Pr(f > med(f)) ≤ 1

2

The proof is trivial and we will skip it.

Theorem 10. Let f : Sn−1 → R be 1-Lipschitz . Then for all t ∈ [0, 1] we
have:

Pr[f > med(f) + t] ≤ 2exp(
−t2n
2

)

Pr[f < med(f)− t] ≤ 2exp(
−t2n
2

)

Proof. We prove only the �rst inequality , since the second one follows by sym-
metry .

De�ne :

A = {x ∈ Sn−1 | f(x) ≤ med(f)}
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By the lemma we mentioned earlier , we get Pr(A) ≥ 1
2 . Now let x ∈ At where

At is de�ned like in theorem 7. Let y ∈ A. By de�nition of At we get

||x− y|| < t

So , since f is 1-Lipschitz we get :

f(x) ≤ f(y) + ||y − x|| < med(f) + t

Now we get by theorem 7:

Pr[f > med(f) + t] ≤ Pr(Act) ≤ 2exp(
−t2n
2

)

3 The Johnson -Lindenstrauss Lemma

Lemma 11. De�ne fk : Sn−1 → R by:

fk(x) =

√√√√ k∑
i=1

x2i

The length of the projection into the �rst k coordinates. Then f is sharply
concentrated . That is , there exists m = m(n, k) such that:

Pr(f ≥ m+ t) ≤ 2exp(
−t2n
2

)

Pr(f ≤ m− t) ≤ 2exp(
−t2n
2

)

for all t ∈ [0, 1].Furthermore, for k ≥ 10ln(n), we have m ≥ 1
2 ·

√
k
n .

Proof. It isn't too hard to verify that f is 1−Lipschitz . So by theorem 10 we
get the �rst part of the claim with m = med(f).

Now, what is left to prove is the lower bound for m. Now, for any x ∈ Sn−1 we
get :

1 = E(||x||2) =
n∑
i=1

E(x2i ) = nE(x2j )
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for any 1 ≤ j ≤ n (by symmetry) .Thus E(x2j ) =
1
n

conclusion:

E[f(x)2] =
k

n

k

n
= E(f2) ≤ Pr[f ≤ m+ t](m+ t)2 +Pr[f ≥ m+ t] ≤ (m+ t)2 +2exp(

−t2n
2

)

Now let t =
√

k
5n . By assumption k ≥ 10ln(n), so we get 2exp(−t

2n
2 ) ≤ 2

n , and

by the previous inequality :

De�ne u = x−y . Since the projection is a linear operator: P (u) = P (x)−P (y)
. So the so condition becomes :

(1− ε

3
)m||u|| ≤ ||PF (u)|| ≤ (1 +

ε

3
)m||u||

Also, since P is a linear operator, then for any α > 0 the condition is equivalent
to :

(1− ε

3
)mα||u|| ≤ ||PF (αu)|| ≤ (1 +

ε

3
)mα||u||

So by picking α = 1
||u|| we can assume ||u|| = 1. Namely we need to show:

| ||P (u)|| −m |≤ ε

3
m

Let f(u) = ||P (u)||.By lemma 11 , for t = εm
3 we get that the probability this

not hold is bounded by:

Pr[| f(u)−m |≥ t] ≤ 4exp(
−ε2m2n

18
) ≤ 4exp(−ε

2k

72
) < n−2

since m ≥ 1
2

√
k
n and k = 200ε−2ln(n)

k

n
≤ (m+

√
k

5n
)2 +

2

n

⇒ m ≥
√
k − 2

n
−
√

k

5n
≥ 1

2

√
k

n

as desired.
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The last result tells us that by picking a random point on the sphere, we get
that the length of its projection is highly concentrated. Next thing we want to
do is to �ip this result around, and argue that given a �xed point x, we can
project it into a random k dimensional subspace , such that its length is highly
concentrated.

The method by which we create a random unit vector is by sampling from
a multi-dimensional distribution. In a somewhat similar way we also create
a random orthogonal/rotation transform matrix . And to create a random
projection we simply use the transform on the given vector and then projecting
the result into the �rst k coordinates.

Lemma 12. Let x ∈ Sn−1be an arbitrary unit vector. Let F be a random
k − dimensional subspace F , and let f(x) be the length of the projection of x
into F . So there exists m such which satisfy the conclusion Lemma 11.

Proof. Let vi be the ith unit vector , and let M be a random translation of
space (rotation). ClearlyMx is distributed uniformly on the sphere. Denote by
the ei the ith vector of the random matrix M.

so ei =MT vi. Now:

< Mx, vi >= (Mx)T vi = xTMT vi = xT ei =< x, ei >

So by projecting Mx into the �rst k coordinates we get:

f(Mx) =

√√√√ k∑
i=1

< Mx, vi >2 =

√√√√ k∑
i=1

< x, ei >2

Note that the right side is exactly a projection into a random k − dimensional
space. And we see it distributes exactly like f on random vector. So by the
previous lemma we get the result.

Before proving the Johnson Lindenstrauss lemma we need to consider one more
de�nition :

De�nition 13. The mapping f : Rn → Rk is called a K−bi Lipschitz for a
subset X ⊂ Rn if there exist a constant c > 0 such that :

cK−1||x− y|| ≤ ||f(x)− f(y)|| ≤ c||x− y||

for all x, y ∈ X.

if K0 is the least K for which f is bi-Lipschitz , we refer to f as a K0-embedding
of X.
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Theorem 14. (The Johnson Lindenstrauss lemma) : Let X be an n-point set
in the Euclidean space , and let ε ∈ (0, 1]. Then There exists a (1+ε) embedding
of X into Rk, where k = O(ε−2log(n))

Proof. Assume X ⊂ Rn. Let k = 200ε−2ln(n). Assume k < n and let F be
a random k − dimensional linear subspace of Rn. Let PF : Rn → F be the
orthogonal projection to the subspace F .

We prove that:

(1− ε

3
)m||x− y|| ≤ ||PF (x)− PF (y)|| ≤ (1 +

ε

3
)m||x− y||

holds with probability ≥ 1− n−2. Since there are O(n2) pairs, we get that this
holds for all pairs with some constant probability, say ≥ 1

3 . In such case, the
mapping P is an D−embedding of X into Rk with

D ≤
1 + ε

3

1− ε
3

≤ 1 + ε

for ε ≤ 1.

De�ne u = x−y . Since the projection is a linear operator: P (u) = P (x)−P (y)
. So the so condition becomes :

(1− ε

3
)m||u|| ≤ ||PF (u)|| ≤ (1 +

ε

3
)m||u||

Also, since P is a linear operator, then for any α > 0 the condition is equivalent
to :

(1− ε

3
)mα||u|| ≤ ||PF (αu)|| ≤ (1 +

ε

3
)mα||u||

So by picking α = 1
||u|| we can assume ||u|| = 1. Namely we need to show:

| ||P (u)|| −m |≤ ε

3
m

Let f(u) = ||P (u)||.By lemma 11 , for t = εm
3 we get that the probability this

not hold is bounded by:

Pr[| f(u)−m |≥ t] ≤ 4exp(
−ε2m2n

18
) ≤ 4exp(−ε

2k

72
) < n−2

since m ≥ 1
2

√
k
n and k = 200ε−2ln(n)
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